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Abstract
Machine learning (ML) systems often encounter
Out-of-Distribution (OoD) errors when dealing
with testing data coming from a distribution dif-
ferent from training data. It becomes important
for ML systems in critical applications to ac-
curately quantify its predictive uncertainty and
screen out these anomalous inputs. However,
existing OoD detection approaches are prone to
errors and even sometimes assign higher likeli-
hoods to OoD samples. Unlike standard learning
tasks, there is currently no well established guid-
ing principle for designing OoD detection archi-
tectures that can accurately quantify uncertainty.
To address these problems, we first seek to iden-
tify guiding principles for designing uncertainty-
aware architectures, by proposing Neural Ar-
chitecture Distribution Search (NADS). NADS
searches for a distribution of architectures that
perform well on a given task, allowing us to
identify common building blocks among all
uncertainty-aware architectures. With this for-
mulation, we are able to optimize a stochastic
OoD detection objective and construct an ensem-
ble of models to perform OoD detection. We
perform multiple OoD detection experiments and
observe that our NADS performs favorably, with
up to 57% improvement in accuracy compared to
state-of-the-art methods among 15 different test-
ing configurations.

1. Introduction
Detecting anomalous data is crucial for safely applying ma-
chine learning in autonomous systems for critical applica-
tions and for AI safety (Amodei et al., 2016). Such anoma-
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lous data can come in settings such as in autonomous driv-
ing (Kendall & Gal, 2017; NHTSA, 2017), disease mon-
itoring (Hendrycks & Gimpel, 2016), and fault detection
(Hendrycks et al., 2019b). In these situations, it is impor-
tant for these systems to reliably detect abnormal inputs so
that their occurrence can be overseen by a human, or the
system can proceed using a more conservative policy.

The widespread use of deep learning models within these
autonomous systems have aggravated this issue. De-
spite having high performance in many predictive tasks,
deep networks tend to give high confidence predictions on
Out-of-Distribution (OoD) data (Goodfellow et al., 2015;
Nguyen et al., 2015). Moreover, commonly used OoD
detection approaches are prone to errors and even assign
higher likelihoods to samples from other datasets (Lee
et al., 2018; Hendrycks & Gimpel, 2016).

Unlike common machine learning tasks such as image clas-
sification, segmentation, and speech recognition, there are
currently no well established guidelines for designing ar-
chitectures that can accurately screen out OoD data and
quantify its predictive uncertainty. Such a gap makes Neu-
ral Architecture Search (NAS) a promising option to ex-
plore the better design of uncertainty-aware models (Elsken
et al., 2018). NAS algorithms attempt to find an optimal
neural network architecture for a specific task. Existing ef-
forts have primarily focused on searching for architectures
that perform well on image classification or segmentation.
However, it is unclear whether architecture components
that are beneficial for image classification and segmenta-
tion models would also lead to better uncertainty quantifi-
cation (UQ) and thereafter be effective for OoD detection.

Because of this, it is necessary to tailor the search objec-
tive in order to find the architectures that can accurately
detect OoD data. However, designing an optimization ob-
jective that leads to uncertainty-aware models is also not
straightforward. With no access to labels for OoD data,
unsupervised/self-supervised generative models maximiz-
ing the likelihood of in-distribution data become the pri-
mary tools for UQ (Hendrycks et al., 2019a). However,
these models counter-intuitively assign high likelihoods to
OoD data (Nalisnick et al., 2019a; Choi & Jang, 2018;
Hendrycks et al., 2019a; Shafaei et al.). Because of this,
maximizing the log-likelihood is inadequate for OoD de-
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tection. On the other hand, Choi & Jang (2018) proposed
using the Widely Applicable Information Criterion (WAIC)
(Watanabe, 2013), a penalized likelihood score, as the OoD
detection criterion, showing that it was robust for OoD de-
tection. However, the score was approximated using an en-
semble of models that was trained on maximizing the likeli-
hood and did not directly optimize the WAIC score. In line
with this, previous work on deep uncertainty quantifica-
tion show that ensembles can help calibrate OoD classifier
based methods, as well as improve OoD detection perfor-
mance of likelihood estimation models (Lakshminarayanan
et al., 2017). Based on these findings, one might consider
finding a distribution of well-performing architectures for
uncertainty awareness, instead of searching for a single
best performing architecture, as is typically done in exist-
ing NAS methods.

To this end, we propose Neural Architecture Distribution
Search (NADS) to identify common building blocks that
naturally incorporate model uncertainty quantification and
compose good OoD detection models. NADS searches for
a distribution of well-performing architectures, instead of
a single best architecture, by formulating the architecture
search problem as a stochastic optimization problem. We
optimize the WAIC score of the architecture distribution,
a score that was shown to be robust towards estimating
model uncertainty. By taking advantage of weight sharing
between different architectures, as well as through a par-
ticular parameterization of the architecture distribution, the
discrete search problem for NADS can be efficiently solved
by a continuous relaxation (Xie et al., 2018; Chang et al.,
2019). Using the learned posterior architecture distribu-
tion, we construct a Bayesian ensemble of deep models to
perform OoD detection, demonstrating state-of-the-art per-
formance in multiple OoD detection experiments. Specifi-
cally, our main contributions with NADS include:

• NADS learns a posterior distribution on the architec-
ture search space to enable UQ for better OoD detec-
tion, instead of providing a maximum-likelihood point
estimate to the best model.

• We design a novel generative search space that is in-
spired by Glow (Kingma & Dhariwal, 2018), which is
different from previous NAS methods.

• We use the WAIC score as the reward to guide the ar-
chitecture search and provide a method to estimate this
score for architecture search.

• NADS yields state-of-the-art performance in multiple
OoD detection experiments, making likelihood estima-
tion based OoD detection competitive against multi-
class classifier based approaches. Notably, our method
yields consistent improvements in accuracy among
15 different in-distribution – out-of-distribution test-
ing pairs, with an improvement of up to 57% accuracy

against existing state-of-the-art methods.

2. Background
2.1. Neural Architecture Search

Neural Architecture Search (NAS) algorithms aim to auto-
matically discover an optimal neural network architecture
instead of using a hand-crafted one for a specific task. Pre-
vious work on NAS has achieved successes in image classi-
fication (Pham et al., 2018), image segmentation (Liu et al.,
2019), object detection (Ghiasi et al., 2019), structured pre-
diction (Chen et al., 2018), and generative adversarial net-
works (Gong et al., 2019). However, there has been no
NAS algorithm developed for uncertainty quantificaton and
OoD detection.

NAS consists of three components: the proxy task, the
search space, and the optimization algorithm. Prior work
in specifying the search space either searches for an en-
tire architecture directly, or searches for small cells and ar-
range them in a pre-defined way. Optimization algorithms
that have been used for NAS include reinforcement learn-
ing (Baker et al., 2017; Zoph et al., 2018; Zhong et al.,
2018; Zoph & Le, 2016), Bayesian optimization (Jin et al.,
2018), random search (Chen et al., 2018), Monte Carlo tree
search (Negrinho & Gordon, 2017), and gradient-based op-
timization methods (Liu et al., 2018b; Ahmed & Torresani,
2018; Xie et al., 2018; Chang et al., 2019). To efficiently
evaluate the performance of discovered architectures and
guide the search, the design of the proxy task is critical.
Existing proxy tasks include leveraging shared parameters
(Pham et al., 2018), predicting performance using a surro-
gate model (Liu et al., 2018a), and early stopping (Zoph
et al., 2018; Chen et al., 2018).

To the best of our knowledge, all existing NAS algorithms
seek a single best performing architecture. In comparison,
searching for a distribution of architectures allows us to
analyze the common building blocks that all of the candi-
date architectures have. Moreover, this technique can also
complement ensemble methods by creating a more diverse
set of models tailored to optimize the ensemble objective,
an important ingredient for deep uncertainty quantification
(Lakshminarayanan et al., 2017; Choi & Jang, 2018).

2.2. Uncertainty Quantification and OoD Detection

Prior work on uncertainty quantification and OoD detec-
tion for deep models can be divided into model-dependent
(Lakshminarayanan et al., 2017; Gal & Ghahramani, 2016;
Boluki et al., 2020; Liang et al., 2017), and model-
independent techniques (Dinh et al., 2016; Germain et al.,
2015; Oord et al., 2016). Model-dependent techniques aim
to yield confidence measures p(y|x) for a model’s predic-
tion y when given input data x. However, a limitation
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of model-dependent OoD detection is that they may dis-
card information regarding the data distribution p(x) when
learning the task specific model p(y|x). This could hap-
pen when certain features of the data are irrelevant for the
predictive task, causing information loss regarding the data
distribution p(x). Moreover, existing methods to calibrate
model uncertainty estimates assume access to OoD data
during training (Lee et al., 2018; Hendrycks et al., 2019b).
Although the OoD data may not come from the testing dis-
tribution, this approach assumes that the structure of OoD
data is known ahead of time, which can be incorrect in set-
tings such as active/online learning where new training dis-
tributions are regularly encountered.

On the other hand, model-independent techniques seek
to estimate the likelihood of the data distribution p(x).
These techniques include Variational Autoencoders (VAEs)
(Kingma & Welling, 2013), Generative Adversarial Net-
works (GANs) (Goodfellow et al., 2014), autoregressive
models (Germain et al., 2015; Oord et al., 2016), and in-
vertible flow-based models (Dinh et al., 2016; Kingma &
Dhariwal, 2018). Among these techniques, invertible mod-
els offer exact computation of the data likelihood, making
them attractive for likelihood estimation. Moreover, they
do not require OoD samples during training, making them
applicable to any OoD detection scenario. Thus in this pa-
per, we focus on searching for invertible flow-based archi-
tectures, though the presented techniques are also applica-
ble to other likelihood estimation models.

Along this direction, recent work has discovered that
likelihood-based models can assign higher likelihoods to
OoD data compared to in-distribution data (Nalisnick et al.,
2019a; Choi & Jang, 2018) (see Figure 9 of the supplemen-
tary material for an example). One hypothesis for such a
phenomenon is that most data points lie within the typi-
cal set of a distribution, instead of the region of high like-
lihood (Nalisnick et al., 2019b). Thus, Nalisnick et al.
(2019b) recommend to estimate the entropy using multi-
ple data samples to screen out OoD data instead of using
the likelihood. Other uncertainty quantification formula-
tions can also be related to entropy estimation (Choi &
Jang, 2018; Lakshminarayanan et al., 2017). However, it
is not always realistic to test multiple data points in practi-
cal data streams, as testing data often come one sample at
a time and are never well-organized into in-distribution or
out-of-distribution groups.

With this in mind, model ensembling becomes a natural
consideration to formulate entropy estimation. Instead of
computing the entropy by averaging over multiple data
points, model ensembles produce multiple estimates of the
data likelihood, thus “augmenting” one data point into as
many data points as needed to reliably estimate the entropy.
However, care must be taken to ensure that the model en-

semble produces likelihood estimates that agree with one
another on in-distribution data, while also being diverse
enough to discriminate OoD data likelihoods.

In what follows, we propose NADS as a method that can
identify distributions of architectures for uncertainty quan-
tification. Using a loss function that accounts for the diver-
sity of architectures within the distribution, NADS allows
us to construct an ensemble of models that can reliably de-
tect OoD data.

3. Neural Architecture Distribution Search
Putting Neural Architecture Distribution Search (NADS)
under a common NAS framework (Elsken et al., 2018), we
break down our search formulation into three main compo-
nents: the proxy task, the search space, and the optimiza-
tion method. Specifying these components for NADS with
the ultimate goal of uncertainty quantification for OoD de-
tection is not immediately obvious. For example, naively
using data likelihood maximization as a proxy task would
run into the issues pointed out by Nalisnick et al. (2019a),
with models assigning higher likelihoods to OoD data. On
the other hand, the search space needs to be large enough to
include a diverse range of architectures, yet still allowing a
search algorithm to traverse it efficiently. In the following
sections, we motivate our decision on these three choices
and describe these components for NADS in detail.

3.1. Proxy Task

The first component of NADS is the training objective that
guides the neural architecture search. Different from ex-
isting NAS methods, our aim is to derive an ensemble of
deep models to improve model uncertainty quantification
and OoD detection. To this end, instead of searching for ar-
chitectures that maximize the likelihood of in-distribution
data, which tends to cause models to incorrectly assign
high likelihoods to OoD data, we instead seek architec-
tures that can perform entropy estimation by maximizing
the Widely Applicable Information Criteria (WAIC) of the
training data. The WAIC score is a Bayesian adjusted met-
ric to calculate the marginal likelihood (Watanabe, 2013).
This metric has been shown by Choi & Jang (2018) to
be robust towards the pitfall causing likelihood estimation
models to assign high likelihoods to OoD data. The score
is defined as follows: � � 

WAIC(X) = Eα∼p(α) Ep(x)[log p(x|α)] � � (1)
− Vα∼p(α) Ep(x)[log p(x|α)] 

Here, E[·] and V[·] denote expectation and variance respec-
tively, which are taken over all architectures α sampled
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Figure 1. Search space of a single block in the architecture

from the posterior architecture distribution p(α). Such a
strategy captures model uncertainty in a Bayesian fashion,
improving OoD detection while also converging to the true
data likelihood as the number of data points increases (Gel-
man et al., 2014). Intuitively, minimizing the variance of
training data likelihoods allows its likelihood distribution
to remain tight which, by proxy, minimizes the overlap
of in-distribution and out-of-distribution likelihoods, thus
making them separable.

Under this objective function, we search for an optimal dis-
tribution of network architectures p(α) by deriving the cor-
responding parameters that characterize p(α). Because the
score requires aggregating the results from multiple archi-
tectures α, optimizing such a score using existing search
methods can be intractable, as they typically only consider
a single architecture at a time. Later, we will show how to
circumvent this problem in our optimization formulation.

3.2. Search Space

NADS constructs a layer-wise search space with a pre-
defined macro-architecture, where each layer can have a
different architecture component. Such a search space has
been studied by Zoph & Le (2016); Liu et al. (2018b); Real
et al. (2019), where it shows to be both expressive and scal-
able/efficient.

The macro-architecture closely follows the Glow architec-
ture presented in Kingma & Dhariwal (2018). Here, each
layer consists of an actnorm, an invertible 1 × 1 convolu-
tion, and an affine coupling layer. Instead of pre-defining
the affine coupling layer, we allow it to be optimized by
our architecture search. The search space can be viewed in
Figure 1. Here, each operational block of the affine cou-
pling layer is selected from a list of candidate operations
that include 3 × 3 average pooling, 3 × 3 max pooling,
skip-connections, 3 × 3 and 5 × 5 separable convolutions,

3 × 3 and 5 × 5 dilated convolutions, identity, and zero. We
choose this search space to answer the following questions
towards better architectures for OoD detection:

• What topology of connections between layers is best
for uncertainty quantification? Traditional likelihood
estimation architectures focus only on feedforward
connections without adding any skip-connection struc-
tures. However, adding skip-connections may improve
optimization speed and stability.

• Are more features/filters better for OoD detection?
More feature outputs of each layer should lead to a
more expressive model. However, if many of those fea-
tures are redundant, it may slow down learning, overfit-
ting nuisances and resulting in sub-optimal models.

• Which operations are best for OoD detection? Intu-
itively, operations such as max/average pooling should
not be preferred, as they discard information of the
original data point “too aggressively”. However, this
intuition remains to be confirmed.

3.3. Optimization

Having specified our proxy task and search space, we now
describe our optimization method for NADS. Specifically,
let A denote our discrete architecture search space and
α ∈ A be an architecture in this space. Let lθ∗ (α) be
the loss function of architecture α with its parameters set
to θ∗ such that it satisfies θ∗ = arg minθ l(θ|α) for some
loss function l(·). We are interested in finding a distribution
pφ(α) parameterized by φ that minimizes the expected loss
of an architecture α sampled from it. We denote this loss
function as L(φ) = Eα∼pφ(α)[lθ∗ (α)]. For our NADS, this
loss function is the negative WAIC score of in-distribution
data L(φ) = −WAIC(X).

Several difficulties arise when naively attempting to opti-
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Figure 2. Summary of our architecture search findings: the most likely architecture structure for each block K found by NADS.

mize this setup. Firstly, the objective function involves
computing an expectation and variance over all possible
discrete architectures. We alleviate this problem by approx-
imating the WAIC objective through Monte Carlo sam-
pling. Specifically, we can sample M architectures from
pφ(α) and approximate the WAIC score expectation and
variance terms as " 

N MX X 
WAIC(X) ≈ log p(xi|αj )− 

i=1 j=1 � M �# 
M �X �2 X 

(log p(xi|αj ))
2 − log p(xi|αj ) 

j=1 j=1 

(2)

Despite this approximation, optimizing (2) with respect to
pφ(α), a distribution over high-dimensional discrete ran-
dom variables α, is still intractable, as we would still
need to search for the optimal network parameters for each
newly sampled architecture. To circumvent this, we utilize
a continuous relaxation for the discrete search space, allow-
ing us to approximately optimize the discrete architectures
through backpropagation and weight sharing between com-
mon architecture blocks, as similarly implemented by Xie
et al. (2018) and Chang et al. (2019).

For clarity of exposition, we first focus on sampling an ar-
chitecture with a single hidden layer. In this setting, we
intend to find a probability vector φ = [φ1, . . . , φK ] with
which we randomly pick a single operation from a list of K 
different operations [o1, . . . , oK ]. Let b = [b1, . . . , bK ] de-
note the random categorical indicator vector sampled from
φ, where bi is 1 if the ith operation is chosen, and zero
otherwise. Note that b is equivalent to the discrete archi-
tecture variable α in this setting. With this, we can write
the random output y of the hidden layer given input x as

KX 
y = bi · oi(x). 

i=1 

Gumbel-Softmax reparameterization (Gumbel, 1954; Mad-
dison et al., 2014) as follows:

exp((log(φi) + gi)/τ ) 
b̃i = Pk for i = 1, . . . , K. 

exp((log(φi) + gi)/τ ) j=1 

Here, g1 . . . gk ∼ − log(− log(u)) where u ∼ Unif(0, 1),
and τ is a temperature parameter. For low values of τ , b ˜
approaches a sample of a categorical random variable, re-
covering the original discrete problem. While for high val-
ues, b̃ will equally weigh the K operations (Jang et al.,
2016). Using this, we can compute backpropagation by ap-
proximating the gradient of the discrete architecture α with
the gradient of the continuously relaxed categorical random
variable b̃, as rθ,φα = rθ,φb ≈ rθ,φ b̃. With this back-
propagation gradient defined, generalizing the above set-
ting to architectures with multiple layers simply involves
recursively applying the above gradient relaxation to each
layer. We can gradually remove the continuous relaxation
and sample discrete architectures by annealing the tem-
perature parameter τ , allowing us to perform architecture
search without using a validation set.

3.4. Search Results

We applied our architecture search on five datasets: CelebA
(Liu et al.), CIFAR-10, CIFAR-100, (Krizhevsky et al.,
2009), SVHN (Netzer et al., 2011), and MNIST (LeCun).
In all experiments, we used the Adam optimizer with a
fixed learning rate of 1 × 10−5 with a batch size of 4
for 10000 iterations. We approximate the WAIC score
using M = 4 architecture samples, and set the tempera-
ture parameter τ = 1.5. The number of layers and latent
dimensions is the same as in the original Glow architec-
ture (Kingma & Dhariwal, 2018), with 4 blocks and 32
flows per block. Images were resized to 64 × 64 as in-
puts to the model. With this setup, we found that we are
able to identify neural architectures in less than 1 GPU day
on an Nvidia RTX 2080 Ti graphics card.

To make optimization tractable, we relax the discrete Our findings are summarized in Figure 2, while more sam-
mask b to be a continuous random variable b ˜ using the ples from our architecture search can be seen in Section 3 of

http:architecture.To
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Figure 3. ROC and PR curve comparison of the most challenging evaluation setups for our NADS ensemble. Here, ‘Baseline’ denotes
the method proposed by (Hendrycks & Gimpel, 2016). Subcaptions denote training-testing set pairs. Additional figures are provided in
Section 7 of the supplementary material.

the supplementary material. Observing the most likely ar-
chitecture components found on all of the datasets, a num-
ber of notable observations can be made:

• The first few layers have a simple feedforward struc-
ture, with either only a few convolutional operations or
average pooling operations. On the other hand, more
complicated structures with skip connections are pre-
ferred in the deeper layers of the network. We hypothe-
size that in the first few layers, simple feature extractors
are sufficient to represent the data well. Indeed, recent
work on analyzing neural networks for image data have
shown that the first few layers have filters that are very
similar to SIFT features or wavelet bases (Zeiler & Fer-
gus, 2014; Lowe, 1999).

• The max pooling operation is almost never selected by
the architecture search. This confirms our hypothesis
that operations that discard information about the data
is unsuitable for OoD detection. However, to our sur-
prise, average pooling is preferred in the first layers
of the network. We hypothesize that average pooling
has a less severe effect in discarding information, as it
can be thought of as a convolutional filter with uniform
weights.

• The deeper layers prefer a more complicated structure,
with some components recovering the skip connection
structure of ResNets (He et al., 2016). We hypothesize
that deeper layers may require more skip connections in
order to feed a strong signal for the first few layers. This
increases the speed and stability of training. Moreover,
a larger number of features can be extracted using the
more complicated architecture.

Interestingly enough, we found that the architectures that
we sample from our NADS perform well in image genera-
tion without further retraining, as shown in Section 4 of the
supplementary material.

4. Bayesian Model Ensemble of Neural
Architectures

4.1. Model Ensemble Formulation

Using the architectures sampled from our search, we cre-
ate a Bayesian ensemble of models to estimate the WAIC
score. Each model of our ensemble is weighted accord-
ing to its probability as in Hoeting et al. (1999). The log-
likelihood estimate as well as the variance of this model
ensemble is given as follows:X 

Eα∼pφ(α)[log p(x)] = pφ(α) log p(x|α) 
α∈A 

MX pφ(αi) ≈ PM log p(x|αi) 
pφ(αj ) i=1 j=1 

M � X pφ(αi) Vα∼pφ(α)[log p(x)] ≈ PM V[log p(x|αi)] 
pφ(αj ) i=1 j=1 � 

+ (log p(x|αi))
2 − Eα∼pφ(α)[log p(x)]2 

Intuitively, we are weighing each member of the ensemble
by their posterior architecture distribution pφ(α), a mea-
sure of how likely each architecture is in optimizing the
WAIC score. We note that for our setup, V[log pαi (x)] is
zero for each model in our ensemble; however, for mod-
els which do have variance estimates, such as models that
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Figure 4. Effect of ensemble size to the distribution of WAIC scores estimated by model ensembles trained on different datasets. Larger
ensemble sizes causes the WAIC score likelihood estimate of OoD data to be lower. Additional histograms for different ensemble sizes
in Section 6 of the supplementary material are with higher resolution.

incorporate variational dropout (Gal et al., 2017; Boluki
et al., 2020; Kingma et al., 2015; Gal & Ghahramani,
2016), this term may be nonzero. Using these estimates, we
are able to approximate the WAIC score in Equation (1).

4.2. Ensemble Results

We trained our proposed method on 4 datasets Din:
CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), SVHN
(Netzer et al., 2011), and MNIST (LeCun). In all exper-
iments, we randomly sampled an ensemble of M = 5 
models from the posterior architecture distribution pφ∗ (α) 
found by NADS. We then retrained each architecture for
150000 iterations using Adam with a learning rate of 1 × 
10−5 .

We first show the effects of increasing the ensemble size
in Figure 4 and Section 6 of the supplementary material.
Here, we can see that increasing the ensemble size causes
the OoD WAIC scores to decrease as their correspond-
ing histograms shift away from the training data WAIC
scores, thus improving OoD detection performance. Next,
we compare our ensemble search method against a tradi-
tional ensemble method that uses a single Glow (Kingma &
Dhariwal, 2018) architecture trained with multiple random
initializations. We find that our method is superior for OoD
detection compared to the traditional ensemble method, as
shown in Table 1 of the supplementary material.

We evaluate our NADS ensemble OoD detection method
for screening out samples from datasets that the original
model was not trained on (Dout). For SVHN, we used the

Texture, Places, LSUN, and CIFAR-10 as the OoD dataset.
For CIFAR-10 and CIFAR-100, we used the SVHN, Tex-
ture, Places, LSUN, CIFAR-100 (CIFAR-10 for CIFAR-
100) datasets, as well as the Gaussian and Rademacher
distributions as the OoD dataset. Finally, for MNIST, we
used the not-MNIST, F-MNIST, and K-MNIST datasets.
We compared our method against a baseline method that
uses maximum softmax probability (MSP) (Hendrycks &
Gimpel, 2016), as well as two popular OoD detection meth-
ods: ODIN (Liang et al., 2017) and Outlier Exposure (OE)
(Hendrycks et al., 2019b).

ODIN attempts to calibrate the uncertainty estimates of an
existing model by reweighing its output softmax score us-
ing a temperature parameter and through random pertur-
bations of the input data. For this, we use DenseNet as the
base model as described in Liang et al. (2017). On the other
hand, OE models are trained to minimize a loss regularized
by an outlier exposure loss term, a loss term that requires
access to OoD samples, although they are not required to
be from the tested OoD distribution.

We also show the improvements made by our design of the
search space and the optimization objective by comparing
our method to applying architecture search without taking
these factors into consideration. To do this, we applied neu-
ral architecture search with the goal of maximizing classi-
fication accuracy on in-distribution data. Here, our search
formulation closely follows the Differentiable Architecture
Search (DARTS) method (Liu et al., 2018b). After identi-
fying the optimal architecture, we screen out OoD data us-
ing the maximum softmax probability (MSP) (Hendrycks
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Table 1. OoD detection results on various evaluation setups. We compared our method with MSP (Baseline) (Hendrycks & Gimpel,
2016), NAS following the DARTS search design (DARTS) (Liu et al., 2018b), and Outlier Exposure (OE) (Hendrycks et al., 2019b).

Din Dout 
FPR% at TPR 95% AUROC% AUPR%

Base DARTS OE Ours Base DARTS OE Ours Base DARTS OE Ours

T not-MNIST 10.3 23.07 0.25 0.00 97.2 94.62 99.86 100 97.4 96.81 99.86 100

M
N

IS F-MNIST 61.1 8.29 0.99 0.00 88.8 97.59 99.83 100 90.8 97.06 99.83 100
K-MNIST 29.6 9.37 0.03 0.76 93.6 97.39 97.60 99.80 94.3 96.90 97.05 99.84

Texture 33.9 23.43 1.04 0.07 89.3 94.25 99.75 99.26 86.8 80.98 99.09 97.75
Places365 22.2 16.17 0.02 0.00 92.8 95.74 99.99 99.99 99.7 99.57 99.99 99.99

SV
H

N

LSUN 26.8 16.16 0.05 0.02 88.2 95.44 99.98 99.99 90.4 87.36 99.95 99.99
CIFAR10 23.2 16.82 3.11 0.37 91.1 95.36 99.26 99.92 91.9 87.45 97.88 99.83

SVHN 30.5 19.47 8.41 17.05 89.5 93.58 98.20 97.65 94.9 96.25 97.97 99.07
Texture 39.8 24.25 14.9 0.25 87.7 92.18 96.7 99.81 79.8 83.51 94.39 99.86

10 Places365 36.0 41.64 19.07 0.00 88.1 87.65 95.41 100 99.5 99.42 95.32 100
LSUN 14.6 30.02 15.20 0.44 95.4 90.11 96.43 99.83 96.1 86.88 96.01 99.89

C
IF

A
R

CIFAR100 33.1 35.72 26.59 36.36 88.7 88.43 92.93 91.23 87.7 72.95 92.13 91.60
Gaussian 6.3 11.67 0.7 0.00 97.7 95.55 99.6 100 93.6 87.46 94.3 100

Rademacher 6.9 10.73 0.5 0.00 96.9 95.26 99.8 100 89.7 84.10 97.4 100
SVHN 46.2 53.81 42.9 45.92 82.7 79.30 86.9 94.35 91.3 88.52 80.21 96.01
Texture 74.3 62.49 55.97 0.42 72.6 75.00 84.23 99.76 60.1 57.77 75.76 99.810

10 Places365 63.2 64.91 57.77 0.012 76.2 75.72 82.65 99.99 98.9 98.78 81.47 99.99
LSUN 69.4 56.01 57.5 38.85 83.7 77.57 83.4 90.65 70.1 72.94 77.85 90.61

C
IF

A
R

CIFAR10 62.5 61.62 59.96 45.62 75.8 76.15 77.53 83.27 74.0 71.41 72.82 81.48
Gaussian 29.3 26.70 12.1 0.00 86.5 87.82 95.7 100 66.1 69.05 71.1 100

Rademacher 59.4 16.19 17.1 0.00 51.7 92.05 93.0 100 32.7 73.02 56.9 100

& Gimpel, 2016), a score that gives classification architec-
tures the ability to screen out OoD data.

As shown in Tables 1 and 2 in the supplementary material,
our method outperforms the baseline MSP and ODIN sig-
nificantly while performing better or comparably with OE,
which requires OoD data during training, albeit not from
the testing distribution. Notably, our method was able to
achieve an improvement of 57% FPR on the CIFAR100 –
Places365 setup compared to OE. Comparing the original
architecture used by MSP and the identified architecture by
DARTS, we can see that there is an improvement in OoD
detection performance, however, because the architectures
are not tailored to perform OoD detection, our NADS was
also able to outperform it in our experiments.

We plot Receiver Operating Characteristic (ROC) and
Precision-Recall (PR) curves in Figure 3 and Section 7 of
the supplementary material for more comprehensive com-
parison. In particular, our method consistently achieves
high area under PR curve (AUPR%), showing that we are
especially capable of screening out OoD data in settings
where their occurrence is rare. Such a feature is impor-
tant in situations where anomalies are sparse, yet have dis-
astrous consequences. Notably, ODIN underperforms in
screening out many OoD datasets, despite being able to
reach the original reported performance when testing on
LSUN using a CIFAR10 trained model. This suggests that
ODIN may not be stable for use on different anomalous
distributions.

5. Conclusion
Unlike NAS for common learning tasks, specifying a
model and an objective to optimize for uncertainty esti-
mation and outlier detection is not straightforward. More-
over, using a single model may not be sufficient to ac-
curately quantify uncertainty and successfully screen out
OoD data. We developed a novel neural architecture dis-
tribution search (NADS) formulation to identify a random
ensemble of architectures that perform well on a given
task. Instead of seeking to maximize the likelihood of in-
distribution data which may cause OoD samples to be mis-
takenly given a higher likelihood, we developed a search
algorithm to optimize the WAIC score, a Bayesian adjusted
estimation of the data entropy. Using this formulation,
we have identified several key features that make up good
uncertainty quantification architectures, namely a simple
structure in the shallower layers, use of information pre-
serving operations, and a larger, more expressive structure
with skip connections for deeper layers to ensure optimiza-
tion stability. Using the architecture distribution learned by
NADS, we then constructed an ensemble of models to es-
timate the data entropy using the WAIC score. We demon-
strated the superiority of our method to existing OoD de-
tection methods and showed that our method has highly
competitive performance without requiring access to OoD
samples. Overall, NADS as a new uncertainty-aware archi-
tecture search strategy enables model uncertainty quantifi-
cation that is critical for more robust and generalizable deep
learning, a crucial step in safely applying deep learning to
healthcare, autonomous driving, and disaster response.

http:score.We
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