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Abstract—We describe and release an open PE malware
dataset called BODMAS to facilitate research efforts in machine
learning based malware analysis. By closely examining existing
open PE malware datasets, we identified two missing capabilities
(i.e., recent/timestamped malware samples, and well-curated
family information), which have limited researchers’ ability to
study pressing issues such as concept drift and malware family
evolution. For these reasons, we release a new dataset to fill in the
gaps. The BODMAS dataset contains 57,293 malware samples and
77,142 benign samples collected from August 2019 to September
2020, with carefully curated family information (581 families).
We also perform a preliminary analysis to illustrate the impact
of concept drift and discuss how this dataset can help to facilitate
existing and future research efforts.

I. INTRODUCTION

Today, machine learning models (including deep neural

networks) are broadly applied in malware analysis tasks, by

researchers [30], [5], [11], [6] and antivirus vendors [1].

In this field of work, it is highly desirable to have public

datasets and open benchmarks. On one hand, these datasets

will be instrumental to facilitate new works to resolve open

challenges (e.g., adversarial machine learning, interpretation

techniques [28], [10]). On the other hand, public benchmarks

and datasets can help researchers to easily compare their

models and keep track of the progress as a community.

However, creating open malware datasets is highly chal-

lenging. For example, the authors of [5] have discussed

many of such challenges including legal restrictions, costs and

difficulty of labeling malware samples, and potential security

liabilities. In addition to these factors, another key challenge

is the dynamic evolving nature of malware (as well as benign

software) [20]. As new malware families and variants appear

over time, they constantly introduce changes to the underlying

data distribution. As a result, there is a constant need for

releasing new datasets and benchmarks over time.

Over the past decade, there were only a handful of open

PE malware datasets released to the research community [30].

Notable examples include Microsoft Malware Classification

Challenge dataset [24], Ember [5], UCSB Packed Malware

dataset [2], and a recent SOREL-20M dataset [11]. We have

summarized their key characteristics in Table I.

Our Dataset: BODMAS. While existing datasets have

been instrumental to researchers to develop, test, and compare

machine learning models, we have identified two missing

elements in existing datasets, which has limited researchers’

ability to perform temporal analysis on malware classifiers for

malware detection and family attribution. First, most datasets

mentioned above contain malware samples that appeared be-

tween 2017 to 2019. The data is slightly outdated to study

recent malware behaviors. Second, most existing datasets

do not contain well-curated family information. This limits

researchers’ ability to test learning-based family attribution

methods and analyze family evolution patterns.

For these reasons, we compile a new dataset, called

BODMAS, to complement existing datasets. Our dataset con-

tains 57,293 malware samples and 77,142 benign samples

(134,435 in total). The malware is randomly sampled each

month from a security company’s internal malware database,

from August 29, 2019, to September 30, 2020 (one year).

For each sample, we include both the original PE binary as

well as a pre-extracted feature vector that shares the same

format with existing datasets such as Ember [5] and SOREL-

20M [11]. Researchers could easily combine our dataset with

existing ones to use them together. More importantly, our

dataset provides well-curated family labels (curated by security

analysts) covering 581 malware families. The family label

information is much richer than existing datasets (e.g., the

Microsoft dataset [24] only has 9 families).

Preliminary Analysis. In this paper, we use our dataset

(and existing datasets) to perform a preliminary analysis on

the impact of concept drift (where the testing set distribution

shifts away from the training set [8]) on binary malware

classifiers and multi-class family attribution methods. We

illustrate the impact of concept drift on different learning tasks.

In particular, we highlight the challenges introduced by the

arrival of previously unseen malware families, which have

contributed to increasing false negatives of binary malware

classifiers and crippled malware family classifiers in an “open-

world” setting. In the end, we discuss the open questions

related to our observations and how BODMAS could help to

facilitate future research in our community.

Contributions. Our contributions are:

• First, we worked with a security company to release an

open PE malware dataset that contains recent (2019–

2020), timestamped malware and benign samples with

well-curated family information1.

• Second, using this dataset, we performed a preliminary

analysis of concept drift in binary malware classifiers and

experimented with some mitigation strategies.

1The dataset is available here: https://whyisyoung.github.io/BODMAS/



Dataset Malware Time Family # Families # Samples # Benign # Malware
Malware
Binaries

Feature
Vectors

Microsoft N/A (Before 2015)  9 10,868 0 10,868 H# #

Ember 01/2017–12/2018 H# N/A 2,050,000 750,000 800,000 #  

UCSB-Packed 01/2017∗–03/2018 # N/A 341,445 109,030 232,415  #

SOREL-20M 01/2017–04/2019 # N/A 19,724,997 9,762,177 9,962,820   

BODMAS (Our) 08/2019–09/2020  581 134,435 77,142 57,293   

TABLE I: Public PE malware datasets. #=“not available”; H#=“partially available”,  =“available”. For Ember, we have combined Ember2017

and Ember2018 and removed the duplicated samples. In addition to benign and malware samples, there are 500,000 unlabeled samples in

the Ember dataset. ∗The vast majority of malware samples in UCSB-Packed fall within 2017–2018 (97.36%). Only a small portion (2.64%)

of malware samples in a “wild-set” appeared before 2017.

• Third, we illustrated the challenges of malware family

attribution in an open-world setting over time, and dis-

cussed open challenges.

II. BACKGROUND AND RELATED WORK

Machine Learning for Malware Analysis. Machine learn-

ing (ML) has been applied to malware detection (classifying

malware from benign files) and malware categorization (clas-

sifying malware into different families) [30], [14], [9], [31].

Features used by ML models can be extracted by static analy-

sis (i.e., analyzing the file statically) [25], [21], [13], [17], [5],

[11] and dynamic analysis (i.e., observing run-time behavior

by executing the file) [22], [6], [23], [3], [32]. Static analysis

is more efficient, but its performance could be affected when a

binary is packed or obfuscated [2]. Dynamic analysis is costly

in terms of computing resources (e.g., sandboxes) and analysis

time. More importantly, today’s malware can probe the system

environment to detect the presence of sandbox and debugging

tools, and then stay dormant to evade detection [19]. In this

paper, we primarily focus on static features considering their

high efficiency to support large-scale analysis.

Benchmarks and Datasets. Compared to other ML applica-

tion domains (e.g., computer vision and natural language pro-

cessing), it is more difficult to create and share open malware

datasets. In addition to challenges such as legal restrictions,

cost/difficulty of labeling malware samples, potential security

liabilities, a more important challenge is the dynamic evolution

of malware [5]. Due to such dynamic changes, there is a

constant need for updating the datasets and benchmarks.

There are a few noticeable efforts to release PE malware

datasets. We summarize their key statistics and available data

fields in Table I. Microsoft Malware Classification Challenge

dataset [24] was released in 2015 which only contains 10K

malware samples. Note that the malware samples only contain

the hexadecimal representation of the binary but have no

header information. Also, it does not contain any benign files.

Ember [5] was released in 2017 and then updated in 2018.

Compared to the Microsoft dataset, Ember is much bigger

and also includes benign files (feature vectors). Later in 2020,

researchers from UCSB studied the impact of packed malware

on static classifiers, and released a dataset that contains

different types of packed malware samples [2]. Very recently

in December 2020, SOREL-20M [11] was released, a dataset

that was orders of magnitude bigger than existing ones.

Why A New Dataset? By inspecting the existing datasets

in Table I, we identified two major missing capabilities of ex-

isting datasets, and thus compile a new dataset to complement

existing ones.

First, most existing datasets contain malware samples that

appeared between 2017 to 2019 (including the most recently

released SOREL-20M [11]). The datasets can be slightly

outdated to study recent malware behaviors. As such, we want

to release a new malware dataset that covers malware samples

that appeared more recently from August 2019 to September

2020. Combined our dataset with existing datasets such as

Ember and SOREL-20M, researchers could have malware

samples span over three years to study malware evolution and

potential concept drift of classifiers.

Second, most existing datasets do not contain well-curated

family information. This has limited researchers’ ability to

study family-related problems. For example, the Microsoft

dataset only contains 9 malware families which is a very small

number. Datasets such as SOREL-20M and UCSB do not con-

tain family labels. For Ember, while it was released primarily

for binary malware classification, the dataset indeed contains

some family tags. However, a close inspection shows these

family tags are not curated. For instance, a popular malware

family tag in Ember is called “high” (8,417 samples), which

appears to be incorrectly parsed from VirusTotal reports. The

original field in the reports is “Malicious (High Confidence),”

which is not a real family name. For these reasons, we want to

include more malware families and well-curated family labels

in our new dataset to fill in the gaps.

III. DATASET DESCRIPTION

Our dataset includes 57,293 malware samples and 77,142

benign samples (134,435 in total). The malware samples are

randomly sampled each month from a security company’s

internal malware database. We performed the data collection

from August 29, 2019, to September 30, 2020. The benign

samples were collected from January 1, 2007, to September

30, 2020. Benign samples are also selected from the security

company’s database in order to represent benign PE binary

distribution in real world traffic. We name the dataset BODMAS.

For each malware sample, we include its SHA-256 hash,

the original PE binary, and a pre-extracted feature vector. For

each benign sample, we include its SHA-256 hash, and a pre-

extracted feature vector. Like existing datasets (e.g., Ember,

SOREL-20M), It is noted that due to copyright considerations



Phase
# Samples Ember-GBDT (17–18) UCSB-GBDT (17–18) SOREL-GBDT (17–19) SOREL-DNN (17–19)

Benign Malware FPR F1 FPR F1 FPR F1 FPR F1

Validation - - 0.10% 98.62% 0.10% 92.14% 0.10% 98.79% 0.10% 98.01%

Test-10/19 3,925 4,549 0.00% 94.87% 0.03% 71.13% 0.09% 97.67% 0.31% 94.79%
Test-11/19 3,718 2,494 0.00% 95.83% 0.02% 81.04% 0.05% 98.09% 0.40% 96.20%
Test-12/19 6,120 4,039 0.01% 96.64% 0.06% 84.85% 0.24% 98.30% 0.45% 96.79%
Test-01/20 5,926 4,510 0.18% 93.69% 0.12% 78.04% 2.14% 96.31% 2.27% 95.41%
Test-02/20 3,703 4,269 0.07% 93.43% 0.33% 68.35% 4.82% 95.73% 6.68% 93.23%
Test-03/20 3,577 4,990 0.01% 95.75% 0.01% 75.30% 0.13% 98.14% 0.35% 95.98%
Test-04/20 5,201 4,640 0.00% 96.98% 0.02% 80.82% 0.14% 98.90% 0.26% 97.30%
Test-05/20 6,121 5,449 0.00% 97.50% 0.05% 85.69% 0.13% 98.64% 0.29% 96.03%
Test-06/20 8,182 4,217 0.01% 97.76% 0.04% 83.18% 0.22% 98.94% 0.43% 96.74%
Test-07/20 6,392 4,995 0.01% 96.38% 0.03% 66.20% 0.07% 98.68% 0.33% 93.86%
Test-08/20 2,514 3,823 0.01% 92.93% 0.02% 47.19% 0.06% 95.99% 0.10% 85.85%
Test-09/20 4,198 4,577 0.02% 92.14% 0.03% 55.97% 0.08% 95.70% 0.13% 82.88%

TABLE II: Testing the binary classifiers on each month of our BODMAS dataset. The testing F1 is typically lower than the validation F1,

indicating concept drift. We also include the number of testing samples in each month. Note that the validation sets are provided by each

of the classifiers’ original datasets, the sizes of which vary and thus are omitted from this table.

benign sample binaries are not included in the dataset. Our

feature vectors follow the same format of Ember [5] and

SOREL-20M [11]. In this way, researchers have the option

to analyze the original malware binaries. They can also use

our feature vectors that are compatible with existing datasets.

In this dataset, we provide the ground-truth label (“mal-

ware” or “benign”), curated malware family information, and

the first-seen time of a sample based on VirusTotal reports [1].

The family label is obtained mostly by analyzing verdicts from

multiple antivirus vendors with in-house scripts (similar as

AVClass [26]). The in-house scripts are constantly curated and

updated by our threat team. A small portion (about 1%) of

malware were labeled via manual analysis of the binaries. In

total, the dataset covers 581 malware families.

These malware samples are from a diverse set of malware

categories (14 categories in total). The most prevalent cate-

gories are Trojan (29,972 samples), Worm (16,697 samples),

Backdoor (7,331 samples), Downloader (1,031 samples), and

Ransomware (821 samples).

IV. CONCEPT DRIFT IN BINARY CLASSIFICATION

With this dataset, we now perform a preliminary analysis to

study the impact of concept drift on malware classifiers. We

first focus on binary malware classifiers in this current section.

We will perform the corresponding analysis for multi-class

malware family classifiers later in Section V.

A. Concept Drift Across Different Datasets

To examine potential concept drift, an intuitive way is to

apply classifiers trained on existing (older) datasets to our

(newer) dataset. Presumably, the performance of a classifier

trained on older datasets would have some degradation when

evaluated on newer data due to distribution changes.

Experiment Setup. For Ember and UCSB datasets, we

randomly split the dataset for training and validation (80:20),

and train a Gradient Boosted Decision Tree (GBDT) classifier.

We use the same hyper-parameters adopted in Ember’s GBDT

implementation on Github [5]. For SOREL-20M, training a

classifier from scratch requires extensive computational re-

sources. Instead, we use their pre-trained GBDT model and

their deep neural network (DNN) model. We leverage their

validation set to tune the threshold of the false positive rate.

The testing sets are exclusively provided by our BODMAS

dataset. To show the trend over time, we divide our dataset

into 12 subsets based on time (one set for each month).

The size of each set varies from 6,212 to 12,399 samples.

Similar to previous works [5], [2], [11], we calculate the false

positive rate (FPR) to represent the number of benign samples

misclassified as “malicious”. We also report the commonly

used F1 score to compare the overall performance of each

classifier. To make sure the classifiers are practical, we always

control the false positive rate to a small number during training

(e.g., below 0.1%). As such, we do not report metrics such as

AUC (Area under the ROC Curve) that take consideration of

high-false-positive settings.

Impact of Concept Drift. We train each classifier with

5 random seeds (SOREL-20M also provided 5 pre-trained

models with 5 seeds). Then we report the average results. To

simulate a realistic scenario, we tune the classifiers to control

their false positive rate under 0.1% using their validation sets.

Table II shows the validation performance as well as the testing

performance over time.

For all these classifiers, we observe that all the classifiers

can achieve high F1 scores (under a 0.1% validation FPR) on

their own validation sets. When these classifiers are applied to

our testing sets (more recent data), most of them can maintain

the target FPR (except for a few occasional months). However,

the overall F1 is generally lower than the validation F1,

indicating potential concept drift. The higher FPR of certain

months also indicates potential drift of benign samples.

Not too surprisingly, the classifier trained on the UCSB

dataset shows the largest degradation. The reason is this

is a specialized dataset containing mostly packed/obfuscated

malware, and thus may not generalize well to our testing sam-

ples. Comparing the GBDT classifiers trained on SOREL-20M

and Ember, we find the SOREL-20M classifier (trained on a

much larger dataset) sustains better over time. Surprisingly,

the DNN trained on SOREL-20M performs slightly worse

than the GBDT classifier. Note that both classifiers are pre-

trained by the authors of SOREL-20M [11]. It is possible
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