A slicing obstruction from the 10/8 + 4 theorem

Linh Truong

Abstract Using the 10/8 4 4 theorem of Hopkins, Lin, Shi, and Xu, we derive a
smooth slicing obstruction for knots in the three-sphere using a spin 4-manifold
whose boundary is O—surgery on a knot. This improves upon the slicing obstruction
bound by Vafaee and Donald that relies on Furuta’s 10/8 theorem. We give an ex-
ample where our obstruction is able to detect the smooth non-sliceness of a knot by
using a spin 4-manifold for which the Donald-Vafaee slice obstruction fails.

1 Introduction

A knot in the three—sphere is smoothly slice if it bounds a disk that is smoothly em-
bedded in the four—ball. Classical obstructions to sliceness include the Fox—Milnor
condition [3] on the Alexander polynomial, the Z,—valued Arf invariant [14], and
the Levine—Tristram signature [8, 15]. Furthermore, modern Floer homologies and
Khovanov homology produce powerful sliceness obstructions. Heegaard Floer con-
cordance invariants include 7 of Ozsvdth—Szabé [10], the {—1,0,+1}-valued in-
variant € of Hom [6], the piecewise-linear function Y (¢) [11], the involutive Hee-
gaard Floer homology concordance invariants Vp and Vp [5], as well as ¢; homomor-
phisms of [1]. Rasmussen [13] defined the s—invariant using Khovanov—-Lee homol-
ogy, and Piccirillo recently used the s—invariant to show that the Conway knot is not
slice [12].

We study an obstruction to sliceness derived from handlebody theory. We call
a four-manifold a two-handlebody if it can be obtained by attaching two-handles
to a four-ball. In [2] Donald and Vafaee used Furuta’s 10/8 theorem [4] to obtain
a slicing obstruction. This obstruction is able to detect nontrivial torsion elements
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in the concordance group as well as find topologically slice knots which are not
smoothly slice.

We apply the recent 10/8 4 4 theorem of Hopkins, Lin, Shi, and Xu [7], which
improves on Furuta’s inequality, to improve the Donald—Vafaee slicing obstruction.

Theorem 1. Let K C S be a smoothly slice knot and X be a spin two-handlebody
with X = S3(X). If ba(X) # 1, 3, or 23, then

10
ha(X) = L [o(X)|+5.
We will give an example in Proposition 1 of a knot K and a spin two-handlebody
with boundary Sg (K) where our obstruction detects the non-sliceness of K and the
Donald-Vafaee slice obstruction fails using this spin 2-handlebody.

2 The slicing obstruction

In [2] Donald and Vafaee used Furuta’s 10/8 theorem to obtain a slicing obstruction.

Theorem 2 ([2]). Let K C S® be a smoothly slice knot and X be a spin 2-handlebody
with dX =2 S3(X). Then either by(X) = 1 or

4b5(X) > 5|o(X)| + 12

Recently, Hopkins, Lin, Shi, and Xu have improved Furuta’s theorem with the
following 10/8+4 theorem.

Theorem 3 ([7]). Any closed simply connected smooth spin 4-manifold M that is
not homeomorphic to $*, §* x 82, or K3 must satisfy the inequality

by(M) > %G(M)\M.

Using the above theorem, we prove Theorem 1.

Proof (Proof of Theorem 1). The proof is identical to the proof of [2, Theorem 1.1],
except one applies the 10/8+4 theorem of [7] instead of Furuta’s 10/8 theorem.

If K is smoothly slice, then SS(K ) embeds smoothly in S* (see for example [9,
Theorem 1.8]). The embedding splits S* into two spin 4-manifolds U and V with a
common boundary S3(K). Since S3(K) has the same integral homology as S' x §2,
the Mayer-Vietoris sequence shows that U and V have the same integral homology
as §% x D? and S' x D3, respectively.

Let X be a spin 2-handlebody with X = 9V = S3(K) (where 2 denotes
orientation-preserving diffeomorphism), and let W = X USS(K) —V*4. We restrict

the spin structure on X to the boundary SS (K) and extend this spin structure on
Sg(K ) over the manifold V. Then W is spin since the spin structures of X and
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V agree on the boundary and spin structures behave well with respect to gluing.
By Novikov additivity, W has signature (W) = o(X) + o(V). Since 6(V) =0,
we have o(W) = 6(X). As in [2] we will show that b(W) = b2(X) — 1. The Eu-
ler characteristic satisfies (W) = x(X) = 14 b2(X), where the first equality uses
2(V) = x(S3(K)) = 0 and the second equality holds since X is a 2-handlebody.
Since H(W,X;Q) = H,(V,Y;Q) = 0, it follows from the exact sequence for the
pair (W, X) that by (W) = b3(W) = 0. Therefore, by(W) = b2(X) — 1.

If by(X) # 1, 3, or 23, then W cannot be homeomorphic to 4, 82 % 82, or K3.
The result follows by applying the Hopkins, Lin, Shi, and Xu theorem [7]. O

Remark 1. This improves upon the slicing obstruction by Donald and Vafaee (under
some restrictions on the second Betti number of the spin 2-handlebody).

We give an example of a knot and a spin 4-manifold where one can apply our
obstruction. Let K’ be a knot that is the closure of the braid word

K' = (012011---01)* (0703 ---012) (0102 -~ 610) 1D,

where
b = (030,01)(040302)(0201)(030)(01) 2(0304) 052

See Figure 1. The knot K’ is presented as a generalized twisted torus knot. It is
the closure of a braid formed by taking a (13,12) torus knot and then adding one
negative full twist on seven strands, one negative full twist on eleven strands, and
the braid b. As noted in [2] the obstruction from Theorem 1 is generally easier to
apply to knots like this because they can be unknotted efficiently by blowing up to
remove full twists.

Proposition 1. The knot K’ is not smoothly slice.

Proof. Add a 0-framed 2-handle to dD* along K’ and blow up three times as fol-
lows. Blow up once negatively across thirteen strands on the top, then blow up pos-
itively across seven and eleven strands indicated by the two boxes labeled with —1
in Figure 1. This gives a manifold with second Betti number 4 and signature 1. The
characteristic link has one component, with framing —132 +72 +11? = 1. Four Rei-
demeister I moves immediately show that this knot is isotopic to the knot in Figure
5 of [2], which in turn is isotopic to the figure eight knot.

At this point, we follow the procedure that Donald and Vafaee use to show that the
figure eight knot is not slice. They apply a sequence of blow-ups, blow-downs, and
handleslides until the characteristic link is empty and then apply their slice obstruc-
tion. Starting with the 1-framed figure eight knot, the same sequence of blow-ups,
blow-downs, and handleslides can be applied until the characteristic link is empty.

This procedure is shown in Figure 2 and detailed below.

1. First blow up negatively twice as indicated in Figure 2(B). This gives b, = 6 and
o=-—1.
2. Slide one of the two blow up curves over the other, resulting in Figure 2(C).
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Fig. 1 The knot K’ is a generalized twisted torus knot obtained from the torus knot 73 1 by adding
one negative full twist around seven adjacent strands, one negative full twist around eleven adjacent
strands, and the braid b.

3. Figure 2(D) shows just the characteristic link, a split link whose components are
a 1-framed trefoil and a —2-framed unknot. Blowing up negatively once around
the three strands of the trefoil changes the characteristic link to a two-component
unlink with framings —8 and —2 as in Figure 2(E). This is inside a four-manifold
with ¢ = —2 and second Betti number b, = 7.

4. Positively blowing up the meridians eight times changes both framings in the
characteristic link to —1 and gives b, = 15 and ¢ = 6.

5. Blow down negatively twice, resulting in an empty characteristic link.

The result is a spin 4-manifold X with boundary S3(K’) with b>(X) =13 and 6(X) =
8. Thus, Theorem 1 concludes that K’ is not smoothly slice. O

We observe that with the spin two-handlebody in the above proof, the Donald-
Vafaee slice obstruction fails to detect the smooth non-sliceness of K.
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(A) The figure (B) Blow upnega- (c) Perform a
eight knot. tively twice. handleslide.

—2 —2
X\] S S

(D) The charac- (E) Blow up the
teristic sublink. trefoil once.

Fig. 2 A sequence of blow-ups and handleslides that shows SS (K") bounds a spin manifold with
by = 13 and o = 8. These diagrams come from the figure eight example in [2] with different
framing coefficients.
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