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Abstract

We consider the framework of non-stationary stochastic optimization (Besbes et al., 2015) with squared error

losses and noisy gradient feedback where the dynamic regret of an online learner against a time varying comparator

sequence is studied. Motivated from the theory of non-parametric regression, we introduce a new variational constraint
that enforces the comparator sequence to belong to a discrete kth order Total Variation ball of radius Cn. This

variational constraint models comparators that have piece-wise polynomial structure which has many relevant practical

applications (Tibshirani, 2014). By establishing connections to the theory of wavelet based non-parametric regression,

we design a polynomial time algorithm that achieves the nearly optimal dynamic regret of Õ(n
1

2k+3C
2

2k+3
n ). The

proposed policy is adaptive to the unknown radius Cn. Further, we show that the same policy is minimax optimal for

several other non-parametric families of interest.

1 Introduction
In time series analysis, estimating and removing the trend are often the first steps taken to make the sequence “stationary”.

The non-parametric assumption that the underlying trend is a piecewise polynomial or a spline (de Boor, 1978), is one

of the most popular choices, especially when we do not know where the “change points” are and how many of them

are appropriate. The higher order Total Variation (see Assumption A3) of the trend can capture in some sense both

the sparsity and intensity of changes in underlying dynamics. A non-parametric regression method that penalizes this

quantity — trend filtering (Tibshirani, 2014) — enjoys a superior local adaptivity over traditional methods such as the

Hodrick-Prescott Filter (Hodrick and Prescott, 1997). However, Trend Filtering is an offline algorithm which limits its

applicability for the inherently online time series forecasting problem. In this paper, we are interested in designing

an online forecasting strategy that can essentially match the performance of the offline methods for trend estimation,

hence allowing us to apply time series models forecasting on-the-fly. In particular, our problem setup (see Figure 1) and

algorithm are applicable to all online variants of trend filtering problem such as predicting stock prices, server payloads,

sales etc.

Let’s describe the notations that will be used throughout the paper. All vectors and matrices will be written in bold

face letters. For a vector x ∈ R
m, x[i] or xi denotes its value at the ith coordinate. x[a : b] or xa:b is the vector

[x[a], . . . ,x[b]]. ‖·‖p denotes finite dimensional Lp norms. ‖x‖0 is the number of non-zero coordinates of a vector

x. [n] represents the set {1, . . . , n}. Di ∈ R
(n−i)×n denotes the discrete difference operator of order i defined as in

(Tibshirani, 2014) and reproduced below.

D1 =

⎡
⎢⎢⎢⎣
−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

0 0 0 . . . −1 1

⎤
⎥⎥⎥⎦ ∈ R

(n−1)×n,

and Di = D̃
1 ·Di−1 ∀i ≥ 2 where D̃

1
is the (n− i)× (n− i+ 1) truncation of D1.

The theme of this paper builds on the non-parametric online forecasting model developed in (Baby and Wang, 2019).

We consider a sequential n step interaction process between an agent and an adversary as shown in Figure 1.

A forecasting strategy S is defined as an algorithm that outputs a prediction S(t) at time t only based on the

information available after the completion of time t − 1. Random variables εt for t ∈ [n] are independent and
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1. Fix a time horizon n.

2. Agent declares a forecasting strategy S
3. Adversary chooses a sequence θ1:n

4. For t = 1, . . . , n:

(a) Agent outputs a prediction S(t).
(b) Adversary reveals yt = θ1:n[t] + εt

5. After n steps, agent suffers a cumulative loss
∑n

i=1 (S(i)− θ1:n[i])
2
.

Figure 1: Interaction protocol

subgaussian with parameter σ2. This sequential game can be regarded as an online version of the non-parametric

regression setup well studied in statistics community.

In this paper, we consider the problem of forecasting sequences that obey nk‖Dk+1θ1:n‖1≤ Cn, k ≥ 0 and

‖θ1:n‖∞≤ B. The constraint nk‖Dk+1θ1:n‖1≤ Cn has been widely used in the rich literature of non-parametric

regression. For example, the offline problem of estimating sequences obeying such higher order difference constraint

from noisy labels under squared error loss is studied in (Mammen and van de Geer, 1997; Donoho et al., 1998;

Tibshirani, 2014; Wang et al., 2016; Sadhanala et al., 2016; Guntuboyina et al., 2017) to cite a few. We aim to design

forecasters whose predictions are only based on past history and still perform as good as a batch estimator that sees the

entire observations ahead of time.

Scaling of nk. The family {θ1:n | nk‖Dk+1θ1:n‖1≤ Cn} may appear to be alarmingly restrictive for a constant Cn

due to the scaling factor nk, but let us argue why this is actually a natural construct. The continuous TV k distance

of a function f : [0, 1] → R is defined as
∫ 1

0
|f (k+1)(x)|dx, where f (k+1) is the (k + 1)th order (weak) derivative. A

sequence can be obtained by sampling the function at xi = i/n, i ∈ [n]. Discretizing the integral yields the TV k

distance of this sequence to be nk‖Dk+1θ1:n‖1. Thus, the nk‖Dk+1θ1:n‖1 term can be interpreted as the discrete

approximation to continuous higher order TV distance of a function. See Figure 2 for an illustration for the case k = 1.

Non-stationary Stochastic Optimization. The setting above can also be viewed under the framework of non-stationary

stochastic optimization as studied in (Besbes et al., 2015; Chen et al., 2018b) with squared error loss and noisy gradient

feedback. At each time step, the adversary chooses a loss function ft(x) = (x − θt)
2. Since ∇ft(x) = 2(x − θt),

the feedback ∇̃ft(x) = 2(x− yt) constitutes an unbiased estimate of the gradient ∇ft(x). (Besbes et al., 2015; Chen

et al., 2018b) quantifies the performance of a forecasting strategy S in terms of dynamic regret as follows.

Rdynamic(S,θ1:n) := E

[
n∑

t=1

ft (S(t))
]
−

n∑
t=1

inf
xt

ft(xt),= E

[
n∑

t=1

(S(t)− θ1:n[t])
2

]
, (1)

where the last equality follows from the fact that when ft(x) = (x−θ1:n[t])
2, infx(x−θ1:n[t])

2 = 0. The expectation

above is taken over the randomness in the noisy gradient feedback and that of the agent’s forecasting strategy. It is

impossible to achieve sublinear dynamic regret against arbitrary ground truth sequences. However if the sequence

of minimizers of loss functions ft(x) = (x − θt)
2 obey a path variational constraint, then we can parameterize the

dynamic regret as a function of the path length, which could be sublinear when the path-length is sublinear. Typical

variational constraints considered in the existing work includes
∑

t|θt − θt−1|,
∑

t|θt − θt−1|2, (
∑

t‖ft − ft−1‖qp)1/q
(see Baby and Wang, 2019, for a review). These are all useful in their respective contexts, but do not capture higher

order smoothness.

The purpose of this work is to connect ideas from batch non-parametric regression to the framework of online

stochastic optimization and define a natural family of higher order variational functionals of the form ‖Dk+1θ1:n‖1
to track a comparator sequence with piecewise polynomial structure. To the best of our knowledge such higher order

path variationals for k ≥ 1 are vastly unexplored in the domain of non-stationary stochastic optimization. In this work,

we take the first steps in introducing such variational constraints to online non-stationary stochastic optimization and

exploiting them to get sub-linear dynamic regret.
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Figure 2: A TV 1 bounded comparator sequence θ1:n can be obtained by sampling the continuous piecewise linear
function on the left at points i/n, i ∈ [n]. On the right, we plot the TV 1 distance (which is equal to n‖D2θ1:n‖1
by definition) of the generated sequence for various sequence lengths n. As n increases the discrete TV 1 distance
converges to a constant value given by the continous TV 1 distance of the function on left panel.

2 Summary of results
In this section, we summarize the assumptions and main results of the paper.

Assumptions. We start by listing the assumptions made and provide justifications for them.

(A1) The time horizon is known to be n.

(A2) The parameter σ2 of subgaussian noise in the observations is a known fixed positive constant.

(A3) The ground truth denoted by θ1:n has its kth order total variation bounded by some positive Cn, i.e., we consider

ground truth sequences that belongs to the class

TVk(Cn) := {θ1:n ∈ R
n : nk‖Dk+1θ1:n‖1≤ Cn}

We refer to nk‖Dk+1θ1:n‖1 as TV k distance of the sequence θ1:n. To avoid trivial cases, we assume Cn = Ω(1).

(A4) The TV order k is a known fixed positive constant.

(A5) ‖θ1:n‖∞≤ B for a known fixed positive constant B.

Though we require the time horizon to be known in advance in assumption (A1), this can be easily lifted using

standard doubling trick arguments. The knowledge of time horizon helps us to present the policy in a most transparent

way. If standard deviation of sub-gaussian noise is unknown, contrary to assumption (A2), then it can be robustly

estimated by a Median Absolute Deviation estimator using first few observations, see for eg. Johnstone (2017). This is

indeed facilitated by the sparsity of wavelet coefficients of TV k bounded sequences. Assumption (A3) characterizes

the ground truth sequences whose forecasting is the main theme of this paper. The TVk(Cn) class features a rich

family of sequences that can potentially exhibit spatially non-homogeneous smoothness. For example it can capture

sequences that are piecewise polynomials of degree at most k. This poses a challenge to design forecasters that are

locally adaptive and can efficiently detect and make predictions under the presence of the non-homogeneous trends.

Though knowledge of the TV order k is required in assumption (A4), most of the practical interest is often limited

to the lower orders k = 0, 1, 2, 3, see for eg. (Kim et al., 2009; Tibshirani, 2014) and we present (in Appendix D) a

meta-policy based on exponential weighted averages (Cesa-Bianchi and Lugosi, 2006) to adapt to these lower orders.

Finally assumption (A5) is standard in the online learning literature.

Our contributions. We summarize our main results below.

• When the revealed labels are noisy realizations of sequences that belong to TV k(Cn) we propose a polynomial
time policy called Ada-VAW (Adaptive Vovk Azoury Warmuth forecaster) that achieves the nearly minimax

optimal rate of Õ

(
n

1
2k+3C

2
2k+3
n

)
for Rdynamic with high probability. The proposed policy optimally adapts to

the unknown radius Cn.
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• We show that the proposed policy achieves optimal Rdynamic when revealed labels are noisy realizations of

sequences residing in higher order discrete Holder and discrete Sobolev classes.

• When the revealed labels are noisy realizations of sequences that obey ‖Dkθ1:n‖0≤ Jn, ‖θ1:n‖∞≤ B, we show

that the same policy achieves the minimax optimal Õ(Jn) rate for for Rdynamic with high probability. The policy

optimally adapts to unknown Jn.

Notes on key novelties. It is known that the VAW forecaster is an optimal algorithm for online polynomial regression

with squared error losses (Cesa-Bianchi and Lugosi, 2006). With the side information of change points where the

underlying ground truth switches from one polynomial to another, we can run a VAW forecaster on each of the stable

polynomial sections to control the cumulative squared error of the policy. We use the machinery of wavelets to mimic

an oracle that can provide side information of the change points. For detecting change points, a restart rule is formulated

by exploiting connections between wavelet coefficients and locally adaptive regression splines. This is a more general
strategy than that used in (Baby and Wang, 2019). To the best of our knowledge, this is the first time an interplay

between VAW forecaster and theory of wavelets along with its adaptive minimaxity (Donoho et al., 1998) has been used

in the literature.

Wavelet computations require the length of underlying data whose wavelet transform needs to be computed has to

be a power of 2. In practice this is achieved by a padding strategy in cases where original data length is not a power of

2. We show that most commonly used padding strategies – eg. zero padding as in (Baby and Wang, 2019) – are not

useful for the current problem and propose a novel packing strategy that alleviates the need to pad. This will be useful

to many applications that use wavelets which can be well beyond the scope of the current paper.

Our proof techniques for bounding regret use properties of the CDJV wavelet construction (Cohen et al., 1993).

To the best of our knowledge, this is the first time we witness the ideas from a general CDJV construction scheme

implying useful results in an online learning paradigm. Optimally controlling the bias of VAW demands to carefully

bound the �2 norm of coefficients computed by polynomial regression. This is done by using ideas from number theory

and symbolic determinant evaluation of polynomial matrices. This could be of independent interest in both offline and

online polynomial regression.

3 Related Work
In this section, we briefly discuss the related work. A discussion on preliminaries and a detailed exposition of related

literature is deferred to Appendix A and B respectively. Throughout this paper when we refer as Õ(n
1

2k+3 ) as optimal

regret we assume that Cn = nk‖Dk+1θ1:n‖1 is O(1).
Non-parametric Regression As noted in Section 1, the problem setup we consider can be regarded as an online

version of the batch non-parametric regression framework. It has been established (see for eg, (Mammen and van de

Geer, 1997; Donoho et al., 1998; Tibshirani, 2014) that minimax rate for estimating sequences with bounded TV k

distance under squared error loss scales as n
1

2k+3 (nk‖Dk+1θ1:n‖1) 2
2k+3 modulo logarithmic factors of n. In this work,

we aim to achieve the same rate for minimax dynamic regret in online setting.

Non-stationary Stochastic Optimization Our forecasting framework can be considered as a special case of non-

stationary stochastic optimization setting studied in (Besbes et al., 2015; Chen et al., 2018b). It can be shown that

their proposed algorithm namely, restarting Online Gradient Descend (OGD) yields a suboptimal dynamic regret of

O
(
n1/2(‖Dθ1:n‖1)1/2

)
for our problem. However, it should be noted that their algorithm works with general strongly

convex and convex losses. A summary of dynamic regret of various algorithms are presented in Table 1. The rationale

behind how to translate existing regret bounds to our setting is elaborated in Appendix B.

Prediction of Bounded Variation sequences Our problem setup is identical to that of (Baby and Wang, 2019)

except for the fact that they consider forecasting sequences whose zeroth order Total Variation is bounded. Our work can

be considered as a generalization to any TV order k. Their algorithm gives a suboptimal regret of O(n1/3‖Dθ1:n‖2/31 )
for k ≥ 1.

Competitive Online Non-parametric Regression (Rakhlin and Sridharan, 2014) considers an online learning

framework with squared error losses where the learner competes against the best function in a non-parametric function

class. Their results imply via a non-constructive argument, the existence of an algorithm that achieves the regret of

Õ(n
1

2k+3 ) for our problem.
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Table 1: Regret bounds for sequences that satisfy nk‖Dk+1θ1:n‖1≤ Cn with θ[1 : k + 1] = 0, ‖θ1:n‖∞≤ B and
k ≥ 1. The proposed policy doesn’t require the knowledge of Cn apriori while still attains the optimal dynamic regret
modulo log factors. The bound for Ada-VAW holds even without the constraint on initial sequence values.

Policy Dynamic Regret Known Cn? Lower bound
Moving Averages,

Restarting OGD

(Besbes et al., 2015)

Õ(
√
nCn) Yes

Ω
(
n1/(2k+3)C

2/(2k+3)
n

)OGD

(Zinkevich, 2003)
Õ(

√
nCn) Yes

Ader

(Zhang et al., 2018a)
Õ(

√
nCn) No

Arrows

(Baby and Wang, 2019)
Õ
(
n1/3C

2/3
n

)
No

Ada-VAW (This paper) Õ
(
n1/(2k+3)C

2/(2k+3)
n

)
No

4 Main results
We present below the main results of the paper. All proofs are deferred to the appendix.

4.1 Limitations of linear forecasters
We exhibit a lower-bound on the dynamic regret that is implied by (Donoho et al., 1998) in batch regression setting.

Proposition 1 (Minimax Regret). Let yt = θ1:n[t] + εt for t = 1, . . . , n where θ1:n ∈ TV (k)(Cn), |θ1:n[t]|≤ B and
εt are iid σ2 subgaussian random variables. Let AF be the class of all forecasting strategies whose prediction at time t
only depends on y1, . . . , yt−1. Let st denote the prediction at time t for a strategy s ∈ AF . Then,

inf
s∈AF

sup
θ1:n∈TV (k)(Cn)

n∑
t=1

E
[
(st − θ1:n[t])

2
]
= Ω

(
min{n, n 1

2k+3C
2

2k+3
n }

)
,

where the expectation is taken wrt to randomness in the strategy of the player and εt.

We define linear forecasters to be strategies that predict a fixed linear function of the history. This includes a

large family of polices including the ARIMA family, Exponential Smoothers for Time Series forecasting, Restarting

OGD etc. However in the presence of spatially inhomogeneous smoothness – which is the case with TV bounded

sequences – these policies are doomed to perform sub-optimally. This can be made precise by providing a lower-bound

on the minimax regret for linear forecasters. Since the offline problem of smoothing is easier than that of forecasting,

a lower-bound on the minimax MSE of linear smoother will directly imply a lower-bound on the regret of linear

forecasting strategies. By the results of (Donoho et al., 1998), we have the following proposition:

Proposition 2 (Minimax regret for linear forecasters). Linear forecasters will suffer a dynamic regret of at least
Ω(n1/(2k+2)) for forecasting sequences that belong to TV k(1).

Thus we must look in the space of policies that are non-linear functions of past labels to achieve a minimax dynamic

regret that can potentially match the lower-bound in Proposition 1.

4.2 Policy
In this section, we present our policy and capture the intuition behind its design. First, we introduce the following

notations.

• The policy works by partitioning the time horizon into several bins. th denotes start time of the current bin and t
be the current time point.
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• W denotes the orthonormal Discrete Wavelet Transform (DWT) matrix obtained from a CDJV wavelet construc-

tion (Cohen et al., 1993) using wavelets of regularity k + 1.

• T (y) denotes the vector obtained by elementwise soft-thresholding of y at level σ
√
β log l where l is the length

of input vector.

• xt ∈ R
(k+1) denotes the vector [1, t− th + k + 1, . . . , (t− th + k + 1)k]T .

• At = I +
∑t

s=th−k xsxs
T

• recenter(y[s : e]) function first computes the Ordinary Least Square (OLS) polynomial fit with features

xs, . . . ,xe. It then outputs the residual vector obtained by subtracting the best polynomial fit from the input

vector y[s : e].

• Let L be the length of a vector u1:t. pack(u) first computes l = 
log2 L�. It then returns the pair

(u1:2l ,ut−2l+1:t). We call elements of this pair as segments of u.

Ada-VAW: inputs - observed y values, TV order k, time horizon n, sub-gaussian parameter σ,

range of ground truth B, hyper-parameter β > 24 and δ ∈ (0, 1]

1. For t = 1 to k − 1, predict 0

2. Initialize th = k

3. For t = k to n:

(a) Predict ŷt = 〈xt, A
−1
t

∑t−1
s=th−k ysxs〉

(b) Observe yt and suffer loss (ŷt − θ1:n[t])
2

(c) Let yr =recenter(y[th − k : t]) and L be its length

(d) Let (y1, y2) = pack(yr)

(e) Let (α̂1, α̂2) = (T (Wy1), T (Wy2))

(f) Restart Rule: If ‖α̂1‖2+‖α̂2‖2> σ then

i. set th = t+ 1

The basic idea behind the policy is to adaptively detect intervals that have low TV k distance. If the TV k distance

within an interval is guaranteed to be low enough, then outputting a polynomial fit can suffice to obtain low prediction

errors. Here we use the polynomial fit from VAW (Vovk, 2001) forecaster in step 3(a) to make predictions in such low

TV k intervals. Step 3(e) computes denoised wavelets coefficients. It can be shown that the expression on the LHS of

the inequality in step 3(f) can be used to lower bound
√
L times the TV k distance of the underlying ground truth with

high probability. Informally speaking, this is expected as the wavelet coefficents for a CDJV system with regularity

k are computed using higher order differences of the underlying signal. A restart is triggered when the scaled TV k

lower-bound within a bin exceeds the threshold of σ. Thus we use the energy of denoised wavelet coefficients as a

device to detect low TV k intervals. In Appendix E we show that popular padding strategies such as zero padding,

greatly inflate the TV k distance of the recentered sequence for k ≥ 1. This hurts the dynamic regret of our policy. To

obviate the necessity to pad for performing the DWT, we employ a packing strategy as described in the policy.

4.3 Performance Guarantees
Theorem 3. Consider the the feedback model yt = θ1:n[t] + εt t = 1, . . . , n where εt are independent σ2 subguassian
noise and |θ1:n[t]|≤ B. If β = 24 + 8 log(8/δ)

log(n) , then with probability at least 1 − δ, Ada-VAW achieves a dynamic

regret of Õ
(
n

1
2k+3

(
nk‖Dk+1θ1:n‖1

) 2
2k+3

)
where Õ hides poly-logarithmic factors of n, 1/δ and constants k,σ,B

that do not depend on n.

Proof Sketch. Our proof strategy falls through the following steps.
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1. Obtain a high probability bound of bias variance decomposition type on the total squared error incurred by the

policy within a bin.

2. Bound the variance by optimally bounding the number of bins spawned.

3. Bound the squared bias using the restart criterion.

Step 1 is achieved by using the subgaussian behaviour of revealed labels yt. For step 2, we first connect the wavelet

coefficients of a recentered signal to its TV k distance using ideas from theory of Regression Splines. Then we invoke

the “uniform shrinkage” property of soft thresholding estimator to construct a lowerbound of the TV k distance within a

bin. Such a lowerbound when summed across all bins leads to an upperbound on the number of bins spawned. Finally

for step 3, we use a reduction from the squared bias within a bin to the regret of VAW forecaster and exploit the

restart criterion and adpative minimaxity of soft thresholding estimator (Donoho et al., 1998) that uses a CDJV wavelet

system.

Corollary 4. Consider the setup of Theorem 3. For the problem of forecasting sequences θ1:n with nk‖Dk+1θ1:n‖1≤
Cn and ‖θ1:n‖∞≤ B, Ada-VAW when run with β = 24 + 8 log(8/δ)

log(n) yields a dynamic regret of Õ
(
n

1
2k+3 (Cn)

2
2k+3

)
with probability atleast 1− δ.

Remark 5. (Adaptive Optimality) By combining with trivial regret bound of O(n), we see that dynamic regret of
Ada-VAW matches the lower-bound provided in Proposition 1. Ada-VAW optimally adapts to the variational budget
Cn. Adaptivity to time horizon n can be achieved by the standard doubling trick.

Remark 6. (Extension to higher dimensions) Let the ground truth θ1:n[t] ∈ R
d and let vi = [θ1:n[1][i], . . . ,θ1:n[n][i]],Δi =

nk‖Dk+1vi‖1 for each i ∈ [d]. Let
∑d

i=1 Δi ≤ Cn. Then by running d instances of Ada-VAW in parallel where

instance i predicts ground truth sequence along co-ordinate i, a regret bound of Õ
(
d

2k+1
2k+3n

1
2k+3C

2
2k+3
n

)
can be

achieved.

Remark 7. (Generalization to other losses) Consider the protocol in Figure 1. Instead of squared error losses in step
(5), suppose we use loss functions ft(x) such that argmin ft(x) = θ1:n[t] and f ′

t(x) is γ-Lipschitz. Under this setting,

Ada-VAW yields a dynamic regret of Õ
(
γn

1
2k+3C

2
2k+3
n

)
with probability at least 1− δ. Concrete examples include

(but not limited to):

1. Huber loss, f (ω)
t (x) =

{
0.5(x− θ[1:n][t])

2 |x− θ[1:n][t]|≤ ω

ω(|x− θ[1:n][t]|−ω/2) otherwise
is 1-Lipschitz in gradient.

2. Log-Cosh loss, ft(x) = log(cosh(x− θ[1:n][t])) is 1-Lipschitz in gradient.

3. ε-insensitive logistic loss (Dekel et al., 2005), f (ε)
t (x) = log(1 + ex−θ[1:n][t]−ε) + log(1 + e−x+θ[1:n][t]−ε) −

2 log(1 + e−ε) is 1/2-Lipschitz in gradient.

The rationale behind both Remark 6 and Remark 7 is described at the end of Appendix C.2

Proposition 8. There exist an O
(
((k + 1)n)2

)
run-time implementation of Ada-VAW.

The run-time of O(n2) is larger than the O(n log n) run-time of the more specialized algorithm of (Baby and Wang,

2019) for k = 0. This is due to the more complex structure of higher order CDJV wavelets which invalidates their trick

that updates the Haar wavelets in an amortized O(1) time.

5 Extensions
In this section, we discuss the potential applications of the proposed algorithm which broadens its generalizability to

several interesting use cases.
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5.1 Optimality for Higher Order Sobolev and Holder Classes
So far we have been dealing with total variation classes, which can be thought of as �1-norm of the (k + 1)th order

derivatives. An interesting question to ask is “how does Ada-VAW behave under smoothness metric defined in other

norms, e.g., �2-norm and �∞-norm?” Following (Tibshirani, 2014), we define the higher order discrete Sobolev class

Sk+1(C ′
n) and discrete Holder class Hk+1(L′

n) as follows.

Sk+1(C ′
n) = {θ1:n : nk‖Dk+1θ1:n‖2≤ C ′

n},
Hk+1(L′

n) = {θ1:n : nk‖Dk+1θ1:n‖∞≤ L′
n},

where k ≥ 0. These classes feature sequences that are spatially more regular in comparison to the higher order TV k

class. It is well known that (see for eg. (Gyorfi et al., 2002)) the following embedding holds true:

Hk+1

(
Cn

n

)
⊆ Sk+1

(
Cn√
n

)
⊆ TV k(Cn).

Here Cn√
n

and Cn

n are respectively the maximal radius of a Sobolev ball and Holder ball enclosed within a TV k(Cn)

ball. Hence we have the following Corollary.

Corollary 9. Assume the observation model of Theorem 3 and that θ1:n ∈ Sk+1(C ′
n). If β = 24 + 8 log(8/δ)

log(n) , then

with probability at least 1− δ, Ada-VAW achieves a dynamic regret of Õ
(
n

2
2k+3 [C ′

n]
2

2k+3

)
.

It turns out that this is the optimal rate for the Sobolev classes, even in the easier, offline non-parametric regression

setting (Gyorfi et al., 2002). Since a Holder class can be sandwiched between two Sobolev balls of same minimax

rates (see, e.g., Gyorfi et al., 2002), this also implies the adaptive optimality for the Holder class. We emphasize that

Ada-VAW does not need to know the Cn, C
′
n or L′

n parameters, which implies that it will achieve the smallest error

permitted by the right norm that captures the smoothness structure of the unknown sequence θ1:n.

5.2 Optimality for the case of Exact Sparsity
Next, we consider the performance of Ada-VAW on sequences satisfying an �0-(pseudo)norm measure of the smooth-

ness, defined as

Ek+1(Jn) = {θ1:n : ‖Dk+1θ1:n‖0≤ Jn, ‖θ1:n‖∞≤ B}.

This class captures sequences that has at most Jn jumps in its (k + 1)th order difference, which covers (modulo the

boundedness) kth order discrete splines (see, e.g., Schumaker, 2007, Chapter 8.5) with exactly Jn knots, and arbitrary

piecewise polynomials with O(Jn/k) polynomial pieces.

The techniques we developed in this paper allows us to establish the following performance guarantee for Ada-VAW,

when applied to sequences in this family.

Theorem 10. Let yt = θ1:n[t] + εt, for t = 1, . . . , n where εt are iid sub-gaussian with parameter σ2 and
‖Dk+1θ1:n‖0≤ Jn with |θ1:n[t]|≤ B and Jn ≥ 1. If β = 24 + 8 log(8/δ)

log(n) , then with probability at least 1 − δ,

Ada-VAW achieves a dynamic regret of Õ (Jn) where Õ hides polynmial factors of log(n) and log(1/δ).

We also establish an information-theoretic lower bound that applies to all algorithms.

Proposition 11. Under the interaction model in Figure 1, the minimax dynamic regret for forecasting sequences in
Ek+1(Jn) is Ω(Jn).

Remark 12. Theorem 10 and Proposition 11 imply that Ada-VAW is optimal (up to logarithmic factors) for the
sequence family Ek(Jn). It is noteworthy that the Ada-VAW is adaptive in Jn, so it is essentially performing as well as
an oracle that knows how many knots are enough to represent the input sequence as a discrete spline and where they
are in advance (which leaves only the Jn polynomials to be fitted).
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6 Conclusion
In this paper, we considered the problem of forecasting TV k bounded sequences and proposed the first efficient

algorithm – Ada-VAW– that is adaptively minimax optimal. We also discussed the adaptive optimality of Ada-VAW
in various parameters and other function classes. In establishing strong connections between the locally adaptive

nonparametric regression literature to the adaptive online learning literature in a concrete problem, this paper could

serve as a stepping stone for future exchanges of ideas between the research communities, and hopefully spark new

theory and practical algorithms.
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Broader Impact
1. Who may benefit from the research? This work can be applied to the task of estimating trends in time series

forecasting. For example, financial firms can use it to do stock market predictions, distribution sector can use it

do inventory planning, meterological observatories can use it for weather forecast and health and planning sector

can forecast the spread of contagious diseases etc.

2. Who may be put at disadvantage? Not applicable

3. What are the consequences of failure of the system? There is no system to speak off, but failure of the strategy

can lead to financial losses for the firms deploying the strategy to do forecasting. Under the assumptions stated in

the paper though, the technical results are formally proven and come with the stated mathematical guarantee.

4. Method leverages the biases in data? Not applicable.
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A Background
In this section, we compile some preliminary results well established in literature. For brevity we only discuss the

essential aspects that lead to design of our algorithm and its proof.

A.1 Non-parametric regression
A popular model studied in non-parametric regression is

yi = f(i/n) + εi, i ∈ [n], (2)

where εi are iid subgaussian noise and for unknown f : [0, 1] → R. The idea is to recover the underlying ground truth f
from the observations yi. Let θ1:n = [f(1/n), . . . , f(1)] ∈ R

n be the ground truth sequence. We constraint the ground

truth to belong to some non-parametric class. A well studied (dating back since 90s atleast) non-parametric family is

the class of TV k bounded sequences defined below.

TVk(Cn) := {θ1:n ∈ R
n : nk‖Dk+1θ1:n‖1≤ Cn}.

The sequences in this class have a piecewise (discrete) polynomial structure. Each stable section features a

polynomial of degree atmost k. However the number of polynomial sections and positions where the sequence

transitions from one polynomial to another is unknown. This makes the task of estimating ground truth from noisy

observations quite challenging. Moreover as noted in (Kim et al., 2009), such sequences can be used to model a wide

spectrum of real world phenomena. As noted in Section 2, such TV k sequences can be obtained by sampling the

function whose continuous TV k distance is bounded. An illustration for k = 2 is given in Figure 3.

The purpose of a non-parametric regression algorithm A is to estimate θ1:n given the noisy observations yi. The

most common metric used to ascertain the performance of an algorithm in non-parametric regression literature is the

squared error loss. Let the estimates of the algorithm be ŷ1:n. The empirical risk is defined as

Rn = E

[
n∑

t=1

(ŷ1:n[t]− θ1:n[t])
2

]
,

and the minimax risk for estimating sequences in TV k(Cn) is formulated as

R∗
n = min

A
max

θ∈TV k(Cn)
Rn,

where A is an estimation of algorithm. It is well established (see eg. (Donoho et al., 1998)) that

R∗
n = Ω(n

1
2k+3C

2
2k+3
n ). (3)

A.2 Wavelet Smoothing
Let Z+ = N ∪ {0} and L2[0, 1] be the space of all square integrable functions defined in [0, 1].

Definition 13. A Multi Resolution Analysis (MRA) on interval [0,1] is a sequence of subspaces {Vj , j ∈ Z+} satisfying

1. Vj ⊂ Vj+1

2. f(x) ∈ Vj if and only if f(2x) ∈ Vj+1

3.
⋂

j∈Z+
= {0} and

⋃
j∈Z+

spans L2[0, 1].

4. There exists a function φ ∈ V0 such that {φ(x − k) : k ∈ Z such that φ(x − k) is supported in [0,1]} is an
orthonormal basis for V0
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Figure 3: A TV 2 bounded sequence θ1:n can be obtained by sampling the continuous piecewise quadratic function on
the left at points i/n, i ∈ [n]. On the right, we plot the TV 2 distance of the generated sequence for various sequence
lengths n. As n increases the discrete TV 2 distance converges to a constant value given by the continous TV 2 distance
of the function on left panel.

The spaces Vj form an increasing sequence of approximations to L2[0, 1]. Let φjk(x) = 2j/2φ(2jx− k). In what

follows we define φjk(x) = 0 if it is not supported entirely within [0, 1]. Due to properties 2 and 4 it follows that

{φjk(x), k ∈ Z} is an orthonormal basis for Vj . The function φ(x) is called the scale function.

Now let’s define wavelets. Detail subpace Wj ⊂ L2[0, 1] is defined as the orthogonal complement of Vj in

Vj+1. A function ψ(x) is defined to be a wavelet (or mother wavelet) function if {ψjk(x) = 2j/2ψ(2jx − k), k ∈
Z+ such that ψjk(x) is supported in [0, 1]} is an orthonormal basis for Wj ∀j ∈ Z+.

Definition 14. A wavelet function ψ(x) has regularity r if

∫ 1

0

xpψ(x)dx = 0, p = 0, . . . , r − 1.

The CDJV construction in (Cohen et al., 1993) is an algorithm that provides a scale function φ(x) and wavelet

function ψ(x) of a given regularity r. We record an important property of this construction.

Proposition 15. The CDJV construction with regularity r satisfy

1. Let L = �log 2r�. Then VL contains polynomials of degree ≤ r − 1.

2. The functions ψjk(x), j ≥ L, k ∈ Z are orthogonal to polynomials of degree atmost r − 1.

Let n = 2J and L < J . A discrete Wavelet Transform (DWT) matrix W ∈ R
n×n is generated by sampling the

basis functions that make up VL and WL, . . . ,WJ−1 at points i/n, i ∈ [n] and scaling them by a factor of n−1/2. The

obtained matrix W can be shown to be orthonormal. The total number of basis functions that make up the space VJ is

n.

Now to provide a clearer picture, we orchestrate all the above ideas with the help of the simple Haar wavelets.

Definition 16. The Haar MRA on [0,1] is defined by

1. The scale function φ(x) = 1

2. The mother wavelet ψ(x) = −1 if x ≤ 1/2; 1 otherwise.

3. Both φ(x), ψ(x) are zero outside [0, 1]

Here V0 is the space of constant signals in [0, 1]. W0 is the functions of the form cψ(x) for c ∈ R. W1 is spanned

by ψ10(x) and ψ11(x) and so on. It is clear that regularity of Haar wavelet ψ(x) is 1. In fact Haar system is a special

case of CDJV construction for regularity 1. Hence L = �log 2r� = 1. The space V1 is spanned by {φ(x), ψ(x)}. It is

easy to verify that space V1 contains all polynomials of degree r − 1 = 0 as asserted by Proposition 15. Furthermore

property 2 stated in Proposition 15 is also true.
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Now let’s construct the orthonormal Haar DWT matrix W ∈ R
n×n. Let J = log n We need to sample sample

basis functions of V1,W1, . . .WJ−1 at points i/n, i ∈ [n] and scale them by n−1/2. For simplicity we illustrate this for

n = 4.

W =

⎡
⎢⎢⎣

1/2 1/2 1/2 1/2
1/2 1/2 −1/2 −1/2

1/
√
2 −1/

√
2 0 0

0 0 1/
√
2 −1/

√
2

⎤
⎥⎥⎦ .

It is noteworthy that general CDJV wavelets for regularity r ≥ 2 do not have a closed form expression like the Haar

system. The filter coefficients are computed by an efficient iterative algorithm.

Define the soft thresholding operator as

Tλ(x) =

⎧⎪⎨
⎪⎩
0 |x|≤ λ

x− λ x > λ

x+ λ x < λ

If the input is a vector the operation is done co-ordinate wise.

Now we are ready to discuss the famous universal soft thresholding algorithm of (Donoho et al., 1998).

WaveletSoftThreshold: Inputs - observations y1:n, subgaussian parameter σ of noise in (2),

TV order k

1. Let W ∈ R
n×n be a CDJV DWT matrix of regularity k + 1.

2. Output ŷ1:n = W TTσ
√
2 logn(W y).

We have the following proposition due to (Donoho et al., 1998).

Proposition 17. The risk of the wavelet soft thresholding scheme satisfy

Rn = Õ(n
1

2k+3C
2

2k+3
n ).

Comparing with equation (3) we see that WaveletSoftThreshold is a near minimax algorithm for estimating

sequences in TV k(Cn). It optimally adapts to the unknown radius Cn as well.

A.3 Vovk Azoury Warmuth (VAW) forecaster
The VAW algorithm is shown in Figure 4. For a more elaborate discussion on this algorithm, refer to chapter 11 of

(Cesa-Bianchi and Lugosi, 2006). The VAW forecaster is defined as follows.

VAW algorithm

1. Adversary reveals xt ∈ R
d.

2. Agent predicts p̂t = ŵT
t−1xt with ŵt = (I +

∑t
s=1 xsx

T
s )

−1
∑t−1

s=1 ysxs.

3. Adversary reveals yt.

4. Incur loss (p̂t − yt)
2.

Figure 4: The VAW algorithm

We have the following guarantee on the regret bound of VAW.
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Proposition 18. If the VAW forecaster is run on a sequence (x1, y1), . . . , (xn, yn) ∈ R
d ×R, then for all u ∈ R

d and
n ≥ 1,

n∑
t=1

(yt − p̂t)
2 − (yt − uTxt) ≤ 1

2
‖u‖22+

dY 2

2
log(1 +

nX2

d
),

where ‖xt‖2≤ X , and |yt|≤ Y, t ∈ [n].

B Detailed Discussion of Related Literature
In this section, we discuss the connections of our work to existing literature. Throughout this paper when we refer as

Õ(n
1

2k+3 ) as optimal regret we assume that Cn = nk‖Dk+1θ1:n‖1 is O(1).

Table 2: Summary of regret bounds for Ada-VAW run with a fixed input parameter k alongside bounds for various
other policies. Ada-VAW is adaptively optimal for an array of distinct sequence classes featuring varying degrees of
smoothness. We assume similar assumptions as in the description of Table 1. We adopt the notation a ∧ b = min{a, b}.

Sequence Class Dynamic Regret
Ada-VAW ARROWS MA/OGD/Ader

TV k(Cn) :
nk‖Dk+1θ1:n‖1≤ Cn

Õ

(
n

1
2k+3C

2
2k+3
n

)
Õ
(
n1/3C

2/3
n

)
Õ
(√

nCn

)
Sk+1

(
Cn√
n

)
:

nk‖Dk+1θ1:n‖2≤ Cn√
n

Õ

(
n

1
2k+3C

2
2k+3
n

)
Õ
(
n1/3C

2/3
n

)
Õ
(
n1/3C

2/3
n

)
Hk+1

(
Cn

n

)
:

nk‖Dk+1θ1:n‖∞≤ Cn

n

Ek+1(Jn) :
‖Dk+1θ1:n‖0≤ Jn, Jn ≥ 1

Õ(Jn) Õ
(
n1/3J

2/3
n

)
Õ
(√

nJn
)

Non parametric Regression As noted in Section 1, the problem setup we consider in this paper can be regarded as

an online version of the batch non parametric regression framework. It has been established (see for eg, (Mammen and

van de Geer, 1997; Donoho et al., 1998; Tibshirani, 2014) that minimax rate for estimating sequences with bounded TV k

distance under squared error loss scales as n
1

2k+3 (nk‖Dk+1θ1:n‖1) 2
2k+3 modulo logarithmic factors of n. However,

the problem of forecasting is more challenging than the offline setup because while making a prediction, we do not see

the noisy realizations of ground truth for the future time points. In this work we connect together several ideas from

online learning and batch regression setting to achieve a Õ
(
n

1
2k+3 (nk‖Dk+1θ1:n‖1) 2

2k+3

)
minimax dynamic regret

for the forecasting problem.

Non-stationary Stochastic Optimization As mentioned before in Section 1, our forecasting framework can be

considered as a special case of non-stationary stochastic optimization setting studied in (Besbes et al., 2015; Chen

et al., 2018b). A path variational constraint Vn :=
∑n−1

t=1 ‖ft+1 − ft‖∞ is defined in (Besbes et al., 2015). With

squared error losses ft(x) = (x− θt)
2 and the boundedness constraint on ground truth in Assumption (A5), it can be

shown that Vn = O(‖Dθ1:n‖1). Then their proposed algorithm namely, Restarting Online Gradient Descend (OGD)

yields a dynamic regret of O
(
n1/2(‖Dθ1:n‖1)1/2

)
for our problem. Due to Proposition 1, we see that the rate wrt n is

suboptimal for TV orders k ≥ 0. Finally to achieve this rate, restarting OGD requires the knowledge of a tight bound on

‖Dθ1:n‖1 ahead of time which may not be practical on all occasions. Similar conclusions can be drawn if we consider

the work of (Chen et al., 2018b).

Prediction of Bounded Variation sequences Our problem setup is identical to that of (Baby and Wang, 2019)

except for the fact that they consider forecasting sequences whose zeroth order Total Variation is bounded. Our work

can be considered as a generalization to any TV order k. As the value of k increases, the sequence becomes more

regular and one expects sharper rates for dynamic regret. However the algorithm of (Baby and Wang, 2019) gives a

suboptimal regret of O(n1/3) for k ≥ 1 even when both ‖Dθ1:n‖1 and nk‖Dk+1θ1:n‖1 are O(1).
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We enumerate the comprehensive list of differences of this work when compared to (Baby and Wang, 2019) for

quick reference.

• We work with a strictly general path varaiational that promotes piecewise polynomial structure in the comparator

sequence. The path variational in (Baby and Wang, 2019) promotes piecewise constant structures.

• By exploiting connections to regression splines, we formulate a more general restarting rule than (Baby and

Wang, 2019).

• We demonstrate that zero padding (and many other padding approaches) prior to computing wavelet transform as

done in (Baby and Wang, 2019) will not preserve the higher order total variation, thus lead to far sub-optimal
results for the current problem. We then propose a novel packing scheme to alleviate this.

• We exploit the structure of CDJV wavelets and present a significantly more involved analysis to obtain sharper
dynamic regret guarantees. Haar wavelets that worked in (Baby and Wang, 2019), did not work here.

• We characterise the optimality of our algorithm for the case of exact sparsity as done in Section 5.2 which was

not studied in (Baby and Wang, 2019). Sharper dynamic regret guarantees for higher order discrete Sobolev and

Holder classes are also obtained.

• We extend the framework to prediction in higher dimensions (Remark 6). We identify a class of loss functions

other than squared error losses in which the dynamic regret guarantees of Ada-VAW still holds (Remark 7).

To gain some perspective, we present a way to analyse the dynamic regret of existing strategies for our problem.

Recall that due to (1) the comparator sequence can be considered to be the ground truth θ1:n. In the univariate setting,

most of the existing dynamic regret bounds depends on the variational measure ‖Dθ1:n‖1. If we assume that first

k + 1 values of the sequence θ1:n are zero, then by applying the inequality ‖Dj−1θ1:n‖1≤ n‖Djθ1:n‖1, starting at

j = k + 1 and proceeding iteratively towards j = 1, we get ‖Dθ1:n‖1≤ nk‖Dk+1θ1:n‖1. This will enable us to get

regret bounds for algorithms whose dynamic regret depends on the quantity ‖Dθ1:n‖1. The bounds obtained in this

manner is shown in Table 1.

Using similar arguments, it can be shown that Sk+1(Cn/
√
n) ⊆ S1(Cn/

√
n) for bounded sequences. This results

in the regret bounds for policies other than Ada-VAW as displayed in Table 2 for Sobolev and Holder classes.

Adaptive Online Learning Our problem can also be cast as a special case of various dynamic regret minimization

frameworks such as (Zinkevich, 2003; Hall and Willett, 2013; Besbes et al., 2015; Chen et al., 2018b; Jadbabaie et al.,

2015; Hazan and Seshadhri, 2007; Daniely et al., 2015; Yang et al., 2016; Zhang et al., 2018a,b; Chen et al., 2018a). To

the best of our knowledge, none of the algorithms presented in these works can achieve the optimal dynamic regret of

O(n
1

2k+3 ).
Competitive Online Non parametric Regression (Rakhlin and Sridharan, 2014) considers an online learning

framework with squared error losses where a sequence y1, . . . , yn is revealed by an adversary and the agent makes

prediction st at time t that depends only on the past history. They only require the the sequence y1:n to be coordinatewise

bounded and no stochastic relations between ground truth and revealed labels are assumed. They consider a regret

defined as,

R := E

[
n∑

t=1

(yt − st)
2 − inf

f∈F

n∑
t=1

(yt − f(xt))
2

]
, (4)

for a non parametric function class F . If we consider F as the function class with bounded TV k distance, then their

regret bounds implies an upperbound on the dynamic regret in (1). This can be seen by setting f(xt) = θ1:n[t] for

θ1:n ∈ TV k(Cn) and yt = θ1:n[t] + εt for independent subgaussian εt, t = 1, . . . , n. Then,

R ≥ E

[
n∑

t=1

(yt − st)
2 −

n∑
t=1

(yt − θ1:n[t])
2

]
,

=(a)

n∑
t=1

E[s2t ] + 2E[ytθ1:n[t]]− (θ1:n[t])
2 − 2E[yt]E[st],

= E

[
n∑

t=1

(st − θ1:n[t])
2

]
,
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where (a) is follows from the fact that the forecaster’s prediction st is independent of yt.
The results of (Rakhlin and Sridharan, 2014) on Besov spaces with squared error loss establishes that minimax rate

for the online setting for the problem at hand is also same as that of the iid batch setting. They prove that minimax

rate for Besov spaces indexed by Bs
p,q is O(n1/(2s+1)) in the univariate case whenever s ≥ 1/2. The TV k(Cn) class

is sandwiched between two Besov spaces Bk+1
1,1 and Bk+1

1,∞ for an appropriate scaling of the radius. Since the two

Besov spaces has the same minimax rate, the minimax dynamic regret for forecasting TV k(Cn) sequences in the

online setting is also O(n1/2k+3). However, the arguments in (Rakhlin and Sridharan, 2015) are non-constructive.

They propose a generic recipe based on relaxations of sequential Rademacher complexity for designing optimal online

policies. However, we were unable to come up with a relaxation that can lead to computationally tractable forecasters

that has the optimal dependence of n and variational budget ‖Dk+1θ1:n‖1 on the regret rate.

(Gaillard and Gerchinovitz, 2015) proposes a chaining algorithm to optimally control (4) when F is taken to be the

class of Holder smooth functions. Consequently, their algorithm yields optimal rates for dynamic regret defined in (1)

when θt are samples of a Holder smooth function. Such functions are spatially more regular than those present in a TV

ball. In section 6.2, we show that our proposed policy Ada-VAW achieves the optimal dynamic regret for Holder spaces

enclosed within a higher order TV ball with faster run time complexity.

Other works that can be cast under the setting described in (Rakhlin and Sridharan, 2014) such as (Kotłowski et al.,

2016; Koolen et al., 2015) are all unable to achieve the optimal dynamic regret for the problem at hand.

Classical Time Series Forecasters Algorithms such as ARMA (Box and Jenkins, 1970) and Hidden Markov

Models (Baum and Petrie, 1966) aims to detect recurrent patterns in a stationary stochastic process. However, we focus

on surfacing out the hidden trends in a non-stationary stochastic process. Our work is more closely related to the idea of

Trend Smoothing, similar in spirit to that of Hodrick-Prescott filter (Hodrick and Prescott, 1997) and (Kim et al., 2009).

Exact Sparsity It is established in (Guntuboyina et al., 2017) that Trend Filtering can achieve a total squared error

rate of Õ(Jn) for Ek+1(Jn) (defined in Section 5.2) in the batch setting. In each of the Jn stable sections, the gradient

of the polynomial signal is zero atmost k times. With the boundedness assumption this yields a TV0 distance atmost

B(k + 1) within a single section. At the change points the TV0 distance encountered is atmost B. Summing across all

Jn sections yields a total TV0 distance of O(KJn). This bound on TV0 distance can be used to derive the rates of

O(n1/3J
2/3
n ) for ARROWS (Baby and Wang, 2019) and O(

√
nJn) for policies presented in (Besbes et al., 2015; Chen

et al., 2018b; Zinkevich, 2003; Zhang et al., 2018a). (See Table 2)

C Analysis

C.1 Connecting wavelet coefficients and higher order TV k distance
Lemma 19. Let θ̃1:t = recenter(θ1:t) and (a, b) = pack(θ̃1:t). For an orthonormal DWT matrix W ,

‖Wa‖2+‖Wb‖2√
t

� tk‖Dk+1θ1:t‖1,

where we have subsumed constants that depend only on k.

Proof. Consider the truncated power basis with knots at points 1
n ,

2
n , . . . , 1 defined as follows:

g1(x) = 1, g2(x) = x, . . . , gk(x) = xk

gk+1+j(x) =

(
x− j

n

)k

+

, j = 1, . . . , n− k − 1,

x+ = max{x, 0}. Since an t × t matrix G with entries gj(
i
t ) at the position (i, j) is invertible, we can write any

sequence θ1:t as

θ1:t[i] =

t∑
j=1

βjgj(
i

t
),

for i = 1, . . . , t. From the above equation we see that,
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tk‖Dk+1θ1:t‖1 = k!

t∑
j=k+2

|βj | (5)

Let θ̃1:t = recenter(θ1:t). Let g̃j = recenter(gj) where g̃j is the jth column of the matrix G. Since

‖gj‖∞≤ 1 we have ‖g̃j‖∞= O(1) where the hidden constant only depends on k.

Thus

‖θ̃1:t‖∞ =

∥∥∥∥∥∥
t∑

j=k+2

βj g̃j

∥∥∥∥∥∥
∞

,

≤ sup
k+2≤i≤t

‖g̃i‖∞
t∑

j=k+2

|βj |,

� tk‖Dk+1θ1:t‖1, (6)

where the last line follows from (5). We subsume a constant that only depends on k. Now using ‖x‖2≤
√
m‖x‖∞ for

x ∈ R
m, we have

‖θ̃1:t‖2√
t

� tk‖Dk+1θ1:t‖1.

We have thus established a lower-bound on the TV using the energy of the OLS residuals. For a vector z let

(x,y) = pack(z). We have the following relations,

‖z‖2 ≥
√

‖x‖22+‖y‖22
2

,

≥ ‖x‖2+‖y‖2
2

,

where the last line follows from Jensen’s inequality and the concavity of
√· function.

C.2 Bounding the Regret
Our proof strategy falls through the following steps.

1. Obtain a high probability bound of bias variance decomposition type on the total squared error incurred by the

policy within a bin.

2. Bound the variance by optimally bounding the number of bins spawned.

3. Bound the bias using the restart criterion and adaptive minimaxity of soft-thresholding estimator (Donoho et al.,

1998).

Lemma 20. (bias-variance bound)) Let E[ŷt] = pt. For any bin [th, tl] with th ≥ k discovered by the policy, we have
with probability atleast 1− δ/2

tl∑
t=th

(ŷt − θ1:n[t])
2 ≤

t̄l∑
t=th

2(pt − θ1:n[t])
2 + 4σ2(k + 1) log

(
1 +

n2k+3

k + 1

)
log(4n3/δ).
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Proof. First let’s consider an arbitrary interval [
¯
l, l̄] such that

¯
l ≥ k. We proceed to bound the bias and variance of

predictions made by a VAW forecaster. Note that the bin [
¯
l, l̄] is arbitrary and may not be an interval discovered by the

policy. The predictions made by VAW forecaster at time t ∈ [
¯
l, l̄] is given by,

ŷt = 〈xt, Ãt
−1

t−1∑
s=

¯
l−k

ysxs〉,

where Ãt = I +
∑t

s=
¯
l−k xsxs

T .

Let

pt = E[ŷt],

= 〈xt, Ãt
−1

t−1∑
s=

¯
l−k

θ1:n[sxs〉.

For notational convenience, define

Xt = [x
¯
l−k, . . . ,xt]

T . (7)

Let

Var(ŷt) = σ2xt
T Ãt

−1Xt
TXtÃt

−1xt,

≤ σ2xt
T Ãt

−1xt,

= σ2
t

where the last line is due to Xt
TXt � Ãt, where U � V means V −U is a Positive Semi Definite matrix.

Define a normalized random variable

Zt =
ŷt − pt
σt

. (8)

Thus Zt is a sub-gaussian random variable with variance parameter 1. By sub-gaussian tail inequality we have,

P
(
|Zt|≥

√
2 log(4n3/δ)

)
≤ δ/2n3,

for some δ ∈ (0, 1]. Noting that length of a bin is atmost n, an application of uniform bound yields

P

(
sup

¯
l≤t≤l

|Zt|≥
√
2 log(4n3/δ)

)
≤ δ/2n2.

Adding and subtracting a θ1:n[t] to the numerator of (8), we get that with probability atleast 1− δ/2n2,

|ŷt − θ1:n[t]| ≤ |pt − θ1:n[t]|+σt

√
2 log(4n3/δ), ∀t ∈ [

¯
l, l̄].

Hence the squared error within a bin can be bounded in probability as

l̄∑
t=

¯
l

(ŷt − θ1:n[t])
2 ≤

l̄∑
t=

¯
l

2(pt − θ1:n[t])
2 + 4σ2

t log(4n
3/δ), (9)

where we used (a+ b)2 ≤ 2a2 + 2b2.

Let’s focus on the second term in (9). By lemma 11.11 of (Cesa-Bianchi and Lugosi, 2006) and by following the

arguments of proof of Theorem 11.7 there, we get

l̄∑
t=

¯
l

σ2
t ≤ σ2

k+1∑
d=1

log(1 + λd),
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where λd are the eigenvalues of the (k+1)× (k+1) matrix Ãl̄−I . It is well known that Ãl̄−I has the same nonzero

eigenvalues as the Gram matrix G with entries Gi.j = xi
Txj . Note that ‖xt‖22≤ n2k+2, ∀t ∈ [1, n]. Since the product

Πk+1
d=1(1 + λd) is maximised when λd = (

¯
l − l̄)n2k+2/(k + 1) ≤ n2k+3/(k + 1) we have,

σ2
k+1∑
d=1

log(1 + λd) ≤ σ2(k + 1) log(1 +
n2k+3

k + 1
).

Thus with probability atleast 1− δ/n2

l̄∑
t=

¯
l

(ŷt − θ1:n[t])
2 ≤

l̄∑
t=

¯
l

2(pt − θ1:n[t])
2 + 4σ2(k + 1) log

(
1 +

n2k+3

k + 1

)
log(4n3/δ).

As mentioned earlier, the bin [
¯
l, l̄] can be arbitrary and may not be discovered by policy. However, we want to

analyze the Total Squared Error (TSE) incurred within true bins spawned by the policy. A small caveat here is that

observations within such true bins satisfy the restart criteria and can’t be regarded as independent random variables. To

get rid of this problem, we use a uniform bound argument to bound the TSE incurred in all possible O(n2) bins. This

leads to

P

⎛
⎝sup

[
¯
l,l̄]

l̄∑
t=

¯
l

(ŷt − θ1:n[t])
2 −

l̄∑
t=

¯
l

2(pt − θ1:n[t])
2 − 4σ2(k + 1) log

(
1 +

n2k+3

k + 1

)
log(4n3/δ) ≥ 0

⎞
⎠ ≤ δ/2.

Lemma 21. (subgaussian wavelet coefficients) Let (y1,y2) = pack (recenter(y)) for a vector y of observations
of length L. Let (α1,α2) = (Wy1,Wy2) for an orthonormal DWT matrix W . Then both α1 and α2 are marginally
subgaussian with parameter 4σ2.

Proof. From the theory of least squares regression,

recenter(y) = y −XL(XL
TXL)

−1XL
Ty,

where XL is defined as in (7). Since L ≥ k + 1, XL
TXL can be shown to be invertible. (see for eg. lemma 36)

Without loss of generality, we proceed to characterize the sub-gaussian behaviour of the first wavelet coefficient of

y1. The extension to other wavelet coefficients is straight forward.

Let uT be the first row of the wavelet transform matrix W whose dimension is compatible to y1. Let’s augment

uT as follows.

ũT = [uT ,0T ],

such that length of ũ is L.

We have,

α1[0] = ũT y − ũTXL(XL
TXL)

−1XL
Ty. (10)

(10) along with noisy feedback implies that α1[0] is a Lipschitz function of L iid subgaussian random variables.

Then by Proposition 2.12 from (Johnstone, 2017), α1[0] is also subgaussian with variance parameter given by the

square of Lipschitz constant �2 times σ2. Since α1[0] is a linear function of the iid subgaussians we have,

� = ‖ũ−XL(XL
TXL)

−1XL
T ũ‖2,

≤ ‖ũ‖2+‖XL(XL
TXL)

−1XL
T ũ‖2,

≤(a) ‖u‖2+‖XL(XL
TXL)

−1XL
T ‖2‖u‖2,

=(b) 2.

In (a) we used ‖Ax‖2≤ ‖A‖2‖x‖2 where ‖A‖2 is the induced matrix norm and the fact that ‖ũ‖2= ‖u‖2.

In (b) we notice that ‖u‖2= 1 as the DWT matrix W is orthonormal and ‖XL(XL
TXL)

−1XL
T ‖2= 1 since

XL(XL
TXL)

−1XL
T is a projection matrix.

Similarly it can be shown that α2 is marginally subgaussian with parameter 4σ2.
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Lemma 22. (uniform shrinkage) Assume the setting of lemma 21. Let (α̂1, α̂2) = (T (α1), T (α2)) where T (·) is the
soft-thresholding operator with threshold σ

√
β log n. Then with probability atleast 1− 2n3−β/8, |(α̂r)i|≤ |E [(αr)i] |

for each co-ordinate i and r = 1, 2. The expectation is taken wrt to randomness in the observations.

Proof. Consider a fixed bin [
¯
l, l̄]. Due to results of lemma 21 and subgaussian tail inequality,

P
(
|(α̂r)i − E [(αr)i] |≥ σ

√
β log n

)
≤ 2n−β/8.

Then arguing in the similar lines as in the proof of lemma 15 of Baby and Wang (2019), the result follows.

Lemma 23. (bin control) With probability atleast 1 − 2n3−β/8, the number of bins M , spawned by the policy is
atmost

min

{
n,max{1, Õ(n

1
2k+3 ‖nkD(k+1)θ1:n‖

2
2k+3

1 )}
}

where Õ hides factors that depend on wavelet function, constants

that only depend on TV order k and polynomial factors of log n.

Proof. Let Li be the length of the ith bin. Let α̂1i, α̂2i be the denoised wavelet coefficient segments of the re-centered

observations within a bin i as described in the policy and θi be the ground truth vector in bin i.
By the policy’s restart rule,

σ√
Li

≤ 1√
Li

(‖α̂1i‖2+‖α̂2i‖2) .

Due to the uniform shrinkage property specified in lemma 22, we have with probability atleast 1− 2n3−β/8

σ√
Li

≤ 1√
Li

(‖α1i‖2+‖α2i‖2) ,

�(a) 2
kLk

i ‖Dk+1θi‖1,

where (a) follows due to lemma 19. The factor of 2k is due to the fact that length of vectors α1i or α2i is atmost

2Li. The last line implies that when the TV k distance is zero, Ada-VAW doesn’t restart with high probability making

M = 1.

Rearranging and summing across all bins yields

M∑
i=1

σ

L
k+1/2
i

� ‖Dk+1θ1:n[t]‖1.

Now applying Jensen’s inequality for the convex function f(x) = 1
xk+1/2 , x > 0, we get

σM
2k+3

2 n
−(2k+1)

2 � ‖Dk+1θ1:n‖1,
where � subsumes constants that depend only on wavelet functions, TV order k and polynomial factors of log n.

Rearranging the last expression yields the lemma.

Lemma 24. (Vovk-Azoury-Warmuth regret) If the Vovk-Azoury-Warmuth forecaster with output denoted by v̂j at time
j, is run on a sequence
(w1, v1), . . . , (wn, vn) ∈ R

k+1 × R, then for all u ∈ R
k+1,

t∑
j=1

(v̂j − vj)
2 − (uTwj − vj)

2 ≤ 1

2
‖u‖22+

(k + 1)B2

2
log

(
1 +

tk+2

k + 1

)
,

= Õ(B2),

where B = maxi=1,...,t|yi| and wj = [1, j, . . . , jk]T .

Proof. The first inequality is due to Theorem 11.8 of (Cesa-Bianchi and Lugosi, 2006). The second equality follows

because under the given choice of monomial features, it is shown in Corollary 40 that when u is the coefficient vector

of OLS fit, ‖u‖22= O(B2).
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Next we characterize the optimality of soft-thresholding estimator on TV k class. The key to this is the Theorem 19

from (Baby and Wang, 2019).

Theorem 25. (Baby and Wang, 2019) Consider the observation model y̆ = ᾰ+Z, where y̆ ∈ R
n, Z is marginally

subgaussian with parameter σ2 and ᾰ ∈ A for some solid and orthosymmetric A. Let α̂δ be the soft thresholding
estimator with input y̆ and threshold δ. When δ = σ

√
β log n, with probability atleast 1− 2n1−β/2 the estimator α̂δ

satisfies

‖α̂δ − α‖2 ≤ 8.88β(1 + log(n)) inf
α̂

sup
α∈A

E[‖α̂− α‖2].

We are interested in the case where A is the space of wavelet coefficients for TV k bounded fucntions. Since

TV k class is sandwiched between two Besov spaces, it can be shown that A is solid and orthosymmetric (see for eg.

(Johnstone, 2017), section 4.8). Note that subtracting a polynomial of degree k has no effect on the TV k distance.

It has been established in lemma 21 that OLS residual are subgaussian with parameter 4σ2. Hence we are under the

observation model of Theorem 25. By the results of (Donoho et al., 1998), we have inf α̂ supα∈A E[‖α̂ − α‖2] =
Õ(n

1
2k+3 (nkDθ1:n‖1) 2

2k+3σ
4k+4
2k+3 ). This along with using a uniform bound across all O(n2) bins leads to the following

Corollary.

Corollary 26. Under the observation model and notations in Theorem 25 but with a subgassuan parameter 4σ2 when
A is the wavelet coefficients of re-centered ground truth within a bin discovered by the policy, then with probability
atleast 1− 2n3−β/8

‖α̂δ − α‖2 = Õ(n
1

2k+3 (nkDθ1:n‖1) 2
2k+3σ

4k+4
2k+3 ).

Lemma 27. (bias control) Let E[ŷt] = pt. For any bin [th, tl], L = tl − th, with th ≥ k discovered by the policy, we
have with probability atleast 1− 2n3−β/8

t̄l−1∑
t=th

(pt − θ1:n[t])
2 = Õ(1) + Õ

(
L

2k+1
2k+3 ‖Dk+1θth−k:tl−1‖

2
2k+3

1

)
+ (ptl − θ1:n[tl])

2.

Proof. For a bin [th, tl] let

T =

tl∑
t=th

(pt − θ1:n[t])
2.

Note that T is the squared error incurred by the VAW forecaster when run with the sequence θth:tl . Let u be the

coefficient of the OLS fit using monomial features for the ground truth [θth−k:tl−1]. Further let’s recall/adopt the

following notations:

1 (g1, g2) = pack (recenter(θth−k:tl−1));

2 (α1,α2) = (Wg1,Wg2);

1. (Baby and Wang, 2019) (y1,y2) = pack
(
recenter(yth−k:tl−1)

)
;

4 L = tl − th + k;

5 (α̂1, α̂2) = (T (Wy1), T (Wy2)) where T (·) is soft-thresholding operator at threshold σ
√
β log n.
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T − (ptl − θ1:n[tl])
2 ≤(a)

tl−1∑
j=th−k

(uTxj − θ1:n[j])
2 + Õ(B2),

≤(b) ‖α1‖22+‖α2‖22+Õ(B2),

≤(c) ‖α̂1‖22+‖α̂2‖22+‖α̂1 −α1‖22+‖α̂2 −α2‖22+Õ(B2),

≤(d) ‖α̂1‖22+‖α̂2‖22+Õ

(
L

2k+1
2k+3 ‖Dk+1θth−k:tl−1‖

2
2k+3

1 σ
4k+4
2k+3

)
+ Õ(B2),

≤(e)
σ2

L
+ Õ

(
L

2k+1
2k+3 ‖Dk+1θth−k:tl−1‖

2
2k+3

1 σ
4k+4
2k+3

)
+ Õ(B2),

= Õ(1) + Õ

(
L

2k+1
2k+3 ‖Dk+1θth−k:tl−1‖

2
2k+3

1

)
,

with probability atleast 1 − 2n3−β/8. Inequality (a) is due to lemma 24, (b) is due to orthonormality of wavelet

transform matrix W , (c) by triangle inequality, (d) by Corollary 26 and (e) is due to the fact that restart condition is not

satisfied in the interior of a bin.

Theorem 3. Consider the the feedback model yt = θ1:n[t] + εt t = 1, . . . , n where εt are independent σ2 subguassian
noise and |θ1:n[t]|≤ B. If β = 24 + 8 log(8/δ)

log(n) , then with probability at least 1 − δ, Ada-VAW achieves a dynamic

regret of Õ
(
n

1
2k+3

(
nk‖Dk+1θ1:n‖1

) 2
2k+3

)
where Õ hides poly-logarithmic factors of n, 1/δ and constants k,σ,B

that do not depend on n.

Proof. Let Li be the length of the ith bin [t
(i)
h , t

(i)
l ] discovered by the policy. Let

Ti =

t
(i)
l∑

t=t
(i)
h

(pt − θ1:n[t])
2.

From lemma 27 we have with with probability atleast 1− 2n3−β/8,

Ti = Õ(1) + Õ

(
L

2k+1
2k+3

i ‖Dk+1θ
t
(i)
h −k:t

(i)
l −1

‖
2

2k+3

1

)
+ (p

t
(i)
l

− θ1:n[t
(i)
l ])2

= Õ(1) + Õ

(
L

2k+1
2k+3

i ‖Dk+1θ
t
(i)
h −k:t

(i)
l −1

‖
2

2k+3

1

)
,

where in the last line we used the fact that ground truths are bounded by B.

Now summing the squared bias across all M bins discovered by the policy yields

T =

M∑
i=1

Ti,

=(a)
˜O(M) +

M∑
i=1

Õ

(
L

2k+1
2k+3

i ‖Dk+1θ
t
(i)
h −k:t

(i)
l −1

‖
2

2k+3

1

)
,

=(b) Õ

(
n

1
2k+3 ‖nkD(k+1)θ1:n‖

2
2k+3

1

)
+

M∑
i=1

Õ

(
L

2k+1
2k+3

i ‖Dk+1θ
t
(i)
h −k:t

(i)
l −1

‖
2

2k+3

1

)
,

=(c) Õ

(
n

1
2k+3 ‖nkD(k+1)θ1:n‖

2
2k+3

1

)
+ Õ

⎛
⎝( M∑

i=1

Li

) 2k+1
2k+3

·
(

M∑
i=1

‖Dk+1θ
t
(i)
h −k:t

(i)
l −1

‖1
) 2

2k+3

⎞
⎠ ,

= Õ

(
n

1
2k+3 ‖nkD(k+1)θ1:n‖

2
2k+3

1

)
+ Õ

(
n

1
2k+3 ‖nkD(k+1)θ1:n‖

2
2k+3

1

)
, (11)
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with probability atleast 1 − 4n3−β/8. Line (a) holds with probability atleast 1 − 2n3−β/8. For (b) we used

lemma 23 and it holds with probability atleast
(
1− 2n3−β/8

)2 ≥ 1− 4n3−β/8 . For (c) we used Holder’s inequality

xTy ≤ ‖x‖p‖y‖q with p = 2k+3
2k+1 and q = 2k+3

2 .

Since the variance within a bin is Õ(σ2) as indicated by lemma 20, when summed across all bins we get a total

variance of Õ(σ2M) which is Õ

(
n

1
2k+3 ‖nkD(k+1)θ1:n‖

2
2k+3

1

)
by lemma 23.

A trivial upperbound for T is

T ≤ n(B2 + σ2),

= O(n). (12)

Combining (11) (12) and the variance summed across all terms yields

T = Õ

(
max

{
n, n

1
2k+3 ‖nkD(k+1)θ1:n‖

2
2k+3

1

})
,

with probability atleast 1− 4n3−β/8 − δ/2 where the dependence of δ in the failure probability is due to that fact that

bias variance decomposition in lemma 20 holds with probability atleast 1− δ/2. By setting β = 24 + 8 log(8/δ)
log(n) , we get

the Theorem 3.

Remark 28. (Specialization to k = 0) When specialized to the case k = 0, we recover the optimal rate established in
(Baby and Wang, 2019) for the bounded ground truth setting upto constants B and σ. When k = 0, our policy predicts
yth

+...+yt−1

t−th+2 at time t. This is similar to online averaging except that the denominator is now t − th + 2 instead of
t− th. (Baby and Wang, 2019) also considers the scenario where the point-wise bound on ground truth can increase in
time as O(Cn). As hinted by the similarity of Ada-VAW with that of (Baby and Wang, 2019) for k = 0 along with the
fact that our restart rule also lower-bounds the Total Variation of ground truth with high probability, it is possible to get
a regret bound of Õ(n1/3C

2/3
n + C2

n) for Ada-VAW in this stronger setting.

Proposition 1 (Minimax Regret). Let yt = θ1:n[t] + εt for t = 1, . . . , n where θ1:n ∈ TV (k)(Cn), |θ1:n[t]|≤ B and
εt are iid σ2 subgaussian random variables. Let AF be the class of all forecasting strategies whose prediction at time t
only depends on y1, . . . , yt−1. Let st denote the prediction at time t for a strategy s ∈ AF . Then,

inf
s∈AF

sup
θ1:n∈TV (k)(Cn)

n∑
t=1

E
[
(st − θ1:n[t])

2
]
= Ω

(
min{n, n 1

2k+3C
2

2k+3
n }

)
,

where the expectation is taken wrt to randomness in the strategy of the player and εt.

Proof. Since a batch non-parametric regression algorithm is allowed to see the entire observations ahead of time, lower

bound in the batch setting directly translates to lower bound for Rdynamic. Let AB be the set of all offline regression

algorithms. The minimax rates of estimation of TV k bounded sequences under squared error losses from (Donoho

et al., 1998) gives,

inf
s∈AB

sup
θ1:n∈TV (k)(Cn)

M∑
t=1

E
[
(st − θ1:n[t])

2
]

= Ω

(
n

1
2k+3C

2
2k+3
n

)
.

From (Donoho et al., 1990), minimax rates of estimation under squared error losses of sequences that satisfy

|θi|≤ B scales as min{nB2, nσ2}. Combining the two bounds yields Proposition 1.

Proposition 8. There exist an O
(
((k + 1)n)2

)
run-time implementation of Ada-VAW.
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Proof. Let’s describe the computational requirement at each time step. As outlined in Section 11.8 of (Cesa-Bianchi

and Lugosi, 2006), we can use Sherman-Morrison formula to compute A−1
t in O((k + 1)2) time. Using the same

logic we can compute (Xt
TXt)

−1 needed by recenter operation incrementally in O((k + 1)2) time. Re-centering

operation and computation of wavelet coefficients requires O(n) time per round. Since there are n rounds, the total

run-time complexity becomes O((k + 1)2n2).

Extension to higher dimensions Consider a variational measure and the setup described in Remark 6. Let ŷ
(i)
t be

the prediction of instance i of Ada-VAW at time t. For each i ∈ [d], we’ve

n∑
t=1

(ŷ
(i)
t − θ1:n[t][i])

2 = Õ

(
n

1
2k+3Δ

2
2k+3

i

)
,

by Theorem 3. Summing across all dimensions yields,

Rn =

d∑
i=1

Õ

(
n

1
2k+3Δ

2
2k+3

i

)

= Õ

(
d

2k+1
2k+3n

1
2k+3C

2
2k+3
n

)
,

where the last inequality follows from applying Holder’s inequality xTy ≤ ‖x‖p‖y‖q to
∑d

i=1 1
2k+1
2k+3Δ

2
2k+3

i with

norms p = 2k+3
2k+1 and q = 2k+3

2 .

Extension to general losses Assume the interaction model in Figure 1. Instead of squared error losses, let the

losses be ft as discussed in Remark 7. Since ft is gamma smooth, we have

ft(b) ≤ ft(a) + f ′
t(a)(b− a) +

γ

2
(b− a)2. (13)

Let ŷt be the prediction of Ada-VAW at time t and θt := θ1:n[t]. Then regret with this loss function is

n∑
t=1

ft(ŷt)− ft(θt) ≤
n∑

t=1

γ

2
(ŷt − θt)

2,

by (13) and using the fact f ′
t(θt) = 0. Now the statement in Remark 7 is immediate by appealing to Theorem 3.

C.3 Exact sparsity
We start by the observation that an exact sparsity (i.e sparsity in the ‖·‖0 sense) in the number of jumps of ‖Dk+1θ1:n‖0
translates to an exact sparsity in the wavelet coefficients. This is made precise by the following lemma.

Lemma 29. Consider a sequence with ‖Dk+1θ1:n‖0= J . Then both the signals θ1:n and θ̃1:n = recenter(θ1:n)
can be represented using O(k + J log n) wavelet coefficients of a CDJV system of regularity k + 1.

Proof. Throughout this proof when we say jumps, we refer to jumps in ‖Dk+1θ1:n‖0. Let L = 2�log2(k+1)	. Consider

splitting the coefficients α of the DWT transform into two parts: α1:L and αL+1:n. By CDJV construction, the wavelets

corresponding to indices L+ 1, . . . , n are all orthogonal to polynomials to degree atmost k. The space of polynomials

of degree atmost k is contained in the span of wavelets identified by the indices 1, . . . , L. Though the span of the first L
wavelets can also generate other waveforms which are not polynomials as well.

Notice that between two jumps, the underlying signal is a polynomial of degree atmost k. By orthogonality property

discussed above, wavelet coefficients from the group αL+1:n assume the value zero if the support of corresponding

wavelet is a region where the signal behaves as a polynomial. Since there are J jump points and each point is covered

by log n wavelets by the Multi Resolution property, there can be atmost O(J log n) non zero coefficients from the

group αL+1:n.

When we subtract the best polynomial fit due to the re-centering operation, it is only going to affect the first L
coefficients and keep the remaining unchanged. Hence the re-centered signal can have atmost O(k + J log n) nonzero

coefficients.
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Due to lemmas 19 and 22, the expression in the LHS of restart rule of the policy lower-bounds the TV k distance

within a bin with high probability. So if a bin lies entirely between two jumps, we do not restart with high probability as

the TV k distance is zero. This lead to the following Corollary.

Corollary 30. Let yt = θt + εt, for t = 1, . . . , n where εt are sub-gaussian with parameter σ2 and ‖Dk+1θ1:n‖0= J
with |θt|≤ B. Then with probability at-least 1− 2n3−β/8 Ada-VAW restarts O(J) times.

In the next Theorem, we characterize the optimality of soft-thresholding estimator in the exact sparsity case.

Theorem 31. Under the setup of Corollary 30, the soft thresholding estimator whose estimates denoted by α̂1:n with
threshold set to σ

√
log n satisfy,

‖α̂1:n − θ1:n‖22 = Õ(Jσ2),

with probability atleast 1− 2n1−β/2 where Õ hides logarithmic factors of n.

Proof. Let α denote the DWT coefficients of θ1:n. By Gaussian tail inequality and union bound we have P (supt|εt|≥
σ
√
log n) ≤ 2n1−β/2. Conditioning on the event supt|εt|≤ σ

√
log n we are under the observation model in lemma 17

of Baby and Wang (2019). Following the results there, with probability atleast 1− 2n1−β/2 we have,

‖α̂1:n − θ1:n‖22 =

n∑
i=1

min
{
α[i]2, 16σ2 log n

}
,

= Õ(Jσ2),

where the last line follows from lemma 29 and the fact that O(k + J log n) = O(KJ log n) = O(J log n).

Now using a uniform bound argument across all O(n2) bins yields the following Corollary.

Corollary 32. Under the observation model and notations in Corollary 30 but with a subgassuan parameter 4σ2 when
θ1:n is the re-centered ground truth within a bin discovered by the policy, then with probability atleast 1− 2n3−β/8

‖α̂δ − α‖2 = Õ(Jσ2).

With Corollaries 30 and 32, the proof of Theorem 3 can be readily adapted to give Theorem 10.

Proposition 11. Under the interaction model in Figure 1, the minimax dynamic regret for forecasting sequences in
Ek+1(Jn) is Ω(Jn).

Proof. Let U{a, b, c} denote a uniform sample from set {a, b, c}. Consider a ground truth sequence as follows:

1. For t=1, θ1 = U{−B, 0, B}
2. For t = 2 to Jn + 1:

• if θt−1 = −B, θt = U{0, B}
• if θt−1 = 0, θt = U{−B,B}
• if θt−1 = B, θt = U{−B, 0}

3. For t > Jn + 1, output θt = θt−1

Such a signal will have ‖Dk+1θ1:n‖0≤ Jn. Let’s assume that we reveal this sequence generating process to the

learner. Then the Bayes optimal algorithm will suffer a regret of Ω(Jn).

Extension to higher dimensions Let the ground truth θ1:n[t] ∈ R
d and let vi = [θ1:n[1][i], . . . ,θ1:n[n][i]], ‖Dk+1vi‖1|≤

Jn, ∀i ∈ [d]. Then run d instances of Ada-VAW where instance i is dedicated to track the sequence vi. By appealing to

Theorem 10 for each co-ordinate and summing across all d dimensions yields a regret bound of Õ(dJn).
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D Adapting to lower orders of k
Though the theory of offline non parametric regression with squared error loss is well developed for the complete

spectrum of function classes TV k(Cn) with k ≥ 0, most of the practical interest is often limited to lower orders of k
namely k = 0, 1, 2, 3 (see for eg. (Kim et al., 2009; Tibshirani, 2014)). This motivates us to design policies that can

perform optimally for these lower TV orders without requiring the knowledge of k beforehand.

Let E be the event that |εt|≤ σ
√
2 log(2n2) for all t = 1, . . . , n where εt are as presented in Figure 1. By using

subgaussian tail inequality and a union bound across all time points, it can be shown that the event E happens with

probability atleast 1− 1
n .

The basic idea to achieve adaptivity to k is as follows:

Meta-Policy:

• Instantiate Ada-VAW for k = 0, 1, 2, 3 and run them in parallel.

• Forecast according to an Exponentially Weighted Averages (EWA) ((Cesa-Bianchi and

Lugosi, 2006)) over the predictions made by each of the instances. Set the parameter η
of EWA to 1/4(B +

√
2 log(2n2))2.

We condition on the event E . The arguments in the proof of Theorem 3 still goes through even if we condition on E .

Let the dynamic regret of Ada-VAW for a particular value of k be the random variable R
(k)
n . The maximum possible

value of R
(k)
n is κn for some constant κ. We have,

E[R(k)
n |E ] =

∫ κn

−∞
rdP(r),

≤ γn
1

2k+3C
2

2k+3
n +

∫ κn

γn
1

2k+3 C
2

2k+3
n

rdP(r),

≤ γn
1

2k+3C
2

2k+3
n + κn · δ,

for some constant γ, where last line follows due to Theorem 3. By choosing δ = 1/n we get

E[R(k)
n |E ] = Õ

(
n

1
2k+3C

2
2k+3
n

)
. (14)

Let ŷt, be the output of any forecasting strategy at time t. Each expert in the meta-policy suffers a loss (yt − ŷt)
2

for appropriate value of ŷt. Let θt := θ1:n[t]. we have

n∑
t=1

E[(yt − ŷt)
2|E ]− E[(yt − θt)

2|E ], =(a)

n∑
t=1

E[(θt − ŷt)
2|E ]− E[(ŷt − θt)

2|E ]E [εt|E ],

=

n∑
t=1

E[(θt − ŷt)
2|E ], (15)

where the last line is simply the expected dynamic regret of the strategy and line (a) is due to independence of εt with

ŷt.
Let the dynamic regret of the meta-policy be denoted as Rmeta. Since squared error loss (yt − ŷt)

2 is exponentially

concave with parameter 1/4(B +
√

2 log(2n2))2, Proposition 3.1 of (Cesa-Bianchi and Lugosi, 2006) along with (14)

and (15) guarantees that,

E[Rmeta|E ] = log 4 + Õ

(
min

k=0,1,2,3
n

1
2k+3

(
nk‖Dk+1θ1:n‖1

) 2
2k+3

)

Thus we see that expected dynamic regret of the meta-policy adapts to TV order k upto a additive constant of log 4.

This additive constant only contributes to a small O(1/n) term if we consider the per round regret.

27



E Problems with padding
In this section, we explain why some commonly used padding schemes can potentially inflate the TV k distance of the

resulting sequence.

E.1 Zero padding
Consider a sequence θ1:t such that best polynomial fit of this sequence is uniformly zero. Let γ be the zero padded

version of θ1:t such that length of γ is a power of 2. Let θ̃ = [θt−k, . . . ,θt, 0, . . . , 0]
T ∈ R

2k+2. We have,

(Dk+1γ)T = [(Dk+1θ1:t)
T , (Dk+1θ̃)T , 0, 0, . . . , 0].

Due to (6), we have ‖θ1:t‖∞= O(tk‖Dk+1θ1:t‖1). Hence the existence of θ̃ term makes ‖Dk+1γ‖1= O(tk‖Dk+1θ1:t‖1).

E.2 Mirror image padding
Let γ be the mirror image padded version of the re-centered sequence, θ1:t. i.e γ = [θ1, . . . , θt, θt, θt−1, . . .] such that

its length becomes a power of 2. Then,

‖Dk+1γ‖1 = 2‖Dk+1θ1:t‖1+Dk+1[θt−k, . . . ,θt−1,θt,θt,θt−1, . . . ,θt−k]
T ,

= 2‖Dk+1θ1:t‖1+O(tk‖Dk+1θ1:t‖1),
where the last line follows from (6).

F Technical Lemmas
Lemma 33. The procedure CalcDetRecurse in (Dingle, 2005) is sound.

Proof. We use induction on the dimension of the input square matrix.

Base case: when d = 3. Assume that e[0][0] is non-zero. Let the matrix be given by

X =

⎡
⎣e00 e01 e02
e10 e11 e12
e20 e21 e22

⎤
⎦

The idea is to convert X to an upper triangular matrix. Define:

Y =

⎡
⎣ 1 e01

e00
e02
e00

e10 e11 e12
e20 e21 e22

⎤
⎦

So that det(Y ) = det(X)
e00

. Applying elementary row operations we get

det(Y ) =

∣∣∣∣∣∣
1 e01

e00
e02
e00

0 e11 − e10
e01
e00

e12 − e10
e01
e00

0 e21 − e20
e01
e00

e22 −−e20
e01
e00

∣∣∣∣∣∣
The inner loop in the procedure CalcDetRecurse computes the determinant of the inner 2× 2 sub-matrix by

considering the numerator of the fractional terms. Hence the value v return by the recursive call is det(Y [1 :][1 :])e200.

So det(X) = e00
v
e200

= v
e00

. This is precisely the value returned by the procedure after the final division loop.

When e00 is zero, we can swap it with the row whose first element is non-zero and apply the arguments above. If

such a swap is not possible, the procedure correctly recognizes the determinant as zero.

Inductive case: Assume that procedure is sound for matrices upto dimension n. Now define Y as before to set the

element e00 to one. By similar arguments we obtain that value v returned by the recursive call is det(Y [1 :][1 :])en00.

Thus we obtain det(X) = v
en−1
00

. This division is performed at the final loop of the procedure.

Here also when e00 is zero, the swapping argument similar to the base case can be applied.
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Consider OLS fit on the inputs (x1, y1), . . . ,xt, yt) where the features xj = [1, j, . . . , jm]T and the responses

obey maxi=1,...,t|yi|= B. Let the design matrix be

Xt = [x1, . . . ,xt]
T .

Lemma 34. det(Xt
TXt) is a polynomial in t with degree atmost (k + 1)2.

Proof. The procedure CalcDegreeOfDet in (Dingle, 2005) can be used to upperbound the degree of determinant.

It assumes that while doing the subtractions in procedure CalcDetRecurse, the highest degree terms in the

corresponding polynomials do not cancel out.

Let m = k + 1. Observe that XT
t Xt can be compactly written as

XT
t Xt =

⎡
⎢⎣

S0(t) S1(t) . . . Sm−1(t)
...

...
. . .

...

Sm−1(t) Sm(t) . . . S2m−2(t)

⎤
⎥⎦ , (16)

where Sp(t) =
∑t

n=1 n
p.

Let’s run procedure CalcDegreeOfDet on an m×m matrix D of degrees arising from XT
t Xt as below.

D =

⎡
⎢⎣
1 2 . . . m
...

...
. . .

...

m m+ 1 . . . 2m− 1

⎤
⎥⎦

Let’s define a seed sequence {s}i as the sequence of numbers that can be found the main diagonal of a given matrix,

excluding the element at the bottom right corner. The seed sequnece of D is simply 1, 3, . . . , 2m− 3. Let Ti be the

element at index (0, 0) for the matrix in the ith recursive call. Note that T1 = 1. Tracing the steps through the recursion

we get

T2 = s2 + T1

T3 = s2 + T2 + T1

...

Tm−1 = sk−1 + Tk−2 + . . .+ T1

In m− 1 calls, we will be left with a 2× 2 matrix whose entries are[
Tm−1 1 + Tm−1

1 + Tm−1 2 + Tm−1

]

Now let’s start with the winding up procedure. There are k − 3 wind-ups that need to be performed. Let ut be the

wound up value from the tth winding up step. We have,

um−2 = 2 + 2Tm−1 − Tm−2

um−3 = um−2 − 2Tm−3

um−4 = um−3 − 3Tm−4

...

u1 = u2 − (m− 2)T1

Note that u1 is the final output produced by the topmost call to CalcDegreeOfDet procedure. These systems

can be unrolled to get

u1 = 2 + 2Tm−1 − (Tm−2 + 2Tm−3 + . . .+ (m− 2)T1

= 2 + sm−1 +
m−1∑
i=1

si

29



Now using explicit expressions for seed sequence {s}i we get

u1 = 2 + 2m− 3 + (m− 1)2

= m2

= (k + 1)2

Lemma 35. Let Sp(t) be a polynomial in t defined as Sp(t) =
∑t

n=1 n
p where p is a non-negative integer. Then,

(−1)p−1Sp(t− 1) = Sp(−t)

Proof. For a(t) = t(t+1)
2 , Faulhaber’s formula states that

t∑
n=1

np =

(p−1)/2∑
i=1

cia(t)
(p+1)/2,

when p is odd and

t∑
n=1

np =
t+ 0.5

p+ 1

p/2∑
i=1

(i+ 1)cia(t)
p/2,

when p is even. The the explicit form of ci can be expressed in terms of Bernoulli numbers.

Note that a(−t) = a(t− 1). Substituting this in the formulas yields the lemma.

Lemma 36. For a universal constant H(m) that depends only on m = k + 1,

det(XT
t Xt) = H(m) tm

m∏
i=2

(
t2 − (i− 1)2

)m−i+1

Proof. The strategy is to characterize the roots of determinant. For brevity let’s denote Zt = XT
t Xt. Observe that

Zt =

t∑
i=1

xix
T
i , (17)

where xi = [1, . . . , im−1]. Each update xix
T
i increases the rank by atmost 1. After m such updates Xm becomes

a square Vandermonde matrix formed by the sequence {1, 2, . . . ,m}. Since all of the elements in the sequence are

distinct Xm is full rank and so is Zm. This implies that each such update xix
T
i for i ≤ m increased the rank by

exactly one.

We can view the equation (17) as a quantity that evolves in time. For 1 ≤ i ≤ m − 1, there exists m − i rows

in Zi that are linearly dependent. This means t = i is a root of det(Zt) with multiplicity (m − i). By defining

x0 = [0, . . . , 0]T for the initial case t = 0, all the rows are simply zeroes and multiplicity of the root t = 0 is m. Thus

we have established that tm
∏m

i=2 (t− (i− 1))
m−i+1

is a sub-expression of det(Zt).
Let’s view Zt as a function of t with t ∈ R as displayed in (16). Put t = −t′ in (16). Then we have,

Z(t′) =

⎡
⎢⎣

S0(−t′) S1(−t′) . . . Sm−1(−t′)
...

...
. . .

...

Sm−1(−t′) Sm(−t′) . . . S2m−2(−t′)

⎤
⎥⎦ .

Hence showing t′ = a is a root of Z(t′) implies that t = −a is a root of Zt. We have

det(Z(t′)) = (−1)m

∣∣∣∣∣∣∣
−S0(−t′) −S1(−t′) . . . −Sm−1(−t′)

...
...

. . .
...

−Sm−1(−t′) −Sm(−t′) . . . −S2m−2(−t′)

∣∣∣∣∣∣∣
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Consider

det(Z̃(t′)) =

∣∣∣∣∣∣∣
−S0(−t′) −S1(−t′) . . . −Sm−1(−t′)

...
...

. . .
...

−Sm−1(−t′) −Sm(−t′) . . . −S2m−2(−t′)

∣∣∣∣∣∣∣
When t′ is a non-negative integer, lemma 35 implies that the elements in the matrix above are result of the

summation:

t′−1∑
i=0

(−i)p = (−1)pSp(t
′ − 1)

= −Sp(−t′),

where we adopt the convention 00 = 1.

Thus we have,

Z̃(t′) =
t′∑

i=1

x′
ix

′T
i ,

where x′
i = [1,−(i− 1), . . . , (−(i− 1))

m−1
]. Let X′

t = [x′
1, . . . ,x

′
t]
T .

After m updates, we have that X′
m is a square Vandermonde matrix defined by the sequence {0,−1, . . . ,−(m−1)}.

Since each of the elements are distinct, this a full rank matrix and so each update x′
ix

′T
i for i ≤ m increased the rank

by exactly one leading to Z̃(m) being full rank.

Using similar arguments as above we see that t′ = i is a root of det(Z̃(t′)) with multiplicity (m−i). This in turn im-

ply that t = −i is a root of det(Zt) with multiplicity (m−i). Now we have established that tm
∏m

i=2

(
t2 − (i− 1)2

)m−i+1

is a sub-expression of det(Zt). By lemma 34 we conclude that we have found all roots of the determinant and no

further terms depending t can be there.

Remark 37. We conjecture that the universal constant H(m) in lemma 36 is the determinant of Hilbert matrix of order
m.

Definition 38. Let H(t) be a square matrix with each entry rij(t) =
nij(t)
dij(t)

for polynomials nij(t) and dij(t). We say
rij(t) is Hilbert-like if rij(t) = O

(
1

ti+j−1

)
for all i, j.

Lemma 39. All the elements of
(
XT

t Xt

)−1

are Hilbert-like when t ≥ m = k + 1.

Proof. Computation of inverse is essentially a computation of determinants of the matrix and its minors. Each element

(i, j) of an inverse matrix is a rational function with numerator being determinant of minor Mij and denominator being

the determinant of the original symmetric matrix.

Let Zt = XT
t Xt When t ≥ m we have from lemma 36 that det(Zt) = Ω(tm

2

). So it is sufficient to show that

det(Mij is O(tm
2+1−i−j). The strategy we follow is same of that in lemma 34.

We follow a 1 based indexing. Since Zt is symmetric, it is enough to compute the minors when 1 ≤ i ≤ j ≤ m.

case 1: Consider det(Mij) when 1 < i < j < m− 1. Following the same notations as in the prood of lemma 36,

after m− 2 calls to CalDegreeOfDet we end up with a matrix below.

F =

[
Tm−2 1 + Tm−2

1 + Tm−2 2 + Tm−2

]
(18)

The corresponding seed sequence {s}i is {1, 3, 5, . . . , 2i− 3, 2i, 2i+ 2, . . . , 2j − 2, 2j + 1, 2j + 3, . . . , 2m− 3}.

The jumps in the progression is attributed to the deletion of row i and column j for obtaining minor Mij .
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The final output u1, from the topmost call to CalDegreeOfDet is then given by

u1 = sm−2 +

m−2∑
i=1

si

= 2 + (2m− 3) + (i− 1)2 + (j − i)(j + i− 1) + (m+ j − 1)(m− j − 1),

= m2 + 1− i− j.

So det(Mij) is O(tm
2+1−i−j) where the constant in the big-oh only dependents on m.

case 2: (1 < i < j = m− 1). After m− 2 recursion calls we get the matrix below.

F =

[
Tm−2 2 + Tm−2

1 + Tm−2 3 + Tm−2

]
(19)

The seed sequence {s}i is {1, 3, . . . , 2i− 3, 2i, . . . , 2j − 2}. So

u1 = 3 + sm−2 +

m−2∑
i=1

si,

= 3 + (2m− 4) + (i− 1)2 + (j − i)(j + i− 1),

= m2 + 1− i− j.

So det(Mij) is O(tm
2+1−i−j).

case 3: (1 < i = j < k − 1).

The seed sequence {s}i is {1, 3, . . . , 2i− 3, 2i+ 1, . . . , 2m− 3}. At the last step we get a matrix as in equation

(18). Hence,

u1 = 2 + sm−2 +

m−2∑
i=1

si,

= 2 + (2m− 3) + (i− 1)2 + (m− i− 1)(2i+ 1 +m− i− 2),

= m2 + 1− i− j.

So det(Mij) is O(tm
2+1−i−j).

case 4: (i = j = m− 1).

The seed sequence {s}i is {1, 3, . . . , 2i− 3}. At the last step we get a matrix below.

F =

[
Tm−2 2 + Tm−2

2 + Tm−2 3 + Tm−2

]

So,

u1 = 4 + sm−2 +

m−2∑
i=1

si,

= 2 + (2i− 3) + (i− 1)2,

= m2 + 1− i− j.

So det(Mij) is O(tm
2+1−i−j).

case 5: (i = j = m).

The seed sequence {s}i is {1, 3, . . . , 2m− 5}. At the last step we get a matrix as in equation (18).
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u1 = 2 + sm−2 +

m−2∑
i=1

si,

= 2 + (2m− 5) + (m− 2)2,

= m2 + 1− i− j.

So det(Mij) is O(tm
2+1−i−j).

case 6: (i = j = 1).

The seed sequence {s}i is {3, . . . , 2m− 3}. At the last step we get a matrix as in equation (18).

u1 = 2 + sm−2 +

m−2∑
i=1

si,

= 2 + (2m− 3) + (m− 1)2 − 1,

= m2 + 1− i− j.

So det(Mij) is O(tm
2+1−i−j).

case 7: (1 < i < k − 1 < j = k).

The seed sequence {s}i is {1, . . . , 2i− 3, 2i, . . . , 2m− 4}. At the last step we get a matrix as in equation (18).

So,

u1 = 2 + sm−2 +

m−2∑
i=1

si,

= 2 + (2m− 4) + (i− 1)2 + (m− i− 1)(2i+ k − i− 2),

= m2 + 1− i− j.

So det(Mij) is O(tm
2+1−i−j).

case 8: (i = 1, j = m).

The seed sequence {s}i is {2, . . . , 2m− 4}. At the last step we get a matrix as in equation (18).

So,

u1 = 2 + sm−2 +

m−2∑
i=1

si,

= 2 + (2m− 4) + (m− 2)(2 +m− 3),

= m2 + 1− i− j.

So det(Mij) is O(tm
2+1−i−j).

case 9: (i = 1, j = m− 1).

The seed sequence {s}i is {2, . . . , 2m− 4}. At the last step we get a matrix as in equation (19).

So,

u1 = 3 + sm−2 +

m−2∑
i=1

si,

= 3 + (2m− 4) + (m− 2)(2 +m− 3),

= m2 + 1− i− j.
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So det(Mij) is O(tm
2+1−i−j).

case 10: (i = 1 < j < m− 1).

The seed sequence {s}i is {2, . . . , 2j − 2, 2j +1, . . . , 2m− 3}. At the last step we get a matrix as in equation (18).

So,

u1 = 2 + sm−2 +

m−2∑
i=1

si,

= 2 + (2m− 3) + (j − 1)(2 + j − 2) + (m− j − 1)(2j + 1 + (m− j − 2)),

= m2 + 1− i− j.

So det(Mij) is O(tm
2+1−i−j).

With the above lemma, the following Corollary can be readily verified.

Corollary 40. When θ1:n is such that ‖θ1:n‖∞≤ B = O(1), we have ‖
(
XT

t Xt

)−1

XT
t θ1:n‖2= O(1).
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