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Abstract

Adversarial learning has demonstrated good performance in the unsupervised
domain adaptation setting, by learning domain-invariant representations. However,
recent work has shown limitations of this approach when label distributions differ
between the source and target domains. In this paper, we propose a new assumption,
generalized label shift (GLS), to improve robustness against mismatched label
distributions. GLS states that, conditioned on the label, there exists a representation
of the input that is invariant between the source and target domains. Under GLS,
we provide theoretical guarantees on the transfer performance of any classifier.
We also devise necessary and sufficient conditions for GLS to hold, by using
an estimation of the relative class weights between domains and an appropriate
reweighting of samples. Our weight estimation method could be straightforwardly
and generically applied in existing domain adaptation (DA) algorithms that learn
domain-invariant representations, with small computational overhead. In particular,
we modify three DA algorithms, JAN, DANN and CDAN, and evaluate their
performance on standard and artificial DA tasks. Our algorithms outperform the
base versions, with vast improvements for large label distribution mismatches. Our
code is available at https://tinyurl.com/y585xt6j.

1 Introduction

In spite of impressive successes, most deep learning models [24] rely on huge amounts of labelled
data and their features have proven brittle to distribution shifts [43, 59]. Building more robust models,
that learn from fewer samples and/or generalize better out-of-distribution is the focus of many recent
works [2, 5, 57]. The research direction of interest to this paper is that of domain adaptation, which
aims at learning features that transfer well between domains. We focus in particular on unsupervised
domain adaptation (UDA), where the algorithm has access to labelled samples from a source domain
and unlabelled data from a target domain. Its objective is to train a model that generalizes well to
the target domain. Building on advances in adversarial learning [25], adversarial domain adaptation
(ADA) leverages the use of a discriminator to learn an intermediate representation that is invariant
between the source and target domains. Simultaneously, the representation is paired with a classifier,
trained to perform well on the source domain [22, 36, 53, 64]. ADA is rather successful on a variety

∗The first two authors contributed equally to this work. Work done while HZ was at Carnegie Mellon
University.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

ar
X

iv
:2

00
3.

04
47

5v
3 

 [c
s.L

G
]  

11
 D

ec
 2

02
0



of tasks, however, recent work has proven an upper bound on the performance of existing algorithms
when source and target domains have mismatched label distributions [66]. Label shift is a property
of two domains for which the marginal label distributions differ, but the conditional distributions of
input given label stay the same across domains [52, 62].

In this paper, we study domain adaptation under mismatched label distributions and design methods
that are robust in that setting. Our contributions are the following. First, we extend the upper bound
by Zhao et al. [66] to k-class classification and to conditional domain adversarial networks, a recently
introduced domain adaptation algorithm [41]. Second, we introduce generalized label shift (GLS), a
broader version of the standard label shift where conditional invariance between source and target
domains is placed in representation rather than input space. Third, we derive performance guarantees
for algorithms that seek to enforce GLS via learnt feature transformations, in the form of upper
bounds on the error gap and the joint error of the classifier on the source and target domains. Those
guarantees suggest principled modifications to ADA to improve its robustness to mismatched label
distributions. The modifications rely on estimating the class ratios between source and target domains
and use those as importance weights in the adversarial and classification objectives. The importance
weights estimation is performed using a method of moment by solving a quadratic program, inspired
from Lipton et al. [35]. Following these theoretical insights, we devise three new algorithms based
on learning importance-weighted representations, DANNs [22], JANs [40] and CDANs [41]. We
apply our variants to artificial UDA tasks with large divergences between label distributions, and
demonstrate significant performance gains compared to the algorithms’ base versions. Finally, we
evaluate them on standard domain adaptation tasks and also show improved performance.

2 Preliminaries

Notation We focus on the general k-class classification problem. X and Y denote the input and
output space, respectively. Z stands for the representation space induced from X by a feature
transformation g : X �→ Z . Accordingly, we use X, Y, Z to denote random variables which take
values in X ,Y ,Z . Domain corresponds to a joint distribution on the input space X and output space
Y , and we use DS (resp. DT) to denote the source (resp. target) domain. Noticeably, this corresponds
to a stochastic setting, which is stronger than the deterministic one previously studied [6, 7, 66]. A
hypothesis is a function h : X → [k]. The error of a hypothesis h under distribution DS is defined as:
εS(h) := PrDS(h(X) �= Y), i.e., the probability that h disagrees with Y under DS.

Domain Adaptation via Invariant Representations For source (DS) and target (DT) domains, we

use DX
S , DX

T , DY
S and DY

T to denote the marginal data and label distributions. In UDA, the algorithm

has access to n labeled points {(xi, yi)}n
i=1 ∈ (X ×Y)n and m unlabeled points {xj}m

j=1 ∈ Xm

sampled i.i.d. from the source and target domains. Inspired by Ben-David et al. [7], a common
approach is to learn representations invariant to the domain shift. With g : X �→ Z a feature
transformation and h : Z �→ Y a hypothesis on the feature space, a domain invariant representa-
tion [22, 53, 63] is a function g that induces similar distributions on DS and DT . g is also required to
preserve rich information about the target task so that εS(h ◦ g) is small. The above process results
in the following Markov chain (assumed to hold throughout the paper):

X
g−→ Z h−→ Ŷ, (1)

where Ŷ = h(g(X)). We let DZ
S , DZ

T , DŶ
S and DŶ

T denote the pushforwards (induced distributions)

of DX
S and DX

T by g and h ◦ g. Invariance in feature space is defined as minimizing a distance or

divergence between DZ
S and DZ

T .

Adversarial Domain Adaptation Invariance is often attained by training a discriminator d : Z �→
[0, 1] to predict if z is from the source or target. g is trained both to maximize the discriminator
loss and minimize the classification loss of h ◦ g on the source domain (h is also trained with the
latter objective). This leads to domain-adversarial neural networks [22, DANN], where g, h and d
are parameterized with neural networks: gθ , hφ and dψ (see Algo. 1 and App. B.5). Building on
DANN, conditional domain adversarial networks [41, CDAN] use the same adversarial paradigm.
However, the discriminator now takes as input the outer product, for a given x, between the predictions
of the network h(g(x)) and its representation g(x). In other words, d acts on the outer product:
h⊗ g(x) := (h1(g(x)) · g(x), . . . , hk(g(x)) · g(x)) rather than on g(x). hi denotes the i-th element
of vector h. We now highlight a limitation of DANNs and CDANs.
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Table 1: Common assumptions in the domain adaptation literature.

Covariate Shift Label Shift

DX
S �= DX

T DY
S �= DY

T∀x ∈ X ,DS(Y | X = x) = DT(Y | X = x) ∀y ∈ Y ,DS(X | Y = y) = DT(X | Y = y)

An Information-Theoretic Lower Bound We let DJS denote the Jensen-Shanon divergence be-

tween two distributions (App. A.1), and Z̃ correspond to Z (for DANN) or to Ŷ ⊗ Z (for CDAN).
The following theorem lower bounds the joint error of the classifier on the source and target domains:

Theorem 2.1. Assuming that DJS(DY
S ‖ DY

T ) ≥ DJS(DZ̃
S ‖ DZ̃

T ), then:

εS(h ◦ g) + εT(h ◦ g) ≥ 1
2

(√
DJS(DY

S ‖ DY
T )−

√
DJS(DZ̃

S ‖ DZ̃
T )

)2
.

Remark The lower bound is algorithm-independent. It is also a population-level result and holds

asymptotically with increasing data. Zhao et al. [66] prove the theorem for k = 2 and Z̃ = Z.

We extend it to CDAN and arbitrary k (it actually holds for any Z̃ s.t. Ŷ = h̃(Z̃) for some h̃, see
App. A.3). Assuming that label distributions differ between source and target domains, the lower
bound shows that: the better the alignment of feature distributions, the worse the joint error. For an

invariant representation (DJS(DZ̃
S ,DZ̃

T ) = 0) with no source error, the target error will be larger than

DJS(DY
S ,DY

T )/2. Hence algorithms learning invariant representations and minimizing the source
error are fundamentally flawed when label distributions differ between source and target domains.

Common Assumptions to Tackle Domain Adaptation Two common assumptions about the data
made in DA are covariate shift and label shift. They correspond to different ways of decomposing
the joint distribution over X × Y, as detailed in Table 1. From a representation learning perspective,
covariate shift is not robust to feature transformation and can lead to an effect called negative
transfer [66]. At the same time, label shift clearly fails in most practical applications, e.g. transferring
knowledge from synthetic to real images [55]. In that case, the input distributions are actually disjoint.

3 Main Results

In light of the limitations of existing assumptions, (e.g. covariate shift and label shift), we propose
generalized label shift (GLS), a relaxation of label shift that substantially improves its applicability.
We first discuss some of its properties and explain why the assumption is favorable in domain
adaptation based on representation learning. Motivated by GLS, we then present a novel error
decomposition theorem that directly suggests a bound minimization framework for domain adaptation.
The framework is naturally compatible with F -integral probability metrics [44, F -IPM] and generates
a family of domain adaptation algorithms by choosing various function classes F . In a nutshell,
the proposed framework applies a method of moments [35] to estimate the importance weight w of
the marginal label distributions by solving a quadratic program (QP), and then uses w to align the
weighted source feature distribution with the target feature distribution.

3.1 Generalized Label Shift

Definition 3.1 (Generalized Label Shift, GLS). A representation Z = g(X) satisfies GLS if

DS(Z | Y = y) = DT(Z | Y = y), ∀y ∈ Y . (2)

First, when g is the identity map, the above definition of GLS reduces to the original label shift
assumption. Next, GLS is always achievable for any distribution pair (DS,DT): any constant
function g ≡ c ∈ R satisfies the above definition. The most important property is arguably that,
unlike label shift, GLS is compatible with a perfect classifier (in the noiseless case). Precisely, if
there exists a ground-truth labeling function h∗ such that Y = h∗(X), then h∗ satisfies GLS. As a
comparison, without conditioning on Y = y, h∗ does not satisfy DS(h∗(X)) = DT(h∗(X)) if the
marginal label distributions are different across domains. This observation is consistent with the
lower bound in Theorem 2.1, which holds for arbitrary marginal label distributions.
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GLS imposes label shift in the feature space Z instead of the original input space X . Conceptually,
although samples from the same classes in the source and target domain can be dramatically different,
the hope is to find an intermediate representation for both domains in which samples from a given
class look similar to one another. Taking digit classification as an example and assuming the feature
variable Z corresponds to the contour of a digit, it is possible that by using different contour extractors
for e.g. MNIST and USPS, those contours look roughly the same in both domains. Technically, GLS
can be facilitated by having separate representation extractors gS and gT for source and target [9, 53].

3.2 An Error Decomposition Theorem based on GLS

We now provide performance guarantees for models that satisfy GLS, in the form of upper bounds
on the error gap and on the joint error between source and target domains. It requires two concepts:

Definition 3.2 (Balanced Error Rate). The balanced error rate (BER) of predictor Ŷ on DS is:

BERDS(Ŷ ‖ Y) := max
j∈[k]

DS(Ŷ �= Y | Y = j). (3)

Definition 3.3 (Conditional Error Gap). Given a joint distribution D, the conditional error gap of a

classifier Ŷ is ΔCE(Ŷ) := maxy �=y′∈Y2 |DS(Ŷ = y′ | Y = y)−DT(Ŷ = y′ | Y = y)|.

When GLS holds, ΔCE(Ŷ) is equal to 0. We now give an upper bound on the error gap between
source and target, which can also be used to obtain a generalization upper bound on the target risk.

Theorem 3.1. (Error Decomposition Theorem) For any classifier Ŷ = (h ◦ g)(X),

|εS(h ◦ g)− εT(h ◦ g)| ≤ ‖DY
S −DY

T‖1 · BERDS(Ŷ ‖ Y) + 2(k − 1)ΔCE(Ŷ),

where ‖DY
S −DY

T‖1 := ∑k
i=1 |DS(Y = i)−DT(Y = i)| is the L1 distance between DY

S and DY
T .

Remark The upper bound in Theorem 3.1 provides a way to decompose the error gap between
source and target domains. It also immediately gives a generalization bound on the target risk

εT(h ◦ g). The bound contains two terms. The first contains ‖DY
S −DY

T‖1, which measures the
distance between the marginal label distributions across domains and is a constant that only depends
on the adaptation problem itself, and BER, a reweighted classification performance on the source

domain. The second is ΔCE(Ŷ) measures the distance between the family of conditional distributions

Ŷ | Y. In other words, the bound is oblivious to the optimal labeling functions in feature space.
This is in sharp contrast with upper bounds from previous work [7, Theorem 2], [66, Theorem 4.1],
which essentially decompose the error gap in terms of the distance between the marginal feature

distributions (DZ
S , DZ

T ) and the optimal labeling functions ( f Z
S , f Z

T ). Because the optimal labeling
function in feature space depends on Z and is unknown in practice, such decomposition is not very
informative. As a comparison, Theorem 3.1 provides a decomposition orthogonal to previous results
and does not require knowledge about unknown optimal labeling functions in feature space.

Notably, the balanced error rate, BERDS(Ŷ ‖ Y), only depends on samples from the source domain
and can be minimized. Furthermore, using a data-processing argument, the conditional error gap

ΔCE(Ŷ) can be minimized by aligning the conditional feature distributions across domains. Putting
everything together, the result suggests that, to minimize the error gap, it suffices to align the
conditional distributions Z | Y = y while simultaneously minimizing the balanced error rate. In fact,
under the assumption that the conditional distributions are perfectly aligned (i.e., under GLS), we
can prove a stronger result, guaranteeing that the joint error is small:

Theorem 3.2. If Z = g(X) satisfies GLS, then for any h : Z → Y and letting Ŷ = h(Z) be the

predictor, we have εS(Ŷ) + εT(Ŷ) ≤ 2BERDS(Ŷ ‖ Y).

3.3 Conditions for Generalized Label Shift

The main difficulty in applying a bound minimization algorithm inspired by Theorem 3.1 is that we
do not have labels from the target domain in UDA, so we cannot directly align the conditional label
distributions. By using relative class weights between domains, we can provide a necessary condition
for GLS that bypasses an explicit alignment of the conditional feature distributions.
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Definition 3.4. Assuming DS(Y = y) > 0, ∀y ∈ Y , we let w ∈ Rk denote the importance weights
of the target and source label distributions:

wy :=
DT(Y = y)
DS(Y = y)

, ∀y ∈ Y . (4)

Lemma 3.1. (Necessary condition for GLS) If Z = g(X) satisfies GLS, then DT(Z̃) = ∑y∈Y wy ·
DS(Z̃, Y = y) =: Dw

S (Z̃) where Z̃ verifies either Z̃ = Z or Z̃ = Ŷ ⊗ Z.

Compared to previous work that attempts to align DT(Z) with DS(Z) (using adversarial discrim-

inators [22] or maximum mean discrepancy (MMD) [38]) or DT(Ŷ ⊗ Z) with DS(Ŷ ⊗ Z) [41],

Lemma 3.1 suggests to instead align DT(Z̃) with the reweighted marginal distribution Dw
S (Z̃).

Reciprocally, the following two theorems give sufficient conditions to know when perfectly aligned
target feature distribution and reweighted source feature distribution imply GLS:

Theorem 3.3. (Clustering structure implies sufficiency) Let Z = g(X) such that DT(Z) = Dw
S (Z).

Assume DT(Y = y) > 0, ∀y ∈ Y . If there exists a partition of Z = ∪y∈YZy such that ∀y ∈ Y ,

DS(Z ∈ Zy | Y = y) = DT(Z ∈ Zy | Y = y) = 1, then Z = g(X) satisfies GLS.

Remark Theorem 3.3 shows that if there exists a partition of the feature space such that instances
with the same label are within the same component, then aligning the target feature distribution with
the reweighted source feature distribution implies GLS. While this clustering assumption may seem
strong, it is consistent with the goal of reducing classification error: if such a clustering exists, then
there also exists a perfect predictor based on the feature Z = g(X), i.e., the cluster index.

Theorem 3.4. Let Ŷ = h(Z), γ := miny∈Y DT(Y = y) and wM := maxy∈Y wy. For Z̃ = Z or

Z̃ = Ŷ ⊗ Z, we have:

max
y∈Y

dTV(DS(Z | Y = y),DT(Z | Y = y)) ≤
wMεS(Ŷ) + εT(Ŷ) +

√
8DJS(Dw

S (Z̃)‖DT(Z̃))

γ
.

Theorem 3.4 confirms that matching DT(Z̃) with Dw
S (Z̃) is the proper objective in the context of

mismatched label distributions. It shows that, for matched feature distributions and a source error
equal to zero, successful domain adaptation (i.e. a target error equal to zero) implies that GLS holds.
Combined with Theorem 3.2, we even get equivalence between the two.

Remark Thm. 3.4 extends Thm. 3.3 by incorporating the clustering assumption in the joint error

achievable by a classifier Ŷ based on a fixed Z. In particular, if the clustering structure holds, the
joint error is 0 for an appropriate h, and aligning the reweighted feature distributions implies GLS.

3.4 Estimating the Importance Weights w

Inspired by the moment matching technique to estimate w under label shift from Lipton et al. [35],
we propose a method to get w under GLS by solving a quadratic program (QP).

Definition 3.5. We let C ∈ R|Y|×|Y| denote the confusion matrix of the classifier on the source
domain and μ ∈ R|Y| the distribution of predictions on the target one, ∀y, y′ ∈ Y :

Cy,y′ := DS(Ŷ = y, Y = y′), μy := DT(Ŷ = y).

Lemma 3.2. If GLS is verified, and if the confusion matrix C is invertible, then w = C−1μ.

The key insight from Lemma 3.2 is that, to estimate the importance vector w under GLS, we do not
need access to labels from the target domain. However, matrix inversion is notoriously numerically

unstable, especially with finite sample estimates Ĉ and μ̂ of C and μ. We propose to solve instead the

following QP (written as QP(Ĉ, μ̂)), whose solution will be consistent if Ĉ → C and μ̂ → μ:

minimize
w

1
2
‖μ̂ − Ĉw‖2

2, subject to w ≥ 0, wTDS(Y) = 1. (5)

The above program (5) can be efficiently solved in time O(|Y|3), with |Y| small and constant; and by
construction, its solution is element-wise non-negative, even with limited amounts of data to estimate
C and μ.
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Algorithm 1 Importance-Weighted Domain Adaptation

1: Input: source and target data (xS, yS), xT; gθ , hφ and dψ; epochs E, batches per epoch B
2: Initialize w1 = 1
3: for t = 1 to E do
4: Initialize Ĉ = 0, μ̂ = 0
5: for b = 1 to B do
6: Sample batches (xi

S, yi
S) and (xi

T) of size s

7: Maximize Lwt
DA w.r.t. θ, minimize Lwt

DA w.r.t. ψ and minimize Lwt
C w.r.t. θ and φ

8: for i = 1 to s do
9: Ĉ·yi

S
← Ĉ·yi

S
+ hφ(gθ(xi

S)) (yi
S-th column) and μ̂ ← μ̂ + hφ(gθ(xi

T))

10: Ĉ ← Ĉ/sB and μ̂ ← μ̂/sB; then wt+1 = λ · QP(Ĉ, μ̂) + (1 − λ)wt

Lemma 3.3. If the source error εS(h ◦ g) is zero and the source and target marginals verify

DJS(Dw̃
S (Z),DT(Z)) = 0, then the estimated weight vector w is equal to w̃.

Lemma 3.3 shows that the weight estimation is stable once the DA losses have converged, but it does
not imply convergence to the true weights (see Sec. 4.2 and App. B.8 for more details).

3.5 F -IPM for Distributional Alignment

To align the target feature distribution and the reweighted source feature distribution as suggested by
Lemma 3.1, we now provide a general framework using the integral probability metric [44, IPM].

Definition 3.6. With F a set of real-valued functions, the F -IPM between distributions D and D′ is

dF (D,D′) := sup
f∈F

|EX∼D [ f (X)]− EX∼D′ [ f (X)]|. (6)

By approximating any function class F using parametrized models, e.g., neural networks, we obtain
a general framework for domain adaptation by aligning reweighted source feature distribution and

target feature distribution, i.e. by minimizing dF (DT(Z̃),Dw
S (Z̃)). Below, by instantiating F to

be the set of bounded norm functions in a RKHS H [27], we obtain maximum mean discrepancy
methods, leading to IWJAN (cf. Section 4.1), a variant of JAN [40] for UDA.

4 Practical Implementation

4.1 Algorithms

The sections above suggest simple algorithms based on representation learning: (i) estimate w on

the fly during training, (ii) align the feature distributions Z̃ of the target domain with the reweighted
feature distribution of the source domain and, (iii) minimize the balanced error rate. Overall, we
present the pseudocode of our algorithm in Alg. 1.

To compute w, we build estimators Ĉ and μ̂ of C and μ by averaging during each epoch the predictions
of the classifier on the source (per true class) and target (overall). This corresponds to the inner-most
loop of Algorithm 1 (lines 8-9). At epoch end, w is updated (line 10), and the estimators reset to
0. We have found empirically that using an exponential moving average of w performs better. Our
results all use a factor λ = 0.5. We also note that Alg. 1 implies a minimal computational overhead
(see App. B.1 for details): in practice our algorithms run as fast as their base versions.

Using w, we can define our first algorithm, Importance-Weighted Domain Adversarial Network
(IWDAN), that aligns Dw

S (Z) and DT(Z)) using a discriminator. To that end, we modify the DANN

losses LDA and LC as follows. For batches (xi
S, yi

S) and (xi
T) of size s, the weighted DA loss is:

Lw
DA(xi

S, yi
S, xi

T ; θ, ψ) = −1
s

s

∑
i=1

wyi
S

log(dψ(gθ(xi
S))) + log(1 − dψ(gθ(xi

T))). (7)

We verify in App. A.1, that the standard ADA framework applied to Lw
DA indeed minimizes

DJS(Dw
S (Z)‖DT(Z)). Our second algorithm, Importance-Weighted Joint Adaptation Networks

6



Figure 1: Gains of our algorithms vs their base versions (the horizontal grey line) for 100 tasks. The

x-axis is DJS(DY
S ,DY

T ). The mean improvements for IWDAN and IWDAN-O (resp. IWCDAN and
IWCDAN-O) are 6.55% and 8.14% (resp. 2.25% and 2.81%).

(IWJAN) is based on JAN [40] and follows the reweighting principle described in Section 3.5 with
F a learnt RKHS (the exact JAN and IWJAN losses are specified in App. B.5). Finally, our third
algorithm is Importance-Weighted Conditional Domain Adversarial Network (IWCDAN). It matches

Dw
S (Ŷ ⊗ Z) with DT(Ŷ ⊗ Z) by replacing the standard adversarial loss in CDAN with Eq. 7, where

dψ takes as input (hφ ◦ gθ)⊗ gθ instead of gθ . The classifier loss for our three variants is:

Lw
C (xi

S, yi
S; θ, φ) = −1

s

s

∑
i=1

1
k · DS(Y = y)

log(hφ(gθ(xi
S))yi

S
). (8)

This reweighting is suggested by our theoretical analysis from Section 3, where we seek to minimize

the balanced error rate BERDS(Ŷ ‖ Y). We also define oracle versions, IWDAN-O, IWJAN-O
and IWCDAN-O, where the weights w are the true weights. It gives an idealistic version of the
reweighting method, and allows to assess the soundness of GLS. IWDAN, IWJAN and IWCDAN
are Alg. 1 with their respective loss functions, the oracle versions use the true weights instead of wt.

4.2 Experiments

We apply our three base algorithms, their importance weighted versions, and the oracles to 4 standard
DA datasets generating 21 tasks: Digits (MNIST ↔ USPS [19, 32]), Visda [55], Office-31 [49] and
Office-Home [54]. All values are averages over 5 runs of the best test accuracy throughout training
(evaluated at the end of each epoch). We used that value for fairness with respect to the baselines (as
shown in the left panel of Figure 2, the performance of DANN decreases as training progresses, due
to the inappropriate matching of representations showcased in Theorem 2.1). For full details, see
App. B.2 and B.7.

Performance vs DJS We artificially generate 100 tasks from MNIST and USPS by considering
various random subsets of the classes in either the source or target domain (see Appendix B.6 for

details). These 100 DA tasks have a DJS(DY
S ,DY

T ) varying between 0 and 0.1. Applying IWDAN
and IWCDAN results in Fig. 1. We see a clear correlation between the improvements provided by

our algorithms and DJS(DY
S ,DY

T ), which is well aligned with Theorem 2.1. Moreover, IWDAN
outperfoms DANN on the 100 tasks and IWCDAN bests CDAN on 94. Even on small divergences,
our algorithms do not suffer compared to their base versions.

Original Datasets The average results on each dataset are shown in Table 2 (see App.B.3 for the
per-task breakdown). IWDAN outperforms the basic algorithm DANN by 1.75%, 1.64%, 1.16% and
2.65% on the Digits, Visda, Office-31 and Office-Home tasks respectively. Gains for IWCDAN are
more limited, but still present: 0.18%, 0.89%, 0.07% and 1.07% respectively. This might be explained
by the fact that CDAN enforces a weak form of GLS (App. B.5.2). Gains for JAN are 0.58%, 0.19%
and 0.19%. We also show the fraction of times (over all seeds and tasks) our variants outperform the
original algorithms. Even for small gains, the variants provide consistent improvements. Additionally,
the oracle versions show larger improvements, which strongly supports enforcing GLS.
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Table 2: Average results on the various domains (Digits has 2 tasks, Visda 1, Office-31 6 and Office-
Home 12). The prefix s denotes the experiment where the source domain is subsampled to increase

DJS(DY
S ,DY

T ). Each number is a mean over 5 seeds, the subscript denotes the fraction of times (out
of 5 seeds × #tasks) our algorithms outperform their base versions. JAN is not available on Digits.

METHOD DIGITS sDIGITS VISDA sVISDA O-31 sO-31 O-H sO-H

NO DA 77.17 75.67 48.39 49.02 77.81 75.72 56.39 51.34

DANN 93.15 83.24 61.88 52.85 82.74 76.17 59.62 51.83
IWDAN 94.90100% 92.54100% 63.52100% 60.18100% 83.9087% 82.60100% 62.2797% 57.61100%
IWDAN-O 95.27100% 94.46100% 64.19100% 62.10100% 85.3397% 84.41100% 64.68100% 60.87100%

CDAN 95.72 88.23 65.60 60.19 87.23 81.62 64.59 56.25
IWCDAN 95.9080% 93.22100% 66.4960% 65.83100% 87.3073% 83.88100% 65.6670% 61.24100%
IWCDAN-O 95.8590% 94.81100% 68.15100% 66.85100% 88.1490% 85.47100% 67.6498% 63.73100%

JAN N/A N/A 56.98 50.64 85.13 78.21 59.59 53.94
IWJAN N/A N/A 57.56100% 57.12100% 85.3260% 82.6197% 59.7863% 55.89100%
IWJAN-O N/A N/A 61.48100% 61.30100% 87.14100% 86.24100% 60.7392% 57.36100%

Figure 2: Left Accuracy on sDigits. Right Euclidian distance between estimated and true weights.

Subsampled datasets The original datasets have fairly balanced classes, making the JSD between

source and target label distributions DJS(DY
S ‖ DY

T ) rather small (Tables 11a, 12a and 13a in App. B.4).
To evaluate our algorithms on larger divergences, we arbitrarily modify the source domains above
by considering only 30% of the samples coming from the first half of their classes. This results in
larger divergences (Tables 11b, 12b and 13b). Performance is shown in Table 2 (datasets prefixed
by s). For IWDAN, we see gains of 9.3%, 7.33%, 6.43% and 5.58% on the digits, Visda, Office-31
and Office-Home datasets respectively. For IWCDAN, improvements are 4.99%, 5.64%, 2.26% and
4.99%, and IWJAN shows gains of 6.48%, 4.40% and 1.95%. Moreover, on all seeds and tasks but
one, our variants outperform their base versions.

Importance weights While our method demonstrates gains empirically, Lemma 3.2 does not guaran-
tee convergence of w to the true weights. In Fig. 2, we show the test accuracy and distance between
estimated and true weights during training on sDigits. We see that DANN’s performance gets worse
after a few epoch, as predicted by Theorem 2.1. The representation matching objective collapses
classes that are over-represented in the target domain on the under-represented ones (see App. B.9).
This phenomenon does not occur for IWDAN and IWDAN-O. Both monotonously improve in
accuracy and estimation (see Lemma 3.3 and App. B.8 for more details). We also observe that
IWDAN’s weights do not converge perfectly. This suggests that fine-tuning λ (we used λ = 0.5 in
all our experiments for simplicity) or updating w more or less often could lead to better performance.

Ablation Study Our algorithms have two components, a weighted adversarial loss Lw
DA and a

weighted classification loss Lw
C . In Table 3, we augment DANN and CDAN using those losses

separately (with the true weights). We observe that DANN benefits essentially from the reweighting
of its adversarial loss Lw

DA, the classification loss has little effect. For CDAN, gains are essentially
seen on the subsampled datasets. Both losses help, with a +2% extra gain for Lw

DA.
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Table 3: Ablation study on the Digits tasks.

Method Digits sDigits Method Digits sDigits

DANN 93.15 83.24 CDAN 95.72 88.23
DANN + Lw

C 93.27 84.52 CDAN + Lw
C 95.65 91.01

DANN + Lw
DA 95.31 94.41 CDAN + Lw

DA 95.42 93.18
IWDAN-O 95.27 94.46 IWCDAN-O 95.85 94.81

5 Related Work

Covariate shift has been studied and used in many adaptation algorithms [1, 3, 26, 30, 48, 53, 65].
While less known, label shift has also been tackled from various angles over the years: applying EM to

learn DY
T [14], placing a prior on the label distribution [52], using kernel mean matching [20, 46, 61],

etc. Schölkopf et al. [50] cast the problem in a causal/anti-causal perspective corresponding to
covariate/label shift. That perspective was then further developed [4, 23, 35, 61]. Numerous domain
adaptation methods rely on learning invariant representations, and minimize various metrics on the
marginal feature distributions: total variation or equivalently DJS [22, 36, 53, 64], maximum mean
discrepancy [27, 37–40], Wasserstein distance [15–17, 33, 51], etc. Other noteworthy DA methods
use reconstruction losses and cycle-consistency to learn transferable classifiers [29, 56, 67]. Recently,
Liu et al. [36] have introduced Transferable Adversarial Training (TAT), where transferable examples
are generated to fill the gap in feature space between source and target domains, the datasets is then
augmented with those samples. Applying our method to TAT is a future research direction.

Other relevant settings include partial ADA, i.e. UDA when target labels are a strict subset of the
source labels / some components of w are 0 [11–13]. Multi-domain adaptation, where multiple
source or target domains are given, is also very studied [18, 28, 42, 45, 47, 63]. Recently, Binkowski
et al. [8] study sample reweighting in the domain transfer to handle mass shifts between distributions.

Prior work on combining importance weight in domain-invariant representation learning also exists
in the setting of partial DA [60]. However, the importance ratio in these works is defined over the
features Z, rather than the class label Y. Compared to our method, this is both statistically inefficient
and computationally expensive, since the feature space Z is often a high-dimensional continuous
space, whereas the label space Y only contains a finite number (k) of distinct labels. In a separate
work, Yan et al. [58] proposed a weighted MMD distance to handle target shift in UDA. However,
their weights are estimated based on pseudo-labels obtained from the learned classifier, hence it is not
clear whether the pseudo-labels provide accurate estimation of the importance weights even in simple
settings. As a comparison, under GLS, we show that our weight estimation by solving a quadratic
program converges asymptotically.

6 Conclusion and Future Work

We have introduced the generalized label shift assumption, GLS, and theoretically-grounded vari-
ations of existing algorithms to handle mismatched label distributions. On tasks from classic
benchmarks as well as artificial ones, our algorithms consistently outperform their base versions.
The gains, as expected theoretically, correlate well with the JSD between label distributions across
domains. In real-world applications, the JSD is unknown, and might be larger than in ML datasets
where classes are often purposely balanced. Being simple to implement and adding barely any
computational cost, the robustness of our method to mismatched label distributions makes it very
relevant to such applications.

Extensions The framework we define in this paper relies on appropriately reweighting the domain
adversarial losses. It can be straightforwardly applied to settings where multiple source and/or target
domains are used, by simply maintaining one importance weights vector w for each source/target
pair [47, 63]. In particular, label shift could explain the observation from Zhao et al. [63] that too
many source domains hurt performance, and our framework might alleviate the issue. One can also

think of settings (e.g. semi-supervised domain adaptation) where estimations of DY
T can be obtained

via other means. A more challenging but also more interesting future direction is to extend our
framework to domain generalization, where the learner has access to multiple labeled source domains
but no access to (even unlabelled) data from the target domain.
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Broader Impact

Our work focuses on domain adaptation and attempts to properly handle mismatches in the label dis-
tributions between the source and target domains. Domain Adaptation as a whole aims at transferring
knowledge gained from a certain domain (or data distribution) to another one. It can potentially be
used in a variety of decision making systems, such as spam filters, machine translation, etc.. One
can also potentially think of much more sensitive applications such as recidivism prediction, or loan
approvals.

While it is unclear to us to what extent DA is currently applied, or how it will be applied in the future,
the bias formalized in Th. 2.1 and verified in Table 17 demonstrates that imbalances between classes
will result in poor transfer performance of standard ADA methods on a subset of them, which is
without a doubt a source of potential inequalities. Our method is actually aimed at counter-balancing
the effect of such imbalances. As shown in our empirical results (for instance Table 18) it is rather
successful at it, especially on significant shifts. This makes us rather confident in the algorithm’s
ability to mitigate potential effects of biases in the datasets. On the downside, failure in the weight
estimation of some classes might result in poor performance on those. However, we have not observed,
in any of our experiments, our method performing significantly worse than its base version. Finally,
our method is a variation over existing deep learning algorithms. As such, it carries with it the
uncertainties associated to deep learning models, in particular a lack of interpretability and of formal
convergence guarantees.
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A Omitted Proofs

In this section, we provide the theoretical material that completes the main text.

A.1 Definition

Definition A.1. Let us recall that for two distributions D and D′, the Jensen-Shannon (JSD) diver-
gence DJS(D ‖ D′) is defined as:

DJS(D ‖ D′) :=
1
2

DKL(D ‖ DM) +
1
2

DKL(D′ ‖ DM),

where DKL(· ‖ ·) is the Kullback–Leibler (KL) divergence and DM := (D +D′)/2.

A.2 Consistency of the Weighted Domain Adaptation Loss (7)

For the sake of conciseness, we verify here that the domain adaptation training objective does lead to
minimizing the Jensen-Shannon divergence between the weighted feature distribution of the source
domain and the feature distribution of the target domain.

Lemma A.1. Let p(x, y) and q(x) be two density distributions, and w(y) be a positive function

such that
∫

p(y)w(y)dy = 1. Let pw(x) =
∫

p(x, y)w(y)dy denote the w-reweighted marginal
distribution of x under p. The minimum value of

I(d) := E(x,y)∼p,x′∼q[−w(y) log(d(x))− log(1 − d(x′))]

is log(4)− 2DJS(pw(x) ‖ q(x)), and is attained for d∗(x) = pw(x)
pw(x)+q(x) .

Proof. We see that:

I(d) = −
∫∫∫

[w(y) log(d(x)) + log(1 − d(x′))]p(x, y)q(x′)dxdx′dy (9)

= −
∫
[
∫

w(y)p(x, y)dy] log(d(x)) + q(x) log(1 − d(x))dx (10)

= −
∫

pw(x) log(d(x)) + q(x) log(1 − d(x))dx. (11)

From the last line, we follow the exact method from Goodfellow et al. [25] to see that point-wise in x
the minimum is attained for d∗(x) = pw(x)

pw(x)+q(x) and that I(d∗) = log(4)− 2DJS(pw(x) ‖ q(x)).
�

Applying Lemma A.1 to DS(Z, Y) and DT(Z) proves that the domain adaptation objective leads to
minimizing DJS(Dw

S (Z) ‖ DT(Z)).

A.3 k-class information-theoretic lower bound

In this section, we prove Theorem 2.1 that extends previous result to the general k-class classification
problem.
Theorem 2.1. Assuming that DJS(DY

S ‖ DY
T ) ≥ DJS(DZ̃

S ‖ DZ̃
T ), then:

εS(h ◦ g) + εT(h ◦ g) ≥ 1
2

(√
DJS(DY

S ‖ DY
T )−

√
DJS(DZ̃

S ‖ DZ̃
T )

)2
.

Proof. We essentially follow the proof from Zhao et al. [66], except for Lemmas 4.6 that needs to be
adapted to the CDAN framework and Lemma 4.7 to k-class classification.

Lemma 4.6 from Zhao et al. [66] states that DJS(DŶ
S ,DŶ

T ) ≤ DJS(DZ
S ,DZ

T ), which covers the case

Z̃ = Z.
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When Z̃ = Ŷ ⊗ Z, let us first recall that we assume h or equivalently Ŷ to be a one-hot prediction of
the class. We have the following Markov chain:

X
g−→ Z h̃−→ Z̃ l−→ Ŷ,

where h̃(z) = h(z)⊗ z and l : Y ⊗Z → Y returns the index of the non-zero block in h̃(z). There
is only one such block since h is a one-hot, and its index corresponds to the class predicted by h.

Given the definition of l, we clearly see that Ŷ is independent of X knowing Z̃. We can now apply
the same proof than in Zhao et al. [66] to conclude that:

DJS(DŶ
S ,DŶ

T ) ≤ DJS(DZ̃
S ,DZ̃

T ). (12)

It essentially boils down to a data-processing argument: the discrimination distance between two
distributions cannot increase after the same (possibly stochastic) channel (kernel) is applied to both.
Here, the channel corresponds to the (potentially randomized) function l.

Remark Additionally, we note that the above inequality holds for any Z̃ such that Ŷ = l(Z̃) for a
(potentially randomized) function l. This covers any and all potential combinations of representations

at various layers of the deep net, including the last layer (which corresponds to its predictions Ŷ).

Let us move to the second part of the proof. We wish to show that DJS(DY,DŶ) ≤ ε(h ◦ g), where
D can be either DS or DT:

2DJS(DY,DŶ) ≤ ‖DY −DŶ‖1 [34]

=
k

∑
i=1

|D(Ŷ = i)−D(Y = i)|

=
k

∑
i=1

|
k

∑
j=1

D(Ŷ = i|Y = j)D(Y = j)−D(Y = i)|

=
k

∑
i=1

|D(Ŷ = i|Y = i)D(Y = i)−D(Y = i) + ∑
j �=i

D(Ŷ = i|Y = j)D(Y = j)|

≤
k

∑
i=1

|D(Ŷ = i|Y = i)− 1|D(Y = i) +
k

∑
i=1

∑
j �=i

D(Ŷ = i|Y = j)D(Y = j)

=
k

∑
i=1

D(Ŷ �= Y|Y = i)D(Y = i) +
k

∑
j=1

∑
i �=j

D(Ŷ = i|Y = j)D(Y = j)

= 2
k

∑
i=1

D(Ŷ �= Y|Y = i)D(Y = i) = 2D(Ŷ �= Y) = 2ε(h ◦ g). (13)

We can now apply the triangular inequality to
√

DJS, which is a distance metric [21], called the
Jensen-Shannon distance. This gives us:√

DJS(DY
S ,DY

T ) ≤
√

DJS(DY
S ,DŶ

S ) +

√
DJS(DŶ

S ,DŶ
T ) +

√
DJS(DŶ

T ,DY
T )

≤
√

DJS(DY
S ,DŶ

S ) +

√
DJS(DZ̃

S ,DZ̃
T ) +

√
DJS(DŶ

T ,DY
T )

≤
√

εS(h ◦ g) +
√

DJS(DZ̃
S ,DZ̃

T ) +
√

εT(h ◦ g).

where we used Equation (12) for the second inequality and (13) for the third.

Finally, assuming that DJS(DY
S ,DY

T ) ≥ DJS(DZ̃
S ,DZ̃

T ), we get:(√
DJS(DY

S ,DY
T )−

√
DJS(DZ̃

S ,DZ̃
T )

)2
≤

(√
εS(h ◦ g) +

√
εT(h ◦ g)

)2
≤ 2 (εS(h ◦ g) + εT(h ◦ g)) .

which concludes the proof. �
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A.4 Proof of Theorem 3.1

To simplify the notation, we define the error gap Δε(Ŷ) as follows:

Δε(Ŷ) := |εS(Ŷ)− εT(Ŷ)|.
Also, in this case we use Da, a ∈ {S, T} to mean the source and target distributions respectively.
Before we give the proof of Theorem 3.1, we first prove the following two lemmas that will be used
in the proof.

Lemma A.2. Define γa,j := Da(Y = j), ∀a ∈ {S, T}, ∀j ∈ [k], then ∀αj, β j ≥ 0 such that

αj + β j = 1, and ∀i �= j, the following upper bound holds:

|γS,jDS(Ŷ = i | Y = j)− γT,jDT(Ŷ = i | Y = j)| ≤
|γS,j − γT,j| ·

(
αjDS(Ŷ = i | Y = j) + β jDT(Ŷ = i | Y = j)

)
+ γS,jβ jΔCE(Ŷ) + γT,jαjΔCE(Ŷ).

Proof. To make the derivation uncluttered, define Dj(Ŷ = i) := αjDS(Ŷ = i | Y = j) +
β jDT(Ŷ = i | Y = j) to be the mixture conditional probability of Ŷ = i given Y = j, where

the mixture weight is given by αj and β j. Then in order to prove the upper bound in the lemma, it
suffices if we give the desired upper bound for the following term∣∣∣|γS,jDS(Ŷ = i | Y = j)− γT,jDT(Ŷ = i | Y = j)| − |(γS,j − γT,j)Dj(Ŷ = i)|

∣∣∣
≤

∣∣∣(γS,jDS(Ŷ = i | Y = j)− γT,jDT(Ŷ = i | Y = j)
)
− (γS,j − γT,j)Dj(Ŷ = i)

∣∣∣
=

∣∣∣γS,j(DS(Ŷ = i | Y = j)−Dj(Ŷ = i))− γT,j(DT(Ŷ = i | Y = j)−Dj(Ŷ = i))
∣∣∣ ,

following which we will have:

|γS,jDS(Ŷ = i | Y = j)− γT,jDT(Ŷ = i | Y = j)| ≤ |(γS,j − γT,j)Dj(Ŷ = i)|
+

∣∣∣γS,j(DS(Ŷ = i | Y = j)−Dj(Ŷ = i))− γT,j(DT(Ŷ = i | Y = j)−Dj(Ŷ = i))
∣∣∣

≤ |γS,j − γT,j|
(

αjDS(Ŷ = i | Y = j) + β jDT(Ŷ = i | Y = j)
)

+ γS,j

∣∣∣DS(Ŷ = i | Y = j)−Dj(Ŷ = i)
∣∣∣+ γT,j

∣∣∣DT(Ŷ = i | Y = j)−Dj(Ŷ = i)
∣∣∣ .

To proceed, let us first simplify DS(Ŷ = i | Y = j)−Dj(Ŷ = i). By definition of Dj(Ŷ = i) =
αjDS(Ŷ = i | Y = j) + β jDT(Ŷ = i | Y = j), we know that:

DS(Ŷ = i | Y = j)−Dj(Ŷ = i)

= DS(Ŷ = i | Y = j)− (
αjDS(Ŷ = i | Y = j) + β jDT(Ŷ = i | Y = j)

)
=

(DS(Ŷ = i | Y = j)− αjDS(Ŷ = i | Y = j)
)− β jDT(Ŷ = i | Y = j)

= β j
(DS(Ŷ = i | Y = j)−DT(Ŷ = i | Y = j)

)
.

Similarly, for the second term DT(Ŷ = i | Y = j)−Dj(Ŷ = i), we can show that:

DT(Ŷ = i | Y = j)−Dj(Ŷ = i) = αj
(DT(Ŷ = i | Y = j)−DS(Ŷ = i | Y = j)

)
.

Plugging these two identities into the above, we can continue the analysis with∣∣∣γS,j(DS(Ŷ = i | Y = j)−Dj(Ŷ = i))− γT,j(DT(Ŷ = i | Y = j)−Dj(Ŷ = i))
∣∣∣

=
∣∣∣γS,jβ(DS(Ŷ = i | Y = j)−DT(Ŷ = i | Y = j))− γT,jαj(DT(Ŷ = i | Y = j)−DS(Ŷ = i | Y = j))

∣∣∣
≤

∣∣∣γS,jβ j(DS(Ŷ = i | Y = j)−DT(Ŷ = i | Y = j))
∣∣∣+ ∣∣∣γT,jαj(DT(Ŷ = i | Y = j)−DS(Ŷ = i | Y = j))

∣∣∣
≤ γS,jβ jΔCE(Ŷ) + γT,jαjΔCE(Ŷ).

The first inequality holds by the triangle inequality and the second by the definition of the conditional
error gap. Combining all the inequalities above completes the proof. �
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We are now ready to prove the theorem:

Theorem 3.1. (Error Decomposition Theorem) For any classifier Ŷ = (h ◦ g)(X),

|εS(h ◦ g)− εT(h ◦ g)| ≤ ‖DY
S −DY

T‖1 · BERDS(Ŷ ‖ Y) + 2(k − 1)ΔCE(Ŷ),

where ‖DY
S −DY

T‖1 := ∑k
i=1 |DS(Y = i)−DT(Y = i)| is the L1 distance between DY

S and DY
T .

Proof of Theorem 3.1. First, by the law of total probability, it is easy to verify that following identity
holds for a ∈ {S, T}:

Da(Ŷ �= Y) = ∑
i �=j

Da(Ŷ = i, Y = j) = ∑
i �=j

γa,jDa(Ŷ = i | Y = j).

Using this identity, to bound the error gap, we have:

|DS(Y �= Ŷ)−DT(Y �= Ŷ)|
=

∣∣ ∑
i �=j

γS,jDS(Ŷ = i | Y = j)− ∑
i �=j

γT,jDT(Ŷ = i | Y = j)
∣∣

≤ ∑
i �=j

∣∣γS,jDS(Ŷ = i | Y = j)− γT,jDT(Ŷ = i | Y = j)
∣∣.

Invoking Lemma A.2 to bound the above terms, and since ∀j ∈ [k], γS,j, γT,j ∈ [0, 1], αj + β j = 1,
we get:

|DS(Y �= Ŷ)−DT(Y �= Ŷ)|
≤ ∑

i �=j

∣∣γS,jDS(Ŷ = i | Y = j)− γT,jDT(Ŷ = i | Y = j)
∣∣

≤ ∑
i �=j

|γS,j − γT,j| ·
(

αjDS(Ŷ = i | Y = j) + β jDT(Ŷ = i | Y = j)
)
+ γS,jβ jΔCE(Ŷ) + γT,jαjΔCE(Ŷ)

≤ ∑
i �=j

|γS,j − γT,j| ·
(

αjDS(Ŷ = i | Y = j) + β jDT(Ŷ = i | Y = j)
)
+ γS,jΔCE(Ŷ) + γT,jΔCE(Ŷ)

= ∑
i �=j

|γS,j − γT,j| ·
(

αjDS(Ŷ = i | Y = j) + β jDT(Ŷ = i | Y = j)
)
+

k

∑
i=1

∑
j �=i

γS,jΔCE(Ŷ) + γT,jΔCE(Ŷ)

= ∑
i �=j

|γS,j − γT,j| ·
(

αjDS(Ŷ = i | Y = j) + β jDT(Ŷ = i | Y = j)
)
+ 2(k − 1)ΔCE(Ŷ).

Note that the above holds ∀αj, β j ≥ 0 such that αj + β j = 1. By choosing αj = 1, ∀j ∈ [k] and

β j = 0, ∀j ∈ [k], we have:

= ∑
i �=j

|γS,j − γT,j| · DS(Ŷ = i | Y = j) + 2(k − 1)ΔCE(Ŷ)

=
k

∑
j=1

|γS,j − γT,j| ·
(

k

∑
i=1,i �=j

DS(Ŷ = i | Y = j)

)
+ 2(k − 1)ΔCE(Ŷ)

=
k

∑
j=1

|γS,j − γT,j| · DS(Ŷ �= Y | Y = j) + 2(k − 1)ΔCE(Ŷ)

≤ ‖DY
S −DY

T‖1 · BERDS(Ŷ ‖ Y) + 2(k − 1)ΔCE(Ŷ),

where the last line is due to Holder’s inequality, completing the proof. �

A.5 Proof of Theorem 3.2

Theorem 3.2. If Z = g(X) satisfies GLS, then for any h : Z → Y and letting Ŷ = h(Z) be the

predictor, we have εS(Ŷ) + εT(Ŷ) ≤ 2BERDS(Ŷ ‖ Y).
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Proof. First, by the law of total probability, we have:

εS(Ŷ) + εT(Ŷ) = DS(Y �= Ŷ) +DT(Y �= Ŷ)

=
k

∑
j=1

∑
i �=j

DS(Ŷ = i|Y = j)DS(Y = j) +DT(Ŷ = i|Y = j)DT(Y = j).

Now, since Ŷ = (h ◦ g)(X) = h(Z), Ŷ is a function of Z. Given the generalized label shift
assumption, this guarantees that:

∀y, y′ ∈ Y , DS(Ŷ = y′ | Y = y) = DT(Ŷ = y′ | Y = y).

Thus:

εS(Ŷ) + εT(Ŷ) =
k

∑
j=1

∑
i �=j

DS(Ŷ = i|Y = j)(DS(Y = j) +DT(Y = j))

= ∑
j∈[k]

DS(Ŷ �= Y | Y = j) · (DS(Y = j) +DT(Y = j))

≤ max
j∈[k]

DS(Ŷ �= Y | Y = j) · ∑
j∈[k]

DS(Y = j) +DT(Y = j)

= 2BERDS(Ŷ ‖ Y). �

A.6 Proof of Lemma 3.1

Lemma 3.1. (Necessary condition for GLS) If Z = g(X) satisfies GLS, then DT(Z̃) = ∑y∈Y wy ·
DS(Z̃, Y = y) =: Dw

S (Z̃) where Z̃ verifies either Z̃ = Z or Z̃ = Ŷ ⊗ Z.

Proof. From GLS, we know that DS(Z | Y = y) = DT(Z | Y = y). Applying any function h̃ to Z
will maintain that equality (in particular h̃(Z) = Ỹ ⊗ Z). Using that fact and Eq. (4) on the second
line gives:

DT(Z̃) = ∑
y∈Y

DT(Y = y) · DT(Z̃ | Y = y)

= ∑
y∈Y

wy · DS(Y = y) · DS(Z̃ | Y = y)

= ∑
y∈Y

wy · DS(Z̃, Y = y). �

A.7 Proof of Theorem 3.3

Theorem 3.3. (Clustering structure implies sufficiency) Let Z = g(X) such that DT(Z) = Dw
S (Z).

Assume DT(Y = y) > 0, ∀y ∈ Y . If there exists a partition of Z = ∪y∈YZy such that ∀y ∈ Y ,

DS(Z ∈ Zy | Y = y) = DT(Z ∈ Zy | Y = y) = 1, then Z = g(X) satisfies GLS.

Proof. Follow the condition that DT(Z) = Dw
S (Z), by definition of Dw

S (Z), we have:

DT(Z) = ∑
y∈Y

DT(Y = y)
DS(Y = y)

DS(Z, Y = y)

⇐⇒ DT(Z) = ∑
y∈Y

DT(Y = y)DS(Z | Y = y)

⇐⇒ ∑
y∈Y

DT(Y = y)DT(Z | Y = y) = ∑
y∈Y

DT(Y = y)DS(Z | Y = y).
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Note that the above equation holds for all measurable subsets of Z . Now by the assumption that
Z = ∪y∈YZy is a partition of Z , consider Zy′ :

∑
y∈Y

DT(Y = y)DT(Z ∈ Zy′ | Y = y) = ∑
y∈Y

DT(Y = y)DS(Z ∈ Zy′ | Y = y).

Due to the assumption DS(Z ∈ Zy | Y = y) = DT(Z ∈ Zy | Y = y) = 1, we know that ∀y′ �= y,

DT(Z ∈ Zy′ | Y = y) = DS(Z ∈ Zy′ | Y = y) = 0. This shows that both the supports of

DS(Z | Y = y) and DT(Z | Y = y) are contained in Zy. Now consider an arbitrary measurable set
E ⊆ Zy, since ∪y∈YZy is a partition of Z , we know that

DS(Z ∈ E | Y = y′) = DT(Z ∈ E | Y = y′) = 0, ∀y′ �= y.

Plug Z ∈ E into the following identity:

∑
y∈Y

DT(Y = y)DT(Z ∈ E | Y = y) = ∑
y∈Y

DT(Y = y)DS(Z ∈ E | Y = y)

=⇒ DT(Y = y)DT(Z ∈ E | Y = y) = DT(Y = y)DS(Z ∈ E | Y = y)
=⇒ DT(Z ∈ E | Y = y) = DS(Z ∈ E | Y = y),

where the last line holds because DT(Y = y) �= 0. Realize that the choice of E is arbitrary, this
shows that DS(Z | Y = y) = DT(Z | Y = y), which completes the proof. �

A.8 Sufficient Conditions for GLS

Theorem 3.4. Let Ŷ = h(Z), γ := miny∈Y DT(Y = y) and wM := maxy∈Y wy. For Z̃ = Z or

Z̃ = Ŷ ⊗ Z, we have:

max
y∈Y

dTV(DS(Z | Y = y),DT(Z | Y = y)) ≤
wMεS(Ŷ) + εT(Ŷ) +

√
8DJS(Dw

S (Z̃)‖DT(Z̃))

γ
.

Proof. To prove the above upper bound, let us first fix a y ∈ Y and fix a classifier Ŷ = h(Z) for
some h : Z → Y . Now consider any measurable subset E ⊆ Z , we would like to upper bound the
following quantity:

|DS(Z ∈ E | Y = y)−DT(Z ∈ E | Y = y)|
=

1
DT(Y = y)

· |DS(Z ∈ E, Y = y)wy −DT(Z ∈ E, Y = y)|

≤ 1
γ
· |DS(Z ∈ E, Y = y)wy −DT(Z ∈ E, Y = y)|.

Hence it suffices if we can upper bound |DS(Z ∈ E, Y = y)wy −DT(Z ∈ E, Y = y)|. To do so,
consider the following decomposition:

|DT(Z ∈ E, Y = y)−DS(Z ∈ E, Y = y)wy| = |DT(Z ∈ E, Y = y)−DT(Z ∈ E, Ŷ = y)

+DT(Z ∈ E, Ŷ = y)−Dw
S (Z ∈ E, Ŷ = y)

+Dw
S (Z ∈ E, Ŷ = y)−DS(Z ∈ E, Y = y)wy|

≤ |DT(Z ∈ E, Y = y)−DT(Z ∈ E, Ŷ = y)|
+ |DT(Z ∈ E, Ŷ = y)−Dw

S (Z ∈ E, Ŷ = y)|
+ |Dw

S (Z ∈ E, Ŷ = y)−DS(Z ∈ E, Y = y)wy|.
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We bound the above three terms in turn. First, consider |DT(Z ∈ E, Y = y)−DT(Z ∈ E, Ŷ = y)|:
|DT(Z ∈ E, Y = y)−DT(Z ∈ E, Ŷ = y)|

= |∑
y′
DT(Z ∈ E, Y = y, Ŷ = y′)− ∑

y′
DT(Z ∈ E, Ŷ = y, Y = y′)|

≤ ∑
y′ �=y

|DT(Z ∈ E, Y = y, Ŷ = y′)−DT(Z ∈ E, Ŷ = y, Y = y′)|

≤ ∑
y′ �=y

DT(Z ∈ E, Y = y, Ŷ = y′) +DT(Z ∈ E, Ŷ = y, Y = y′)

≤ ∑
y′ �=y

DT(Y = y, Ŷ = y′) +DT(Ŷ = y, Y = y′)

≤ DT(Y �= Ŷ)

= εT(Ŷ),
where the last inequality is due to the fact that the definition of error rate corresponds to the sum of
all the off-diagonal elements in the confusion matrix while the sum here only corresponds to the sum
of all the elements in two slices. Similarly, we can bound the third term as follows:

|Dw
S (Z ∈ E, Ŷ = y)−DS(Z ∈ E, Y = y)wy|

= |∑
y′
DS(Z ∈ E, Ŷ = y, Y = y′)wy′ − ∑

y′
DS(Z ∈ E, Ŷ = y′, Y = y)wy|

≤ | ∑
y′ �=y

DS(Z ∈ E, Ŷ = y, Y = y′)wy′ − DS(Z ∈ E, Ŷ = y′, Y = y)wy|

≤ wM ∑
y′ �=y

DS(Z ∈ E, Ŷ = y, Y = y′) +DS(Z ∈ E, Ŷ = y′, Y = y)

≤ wMDS(Z ∈ E, Ŷ �= Y)

≤ wMεS(Ŷ).
Now we bound the last term. Recall the definition of total variation, we have:

|DT(Z ∈ E, Ŷ = y)−Dw
S (Z ∈ E, Ŷ = y)|

= |DT(Z ∈ E ∧ Z ∈ Ŷ−1(y))−Dw
S (Z ∈ E ∧ Z ∈ Ŷ−1(y))|

≤ sup
E′ is measurable

|DT(Z ∈ E′)−Dw
S (Z ∈ E′)|

= dTV(DT(Z),Dw
S (Z)).

Combining the above three parts yields

|DS(Z ∈ E | Y = y)−DT(Z ∈ E | Y = y)| ≤ 1
γ
·
(

wMεS(Ŷ) + εT(Ŷ) + dTV(Dw
S (Z),DT(Z))

)
.

Now realizing that the choice of y ∈ Y and the measurable subset E on the LHS is arbitrary, this
leads to

max
y∈Y

sup
E

|DS(Z ∈ E | Y = y)−DT(Z ∈ E | Y = y)|

≤ 1
γ
·
(

wMεS(Ŷ) + εT(Ŷ) + dTV(Dw
S (Z),DT(Z))

)
.

From Briët and Harremoës [10], we have:

dTV(Dw
S (Z),DT(Z)) ≤

√
8DJS(Dw

S (Z) || DT(Z))

(the total variation and Jensen-Shannon distance are equivalent), which gives the results for Z̃ = Z.
Finally, noticing that z → h(z)⊗ z is a bijection (h(z) sums to 1), we have:

DJS(Dw
S (Z) || DT(Z)) = DJS(Dw

S (Ŷ ⊗ Z) || DT(Ŷ ⊗ Z)),
which completes the proof. �

21



Furthermore, since the above upper bound holds for any classifier Ŷ = h(Z), we even have:

max
y∈Y

dTV(DS(Z ∈ E | Y = y),DT(Z ∈ E | Y = y))

≤ 1
γ
· inf

Ŷ

(
wMεS(Ŷ) + εT(Ŷ) + dTV(Dw

S (Z),DT(Z))
)

.

A.9 Proof of Lemma 3.2

Lemma 3.2. If GLS is verified, and if the confusion matrix C is invertible, then w = C−1μ.

Proof. Given (2), and with the joint hypothesis Ŷ = h(Z) over both source and target domains, it is
straightforward to see that the induced conditional distributions over predicted labels match between
the source and target domains, i.e.:

DS(Ŷ = h(Z) | Y = y) = DT(Ŷ = h(Z) | Y = y), ∀y ∈ Y . (14)

This allows us to compute μy, ∀y ∈ Y as

DT(Ŷ = y) = ∑
y′∈Y

DT(Ŷ = y | Y = y′) · DT(Y = y′)

= ∑
y′∈Y

DS(Ŷ = y | Y = y′) · DT(Y = y′)

= ∑
y′∈Y

DS(Ŷ = y, Y = y′) · DT(Y = y′)
DS(Y = y′)

= ∑
y′∈Y

Cy,y′ · wy′ .

where we used (14) for the second line. We thus have μ = Cw which concludes the proof. �

A.10 F -IPM for Distributional Alignment

In Table 4, we list different instances of IPM with different choices of the function class F in the
above definition, including the total variation distance, Wasserstein-1 distance and the Maximum
mean discrepancy [27].

Table 4: List of IPMs with different F . ‖ · ‖Lip denotes the Lipschitz seminorm and H is a reproducing
kernel Hilbert space (RKHS).

F dF
{ f : ‖ f ‖∞ ≤ 1} Total Variation
{ f : ‖ f ‖Lip ≤ 1} Wasserstein-1 distance
{ f : ‖ f ‖H ≤ 1} Maximum mean discrepancy

B Experimentation Details

B.1 Computational Complexity

Our algorithms imply negligible time and memory overhead compared to their base versions. They
are, in practice, indistinguishable from the underlying baseline:

• Weight estimation requires storing the confusion matrix C and the predictions μ. This has a

memory cost of O(k2), small compared to the size of a neural network that performs well
on k classes.
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• The extra computational cost comes from solving the quadratic program 5, which only
depends on the number of classes k and is solved once per epoch (not per gradient step). For
Office-Home, it is a 65 × 65 QP, solved ≈ 100 times. Its runtime is negligible compared to
tens of thousands of gradient steps.

B.2 Description of the domain adaptation tasks

Digits We follow a widely used evaluation protocol [29, 41]. For the digits datasets MNIST (M,
LeCun and Cortes [32]) and USPS (U, Dheeru and Karra [19]), we consider the DA tasks: M → U
and U → M. Performance is evaluated on the 10,000/2,007 examples of the MNIST/USPS test sets.

Visda [55] is a sim-to-real domain adaptation task. The synthetic domain contains 2D rendering of
3D models captured at different angles and lighting conditions. The real domain is made of natural
images. Overall, the training, validation and test domains contain 152,397, 55,388 and 5,534 images,
from 12 different classes.

Office-31 [49] is one of the most popular dataset for domain adaptation . It contains 4,652 images
from 31 classes. The samples come from three domains: Amazon (A), DSLR (D) and Webcam (W),
which generate six possible transfer tasks, A → D, A → W, D → A, D → W, W → A and W → D,
which we all evaluate.

Office-Home [54] is a more complex dataset than Office-31. It consists of 15,500 images from 65
classes depicting objects in office and home environments. The images form four different domains:
Artistic (A), Clipart (C), Product (P), and Real-World images (R). We evaluate the 12 possible domain
adaptation tasks.

B.3 Full results on the domain adaptation tasks

Tables 5, 6, 7, 8, 9 and 10 show the detailed results of all the algorithms on each task of the domains
described above. The performance we report is the best test accuracy obtained during training over a
fixed number of epochs. We used that value for fairness with respect to the baselines (as shown in
Figure 2 Left, the performance of DANN decreases as training progresses, due to the inappropriate
matching of representations showcased in Theorem 2.1).

The subscript denotes the fraction of seeds for which our variant outperforms the base algorithm.
More precisely, by outperform, we mean that for a given seed (which fixes the network initialization
as well as the data being fed to the model) the variant has a larger accuracy on the test set than its
base version. Doing so allows to assess specifically the effect of the algorithm, all else kept constant.

Table 5: Results on the Digits tasks. M and U stand for MNIST and USPS, the prefix s denotes the

experiment where the source domain is subsampled to increase DJS(DY
S ,DY

T ).

METHOD M → U U → M AVG. SM → U SU → M AVG.

NO AD. 79.04 75.30 77.17 76.02 75.32 75.67

DANN 90.65 95.66 93.15 79.03 87.46 83.24
IWDAN 93.28100% 96.52100% 94.90100% 91.77100% 93.32100% 92.54100%
IWDAN-O 93.73100% 96.81100% 95.27100% 92.50100% 96.42100% 94.46100%

CDAN 94.16 97.29 95.72 84.91 91.55 88.23
IWCDAN 94.3660% 97.45100% 95.9080% 93.42100% 93.03100% 93.22100%
IWCDAN-O 94.3480% 97.35100% 95.8590% 93.37100% 96.26100% 94.81100%

B.4 Jensen-Shannon divergence of the original and subsampled domain adaptation datasets

Tables 11, 12 and 13 show DJS(DS(Z)||DT(Z)) for our four datasets and their subsampled versions,
rows correspond to the source domain, and columns to the target one. We recall that subsampling
simply consists in taking 30% of the first half of the classes in the source domain (which explains
why DJS(DS(Z)||DT(Z)) is not symmetric for the subsampled datasets).
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Table 6: Results on the Visda domain. The prefix s denotes the experiment where the source domain

is subsampled to increase DJS(DY
S ,DY

T ).

METHOD VISDA SVISDA

NO AD. 48.39 49.02

DANN 61.88 52.85
IWDAN 63.52100% 60.18100%
IWDAN-O 64.19100% 62.10100%

CDAN 65.60 60.19
IWCDAN 66.4960% 65.83100%
IWCDAN-O 68.15100% 66.85100%

JAN 56.98100% 50.64100%
IWJAN 57.56100% 57.12100%
IWJAN-O 61.48100% 61.30100%

Table 7: Results on the Office dataset.

METHOD A → D A → W D → A D → W W → A W → D AVG.

NO DA 79.60 73.18 59.33 96.30 58.75 99.68 77.81

DANN 84.06 85.41 64.67 96.08 66.77 99.44 82.74
IWDAN 84.3060% 86.42100% 68.38100% 97.13100% 67.1660% 100.0100% 83.9087%
IWDAN-O 87.23100% 88.88100% 69.92100% 98.09100% 67.9680% 99.92100% 85.3397%

CDAN 89.56 93.01 71.25 99.24 70.32 100.0 87.23
IWCDAN 88.9160% 93.2360% 71.9080% 99.3080% 70.4360% 100.0100% 87.3073%
IWCDAN-O 90.0860% 94.52100% 73.11100% 99.3080% 71.83100% 100.0100% 88.1490%

JAN 85.94 85.66 70.50 97.48 71.5 99.72 85.13
IWJAN 87.68100% 84.860% 70.3660% 98.98100% 70.060% 100.0100% 85.3260%
IWJAN-O 89.68100% 89.18100% 71.96100% 99.02100% 73.0100% 100.0100% 87.14100%

B.5 Losses

B.5.1 DANN

For batches of data (xi
S, yi

S) and (xi
T) of size s, the DANN losses are:

LDA(xi
S, yi

S, xi
T ; θ, ψ) = −1

s

s

∑
i=1

log(dψ(gθ(xi
S))) + log(1 − dψ(gθ(xi

T))), (15)

LC(xi
S, yi

S; θ, φ) = −1
s

s

∑
i=1

log(hφ(gθ(xi
S)yi

S
)). (16)

B.5.2 CDAN

Similarly, the CDAN losses are:

LDA(xi
S, yi

S, xi
T ; θ, ψ) = −1

s

s

∑
i=1

log(dψ(hφ(gθ(xi
S))⊗ gθ(xi

S))) (17)

+ log(1 − dψ(hφ(gθ(xi
T))⊗ gθ(xi

T))), (18)

LC(xi
S, yi

S; θ, φ) = −1
s

s

∑
i=1

log(hφ(gθ(xi
S)yi

S
)), (19)

where hφ(gθ(xi
S))⊗ gθ(xi

S) := (h1(g(xi
S))g(xi

S), . . . , hk(g(xi
S))g(xi

S)) and h1(g(xi
S)) is the i-th

element of vector h(g(xi
S)).
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Table 8: Results on the Subsampled Office dataset.

METHOD SA → D SA → W SD → A SD → W SW → A SW → D AVG.

NO DA 75.82 70.69 56.82 95.32 58.35 97.31 75.72

DANN 75.46 77.66 56.58 93.76 57.51 96.02 76.17
IWDAN 81.61100% 88.43100% 65.00100% 96.98100% 64.86100% 98.72100% 82.60100%
IWDAN-O 84.94100% 91.17100% 68.44100% 97.74100% 64.57100% 99.60100% 84.41100%

CDAN 82.45 84.60 62.54 96.83 65.01 98.31 81.62
IWCDAN 86.59100% 87.30100% 66.45100% 97.69100% 66.34100% 98.92100% 83.88100%
IWCDAN-O 87.39100% 91.47100% 69.69100% 97.91100% 67.50100% 98.88100% 85.47100%

JAN 77.74 77.64 64.48 91.68 92.60 65.10 78.21
IWJAN 84.62100% 83.28100% 65.3080% 96.30100% 98.80100% 67.38100% 82.6197%
IWJAN-O 88.42100% 89.44100% 72.06100% 97.26100% 98.96100% 71.30100% 86.24100%

Table 9: Results on the Office-Home dataset.

METHOD A → C A → P A → R C → A C → P C → R

NO DA 41.02 62.97 71.26 48.66 58.86 60.91

DANN 46.03 62.23 70.57 49.06 63.05 64.14
IWDAN 48.65100% 69.19100% 73.60100% 53.59100% 66.25100% 66.09100%
IWDAN-O 50.19100% 70.53100% 75.44100% 56.69100% 67.40100% 67.98100%

CDAN 49.00 69.23 74.55 54.46 68.23 68.9
IWCDAN 49.81100% 73.41100% 77.56100% 56.5100% 69.6480% 70.33100%
IWCDAN-O 52.31100% 74.54100% 78.46100% 60.33100% 70.78100% 71.47100%

JAN 41.64 67.20 73.12 51.02 62.52 64.46
IWJAN 41.120% 67.5680% 73.1460% 51.70100% 63.42100% 65.22100%
IWJAN-O 41.8880% 68.72100% 73.62100% 53.04100% 63.88100% 66.48100%

METHOD P → A P → C P → R R → A R → C R → P AVG.

NO DA 47.1 35.94 68.27 61.79 44.42 75.5 56.39

DANN 48.29 44.06 72.62 63.81 53.93 77.64 59.62
IWDAN 52.81100% 46.2480% 73.97100% 64.90100% 54.0280% 77.96100% 62.2797%
IWDAN-O 59.33100% 48.28100% 76.37100% 69.42100% 56.09100% 78.45100% 64.68100%

CDAN 56.77 48.8 76.83 71.27 55.72 81.27 64.59
IWCDAN 58.99100% 48.410% 77.94100% 69.480% 54.730% 81.0760% 65.6670%
IWCDAN-O 62.60100% 50.73100% 78.88100% 72.44100% 57.79100% 81.3180% 67.6498%

JAN 54.5 40.36 73.10 64.54 45.98 76.58 59.59
IWJAN 55.2680% 40.3860% 73.0880% 64.4060% 45.680% 76.3640% 59.7863%
IWJAN-O 57.78100% 41.32100% 73.66100% 65.40100% 46.68100% 76.3620% 60.7392%

CDAN is particularly well-suited for conditional alignment. As described in Section 2, the CDAN

discriminator seeks to match DS(Ŷ ⊗ Z) with DT(Ŷ ⊗ Z). This objective is very aligned with GLS:

let us first assume for argument’s sake that Ŷ is a perfect classifier on both domains. For any sample
(x, y), ŷ ⊗ z is thus a matrix of 0s except on the y-th row, which contains z. When label distributions
match, the effect of fooling the discriminator will result in representations such that the matrices

Ŷ ⊗ Z are equal on the source and target domains. In other words, the model is such that Z | Y
match: it verifies GLS (see Th. 3.4 below with w = 1). On the other hand, if the label distributions
differ, fooling the discriminator actually requires mislabelling certain samples (a fact quantified in
Th. 2.1).

25



Table 10: Results on the subsampled Office-Home dataset.

METHOD A → C A → P A → R C → A C → P C → R

NO DA 35.70 54.72 62.61 43.71 52.54 56.62

DANN 36.14 54.16 61.72 44.33 52.56 56.37
IWDAN 39.81100% 63.01100% 68.67100% 47.39100% 61.05100% 60.44100%
IWDAN-O 42.79100% 66.22100% 71.40100% 53.39100% 61.47100% 64.97100%

CDAN 38.90 56.80 64.77 48.02 60.07 61.17
IWCDAN 42.96100% 65.01100% 71.34100% 52.89100% 64.65100% 66.48100%
IWCDAN-O 45.76100% 68.61100% 73.18100% 56.88100% 66.61100% 68.48100%

JAN 34.52 56.86 64.54 46.18 56.84 59.06
IWJAN 36.24100% 61.00100% 66.34100% 48.66100% 59.92100% 61.88100%
IWJAN-O 37.46100% 62.68100% 66.88100% 49.82100% 60.22100% 62.54100%

METHOD P → A P → C P → R R → A R → C R → P AVG.

NO DA 44.29 33.05 65.20 57.12 40.46 70.0

DANN 44.58 37.14 65.21 56.70 43.16 69.86 51.83
IWDAN 50.44100% 41.63100% 72.46100% 61.00100% 49.40100% 76.07100% 57.61100%
IWDAN-O 56.05100% 43.39100% 74.87100% 66.73100% 51.72100% 77.46100% 60.87100%

CDAN 49.65 41.36 70.24 62.35 46.98 74.69 56.25
IWCDAN 54.87100% 44.80100% 75.91100% 67.02100% 50.45100% 78.55100% 61.24100%
IWCDAN-O 59.63100% 46.98100% 77.54100% 69.24100% 53.77100% 78.11100% 63.73100%

JAN 50.64 37.24 69.98 58.72 40.64 72.00 53.94
IWJAN 52.92100% 37.68100% 70.88100% 60.32100% 41.54100% 73.26100% 55.89100%
IWJAN-O 56.54100% 39.66100% 71.78100% 62.36100% 44.56100% 73.76100% 57.36100%

Table 11: Jensen-Shannon divergence between the label distributions of the Digits and Visda tasks.

(A) FULL DATASET

MNIST USPS REAL

MNIST 0 6.64e−3 -
USPS 6.64e−3 0 -
SYNTH. - - 2.61e−2

(B) SUBSAMPLED

MNIST USPS REAL

MNIST 0 6.52e−2 -
USPS 2.75e−2 0 -
SYNTH. - - 6.81e−2

B.5.3 JAN

The JAN losses [40] are :

LDA(xi
S, yi

S, xi
T ; θ, ψ) = − 1

s2

s

∑
i,j=1

k(xi
S, xj

S)−
1
s2

s

∑
i,j=1

k(xi
T , xj

T) +
2
s2

s

∑
i,j=1

k(xi
S, xj

T) (20)

LC(xi
S, yi

S; θ, φ) = −1
s

s

∑
i=1

log(hφ(gθ(xi
S)yi

S
)), (21)

where k corresponds to the kernel of the RKHS H used to measure the discrepancy between distri-
butions. Exactly as in Long et al. [40], it is the product of kernels on various layers of the network

k(xi
S, xj

S) = ∏l∈L kl(xi
S, xj

S). Each individual kernel kl is computed as the dot-product between
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Table 12: Jensen-Shannon divergence between the label distributions of the Office-31 tasks.

(A) FULL DATASET

AMAZON DSLR WEBCAM

AMAZON 0 1.76e−2 9.52e−3
DSLR 1.76e−2 0 2.11e−2
WEBCAM 9.52e−3 2.11e−2 0

(B) SUBSAMPLED

AMAZON DSLR WEBCAM

AMAZON 0 6.25e−2 4.61e−2
DSLR 5.44e−2 0 5.67e−2
WEBCAM 5.15e−2 7.05e−2 0

Table 13: Jensen-Shannon divergence between the label distributions of the Office-Home tasks.

(A) FULL DATASET

ART CLIPART PRODUCT REAL WORLD

ART 0 3.85e−2 4.49e−2 2.40e−2
CLIPART 3.85e−2 0 2.33e−2 2.14e−2
PRODUCT 4.49e−2 2.33e−2 0 1.61e−2
REAL WORLD 2.40e−2 2.14e−2 1.61e−2 0

(B) SUBSAMPLED

ART CLIPART PRODUCT REAL WORLD

ART 0 8.41e−2 8.86e−2 6.69e−2
CLIPART 7.07e−2 0 5.86e−2 5.68e−2
PRODUCT 7.85e−2 6.24e−2 0 5.33e−2
REAL WORLD 6.09e−2 6.52e−2 5.77e−2 0

two transformations of the representation: kl(xi
S, xj

S) = 〈dl
ψ(gl

θ(xi
S)), dl

ψ(gl
θ(xj

S))〉 (in this case, dl
ψ

outputs vectors in a high-dimensional space). See Section B.7 for more details.

The IWJAN losses are:

Lw
DA(xi

S, yi
S, xi

T ; θ, ψ) = − 1
s2

s

∑
i,j=1

wyi
S
w

yj
S
k(xi

S, xj
S)−

1
s2

s

∑
i,j=1

k(xi
T , xj

T) +
2
s2

s

∑
i,j=1

wyi
S
k(xi

S, xj
T)

(22)

Lw
C (xi

S, yi
S; θ, φ) = −1

s

s

∑
i=1

wyi
S

kDS(Y = y)
log(hφ(gθ(xi

S))yi
S
). (23)

B.6 Generation of domain adaptation tasks with varying DJS(DS(Z) ‖ DT(Z))

We consider the MNIST → USPS task and generate a set V of 50 vectors in [0.1, 1]10. Each vector
corresponds to the fraction of each class to be trained on, either in the source or the target domain (to
assess the impact of both). The left bound is chosen as 0.1 to ensure that classes all contain some
samples.

This methodology creates 100 domain adaptation tasks, 50 for subsampled-MNIST → USPS and
50 for MNIST → subsampled-USPS, with Jensen-Shannon divergences varying from 6.1e−3 to
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9.53e−22. They are then used to evaluate our algorithms, see Section 4 and Figures 1 and 3. They
show the performance of the 6 algorithms we consider. We see the sharp decrease in performance of
the base versions DANN and CDAN. Comparatively, our importance-weighted algorithms maintain
good performance even for large divergences between the marginal label distributions.

B.7 Implementation details

All the values reported below are the default ones in the implementations of DANN, CDAN and JAN
released with the respective papers (see links to the github repos in the footnotes). We did not perform
any search on them, assuming they had already been optimized by the authors of those papers. To
ensure a fair comparison and showcase the simplicity of our approach, we simply plugged the weight
estimation on top of those baselines and used their original hyperparameters.

For MNIST and USPS, the architecture is akin to LeNet [31], with two convolutional layers, ReLU
and MaxPooling, followed by two fully connected layers. The representation is also taken as the last
hidden layer, and has 500 neurons. The optimizer for those tasks is SGD with a learning rate of 0.02,
annealed by 0.5 every five training epochs for M → U and 6 for U → M. The weight decay is also
5e−4 and the momentum 0.9.

For the Office and Visda experiments with IWDAN and IWCDAN, we train a ResNet-50, optimized
using SGD with momentum. The weight decay is also 5e−4 and the momentum 0.9. The learning
rate is 3e−4 for the Office-31 tasks A → D and D → W, 1e−3 otherwise (default learning rates
from the CDAN implementation3).

For the IWJAN experiments, we use the default implementation of Xlearn codebase4 and simply
add the weigths estimation and reweighted objectives to it, as described in Section B.5. Parameters,
configuration and networks remain the same.

Finally, for the Office experiments, we update the importance weights w every 15 passes on the
dataset (in order to improve their estimation on small datasets). On Digits and Visda, the importance
weights are updated every pass on the source dataset. Here too, fine-tuning that value might lead to a
better estimation of w and help bridge the gap with the oracle versions of the algorithms.

We use the cvxopt package5 to solve the quadratic programm 5.

We trained our models on single-GPU machines (P40s and P100s). The runtime of our algorithms is
undistinguishable from the the runtime of their base versions.

B.8 Weight Estimation

We estimate importance weights using Lemma 3.2, which relies on the GLS assumption. However,
there is no guarantee that GLS is verified at any point during training, so the exact dynamics of w are
unclear. Below we discuss those dynamics and provide some intuition about them.

In Fig. 4b, we plot the Euclidian distance between the moving average of weights estimated using the

equation w = C−1μ and the true weights (note that this can be done for any algorithm). As can be
seen in the figure, the distance between the estimated and true weights is highly correlated with the
performance of the algorithm (see Fig.4). In particular, we see that the estimations for IWDAN is
more accurate than for DANN. The estimation for DANN exhibits an interesting shape, improving at
first, and then getting worse. At the same time, the estimation for IWDAN improves monotonously.
The weights for IWDAN-O get very close to the true weights which is in line with our theoretical
results: IWDAN-O gets close to zero error on the target error, Th. 3.4 thus guarantees that GLS is
verified, which in turns implies that the weight estimation is accurate (Lemma 3.2). Finally, without
domain adaptation, the estimation is very poor. The following two lemmas shed some light on the
phenomena observed for DANN and IWDAN:

Lemma 3.3. If the source error εS(h ◦ g) is zero and the source and target marginals verify

DJS(Dw̃
S (Z),DT(Z)) = 0, then the estimated weight vector w is equal to w̃.

2We manually rejected some samples to guarantee a rather uniform set of divergences.
3https://github.com/thuml/CDAN/tree/master/pytorch
4https://github.com/thuml/Xlearn/tree/master/pytorch
5http://cvxopt.org/
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(a) Performance of DANN, IWDAN and IWDAN-O. (b) Performance of CDAN, CDAN and IWCDAN.

Figure 3: Performance in % of our algorithms and their base versions. The x-axis represents

DJS(DY
S ,DY

T ), the Jensen-Shannon distance between label distributions. Lines represent linear fits to
the data. For both sets of algorithms, the larger the jsd, the larger the improvement.

Proof. If εS(h ◦ g) = 0, then the confusion matrix C is diagonal and its y-th line is DS(Y = y).
Additionally, if DJS(Dw̃

S (Z),DT(Z)) = 0, then from a straightforward extension of Eq. 12, we have

DJS(Dw̃
S (Ŷ),DT(Ŷ)) = 0. In other words, the distribution of predictions on the source and target

domains match, i.e. μy = DT(Ŷ = y) = ∑
y′

w̃y′DS(Ŷ = y, Y = y′) = w̃yDS(Y = y), ∀y (where

the last equality comes from εS(h ◦ g) = 0). Finally, we get that w = C−1μ = w̃. �

In particular, applying this lemma to DANN (i.e. with w̃y′ = 1) suggests that at convergence, the

estimated weights should tend to 1. Empirically, Fig. 4b shows that as the marginals get matched, the
estimation for DANN does get closer to 1 (1 corresponds to a distance of 2.16)6. We now attempt to
provide some intuition on the behavior of IWDAN, with the following lemma:

Lemma B.1. If εS(h ◦ g) = 0 and if for a given y:

min(w̃yDS(Y = y),DT(Y = y)) ≤ μy ≤ max(w̃yDS(Y = y),DT(Y = y)), (24)

then, letting w = C−1μ be the estimated weight:

|wy − w∗
y | ≤ |w̃y − w∗

y |.

Applying this lemma to w̃y = wt, and assuming that (24) holds for all the classes y (we discuss
what the assumption implies below), we get that:

‖wt+1 − w∗
y‖ ≤ ‖wt − w∗

y‖, (25)

or in other words, the estimation improves monotonously. Combining this with Lemma B.1 sug-
gests an explanation for the shape of the IWDAN estimated weights on Fig. 4b: the monotonous
improvement of the estimation is counter-balanced by the matching of weighted marginals which,
when reached, makes wt constant (Lemma 3.3 applied to w̃ = wt). However, we wish to emphasize
that the exact dynamics of w are complex, and we do not claim understand them fully. In all likeli-
hood, they are the by-product of regularity in the data, properties of deep neural networks and their
interaction with stochastic gradient descent. Additionally, the dynamics are also inherently linked to
the success of domain adaptation, which to this day remains an open problem.

As a matter of fact, assumption (24) itself relates to successful domain adaptation. Setting aside w̃,
which simply corresponds to a class reweighting of the source domain, (24) states that predictions
on the target domain fall between a successful prediction (corresponding to DT(Y = y)) and the
prediction of a model with matched marginals (corresponding to DS(Y = y)). In other words, we

6It does not reach it as the learning rate is decayed to 0.
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assume that the model is naturally in between successful domain adaptation and successful marginal
matching. Empirically, we observed that it holds true for most classes (with w̃ = w̃t for IWDAN
and with w̃ = 1 for DANN), but not all early in training7.

To conclude this section, we prove Lemma B.1.

Proof. From εS(h ◦ g) = 0, we know that C is diagonal and that its y-th line is DS(Y = y). This

gives us: wy = (C−1μ)y =
μy

DS(Y=y) . Hence:

min(w̃yDS(Y = y),DT(Y = y)) ≤ μy ≤ max(w̃yDS(Y = y),DT(Y = y))

⇐⇒ min(w̃yDS(Y = y),DT(Y = y))
DS(Y = y)

≤
μy

DS(Y = y)
≤ max(w̃yDS(Y = y),DT(Y = y))

DS(Y = y)
⇐⇒ min(w̃y, w∗

y) ≤ wy ≤ max(w̃y, w∗
y)

⇐⇒ min(w̃y, w∗
y)− w∗

y ≤ wy − w∗
y ≤ max(w̃y, w∗

y)− w∗
y

⇐⇒ |wy − w∗
y | ≤ |w̃y − w∗

y |,
which conludes the proof. �

(a) Transfer accuracy during training. (b) Distance to true weights during training.

Figure 4: Left Accuracy of various algorithms during training. Right Euclidian distance between the
weights estimated using Lemma 3.2 and the true weights. Those plots correspond to averages over 5
seeds.

B.9 Per-class predictions and estimated weights

In this section, we display the per-class predictions of various algorithms on the sU → M task. In
Table 16, we see that without domain adaptation, performance on classes is rather random, the digit 9
for instance is very poorly predicted and confused with 4 and 8.

Table 17 shows an interesting pattern for DANN. In line with the limitations described by Theorem 2.1,
the model performs very poorly on the subsampled classes (we recall that the subsampling is done
in the source domain): the neural network tries to match the unweighted marginals. To do so, it
projects representations of classes that are over-represented in the target domain (digits 0 to 4) on
representations of the under-represented classes (digits 5 to 9). In doing so, it heavily degrades its
performance on those classes (it is worth noting that digit 0 has an importance weight close to 1
which probably explains why DANN still performs well on it, see Table 14).

7In particular at initialization, one class usually dominates the others.
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As far as IWDAN is concerned, Table 18 shows that the model perfoms rather well on all classes,
at the exception of the digit 7 confused with 9. IWDAN-O is shown in Table 19 and as expected
outperforms the other algorithms on all classes.

Finally, Table 14 shows the estimated weights of all the algorithms, at the training epoch displayed in
Tables 16, 17, 18 and 19. We see a rather strong correlation between errors on the estimated weight
for a given class, and errors in the predictions for that class (see for instance digit 3 for DANN or
digit 7 for IWDAN).

Table 14: Estimated weights and their euclidian distance to the true weights, taken at the training
epoch for the confusion matrices in Tables 16, 17, 18 and 19. The first row contains the true weights.
The last column gives the euclidian distance from the true weights.

CLASS

0 1 2 3 4 5 6 7 8 9 DISTANCE

TRUE 1.19 1.61 1.96 2.24 2.16 0.70 0.64 0.70 0.78 0.66 0

DANN 1.06 1.15 1.66 1.33 1.95 0.86 0.72 0.70 1.02 0.92 1.15
IWDAN 1.19 1.61 1.92 1.96 2.31 0.70 0.63 0.55 0.78 0.78 0.38

IWDAN-O 1.19 1.60 2.01 2.14 2.1 0.73 0.64 0.65 0.78 0.66 0.12
NO DA 1.14 1.4 2.42 1.49 4.21 0.94 0.38 0.82 0.62 0.29 2.31

Table 15: Ablation study on the Digits tasks, with weights learnt during training.

Method Digits sDigits Method Digits sDigits

DANN 93.15 83.24 CDAN 95.72 88.23
DANN + Lw

C 93.18 84.20 CDAN + Lw
C 95.30 91.14

DANN + Lw
DA 94.35 92.48 CDAN + Lw

DA 95.42 92.35
IWDAN 94.90 92.54 IWCDAN 95.90 93.22

Table 16: Per-class predictions without domain adaptation on the sU → M task. Average accuracy:

74.49%. The table M below verifies Mij = DT(Ŷ = j|Y = i).

92.89 0.13 3.24 0.00 2.20 0.01 0.45 0.88 0.18 0.02

0.00 72.54 12.38 0.00 3.40 0.37 7.54 1.50 2.28 0.00

0.31 0.23 93.28 0.09 0.72 0.03 0.34 4.78 0.17 0.05

0.06 0.77 4.81 68.53 1.50 19.91 0.02 2.48 1.61 0.31

0.02 0.62 0.28 0.00 97.19 0.51 0.04 0.17 0.79 0.37

0.75 3.03 0.69 1.01 1.20 88.96 0.39 0.31 2.69 0.96

0.73 1.98 0.42 0.03 23.86 2.74 69.08 0.29 0.12 0.75

1.02 2.01 4.16 0.13 9.32 6.36 0.01 73.48 1.01 2.50

6.01 8.27 2.55 1.35 1.62 3.62 4.98 6.96 64.40 0.24

1.49 3.35 0.55 1.28 38.30 15.36 0.05 20.68 1.34 17.60
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Table 17: Per-class predictions for DANN on the sU → M task. Average accuracy: 86.71%. The

table M below verifies Mij = DT(Ŷ = j|Y = i). The first 5 classes are under-represented in the
source domain compared to the target domain. On those (except 0), DANN does not perform as
well as on the over-represented classes (the last 5). In line with Th. 2.1, matching the representation
distributions on source and target forced the classifier to confuse the digits “1”, “3” and “4” in the
target domain with “8”, “5” and “9”.

95.79 0.01 0.08 0.01 0.12 0.38 2.34 0.36 0.36 0.57

0.14 70.77 0.80 0.01 1.03 1.29 9.46 0.06 16.39 0.06

1.61 0.14 89.82 0.20 0.42 0.48 0.83 3.73 1.37 1.39

0.46 0.08 1.10 63.33 0.04 26.28 0.02 1.78 3.76 3.14

0.11 0.13 0.05 0.00 78.17 0.85 0.16 0.15 1.97 18.41

0.19 0.04 0.02 0.04 0.01 91.30 0.25 0.27 5.97 1.91

0.62 0.12 0.01 0.00 1.98 4.61 91.73 0.05 0.36 0.51

0.14 0.23 1.39 0.13 0.10 0.32 0.02 94.10 1.46 2.10

0.69 0.13 0.11 0.05 0.21 2.12 0.50 0.36 95.19 0.66

0.36 0.31 0.03 0.08 0.46 3.67 0.01 1.64 1.03 92.40

Table 18: Per-class predictions for IWDAN on the sU → M task. Average accuracy: 94.38%. The

table M below verifies Mij = DT(Ŷ = j|Y = i).

97.33 0.06 0.23 0.01 0.20 0.43 1.29 0.19 0.18 0.09

0.00 97.71 0.41 0.05 0.56 0.69 0.14 0.03 0.34 0.07

0.70 0.16 96.32 0.08 0.34 0.23 0.23 1.49 0.43 0.01

0.23 0.01 0.97 87.67 0.01 9.25 0.02 0.63 0.87 0.35

0.11 0.25 0.05 0.00 96.93 0.16 0.22 0.02 0.40 1.85

0.15 0.11 0.01 0.16 0.05 95.81 0.69 0.11 2.82 0.08

0.26 0.25 0.00 0.00 2.07 1.49 95.84 0.01 0.07 0.00

0.16 0.42 2.12 0.91 1.15 0.60 0.03 82.07 1.35 11.19

0.44 0.50 0.36 0.18 0.43 0.90 0.91 0.15 95.74 0.40

0.34 0.42 0.06 0.30 1.67 2.46 0.11 0.31 0.85 93.50
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Table 19: Per-class predictions for IWDAN-O on the sU → M task. Average accuracy: 96.8%. The

table M below verifies Mij = DT(Ŷ = j|Y = i).

98.04 0.01 0.20 0.00 0.27 0.03 1.17 0.11 0.15 0.02

0.00 98.35 0.33 0.15 0.17 0.27 0.19 0.05 0.47 0.02

0.22 0.04 97.48 0.07 0.29 0.08 0.52 1.09 0.19 0.02

0.10 0.00 0.66 95.72 0.01 2.32 0.00 0.35 0.56 0.27

0.01 0.25 0.05 0.00 96.80 0.03 0.18 0.01 0.60 2.06

0.23 0.11 0.00 0.72 0.00 96.09 0.68 0.13 2.01 0.03

0.27 0.31 0.00 0.00 2.07 0.63 96.54 0.00 0.17 0.01

0.26 0.45 2.13 0.29 0.90 0.32 0.01 92.66 1.06 1.92

0.55 0.22 0.30 0.06 0.18 0.22 0.41 0.33 97.11 0.62

0.46 0.37 0.16 0.86 0.82 1.45 0.01 0.77 0.98 94.13
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