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Comparing Bennequin-type inequalities

Elaina Aceves, Keiko Kawamuro and Linh Truong

ABSTRACT. The slice-Bennequin inequality gives an upper bound for
the self-linking number of a knot in terms of its four-ball genus. The
s-Bennequin and 7-Bennequin inequalities provide upper bounds on the
self-linking number of a knot in terms of the Rasmussen s invariant
and the Ozsvath-Szabd 7 invariant. We exhibit examples in which the
difference between self-linking number and four-ball genus grows arbi-
trarily large, whereas the s-Bennequin inequality and the 7-Bennequin
inequality are both sharp.
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1. Introduction

In the standard contact 3-space (R?,&yq), knots that are transverse to
the contact planes can be viewed as braids around the z-axis. In this paper
we will view transverse knots by their braid representations. Let B,, be the
Artin braid group generated by o1, ...,0,-1 with the relations

0;0j = 005 for |Z —j‘ > 1

0;0i410; = 04100441 for i = 1, e, — 2.
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The self-linking number is an invariant of a transverse link. If a transverse
knot is represented by a braid g € B, then the self-linking number can be
computed using the formula

sl(ﬁ) = -n+a,

where B is the closure of 3, n is the braid index of 8 and a is the exponent
sum of 3 (or the algebraic crossing number of 3). Given a topological knot
type K in S3 we denote by SL(K) the maximal value of the self-linking
numbers of transverse knot representatives and call it the mazimal self-
linking number of K. Bennequin [Ben83] showed sl(3) < 2g3(K) — 1 where
B is a braid representative of K and g3(K) denotes the genus of the knot
type K; thus,
SL(K) < 2g3(K) — 1.

The knot invariants we examine in this paper include the maximal self-
linking number SL(K), the four ball genus g4(K), the Ozsvéath-Szabé con-
cordance invariant 7(K') [OS03], and the Rasmussen concordance invariant
s(K) [Ras10]. We also consider the transverse invariants (K ) [OST08] from
Heegaard Floer homology and 1 (K) [Pla06] from Khovanov homology.

For any knot type K, we have the following bounds on the self-linking
number:

SL(K) < s(K) — 1 < 2g4(K) — 1 < 2g3(K) — 1.

Rudolph [Rud93] proved SL(K) < 2¢4(K) — 1. Plamenevskaya [Pla06],
Shumakovitch [Shu07], and Kawamura [Kaw07] proved the first inequality
SL(K) < s(K) — 1. Rasmussen defined the s invariant and proved that
s(K) < 2¢4(K) in [Ras10] which gives us the second inequality. In [Parl2],
Pardon extended the s invariant from knots to links. Plamenevskaya’s proof
still applies with Pardon’s definition, so we have a bound for the self-linking
number.

The concordance invariant 7(K') defined using Heegaard Floer homology
[OS03] gives similar bounds [OS03, Pla04]:

SL(K) < 27(K) — 1 < 2g4(K) — 1 < 2g3(K) — 1.

Definition 1.1 ([HIK19]). Let K be a knot type in S3. The defect of the
slice-Bennequin inequality is defined as
1

51(K) = 5(204(K) — 1 = SL(K)).

Definition 1.2. Let K be a knot type in S®. We define the defect of the
s-Bennequin inequality as
1
53(K) = §(S(K) —1- SL(K)))
and the defect of the T-Bennequin inequality as

5. (K) = %(27([() _1 - SL(K)).
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Note that the defects d4, d5, and J, are always nonnegative.
In our main result, we show that the defect 64(K’) can be made arbitrarily
large, while at the same time the defects d5(K) and ¢, (K') are both bounded.

Theorem 1.3. There exists a family of knots K,,, wheren =1, 2, ..., such
that 64(K,,) = 2n, whereas 65(K,) =0 and §,(K,) = 0.

We give the first example of such an infinite sequence in the literature.

Any knot satisfying Theorem 1.3 must be non-quasipositive. However, we
will show in Section 2.5 that the non-quasipositive property of the knots K,
is not detected by the Ozsvath-Szab6-Thurston transverse invariant 6(K)
from knot Floer homology [OST08] and Plamenevskaya’s ¢ (K) from Kho-
vanov homology [P1a06].

Definition 1.4. A braid g € B,, is quasipositive if it is a product of positive
powers of some conjugates of the standard generators o1, ...,0,_1. In other
words, 8 is quasipositive if it is conjugate to a braid word of the form
(wioiywy ) (waos,wy ) -+ (wogwy )
for some braid words wi,...,wg. A knot or link is then quasipositive if it
can be represented by a quasipositive braid.
We have the following result when K is quasipositive.

Proposition 1.5. If K is a quasipositive knot, then we have

0s(K) = 6,(K) = 04(K) = 0.
Proof. Let K be quasipositive. Plamenevskaya [Pla04] and Hedden [Hed10)]
proved the equality SL(K) = 27(K) — 1, and Plamenskaya [Pla06] and
Shumakovitch [Shu07] proved the equality SL(K) = s(K) — 1. That the

defect of the slice-Bennequin inequality of a quasipositive knot vanishes is
well-known (see, for example, [HIK19, Proposition 1.10]). O

Acknowledgements. The authors would like to thank Gage Martin and
Matt Hedden for useful conversation, and the anonymous referee for numer-
ous comments.

2. A sequence of non-quasipositive braids

Throughout the rest of this paper, we focus on a particular sequence
of braids and their knot closures. For each n = 1,2,..., we define the
3-stranded braid S, as

/Bn — (0,1—1)2n+30_2(0.1)30.2'
The braid closure of (3, is a knot denoted by K, = B; The braid 8, is

shown in Figure 1.

Theorem 2.1. For eachn =1,2,..., let K, be the knot constructed above.
The defect of the slice Bennequin inequality for the knot K,, is 04(K,) = 2n.
On the other hand, ds(K,) =0 and 6,(K,) = 0.
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FiGURE 1. The braid 8,. The braid closure K1 = ﬁAl is the
knot 10195 and Ky = (35 is the knot 12n235.

Theorem 1.3 from the Introduction follows from Theorem 2.1.

The proof of Theorem 2.1 will rely on the signature bound on the four-
ball genus: 10(K) < g4(K). For the knots K,, this signature bound will
prove to be stronger than the s-invariant bound 1s(K) < g4(K) and the
T-invariant bound 7(K) < g4(K).

Proof of Theorem 2.1. The result will follow from Corollary 2.7, Propo-
sition 2.9, and Proposition 2.10. (]

2.1. Signature of K,,. The goal of this section is to prove that the signa-
ture of K, is 2n.

We begin with the case n = 1. Figure 2 shows a Seifert surface T with
oriented boundary Ki. The Euler characteristic of T} is

x(Ty) =3 —8 = —5.

That is, the surface 77 has genus 3. The oriented curves 71, ..., 7 shown in
Figure 2 generate the homology group Hy(T}) ~ Z5. Let fyf be the push-off
of 7; in the positive normal direction of the surface. Since the Seifert matrix,
Vi, has (i, j)-entries lk:('yi,fy;r) we have

-2 0 -1 0 0 O
-1 -1 0 0 0 O
0o 1 0 -1 0 O
Vi= 0o 0 o0 1 -1 0
0o 0 o0 0 1 -1
0 0 0 0 0 1

Lemma 2.2. The signature of K, is o(K;) = 2.

We show detailed computation since this will play the base case of the
induction step to compute the signature of general K.

Proof. The signature (K1) is the number of positive eigenvalues of V3 + VT
minus the number of negative eigenvalues of Vi + Vi, where Vi’ denotes the
transpose of 17.
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FIGURE 2. The Seifert surface Ty of K1. The oriented curves
1, - --,76 generate the homology group Hy(77). The pushoff
77 links with other curves.

After performing the row operations to Vi + V{I detailed in Figure 3, we
arrive at a row reduced matrix with two negative diagonal entries and four
positive diagonal entries. Thus, o(K;) =4 —2 = 2. O

We can generalize the construction of the Seifert surface for Ky to create
for each n > 2 a Seifert surface T,, for K, shown in Figure 4. The box
B(n) represents 2n — 3 negative bands between the bottom two disks. The
oriented curves 7q,...,van+4 generate Hq(T,). The curves ~g,...,Y2n—2,
which encircle adjacent bands (similar to ~4,75 and 76 from Figure 2), as
well as the other half of the curves v5 and 2,43 are not drawn but are
also represented by the box. All of the curves are oriented in the same
direction, namely oriented clockwise. The associated Seifert matrix V,, and
the symmetric matrix V,, + V,I' have size (2n + 4) x (2n + 4) and are given
below.

-2 0 -1 0
-1 -1 0 0
0 1 0 -1 O
0O o 0 1 |-1
V, = 1| -1
1




i+ Vi

Step 1
—_—

Step 2
—_—

Step 3
—_—

Step 4
E—

Step 5
—_—

Step 6
—_—
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-4 -1
-1 -2
1 1

0 0
0 0
0 0
—4 -1
0 —7/4
0 5/4
0 0
0 0
0 0
-4 0
0 —7/4
0 0
0 0
0 0
0 0
-4 0
0 —7/4
0 0
0 0
0 0
0 0
-4 0
0 —7/4
0 0
0 0
0 0
0 0
—4 0
0 —7/4
0 0
0 0
0 0
0 0
-4 0
0 —7/4
0 0
0 0
0 0
0 0

-1 0 0 0
1 0 0 0
0 -1 0 0
-1 2 -1 0
0 -1 2 -1
0 0 -1 2
-1 0 0 0
5/4 0 0 0
1/4 -1 0 0
-1 2 -1 0
0 -1 2 -1
0 0 -1 2
~12/7 0 0 0
5/4 0 0 0
8/7 -1 0 0
-1 2 -1 0
0 -1 2 -1
0 0 -1 2
0 -3/2 0 0
0 35/32 0 0
8/7 -1 0 0
0 9/8 -1 0
0o -1 2 -1
o 0 -1 2
0 0 -4/3 0
0 0 35/36 0
8/7 0 —8/9 0
0 9/8 -1 0
0 0 10/9 -1
o 0 -1 2
0 0 0 -6/5
o o0 0 7/8
8/7 0 0  —4/5
0 9/8 0 —9/10
0 0 109 -1
0O 0 0 11/10
0O 0 0 0
0O 0 0 0
8/7 0 0 0
0 9/8 0 0
0 0 10/9 0
0 0 0 11/10

129

R2 — RQ — lRl
Rg %Rg* ZRl
R1 —>R1 — 4]:52

R3 —>R3+7R2

R2 — R2 5R3
Ry — R4+ R3

Ry — Ry + 4
RQ-)RQ §5R4
R3; — Rs + R3
Rs — Rs + §R5

Ry %R1+§R5
R2 —>R2—*R5
R3 — R3 + R5
R4—>R4+ R5
Rg — Rg + 10R5

Ry — R+ 1
R2—>R2—£
Rs — Rs + 11R6
R4—>R4—|—
R5—>R5+h]J

FIGURE 3. We denote the ith row in the matrix as R;, and
denote by R; — R; + cR; with ¢ € Q the row operation
replacing the row R; with R; + cR;.
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FIGURE 4. The Seifert surface T;, of K,,. The oriented curves
Yy« -5 Yonta generate Hy(T),).

Vo + VI = 1 2

-1
-1 2

Let My = Vi + ViI'. We inductively define the matrices M,, of size (n +5) x
(n+5) forn=1,2,... as follows.

4 -1 —-1]0 o0 o0 0
1 -2 110 0 o0
11 o110 o M, 1

M, = M, = n 0
0 0 ]—-1 2 [—-1]0 n
0 0 0 -1 2[—1 -1
0 0 0 0]=1 2 0 -+ 0[-1 2

Observe that My,—1 = V,, + VnT . The signature of the knot K, is the
signature of the matrix My, 1, which can be computed with the help of the
following lemma.

Lemma 2.3. We can reduce M,, to the matrix Mn using only row operations
in the first n + 4 rows where an asterisk designates that the entry could be
any rational number.
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—4 0 *
Lo 8/7 0 :

M, = 9/8
21
—1 2

Proof. We will prove this by induction on n. s

We have already shown that M; can be reduced to M; using row oper-
ations in the first five rows by following Steps 1-4 and the first four row
operations from Step 5 in Figure 3. Hence the base case is satisfied.

—4 0 0 —6/5

0 —7/4 g 75

— 8 —4/5
9/8 ~9/10

0 10/9 [ —1
—1 2

As our inductive hypothesis, assume we can reduce M, to Mn forn>1
using row operations in the first n 4+ 4 rows. Recall M, 1 contains M, as a
submatrix. By the inductive hypothesis, we can row reduce the embedded
matrix M, using row operations in the first n 4+ 4 rows of M. Since the
last column of M,,+; has zeros in the first n + 4 entries, the last column is
unaffected by these row operations. After performing the row operations,
we obtain the resulting matrix, which we denote by M), ;, shown below.

—4 0

—7/4 0

8/7 0 0

;o 9/8 0
n+1 — .

242 [=T] 0

(-1 2 [—1

0o 0 0 0 - 0 ]-1 2

We now perform multiple row operations. In Step A, we perform only
one row operation in the second to last row, specifically R,y5 — Rny45 +
Z—ianJA. In Step B, we use row operations to force the (n+5)th column to
have zeros in the first n 4+ 4 entries. Notice that this will introduce values in
the first n 4 4 entries in the last column and we need to use row operations

only in the first n + 5 rows. The resulting matrix is Mn+1~
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—4 0
—7/4 0
8/7 O 0
9/8 0
» Step A O / |
. %
ntd T 0
n—+8
+10 [ 1
0 7;L+9 -1
0 0 0 0 0 ‘ —1 2
—4 0 *
—7/4 0 *
8/7 O 0 *
Step B 9/8 0 *
n+10 1
n+9
0 0 0 o .- 0 ‘ -1 2

O
Lemma 2.4. For n = 1,2, ..., the matrix M, has signature o(M,,) = n+1.

Proof. By Lemma 2.3, we can row reduce the matrix M, to ]\7n using only
row operations in the first n + 4 rows. After performing row operations as
in Steps A and B shown below, we conclude o(M,,) = (n+3) —2=n+ 1.

—4 *
—7/4 .
8/7 O *
Mn Step A 9/8
nt9  _q
n+8
n+10
0 n—:9
—4 0
—7/4 0
8/7 0 0
Step B 9/8 0
O . n+9 :
o 0
n+8 10
n+9

We are finally ready to calculate the signature of K.
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FIGURE 5. K after isotopy

Proposition 2.5. For n = 1,2,..., the knot K, has signature o(K,,) = 2n.

Proof. Recall that the Seifert matrix V,, + VnT associated to each knot K,
is the matrix Ma,_1. By Lemma 2.4, we conclude that o(K,) = 2n. O

2.2. Four-ball genus of K, . The goal of this section is to calculate the
four-ball genus g4(K,,). We will use Murasugi’s [Mur65, Theorem 9.1] lower
bound on g4(K,) in terms of the signature of K, and directly construct a
sequence of surfaces with boundary K.

Proposition 2.6. For each n = 1,2,..., the knot K, has four-ball genus
94(Kyp) = n.

Proof. We construct a surface S, in B* with ¢(S,) = n and K, as its
boundary. We illustrate the procedure for n = 1. Begin with £; and perform
braid isotopy until we arrive at Figure 5.

We create S; with K as its boundary as seen in Figure 6. Notice that
we introduced bands at each standard crossing and the remaining crossings
contribute to one band with two ribbon intersections which are in green
in Figure 6. To better understand this band with ribbon intersections, we
have Figures 7 and 8. In Figure 7, we have colored the band to illustrate
how it wraps around and through the three horizontal parallel disks. The
front side of S; is highlighted in solid pink while the back side of Sy is in
dashed blue. The two ribbon intersections are still highlighted in green. The
three disks in the left sketch of Figure 8 that are colored pink, yellow, and
dark blue (from top to bottom) appear as line segments of the right sketch
when viewed from the right hand side. The band begins at the black dot
on the pink disk, creates two ribbon intersections via passing through the
blue and then yellow disks, and ends at the black dot on the blue disk. We
now push a neighborhood of the ribbon intersections, which is highlighted
in blue in Figure 6, into the 4-ball. This resolves the ribbon intersection and
the resulting surface, which we call S1, is properly embedded in B*.
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~

FIGURE 6. S; with ribbon intersections

M% j

FIGURE 7. S7 with colored band

R —
NATAYAWA
f#w

FIGURE 8. Band in 5}

.

We calculate the Euler characteristic of S7 using the fact that there are
three disks and four bands.

X(S1) =3-4=-1.
Since x(S) =1 — 2¢(S) for knots, we have that g(S;) =1
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We can create a surface S,, with K, as its boundary by simply having 2n
negative bands instead of the two negative bands we have on the left in S;.
Again we resolve the ribbon intersections and S, is a properly embedded
smooth surface in B2.

Thus, S, has a total of 2n + 2 bands comprising of the 2n negative bands
on the left of the surface, the large band that has two ribbon intersections,
and one positive band on the right of the surface. We calculate the Euler
characteristic of the surface S,

X(Sp)=3—-(2n+2)=1-2n
and we have that ¢(S,) = n. Hence, g4(K,) < n.

K. Murasugi proved that |o(K)| < g4(K) in [Mur65, Theorem 9.1]. By
Proposition 2.5, we have that 3(2n) < g4(K,,). Hence, g4(K,) = n. O

Corollary 2.7. For each n = 1,2,..., the defect 04(K,,) = 2n. In particu-
lar, K, is non-quasipositive.

Proof. We compute the self-linking number of braids 3,, in our sequence
and obtain: R

sl(Bn)=-3+5—(2n+3)=—-2n—1.
By the generalized Jones conjecture [DP13, LM14, Kaw06], the maximal
self-linking number is realized at the minimal braid index. As the braid
index of K, is 3 and (3,, is a 3-braid, we obtain

SL(Ky,) = sl(Bn) = —2n — 1.
By Proposition 2.6 we have g4(K,,) = n. We compute the defect

1
04(Kp) = 5(294(Kn) —1-SL(K,)) = 2n.
By Proposition 1.5 we conclude that K, is non-quasipositive. U

2.3. The s invariant of K,. The goal of this section is to calculate the
s invariant of K,. We will determine the Murasugi’s form [Mur74] of the
braid 5,. Then we use it to calculate the s invariant for K.

Lemma 2.8. For n =1,2,..., the braid 3, is conjugate to the braid
An —_ (0.10.2)30.1 (0,2—1)2n+5

that belongs to the first type in the Murasugi classification of 3-braids
[Mur74].

Proof. We begin by examining the braid A4, = (0109)%01(05 )2+ de-
picted at the top of Figure 9. Note that the box labeled T' contains 2n + 2
negative twists, or 2n+2 oy s throughout the figure. Using conjugation, we
are able to move the negative crossing highlighted in blue along o1 and o9 to
cancel with a ¢1. Similarly, we can move the negative crossing highlighted
in pink underneath o1 and o9 to cancel with another o;. The last braid is
conjugate to 3, and we are done. ([
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FiGUrE 9. K, is conjugate to A,

Proposition 2.9. For n =1,2,..., s(K,) = —2n; thus, §;(K,) = 0.

Proof. By Lemma 2.8, we know that A, is of Type 1 according to Mura-
sugi’s classification of 3-braids with d = 1 and a; = 2n + 5 [Mur74]. By
Martin [Mar19, Theorem 4.1], since (3, is conjugate to A, which is of Type
1 with d > 0 and some a; > 0, we have that s(K,) = w(K,) — 2 where w
denotes the writhe of the knot. Recall that the writhe is the number of pos-
itive crossings minus the number of negative crossings in the knot diagram.
Hence
w(K,)=7—(2n+5)=—-2n+2.
We conclude that
s(Kp)=-2n+2-2= —2n.
O

2.4. The 7 invariant of K,,. We will show that the 7-defect d, vanishes
for each knot K.

Proposition 2.10. For n =1,2,..., the 7 invariant of K,, is 7(K,) = —n.

Proof. We perform a crossing change on the rightmost crossing of K, to
obtain a knot P,,, as shown in Figure 10 for n = 1. After doing a Reidemeis-
ter I move, and two Reidemeister II moves, we see that the knot P, is the
(2, =(2n+1))-torus knot T5 _(2,41)- This sequence of isotopies is illustrated
in Figure 11. Recall that 7 invariant satisfies the crossing change inequality
[OS03, Corollary 1.5]

0< T(Kn) - T(T2,f(2n+1)) <L
Since 7(T5, _(2n+41)) = —n, we have —n < 7(K,) < —n + 1.
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FIGURE 10. The knot K is the closure of the braid shown
on the left. After a crossing change, we obtain the knot P;
as the closure of the braid shown on the right.

Next, we may change a negative crossing in K,, to a positive crossing to
get a knot R, satisfying

T(Ky,) < 7(Ry)

by the crossing change inequality. We may then change a positive crossing in
R, to a negative crossing to obtain the torus knot T3 _(g,43). This process
is illustrated in Figure 12. We have

7(Rpn) < 7(Th—(2n43)) +1 = —n.

Thus, we have 7(K,) < —n. Together with the first step, we find that
7(K,) = —n for each positive integer n. O

2.5. The transverse and contact invariants of K,,. This section is
dedicated to exploring invariants in the literature that can be used to detect
if a knot is non-quasipositive. We study the Ozsvath-Szabdé-Thurston trans-
verse invariant 6(K) from knot Floer homology [OST08] and Plamenevskaya’s
transverse invariant ¢ (K) from Khovanov homology [Pla06]. Recall that
for quasipositive knots, the transverse invariants 1)(K) and §(K) are both
nonzero by [Plal8]. Each knot K, is non-quasipositive by Corollary 2.7.
However, the propositions below show that the non-quasipositive property
of the knots K, is not detected by (K) and ¢ (K).

Proposition 2.11. For all n > 1, the invariant ¢ (K,,) is nonzero.
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FIGURE 11. The knot P is isotopic to the torus knot 15 _3.
The leftmost picture shows the knot P, after a Reidemeister
II move. Perform a Reidemeister I move to obtain the knot
in the center picture. Finally, perform two Reidemeister 11
moves to obtain 75 _3 shown in the rightmost picture.

TL‘
T,
- rﬂ rﬁ
['_
—
Py Ry 15 5

FiGure 12. The knot P, is a single crossing change away
from the knot R,. The knot R, is a single crossing change
away from the torus knot 75 _(9,43). The illustrations are
shown for n = 1. Note that the crossing changes and Reide-
meister moves occur away from the twisting region specified
by n.

Proof. In [Marl9, Proposition 2.10], Martln proved that for any m-braid

B, if s(B) —1 = w(B) — m then ¥(B) # In the proof of Proposition
2.9, we showed that s(K,,) = w(K,) — 2, Whlch satisfies Martin’s condition.
Therefore, 1 (K,,) # 0. O

Proposition 2.12. For all n > 1, the invariant 6(K,,) is nonzero.

Proof. By Proposition 2.9, we know that si(K,) = s(K,) — 1. By [Plal8,
Proposition 3.2] the knot K, is right-veering for all n. Furthermore, by
[Plal8, Theorem 1.2, A(K,,) # 0 for all n. O
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Recall that the double cover of S® branched over a transverse link L
carries a natural contact structure &g lifted from (53, &xq).

Corollary 2.13. Let (X(K,),£{k,) be the double cover of (53, £sq) branched
over the transverse knot K,,. For n = 1,2,..., the Heegaard Floer contact
invariant ¢({k, ) does not vanish.

Proof. By [Plal8, Corollary 4.2], since O(K,) # 0, the Heegaard Floer
contact invariant ¢(ék,, ) # 0. O
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