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We introduce here a multi-type bootstrap percolation
model, which we call 7-Bootstrap Percolation (7-BP),
and apply it to study information propagation in
social networks. In this model, a social network
is represented by a graph G whose vertices have
different labels corresponding to the type of role
the person plays in the network (e.g. a student, an
educator etc.). Once an initial set of vertices of G is
randomly selected to be carrying a gossip (e.g. to
be infected), the gossip propagates to a new vertex
provided it is transmitted by a minimum threshold of
vertices with different labels. By considering random
graphs, which have been shown to closely represent
social networks, we study different properties of
the 7-BP model through numerical simulations, and
describe its implications when applied to rumour
spread, fake news and marketing strategies.

1. Introduction

Most people have struggled at some point to find the
perfect present for their beloved: we hear from our son’s
friends that certain ‘bacteria growing kit" would be fun
for his 10th birthday—but will it actually be safe? Once
we hear from our son’s friends’ parents that the ‘bacteria
growing kit’ is indeed entertaining and safe for that age,
we are close to decided on buying it. Is this recurrent
phenomenon a consequence of a natural instinct that one
has, where having the same information transmitted by
different ‘types” of people inspires more trust? If so, we
naturally wonder:
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Figure 1. Examples of a social network where different colours—labels—describe the types of people within gossip spread.
(Online version in colour.)

How many different types of people (colleagues, friends, taxi drivers etc. as depicted in figure 1)
should we hear a piece of information from, before we start transmitting it as a true fact?

Or equivalently, and concerning marketing strategies,

How many different types of people should recommend to us a service or a product before we buy it,
and begin recommending it ourselves?

Having a clear range for sources of information would allow members of the society to disbelieve
gossips and differentiate fake news. Moreover, understanding this range would also allow the
industry to target wisely a minimum amount of consumers within each type of people, and using
the natural propagating process to continue the marketing on its own.

In this paper, we build a new model of information/disease spread which we then use to
understand the above questions. Our model builds upon the classical Bootstrap Percolation
introduced in [1], but incorporates the concept of different types of members of society. Bootstrap
percolation is a particular class of monotone cellular automata describing an activation process
which follows certain activation rules, and which has been much used to model interactions
within societies. In particular, in the classical r-neighbour bootstrap process on a graph G, a
set A of initially ‘infected” vertices spreads by infecting vertices with at least r already-infected
neighbours (e.g. see [2-7], and also [8-10] for applications to social networks).

In the present manuscript, we shall introduce a multi-type version of bootstrap percolation
which we call a Trusted Bootstrap Percolation or T-Bootstrap Percolation (7-BP) to answer an
equivalent question to those posed above:

How does information percolate when a messenger only passes the information if it has been received
by a number of different sources of certain types?

Social media networks and search engines keep track of news a user and his/her friends
respond positively to, and then use this information to suggest future articles and advertisements.
However, when it comes to news content and discussion of the news, this means one will
increasingly only see material that is in line with one’s stated interests. This worsens issues of
polarization and group-think. To combat this, we could apply the 7-BP to the algorithms which
suggest the news users are shown by adding trust vectors needed to be satisfied before a piece
of news is shown—this would prevent the existence of echo chambers by forcing people to see
information which might cater to multiple sides of the political spectrum. In what follows, we
use 7-BP to numerically understand the spread of gossip in random graphs G simulating social
networks. The simplest form of 7-BP is:

Definition 1.1. Consider a finite or infinite graph G, two natural numbers r,m €N, a vector
k=(k1,..., k) € N" of non-negative numbers for which exactly r of them satisfy k; # 0, and a set
A:= Ay of initially ‘infected” vertices in G. After assigning randomly a label in {1, ...,m} to each
vertex, we define r-bootstrap percolation with trust level k on G as the process in which at each
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time step all of the vertices which have at least k; adjacent vertices infected with label i, for all i,
become infected.

Remark 1.2. One should note that in the above definition, the value of r indicates the number of
different types of people that need to be infected for the disease or gossip to propagate. Moreover,
the least amount of vertices of type i that need to be infected is given by k;.

In what follows, we shall introduce and study the most generic form of 7-BP in §§2—4, and
conclude the paper describing the implications of our results within society in §5. The source files
for our codes and graphs used can be found in [11].

2. Multi-type bootstrap percolation

Given a finite or infinite graph G with vertex set V(G), an integer r € N, and a set A of initially
‘infected” vertices, the classical r-neighbour bootstrap process on G is defined as the process
where, at each time, all of the vertices which have at least r already-infected neighbours become
infected. Hence, one may define the set of infected vertices A; at time t € N as

A1 =ArU{veV(G) : IN(v)N A =1},

where N(v) denotes the set of adjacent vertices to v in G, and |S| denotes the cardinality of the set
S. The present paper is dedicated to a generalization of this model as follows.

In the simplest form of 7-BP described in definition 1.1, at each time f € N, the set of infected
vertices is given by the set

A1 =AU {veV(G) : INj(v)N A =kifori=1,...,m}, (2.1)

where N;(v) denotes the set of adjacent vertices to v in G with label i. The most generic form
of our multi-type bootstrap percolation model is inspired by the concept of an update family i/
from [12].

Definition 2.1 (7-bootstrap percolation). A trust family T :={K',... K"} is a tuple composed
of trust vectors

K=, .  K)enm

Then, we define Trusted Bootstrap Percolation, or T-bootstrap percolation, as the percolation
process for which Ap := A and which, at time t + 1 has infected vertices

A1 =ArU{veV(G) : IKjeT st (2.2)

and .
INi(v) VAl =K, for i=1,...,m). (2.3)

Remark 2.2. We have opted to name our vectors K= (k] S .,k;n) because they indicate the
minimum number of people of each type required in order for a disease to be spread, or for a
gossip to be transmitted. It gives the minimum number of ‘trusted” people which have to believe
the gossip before it can pass across to a new person.

It is important to note that classical r-neighbour bootstrap percolation is a particular case of
T-bootstrap percolation.

Example 2.3. An example of r-neighbour bootstrap is given by 7-bootstrap percolation for the
trust family

T = {KjeN’”

kj:r}. (2.4)

i=1

Specifically, to recover r-neighbour bootstrap percolation with only one label one may consider
m=1,and set T = {K! = ()}.
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When studying 7-BP, it is useful to bear in mind its application to society. For this, in its
simplest form, the above set-up of 7-BP corresponds to considering a society with m different
types of people, and a gossip that spreads only if it is passed by k; number of people of type j. In
the most generic set-up, the requirement for a gossip to spread is given by the existence of at least
one trust vector K for which the gossip can be passed by k; people of type j, for all types j.

Definition 2.4. We shall refer to r-neighbour T-BP when considering a 7-BP model with
exactly r integers K € {0, 1} non-zero.

Example 2.5. Consider 7-BP with m =3, r =2 and k; = 1. In this case, the model can be used
to represent the spread of a political rumour among a society of Democrats, Republicans and
Independents. Labelling the vertices with 1, 2, 3 to represent each political party, suppose that,
in order to limit the spread of biased (and potentially false) information, there exists a rule that
an individual will only believe and pass on the rumour, if he/she heard it from two people with
different political backgrounds. Then, the trust family in this model would be

T= {(1/ 1, 0)/ (1/ 0/ 1)/ (O/ 1/ 1)}/

and this is equivalent 2-neighbour 7-BP with three labels.

3. Immunity to gossip spread

In the following subsections, we shall focus on two forms of T-bootstrap percolation that are of
particular interest considering their proximity to classical bootstrap percolation, as well as their
appearance within the most generic forms of our model: r-neighbour 7-BP, and the simplest 7-
BP, which has single trust vector k. Within the 7-BP, a proportion of the vertices is immune to the
infection: these vertices do not belong to A; for any t € N, and we shall formally define the immune
set by

Ti={veG : VK eT, 3ielml st INW)| <k},

for 7 ={K!,...,K"} the trust family, and Ki= {k7 PR k’m} € N trust vectors as before.

In order to study the 7-BP on G, the vertices in Z need to be removed from G, leading to a
modified graph which sometimes will be disconnected, with some components that might never
become infected. To understand the likelihood of percolation of a 7-BP model and how immune
vertices disrupt percolation on a network, it is useful to introduce the notion of diversity: given
a vertex v € G in a 7-BP model, define the diversity of v as the number D, of different labels that
vertices have:

Dyi=l{ie{l,...,m} : Niv)#%}|. 3.1)

(a) Immunity for r-neighbour 7 -BP

In the case of r-neighbour 7-BP, a vertex is immune if it does not have neighbours of at least r
distinct labels. From the definition of r-neighbour 7-BP, one can see that if a vertex is not immune,
then D, > r. Hence, it is of particular interest to understand which vertices v have D, <7, since

those will comprise all of the immune vertices.

Example 3.1. Returning to example 2.5, if an individual knows only Democrats, then it is
impossible for them to be infected with gossip.

Consider 7-BP on a graph G, and let each vector component k; € {0, 1}. Then, the probability
that a vertex v with [N(v)|=dhas D, <r—1is

P(Dy<r—1)=— RO NP (3.2)
mdjzzl <]> j
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where { 7 } is the Sterling number of the second kind (the reader may refer to appendix A for the

proof of this statement). In particular, when the number of different labels required is equal to the
number of labels that exist, i.e. when m =r, then

122 7! d
P(var—l)zr—dz il (3.3)

=1 /

(b) Immunity for the simplest form of 7-BP

The second form of 7-bootstrap percolation we shall consider is the simplest form of 7-BP in
which there is a single trust vector k = (k, k, . . ., ki). In this setting, given a vertex v with degree
d on a graph G, consider the vector x = (x1, X2, .. ., X;;), where x; = [N;(v)| is the number of adjacent
vertices with label i. In particular, 271:1 x; = d. Moreover, note that a vertex is immune if x; < k; for
some integer i. In this case, the probability of immunity pf (k) for a vertex v with [N(v)| =4 is

A~ k) | =TI k) o
d 1\ d— xy, 1\
dk)y=1- — - ..
PI( & Z: (xm) (m> Z: <xm71 > <m>
xm—km xm—l—km—l
§ d—(Z}lixz)—kl (d o, x[)) <l>xZ (1)d(2}12x1) ]
=, X2 m m '

The reader should refer to appendix B for the proof of the above equation.

Given a 7-BP on a graph G, we shall denote by p;(G,7) the expected fraction of immune
vertices on G, and by p?(7) the probability of immunity for a vertex of degree d with trust family
7. Then, one can show that in a 7-BP on a graph G with degree distribution P(d), one has that the

fraction of immune vertices is
m—1

PG, T) =" PUTIP(). (3.4)

j=0

Example 3.2. For a 7-BP withm=r=2on 72, one has that p?(T) =1/8.

() Immunity for 7"-BP on social networks

In order to understand the implications of 7-BP when modelling rumour spread in social
networks, one needs to consider graphs G which accurately represent society. For this, note that
many networks have a power-law degree distribution [13], which means that the fraction of
vertices in G having degree d is approximately P(d) =d~7 for some constant y € R. For social
networks particularly, y is often around between 2 and 3 (see [13,14]). However, although social
networks are relatively random, graphs known as deterministic hierarchical networks have
power-law degree distributions while also having predetermined configurations, making them
simpler to study. Thus, it becomes very interesting to investigate the 7-BP on a deterministic
hierarchical network with 2 <y < 3. It should be noted that other networks have been shown to
closely represent society (see for instance, those in [15]), and take into consideration many further
characteristics of a social cluster, such as hubs and authorities, which are key in the spread of
information. It would be thus very interesting to expand the present model to such networks,
and we hope to come back to this in future publications.

An example of a deterministic hierarchical network with 2 <y <3 is defined in [16], and
shown in figure 2. To construct it, start with one node, a root node. Add two more nodes and
connect them to the root. At step 1, add 3"~ nodes each, identical to the figure in the previous
iteration (step n — 1) and connect the 2" bottom nodes to the root. The degree exponent for these
graphsis y =1+ In3/In2.
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Figure 2. A hierarchical network as constructed in [16]. (Online version in colour.)

At n iterations there are (2/3)3"~" vertices with degree 2/*1 — 2. Hence, substituting k with
21 _ 2, one can see that there are 2(3"1°8:(c+2)) vertices of degree d at this step. Hence we have
that at n iterations, there are 2(3"108208+2)y vertices of degree d. There are also 3" vertices at n
iterations and thus the probability a vertex has degree d at 1 iterations is 2(d + 2)~ 10823,

The maximum degree of any vertex on this graph is the degree of the root, which at step
n is given by on+l _ o [16]. Hence, this is the upper bound of the summation. To find pj, or
the expected fraction of initially immune vertices on this model with trust family 7, we need
to find the probability of immunity for a vertex with j neighbours and then multiply that by
the probability that a vertex has j neighbours. Finally, taking this product across all possible j
one has that the expected fraction of immune vertices p;(G, 7) for this hierarchical network is
given by

2n+1_p
piG,T)= Y 2(d+2)7"°83{(T). (3.5)
d=1

4. 7 -BP on random networks

When studying a percolation model, one is particularly interested in the critical probability p.
describing the initial probability of infection that would make at last half the graph infected by
the end of the process [2,3]. Since society can be modelled through certain random graphs (when
adding adequate constraints to them), we shall dedicate the next section to the study of 7-BP on
Erdos—-Renyi graphs. In particular, we study the following properties, for which the results are
primarily analytical:

(I) The initial probability of infection p and the critical probability of percolation p;
(II) The fraction A; of infected individuals at time ¢, and the final set of infected vertices Aso
once the percolation process has finished.

Through these properties of the model, one can understand how gossip spreads or how marketing
models based on 7-BP behave. Note that the initial probability of infection p determines the
proportion of society that carries a gossip, or that have originally bought the objects for which
the marketing campaign is being analysed.

In what follows, we shall consider the properties of 7-BP on random networks in terms of
the main variables of the 7-BP model: the time t; the number m of labels a vertex may have, the
number r of different labels the set of infected neighbours must include in order for a vertex to
be infected, and the probability p of having an edge between two vertices. Finally, throughout
this section, for any value requiring multiple trials, we run 100 trials and fix n:= |V(G)| = 10000
vertices. The graphs used were generated using the code in [11], and have an 10 000 nodes and on
average, (10300) * den =4999 500 * den edges. Each node has average degree 10000 * den, where
den represents the fixed density selected when constructing a random network, or the probability
of having an edge between any two given nodes. One can see the computationally derived
distribution of the degrees in the following figure 3:
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Figure 3. Average degree distribution of the random networks considered in the paper, with 1000 nodes and den = 0.2. Plot
made through 100 000 trials. (Online version in colour.)

Throughout the simulations, the immune vertices are disconnected from the network and
considered following the analysis in the previous section, and the model we shall consider, unless
otherwise stated, is r-neighbour 7-BP as defined in definition 2.4.

(a) Variation of the model’s density

The percolation of the 7-BP model depends heavily on the probability p of having an edge
between two vertices. Indeed, one can see that for larger values of p, very low initial probabilities
of infection will lead to the whole network being percolated by the end of the process, this is,
Aso = G. Moreover, there is a clear wall crossing phenomena for the fraction of the graph that
is percolated by the end of the process: a slight shift in p causes a large jump in the fraction
percolated and also the probability of percolation.

An example of the above is given in figure 4. Indeed, figure 4 shows the relationship between
the fraction of a graph that would end up percolated and the initial probability of infection, p. We
considered this for a 7-BP model with m = 3 and r = 2 on Erdos-Renyi graphs with various values
for p. In particular, one can see that for densities p > 0.001, the model is very likely to completely
percolate for any initial probability of infection p > 0.01.

It is interesting to compare the initial probability p to the time the process takes to complete.
Through 100 trials on a model with invariants n =10000, m =3 and r =2, we can confirm what
one would expect: the value of the initial probability p at which the time t is maximized is
normally somewhat close to the value of the critical probability pc, as depicted in figure 5 below.

Example 4.1. Consider the setting of example 2.5, where a society of 10000 people who are
Democrats, Republicans and Independents is modelled through 7-BP with m =3, r=2 and k; €
{0,1}. In this setting, from figure 4 one can see that if people are on average connected to 10
people or more (this is p > 0.001), and more than 100 people initially believe certain gossip (this
is p > 0.01), then very quickly the whole society will carry that gossip. On the other hand, if the
average person only exchanges gossip with five people or less (considering p < 0.0005), even if 300
people initially carried the gossip, the whole society would likely not end up carrying the gossip.
In fact, we would expect less than 2000 people carrying the gossip by the end of the process (this
is, the fraction of the graph percolated would be less than 0.2).

Through our model, one can look at individual curves in graphs as the ones in figure 4, and
determine the critical probability p. for some fixed value for p.
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1.0
0.3 —&— den = 0.0005
—@— den =0.001
0.6
den =0.002
0.4 den =0.003
—@— den = 0.004
0.2 —o— den = 0.005

0.0001 0 001 0.01 1
p (initial probability of 1nfect10n)

fraction percolated

Figure 4. Fraction of the graph percolated as the initial probability of infection p varies, given various values of the density o,
taking the integers n =10 000, m = 3, r = 2. Plot made through 100 trials, and with the horizontal axis on a logarithmic scale.
(Online version in colour.)

25
20
A —@— den = 0.0005
54 15
% —@— den =0.001
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B= den = 0.003
s —@— den = 0.004
@ den = 0.005
0
0.0001 0.001 0.01 1

p (initial probability of 1nfect10n)

Figure 5. Under the same setting of figure 4, a comparison of p and the time the process takes to finish. (Online version in
colour.)

In figure 6, we compare the value of p. to the value of p for a 2-neighbour 7-BP model with
invariants m =3,4. As expected, one can see that the more labels one has (while requiring the
same number of labels to be infected), the higher the critical probability is. In other words,
the more different types of people a society has, the higher the initial probability of carrying a
gossip needs to be in order for more than half the society to believe the gossip by the end of the
process. Moreover, increasing the number of labels required makes the critical probability jump
considerably. In particular, one should compare the blue curve in figure 6 and in figure 7.

Example 4.2. In order to see the importance of the number of non-zero k; a model has, we shall
study a variation of example 2.5. Consider a society of 10000 people who are either Democrats,
Liberals, Independents or Politically Agnostic (hence, having m =4). Suppose that the average
person exchanges gossips with 20 people (this is, such that p = 0.002).
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Figure 6. Variation of p. in terms of the density p form = 3, 4, where r = 2 and the number of vertices is n = 10 000. (Online
version in colour.)
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0.10
0.05

—— —9
0 0.001 0.002 0.003 0.004 0.005 0.006
den

Figure 7. Variation of p, in terms of the density o for m = 4 and r = 3, where the number of vertices is n = 10 000. (Online
version in colour.)

In this setting, if a person only passed a rumour if it had been heard by at least two different
types of people, then at least 25 people would need to carry the gossip initially for it to spread to
half the society or more (since p. ~ 0.0025). By contrast, if one required a rumour to be heard from
at least three different types of people before it could be spread, then the gossip would need to
be initially believed by 250 people for it to spread to half the society or more—this is, an order of
magnitude more people than if we required only two different types of carriers.

(b) Variation of the model’s type

We shall now consider the relationship between the fraction of a graph that would end up
percolated and the initial probability of infection p, while varying the number r of required labels.
As one would expect, a 7-BP model percolates much faster, and to a much larger proportion of
the society, the smaller the number r of types required is, and this is illustrated in figure 8 where
we fixed 1, p and m, and vary the number of labels:
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p (initial probability of infection)

Figure 8. Fraction of the graph percolated in terms of the variation of p for various r, where n = 1000, m = 4 and p = 0.005,
and considering a log scale for the p-axis. (Online version in colour.)

1
0.1
—m—m=5
P ——m=4
0.01
0.001
1 10

r

Figure 9. Variation of p, with respect to r for (m, p) = (4,0.005) and (m, p) = (5, 0.003), for | //(G)] = 10 000, where the
axes follow log scales. (Online version in colour.)

Example 4.3. Similar to example 4.2, consider a town of 1000 people who are either Democrats,
Liberals, Independents or Politically Agnostic (hence, having m =4), but suppose now that
the average person exchanges gossips with 50 people (this is, such that p =0.005). Moreover,
suppose that initially only 20 people believe certain gossip (p =0.02). By requiring someone
to believe the gossip only if it is heard by every type of people, the gossip would not spread
over more than 25% of society. If instead one only required any smaller number of different
types of people, the gossip would always spread over the whole society by the end of the
process.

In figure 9, we plot r against p,, for various pairs of parameters (111, p). As in the previous case,
pe(r) appears to fit a power law curve again, albeit more weakly in some cases. Numerically, one
can see that for a fixed m the probability of percolation p.(r, p) seems to obey a power law in both
variables p and r, suggesting that

pe(r, p) =cf (m)r“t p=,
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Figure 10. Average growth curve (comparing the t to fracer) for graphs with m =3, r =2, n =10000 and o = 0.005.
(Online version in colour.)

where ¢, e1, 7 are all positive constants. Moreover, varying m also affects p., which is why the f (1)
component is present.

We shall finally consider the average growth curve for fixed values of total types m, number of
types required by the model  and density p. In terms of the initial probability of infection, we can
see the growth in figure 10 where we considered the same density as in figures 8 and 9 to allow
for comparison:

Example 4.4. One can see the relevance of figure 10 through the setting of example 2.5. Indeed,
consider a society of Democrats, Republicans and Independents where one believes gossip only if
at least two people from different parties tells it. Then, if originally only 8 people believe a gossip,
by the end of the 7-BP process more than 30% of the society will not believe the gossip. On the
other hand, if two more people believe the gossip originally (hence, having p = 0.001), by the end
of the percolation process all members of the society will believe it.

(c) Comparison to standard bootstrap percolation

In order to study the propagation of an infection or a rumour in a random society, one would
like to consider graphs with realistic densities. For this, recall that Dunbar found in [17] that the
expected number of acquaintances any individual may have is 150. Hence, by consider p = 0.015
with our current model, one can obtain representations of society through Erdos-Renyi graphs
(although it should be noted that the 150 network is not homogeneous but is highly structured,
and thus our model differs from that studied by Dunbar).

In the above setting, one has that a potential application for the 7-BP is in news-suggesting
algorithms on social media: using the 7-BP as opposed to current algorithms could hinder the
spread of fake news. Indeed, one can see the difference of the two models by comparing the
growth of infection on the 7-BP as opposed to on classical r-neighbour bootstrap percolation, for
current news-suggesting algorithms work very similarly to the latter model. As an example, we
compare the average growth on 3-neighbour 5-state 7-BP and on 3-neighbour classical bootstrap
percolation in figure 11.

The process for the 7-BP lasts an entire time step longer, and the growth is more gradual and
a lower fraction of the society is infected by the end. In other words, the 7-BP makes biased
news spread more slowly and to a lesser degree, indicating potential applications in replacing
current news-suggesting algorithms on these social media platforms. Additionally, note the usage
of p =0.015 in these trials, as they are being conducted specifically to determine the potential of
the 7-BP on real social networks.
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Figure 11. Average growth curve for graphs with o = 0.015, n =10 000, p = 0.0015 and (m, r) = (5, 3) (for the 7 -BP) and
then r = 3 (for the classical model). (Online version in colour.)

5. Conclusion

Bootstrap percolation has been used for years to model various percolation processes, with
applications spanning from epidemiology to rumour spreading. The 7-BP model has been
developed to add an extra layer to the current forms of bootstrap percolation, as the vertices
of the graphs on which the infection spreads are now labelled. One should note that while many
models have been developed to understand rumour spread (see [18-24]), these models are very
different to 7-BP, and non of them consider multi-type percolations.

The T-Bootstrap percolation (T-BP model) was originally created to represent the spread
of information based on the basic human instinct to trust information more if it comes from a
variety of sources. This multi-type Bootstrap percolation model can be used to deduce interesting
properties of social networks and their behaviour within different contexts (e.g. rumour spread,
marketing, infection spread, etc.). While it is interesting to analyse the model on arbitrary random
networks, it is of particular interest to consider random networks with plausible sizes and
densities that accurately reproduce society (see [16,25-28]).

In this paper, we considered the hierarchical networks introduced in [16] to described how
immunity to rumour or disease spread appears through a 7-BP model within the network, and
also studied the model on random networks with different densities.! of density between 2 and
3. In particular, we can see the following remarkable behaviours appear:

— Delay in the spread. Infections spread much faster through the classical r-neighbour
bootstrap percolation than via the 7-BP (figure 11);

— Containment of the infection. An infection spreads across a greater percentage of
the population in the classical r-neighbour bootstrap percolation than via the 7-BP
(figure 11);

— Trust vectors. By requiring higher values of r, the percolation of the model is delayed (see
for example, figure 8).

In particular, we can see how effective the 7-BP is in hindering the spread of fake news, and
how by requiring higher levels of trust (higher values of r), gossip would spread more slowly
and to a lesser amount of people. Interestingly within the 7-BP models, some vertices may be
immune, and in this paper, we studied the probability of a vertex being immune. The immunity

1t should be noted that this type of network does not guarantee the small world phenomenon or other aspects of real OSNs,
and thus it would be very interesting to study the model presented in this paper on real OSN graphs which are publicly
available online, such as in the SNAP network dataset collection.
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of a vertex may be determined before the initial infection of the graph even occurs, as it is based
upon a vertex’s degree and the update rule for the graph. The probability p; of immunity was
presented here for the 7-BP as r-bootstrap percolation, the simplest form of 7-BP with only
one trust vector, and 7-BP on the deterministic hierarchical graphs. Moreover, we were able to
estimate the expected number of vertices which will be immune on any particular graph with
these models. We also offer a rather loose lower bound for p,, the critical probability of infection,
based on pj. Finally, we concluded our investigation by looking to random graphs, as these better
represent the irregularities of society, and deriving analytical results on these graphs by running
the 7-BP model on them computationally.

We expect the study of 7-BP models to be of particular interest from many different
perspectives, and we shall conclude this paper mentioning a few of these lines of research which
we plan to investigate in the future:

— Deterministic hierarchical graphs. With views towards applications of the model to
sociology and marketing, and to eventually make the model stochastic by introducing
probability of the infection spreading from one vertex to another.

— Genetic diseases. Dominant X-linked genetic diseases, which are only passed on if both
the male and female parent have the disease, could be modelled by a 7-BP model with
r =2 (alabel for each sex). For recessive X-linked diseases, the model would need to have
three labels—an infected female, a female carrier, and an infected male, and would need
to be stochastic, as the probability of infection from a female carrier and infected male
would only be 1/2.
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Appendix A. The probability of immunity |

Proposition. Consider T-BP on a graph G, and let each vector component kj €{0,1}. Then, the
probability that a vertex v with [N(v)| =d has D, <r —1is

e [GIOIH]

p?(m, r):=PD,<r—-1)= g

7

where { ’;l } is the Stirling number of the second kind.

Proof. We shall prove the above statement through the principle of inclusion and exclusion. In
order to do this, we shall first calculate the probabilities P(D, =1i) fori=1,...,r, and use this to
calculate p? (m, 7).

Given a fixed integer n such that 1 <#n <r — 1, in order to understand P(D,, = n) note that there
are (/) ways to choose the n acceptable labels that the neighbours may have, or in other words,
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ways to choose aset N C {1,...,m} with [N| = n. Once these labels are chosen, the number of onto
functions such that f(N(v)) = N is given by

i(—l)""(’j) (1 — iy, a1
i=0

To see this, begin by noting that each of the d adjacent vertices in N(v) has n possible values for
its label, so there are n functions from N(v) to N. However, not all functions will be different. To
visualize this, consider a Venn diagram where each circle As of the Venn diagram corresponds to
a label s, with 1 <s <m, and is defined as As :={f : N(v) = N : s ¢ N}. For instance, every object
in A will be a possible configuration of neighbours of v such that none of them are of label 1.

All functions which are not surjective to N must appear in some set A; for i € N. Therefore, the
number of onto functions f : N(V) — N is given by

n — | J Al (A2)

ieN

In order to calculate (A 2), recall that by the Principle of Inclusion and Exclusion,
o (02

Uail=>"14i1- > 14in4) (A3)

i=1 i=1 l<i<j<a

o
+ Y JAINANAL + -+ (=D () Ail- (A 4)
1<i<j<k<a i=1

Thus, to find | | J;cp Ail one needs to consider ) |Ay, N---N Ayl for all j such that 1 <j <n, and
x; € N, which is given by

DAXIm---mAx,\=(’]7)<n—j>d, (A5)

since there are (;‘) ways to choose the j labels out of N that the neighbours cannot occupy, and so

there are n — j options for every neighbour’s label. Then, one has that

n
Uai

i=1

- 1:1(_1)"—1'+1 (’Z) (n— iy, (A6)

and thus the number in (A 2) of surjective functions f : N(v) — N is
" (N
> (oo (A7)

i=0

From the above, one can calculate the number of different label assignments that the vertices N(v)
can have, where D, = j: there are (r]”) possibilities for j labels, which multiplied by (A 7) leads to

()5 o
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Equivalently, we can write this as (’7)(] ) { 7 } where { 31 } is the Stirling number of the second kind.
Hence, the number of different label assignments to the graph G for which the diversity D, <r — 1

) g [(’7)0‘!) {f” . (49)

Recalling that there are md possible functions f:N(v) — {1,...,m}, the probability of a vertex
having diversity D, <r — 11is given by

S

P(D, <r—1)= i ,
m

(A 10)

which concludes the proof. |

Appendix B. The probability of immunity ||

Proposition. In a T-BP with k= (ky, ..., ky), the probability of immunity p?(k) for a vertex v with
IN(v)| =d is

d—(T15" k) X | A== (T k) Yo
d 1\ d—x 1\
d m
do=1- Y ()G X GG |
Xm=km m " Xp—1=km—1 Xm—1 "
d— m —k m
§ (21:23:361) 1 (d B (Z;n:B xl)) <l>m (1>d—(21_zx1) s
o X m m
Proof. Let f(a, b, c) be the function defined as
a—(2iz1 br) x | —x—(Tis k) i
a 1\" a—x;\ (1)
revo= 3 ()G | X (6
xi=b; i ¢ Xi—1=bi_1 Xi-1 ¢
”‘(25-23"”"’1 (a e+ x3)> <1>"2 (1)“252’”)
« - z ..
X2 c c !
Xz:bz

where b={b1,by,...,b;} and a,ceN. Then, one can see that p;j=1-—f(d km) for k=
{k1,ko, ..., ki}. Indeed, this can be proven with an inductive argument on the number of available
labels m. For m =2, the vector k= {ky,k;} satisfies k1 + ko <d. We must find the probability of
assigning d vertices to one of 2 labels such that there are at least k; vertices of label 1 and ky of
label 2-this holds when a vertex is not immune, so we must then subtract this from 1. This is
equivalent to saying there may be x; vertices of label 1 such that k; <x1 <d — k, and all other
vertices of label 2. Note that the probability that there are x; vertices of label 1 is:

SIONCEE e

Summing over all possible values for x; varying from k; to d — kp, the overall p; for m =2 and

k= {k1,ky} is found to be:
d—k

T(6EG o2

Note that this equals f(d, {k1, k2},2). Then, the probability of immunity would be

d—ks

EAOIONON
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Now, move on to m = 3 with k = {ky, ko, k3}. We must find the probability of assigning d vertices to
one of three labels such that there are at least k1 vertices of label 1, ky of label 2, and k3 vertices of
label 3. We can approach this with casework.

First, note that there may be x; vertices of label 1 such that ky <x; <d — (ko + k3). Then, take
cases based on the value of x;. Note that given x1, there are d — x; remaining vertices to consider,
with 2 possible labels to assign them to. Now this question is almost the same as the one with
m =2, with the only difference being that the probability a vertex occupies one of these two labels
(2 or 3) is not 1/2, but 1/3. So given x1, the probability that the number of vertices of label 2 is
greater than k, and the number of vertices of label 3 is greater than k3 is just f(d — x1, {ka, k3}, 3).
This means that given x1, the probability that the vertex is initially not immune (do not forget that
we are using complementary counting) is

d 1\
() (3) ra-x k. (B4)
X1 3
Now, as x1 can go from ky to d — (kp + k3), p; for m =3 is:
d-Gatks) 4\ o1\ ®
1= Y (2)G) etk ®5)
X1=k1

Note that this equals f(d, {k1, k2, k3}, 3). Therefore,

P (k1 ko, ka)) =1 — f(d, {k1, k2, K3}, 3)
d—(ka+ks)

—i- Y (9)(3) ra-nei,

X1:k1

which provides the intuition for the inductive step: we must prove that

Pk, . k) =1, k1, ... k), m),

assuming that there exists an i such that p?({kl, o kiy=1—fd, {ky, ..., k}, Q).

To prove the statement by induction, consider m =i+ 1, and let k={ky, ko, ..., ki;+1}. Using
casework as we did for the example where m =3, let the number of vertices of label 1 be
x1€fky,...,.d— Z;S ki}. Then, there are d — xq vertices which must have labels in [i + 1]/{1}.
By the inductive assumption, the probability that they have at least k; vertices of label j is
f(d, {ka, ..., kiy1}, 7). However, note that we must replace the 1/i terms in this formula with 1/(i + 1)
because the probability any individual vertex has a specific label is now 1/(i + 1), meaning that
it is actually f(d, {kp, ..., kit1},i+1). Also, the probability that there are x; vertices of label 1
is (x"z1 )1 /(i +1)", so multiplying these two terms one finds that the probability that a vertex is
initially not immune given that it has x1 neighbours of label 1 is

d 1 \% '
(x1> (i+1> fd the, . ki), i+ 1), ©6)

Since x1 can be anything from k; to d — Z;"'; k;, summing over the possible values of x; and

subtracting this summation from 1 leads to the probability

d_(zgékl) d 1 X1
Ptk ka, . ki) =1— Z ()( )f(d,{kz,-~-,ki+1},i+1)- (B7)

X i+1
X1=k1 1 +

Finally, note that by definition this is simply 1 —f(d,{ki,..., kit+1},i+1). This concludes the
inductive step, and so we have proven that

Ptk ko, .. ki) =1~ fd k1, ... ki), i+ 1),

finalizing the proof. |
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