
App-Agnostic Post-Execution Semantic
Analysis of Android In-Memory Forensics

Artifacts
Aisha Ali-Gombe∗
Towson University, MD
aaligombe@towson.edu

Alexandra Tambaoan
Towson University, MD

atamba1@students.towson.edu

Angela Gurfolino
Towson University, MD

agurfo1@students.towson.edu

Golden G. Richard III
Louisiana State University, LA

golden@cct.lsu.edu

ABSTRACT
Over the last decade, userland memory forensics techniques and al-
gorithms have gained popularity among practitioners, as they have
proven to be useful in real forensics and cybercrime investigations.
These techniques analyze and recover objects and artifacts from
process memory space that are of critical importance in investiga-
tions. Nonetheless, the major drawback of existing techniques is
that they cannot determine the origin and context within which the
recovered object exists without prior knowledge of the application
logic.

Thus, in this research, we present a solution to close the gap
between application-specific and application-generic techniques.
We introduce OAGen, a post-execution and app-agnostic semantic
analysis approach designed to help investigators establish concrete
evidence by identifying the provenance and relationships between
in-memory objects in a process memory image. OAGen utilizes
Points-to analysis to reconstruct a runtime’s object allocation net-
work. The resulting graph is then fed as an input into our semantic
analysis algorithms to determine objects’ origin, context, and scope
in the network. The results of our experiments exhibit OAGen’s
ability to effectively create an allocation network even for memory-
intensive applications with thousands of objects, like Facebook.
The performance evaluation of our approach across fourteen differ-
ent Android apps shows OAGen can efficiently search and decode
nodes, and identify their references with a modest throughput rate.
Further practical application of OAGen demonstrated in two case
studies shows that our approach can aid investigators in the recov-
ery of deleted messages and the detection of malware functionality
in post-execution program analysis.

∗Aisha Ali-Gombe is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC 2020, December 7–11, 2020, Austin, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8858-0/20/12. . . $15.00
https://doi.org/10.1145/3427228.3427244

CCS CONCEPTS
•Applied computing→Evidence collection, storage and anal-
ysis; Data recovery; • Security and privacy → Software reverse
engineering.

KEYWORDS
Userland memory forensics, android, object allocation graph, visu-
alization, semantic analysis
ACM Reference Format:
Aisha Ali-Gombe, Alexandra Tambaoan, Angela Gurfolino, and Golden
G. Richard III. 2020. App-Agnostic Post-Execution Semantic Analysis of
Android In-Memory Forensics Artifacts. In Annual Computer Security Appli-
cations Conference (ACSAC 2020), December 7–11, 2020, Austin, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3427228.3427244

1 INTRODUCTION
Traditionally, the use of memory forensics is adopted by practi-
tioners and the scientific community as an alternative technique
for the carving of volatile data such as passwords from volatile
memory, which otherwise cannot be recovered using traditional
disk forensics. In the last decade, this simplistic idea of string and
textual data carving from raw memory images began to change
dramatically with the advent of memory-resident malware. More
sophisticated semantic analysis capabilities that recover and recon-
struct the state of a system under investigation from the volatile
memory image were developed. Tools, techniques, and algorithms
were designed to inspect operating system structures for traces of
malware and malware effects, construct system and user timelines
of events, perform program inspection, as well as other complex
cybercrime evidence reconstruction [8–10, 13, 18, 22, 24, 26, 30, 40].

The increasing dominance of smartphone usage across the gen-
eral population for everyday communication and data processing
makes them a critical source of evidence in cybercrime investiga-
tions and threat analysis. Thus, beyond traditional computers, the
spatial aspect of memory forensics has been extended to gener-
ally cover mobile devices. Specifically, on Android, the recovery
of the system-wide logs [25] and content providers such as Con-
tacts and SMS [28] are leveraged by investigators to infer user and
program activities. Various other application-specific memory anal-
ysis techniques that recover forensically interesting artifacts from
well-known applications such as Facebook, default messaging apps
and Telegram were also presented in the literature [3, 5, 14, 21, 29].

https://www.acsac.org/2020/submissions/papers/artifacts/
https://doi.org/10.1145/3427228.3427244
https://doi.org/10.1145/3427228.3427244

ACSAC 2020, December 7–11, 2020, Austin, USA Ali-Gombe et al.

Although these techniques are increasingly becoming useful and
often adopted by practitioners to provide forensics evidence, their
methodologies are conceived based on an individual app’s specific
logic. Thus, their resulting recovery algorithm cannot be gener-
alized to other applications or different versions of the same app.
To illustrate this challenge, consider a scenario where a member
of a criminal syndicate is busted, and an Android device is confis-
cated. The mobile device reveals that an in-house encrypted instant
messaging application is installed. The app features an auto-delete
function that destroys messages after a specific time. The forensics
examiners are faced with two important tasks: 1) to examine the
volatile memory for the footprint of any possible evidence, such as
deleted messages; 2) to determine the provenance of the recovered
evidence. Due to the app-specific requirements of the techniques
mentioned above, they cannot be utilized to examine the application
under investigation. Other more established kernel-level memory
forensics frameworks such as Volatility will not be sufficient in this
scenario, primarily because of their practical limitations in recov-
ering application’s concrete execution traces from the recovered
kernel data structures, as discussed in [11].
Recently, there have been some efforts proposed in the literature
to overcome the limitation of recovering valuable forensics evi-
dence directly from userland process spaces. Notably, the work of
[36, 38, 39] developed techniques for application data structure,
GUI, and image reconstruction respectively by training the system
to understand application logic. In [6], researchers proposed a low-
level plugin for user timeline generation based on object allocations.
While these contributions provide a significant improvement in
this area of research, the challenge is they are limited to only the de-
vices modified with the developed plugin or applications in which
logic has been trained. As such, they are not easily deployed in real
investigations. Furthermore, their recovery efforts only applied to
particular scenarios, and are thus too limited in general use cases.

In this paper, we seek to overcome the gap in this spatial aspect
of mobile memory forensics by developing an app-agnostic, post-
execution semantic analysis technique called OAGen, which can be
utilized by investigators for generalized path exploration, context
generation, and overall object scope determination. Unlike existing
methodologies that recover specific artifacts such as images and
activity components, our approach is an app-generic technique
that recreates any application’s concrete runtime activity without
prior knowledge of its execution logic. The goal is to aid analysts
and forensics investigators find valuable evidence and determine
their origin within the app’s allocation trace. Similar to the field of
archaeology, where human activities are determined by recovering
and piecing together material from a culture [47], OAGen leverages
post-mortem Points-to analysis of a process memory image to recre-
ate the runtime’s object allocation network. The resulting graph
network is then used to establish relationships, context, and scope
for object references, field objects, threads, GCRoots, and other An-
droid components. We designed OAGen as an extension to the work
of [2], which introduces the recovery and reconstruction of objects
allocated in the newAndroid Runtime (ART) environment, based on
the current default Android’s Region-based memory management
algorithm. With the limited ability of the tool DroidScraper [1] to
dump the heap content from an Android target process, OAGen uti-
lizes the heap content to recreate an entire allocation network that

occurred at runtime with nodes representing live objects and edges
representing the relationships between objects. Furthermore, we
developed five semantic analysis modules that utilize the object
allocation graph to efficiently find the relationships between objects
of interest and other program components. In summary, this paper
makes the following contributions:

• Development of an app-agnostic userland memory analysis
technique that recovers valuable forensics evidence from a
process’ memory space and establishes provenance for such
evidence using the application’s concrete runtime alloca-
tions.

• Presentation of a a robust algorithm that constructs a net-
work from the runtime allocations with objects as nodes
and the relations between object references as edges in the
graph.

• Development of efficient and effective semantic analysis
modules that explore concrete allocation paths for objects of
interest to determine origin, context, and scope across the
entire network.

We have evaluated the efficiency of OAGen in recreating the allo-
cation network across fourteen different applications. Our results
indicate that OAGen’s throughput efficiency in searching and de-
coding a node, finding all of its references to be approximately
0.19Mbps. Furthermore, utilizing our semantic analysis modules,
OAGen can find the flow path between a source and a destination
or between a target object and other program components. In two
case studies with real applications, we have demonstrated how an
analyst can effectively use our modules to find valuable forensics
evidence as well as to determine the origin of the evidence by find-
ing the relationships amongst objects of interest and establishing
context and scope for those objects within the network. The imple-
mentation of OAGen will be made open source upon publication of
this paper.

The rest of this paper is organized as follows: Section 2 discusses
the background of Points-to analysis and its application in the post-
execution analysis. Section 3 describes the design ofOAGen. Section
4 presents the implementation and evaluation of our approach. This
section also discusses our results, performance, and limitations of
our algorithms. Section 5 presents the literature review, and Section
6 concludes the paper.

2 BACKGROUND
One of the most fundamental design principles of the Android plat-
form is application sandboxing. This concept requires applications
to run and execute in their own runtime environment with minimal
and heavily supervised interprocess communications. The new run-
time environment (ART) is a very rich container that incorporates
all that a process needs to execute. It is responsible for mediating
with the lower-level kernel and the library layer, providing func-
tionality such as thread, heap, and stack creation. In part, it is also
responsible for object allocation and garbage collection. The newer
Android versions use the Region-based memory management algo-
rithm for object allocations. With this algorithm, the ART runtime
instance divides the available memory into equal size regions and
create a RegionSpace object to hold metadata of available regions
of memory. An object is allocated at the top of an available region

App-Agnostic Post-Execution Semantic Analysis of Android In-Memory Forensics Artifacts ACSAC 2020, December 7–11, 2020, Austin, USA

as long as its size does not exceed the region’s end.
Prior work [2, 32, 34, 35, 42] has involved developing techniques
for deconstructing a process memory image and reconstructing the
memory allocation metadata, dumping the heap objects, and decod-
ing the objects. However, the limitation of these approaches is the
developed tools aggregate the allocation, but do not establish the re-
lationships between allocated objects, and therefore they cannot be
used to determine the origin or scope within which an object exists
at runtime. In real investigations, however, identifying the overall
context of an object is required to establish concrete evidence. Thus,
in this work, we seek to utilize the Android memory allocations
mechanism defined in the ART library and deconstructed in [1] and
the Heap-context Points-to analysis proposed by [44] to develop a
robust algorithm for defining relationship paths for allocated ob-
jects in a post-execution process memory dump. To the best of our
knowledge, this is the first work that explores the application of
Heap Context Points-to analysis to recreate an object allocation
network in a post-execution process memory image.

2.1 Points-to Analysis
Pointer analysis was originally developed as a static, compile-time
technique that establishes the relationships between pointer vari-
ables and the memory locations they point to at runtime [45]. In
recent years, researchers have explored different pointer analysis
techniques to address concerns in program examination, security,
and vulnerability analysis [44]. In this paper, we leverage Points-to
analysis as a methodology for exploring and recreating the rela-
tionships between allocated objects and their references within the
post-execution memory image of a process. The resulting relation-
ship network is then utilized for an in-depth semantic analysis.

In OOP, a class defines a template for an abstraction. This tem-
plate can be used to create an instance of the class, which is then
referred to as an object. For example, the Java programming lan-
guage represents complex ideas as objects, and most programs
written in Java create thousands of objects. By design, objects in
Java are created using the new keyword. The statement containing
the new keyword or the function within which an object is created
generally is referred to as the object’s allocation site. Other ob-
jects referred to as the receiver objects are the objects on which
the allocation site’s method is called [33]. These objects are called
the allocator objects. Variables created as objects hold references
or the address location of the object’s definition. Java objects can
range from simple objects with no members to complex objects
with other objects as members. The members defined in an object’s
class template are called fields. A class field is a variable (which
can also be an object) that is part of the class instance’s state or
represents the instance’s context.

To establish the relationship between objects in traditional static
Points-to analysis where tentative references are not known, [44]
defines aHeap-context relation as: a flow path from a1 to a2 signifies
that a1 is the receiver object of the method that made the allocation
of a2, and thus a1 is the allocator of a2.

Applying this concept in post-execution Points-to analysis where
the execution allocation is concrete and object references in the
process image are finite, we will consider every entry in the heap

region to represent an allocation site. Although we may not neces-
sarily know the method that creates the receiver object, from the
Heap-context relation above, we know that an object that holds
the reference to another object is the allocator object. Hence we
can establish a flow path from the allocator to the allocated object.
To determine the context for any allocation site, we will need to
explore its allocator and all of the chain of the allocator’s predeces-
sors. On the other hand, to determine the scope of an object within
a specific program component, we will track the object’s allocation
sites, its references, and its successors’ allocation sites within the
component.

3 SYSTEM DESIGN
This research work proposes a methodology for the post-execution
recreation of object allocation networks and algorithms for effi-
cient semantic analysis of forensically interesting artifacts from
an Android process memory image. OAGen utilizes remnants of
in-memory objects to develop object allocation relations. This rela-
tionship network is further utilized by the semantic algorithms to
aid investigators in identifying tentative object allocation paths and
determining contexts and scopes of objects in a process memory
dump.

3.1 Generating Object Allocation Graph - OAG
To best model the objects’ allocation relations, we represent the
object allocation chain in a graph data structure. Using the Heap-
context Points-to analysis discussed in Section 2, we identify re-
lationships between objects based on their class definitions. We
construct an Object Allocation Graph (OAG) to capture all the object
allocation relations starting with the objects currently allocated in a
heap. Our OAG is an unweighted directed graph of interconnected
nodes and edges 𝐺 = (𝑁, 𝐸), where a node denotes an allocated
object and an edge refers to the relationship between a referenced
and referred object or simply an object allocation relation.

We leverage the HeapDump utility from [1] to create a list of
objects in memory and add these objects as initial nodes to the
graph. HeapDump walks a process heap and identifies entries for
objects in the non-free regions of memory. Due to the sandboxing
mechanism we discussed in Section 2, Android processes create
thousands of objects even for a very small program with few lines
of code. Thus, the output of the HeapDump is fed into the OAG
generator as the initial nodeList.

The generator recursively iterates over each node, decodes its
object, and discovers if the object holds any reference to another
object or if it has any field reference(s). If it does, irrespective of
whether the newly identified reference resides in the heap, stack,
initialized data region, or the code, our algorithms add it to the
nodeList and an edge is then created between the current node and
the new node.

Each node in the OAG has three attributes:

• ID - this represents the object allocation site.
• Label - this represents the object class.
• Data - this represents the value or field values of the ob-
jects. When an object holds a single String or primitive data,

ACSAC 2020, December 7–11, 2020, Austin, USA Ali-Gombe et al.

the Data attribute is represented as a String. When the ob-
ject contains members that are objects or combinations of
objects/primitives, Data is a list with values for each field.

Algorithm 1 illustrates how we create the nodeList and initial
graph generation. The algorithm adds a node to the graph using
the addNode() function with corresponding attributes for ID, Label
and Data. It also iterates over all the initial nodes in the graph to
add edges using the iternodes() function. The function recurseOb-
ject() as shown in Algorithm 2 recursively prunes each node, then
establishes a relation if a reference exists. If a reference does not
exist, the generator adds data and a label to the node and proceeds
to the next node. If a new object is found that is not part of the
initial objects, the recurseObject() function calls the decodeObject()
with the node and heap start addresses as parameters to find the
class, size and the members of the object. Complex objects with
non-primitive members are further deconstructed and the member
references are recovered by walking the heap using the getAllRefs()
function.

Algorithm 1: Illustrating the Initial Phase of Object Allo-
cation Graph (OAG) Generation
1 parameters: String:path
2 nodeList = HeadDump(path)
3 G=Graph(strict=False,directed=True)
4 for node in nodeList do
5 G.addNode(node.id, node.label, node.data)
6 end
7 for node in G.iternodes() do
8 recurseObject(G, node)
9 end

3.2 Semantic Analysis
Semantic analysis is the discovery of meaning in a program [41]. In
post-execution forensics examination and program analysis, iden-
tifying semantic information of data can be crucial in evidence
gathering. Thus, our next research target after the OAG generation
phase is the semantic analysis phase that seeks to find information
about objects of interest. Our aim in this segment is to develop
algorithms that can efficiently aid analysts and investigators in
performing path exploration, identify the scope of an object within
the OAG network, and determine the object’s context. In every
graph, nodes can have successors, predecessors, and neighbors. Par-
ticularly in an OAG, these relations make up the Heap Context for
an object. Each one of these relations could be explored to provide
some form of semantic and contextual information about data of
interest. OAGen’s overarching objective is to develop three algo-
rithms for semantic examinations of paths, contexts, and objects’
scopes, and one search utility function.

3.2.1 Search Utility. It is essential that before we begin to explore
the OAG for semantic information, we have a utility for performing
a simple search for data of interest. This utility is a search engine
that can help analysts understand the value, type, and location
of data within the OAG. The search utility provides options for
dumping all allocated sites for a specific object. This tool supports

Algorithm 2: Recursively Searching and Adding Nodes
and Edges to the Graph
1 parameters: Node:node, Address:heapBegin_
2 decoded = decodeObject(node, heapBegin_)
3 if decoded is String then
4 node.label= "String Class"
5 node.data= decoded
6 else if decoded is Array then
7 if decoded is PrimitiveArray then
8 node.label= "Primitive Array Class"
9 node.data= decoded

10 else if decoded is ObjectArray then
11 node.label= "Object Array Class"
12 arr = getAllRefs(decoded)
13 for x in arr do
14 G.addEdge(node, G.addNode(x, node.id=x))
15 end
16 node.data= decoded
17 else if decoded is Object then
18 node.label= "Object Class"
19 ObjectFields=getAllRefs(decoded)
20 for x in ObjectFields do
21 if x is ref then
22 G.addEdge(node, G.addNode(x, node.id=x))
23 end
24 node.data= decoded

Figure 1: Illustrating path exploration from a source node to
a destination node using edge_disjoint paths with the short-
est augmenting path maximum flow function.

both string value search and other objects’ search using their fully-
qualified Java class names, which can be very handy, especially in
a dense and noisy network. For example, when performing vulner-
ability analysis on an application to detect password persistence,
an examiner might want to search for all the occurrences of the
inputted password in the memory image. This tool can provide the
result, including the memory address of the allocated password.
The object search can be used to lookup objects of interest, such
as HTTPConnection. An analyst can quickly identify where an

App-Agnostic Post-Execution Semantic Analysis of Android In-Memory Forensics Artifacts ACSAC 2020, December 7–11, 2020, Austin, USA

object of interest lies and can use the address as a target for the
semantic analysis techniques. The listing below is a sample output
for the search utility with the string search option “PROFILER”. The
output shows the memory address where each string containing
the word “PROFILER” is allocated in the memory image extracted
for the Android Messaging process.

0x12e1f3b0 String - I AM TESTING PROFILER
0x12e20150 String - PROFILER
0x12ec0760 String - I AM TESTING PROFILER

3.2.2 Path Exploration. This path exploration algorithm estab-
lishes connectivity between two nodes of interest. Given a source
and destination node in the OAG, the path exploration algorithm
finds the maximum flow path using the Edge-disjoint Paths. Klein-
berg and Tardos[27] define Edge-disjoint Paths as:

Given directed graph G = (N, E), and two nodes s and t, k-Edge-
disjoint Paths are paths with no common edge.

The theory of Edge-disjoint Paths also establishes that the number
of Edge-disjoint paths between a source and destination is equal
to the connectivity between the two nodes. Applying this theory
to our OAG, the k-Edge-disjoint Paths between a source allocated
object and a target allocated object will return all the k connected
paths between the source and target. The nodes in each path will
represent all the allocators of the allocators of the target nodes that
are on the path between the source and the target.

We implemented this technique using the Networkx algorithm
for Edge_disjoint_paths [23]. However, due to the density of our
OAGs, returning multiple paths for the path exploration will not
be efficient, thus we overwrite the Edmonds-Karp flow default flow
function with the shortest augmenting path flow path. This is a max-
imum single-commodity flow function that will force the algorithm
to return the shortest of the k paths. Figure 1 is a sample output
for the path exploration between source node - 0x12ec0360 and
destination node - 0x12ec0760 in the OAG of the sample Messaging
process memory image.

3.2.3 Context Determination. An object context defines the state
of an object. As discussed in Section 2, given object allocation
path a1...a3...root, where a1 is an allocator object of a2, a2 is an
allocator object of a3, and so on. [44] argues that the context of the
object a1 is a simple path from a1 to root. This simple definition,
while accurate, limits the understanding of object context in a very
complex architecture like Android. We argue that expanding the
search to incorporate all adjacent edges for each node found in the
path will be beneficial, as demonstrated in Figure 2.

Our context determination algorithm as illustrated in Algorithm
3 starts with a target node and then recursively iterates all of its
predecessors, adding their nodes to the nodeList until it gets to the
topmost root node. We then use the nodeList to get all the edges for
the corresponding nodes in the nodeList from the OAG. Finally, we
create a subgraph with the resulting edgeList, which corresponds
to the broader context of the target object.

The problem of finding the top-most root and expanding edges
can quickly escalate and can lead to scalability problems. Thus,
we recommend a depth value, which represents the maximum
pruning the recursive search will do before returning the last node
as the root node. Figure 2 is a cropped plot that shows the output

Algorithm 3: Algorithm for Context Determination
1 parameters: Node:target, Graph:G
2 nodePred=[target]
3 for n in nodePred do
4 for i in G.iterpred(n) do
5 nodePred.append(n)
6 end
7 end
8 edgeList=G.edges(nodePred)
9 H = G.subgraph(edgeList)

10 return H

of the Context Determination algorithm starting at a target node
0x12ec0760 (String - I AM TESTING PROFILER), with a depth of
10. The subgraph visualizes the relation between adjacent objects
starting at a target node to an identified topmost root node. In
Figure 2, we can see that the expanded context search algorithm
helped us make a connection between the target string and the SQL
query referenced in an adjacent SQLiteStatement. The edges in the
network illustrate further the flows and connectivity between the
nodes. It is also likely that a target object may be referenced bymore
than one object, thus havingmultiple contexts. The expanded search
will merge the multiple contexts and render a larger subgraph that
incorporates all the available contexts.

3.2.4 Object Scope. In OOP, the position at which a variable is
declared determines its scope in a program. For post-execution
analysis, examining the scope of an allocated object can help us
infer further meaning as to why an object may be available in
another context beyond its immediate context. In this task, we
developed an algorithm to examine the scope of a target object
within the boundaries of threads, program components, and its
connectivity to Garbage Collection Roots (GCRoots). This more
extensive search is particularly important when trying to examine
how multiple objects from different sources relate.

Algorithm 4: Algorithm for Object Scope Search
1 parameters: Node:target, Graph:G
2 nodeList = G.getJThreads() || G.getGCRoot() || G.getComponents()
3 for node in nodeList do
4 nodeSuccessors=[node]
5 for n in nodeSuccessors do
6 for i in G.itersucc(n) do
7 nodeSuccessors.append(n)
8 end
9 end

10 H = G.subgraph(nodeSuccessors)
11 if H.has_node(target) then
12 Flow(target, node, H)
13 end

Scope in Threads : At application startup, a Zygote process forks
the new application process, which then creates an instance of the
runtime environment and maps all needed shared libraries. The
runtime instance then creates the main application thread and the

ACSAC 2020, December 7–11, 2020, Austin, USA Ali-Gombe et al.

Figure 2: Illustrating context determination from a target object to a topmost root node with a recursive search depth of ten.

heap object, amongst other components. The runtime adds the
main thread to its thread listing structure and transfers control to
it. At any time during the program execution, new threads may be
created and added to the thread listing.

To find the scope of a target object in the available threads in the
memory image, we walk the thread listing pointer of the runtime
instance and find all the user threads. For each user thread, we find
the instance of java.lang.Thread. The opeer member of a thread ob-
ject holds the reference to the Java thread. Using Algorithm 4, each
Java thread instance from the thread listing is added to a nodeList.
Starting at each Java thread, we recursively search for its successor
nodes and add them to the nodeSuccessors list. When there are no
more nodes to add, we return the nodeSuccessors list and use it to
create a subgraph. Finally, the Path Exploration algorithm is used
to find the flow paths between the target node and the Java thread
node in the new subgraph.

Scope in Program Component : Application components are
a fundamental building block of application development in the
Android platform. The four major Android application components
are Activity, Service, Content Provider, and Broadcast Receiver.

Android maintains a ClientRecord class that holds the record of
all the local running Activities and Content Providers. The runtime
class instance ActivityClientRecord and ProviderClientRecord cor-
responds to single instances of Activities and Content Providers,
respectively. The information about currently activated Services
and Receivers components created by an Intent, on the other hand,
are provided using the ServiceDispatcher and ReceiverDispatcher
objects, respectively. Thus, we created a Component function that
searches the OAG for all the instances of these four classes and
returns their corresponding nodes into a nodeList. Using the nodes
in the nodeList and Algorithm 4, we apply the same steps we used
in finding the scope of a target object in threads to find the scope
of a target object in the Android components.

Scope in Garbage Collection Roots: A special kind of object that
holds references to objects in a heap and can be accessed from out-
side the heap is called the Garbage Collection Root (GCRoot) [12].
GCRoots are crucial objects in the heap allocation chain because
they determine whether an object stays or is disposed of by the
garbage collector. Every GCRoot maintains a retained set of objects
for which each individual or sets of objects are only marked for col-
lection when they cannot be traced back to the GCRoot. In the new
Android Runtime (ART), GCRoots are classified as either global,
local, or weak references.

The runtime environment holds GCRoot references in an Indi-
rect Reference Table -IRT structure. The IRT is a table of pointers
with each entry holding a unique gc-root pointer for a reference. As
part of the runtime instance, two key data structures JavaVM and
JNIEnv are defined to hold the IRT structures for all the available
GCRoots for the process. Every Android process has only one active
JavaVM, which holds the IRT structures for global and weak global
references, while JNIEnv holds IRT structures for the local refer-
ences allocated per thread-local storage. By design, threads needing
to share references must export them as globals. Thus, global ref-
erences tend to stay longer in memory until they are explicitly
deleted, or the process is terminated. To find the scope of a target
object from the GCRoots, we created a GCRoot function that walks
the global IRT structure and creates a list of GCRoot references. We
then utilized Algorithm 4 to find the flow path between a target
object and any of the references in GCRoot.

4 IMPLEMENTATION AND EVALUATION
OAGen is written in Python and implemented as a stand-alone mem-
ory forensics tool. We utilized some of the base-class data structures
for Runtime, Heap, and Thread objects discovered in DroidScraper
[2] to identify these structures and their addresses. OAGen’s im-
plementation has five main components, each implemented as a
module.

The first module is the OAG plugin that takes an Android process
memory image as input and outputs a Python dictionary represent-
ing a directed graph with nodes and edges. Each node in the graph
represents an allocated object, and an edge represents the allocation
relation. The output of the OAG module, which is written to a file,
is used as an input to the other four components. This module has
the option to visualize the graph.

The second module is the Search Utility module that takes the
graph file as input and an option to either dump all strings, search
for a particular string, or search for an object with its fully-qualified
class name.

The third module is the Path Exploration module, which also
takes the graph file as input, together with source and target nodes
(object references). The output consists of all the nodes that existed
in the flow path between source and target. This module also plots
the flow path from source to target.

The fourth module is for context generation. This module also
takes the main graph as input, together with the target object, and
returns a subgraph with all the adjacent nodes along the path of
the target to its topmost root node. The module also has the option
to visualize the subgraph.

App-Agnostic Post-Execution Semantic Analysis of Android In-Memory Forensics Artifacts ACSAC 2020, December 7–11, 2020, Austin, USA

The fifth module is for scope determination. It takes the graph as
input together with the target object and one of the three options
(GCRoot, Threads, Component). It processes the option first and
returns the output in a node list. It then utilizes the path exploration
module to find if a path exists between the target and any of the
nodes in the node list.

4.1 Evaluation
Setup : OAGen is evaluated across fourteen memory images col-
lected from six regular Google Play [20] apps (Facebook, WhatsApp,
Signal, EvolveSMS, Keeper, and Chrome) as representative for dif-
ferent categories, including chat apps, social media and vault apps
and one system app (Messaging). We also added seven malware
samples downloaded from VirusShare [46] to the evaluation as rep-
resentative of malicious applications. We set up a Samsung Galaxy
S8 on Genymotion [19] with emulated GPS location, IMEI, Android
ID, a Gmail account, Contacts, and SMS to simulate an instance
of a real device. The snapshot of this initial setup is referred to
as the clean state. Each app is downloaded, installed, activated,
exercised, and its memory is captured on an instance of a clean
state. We utilized memfetch [49] as a per-process memory capture
utility. However, it is important to note that OAGen can work on a
variety of Android process memory images captured using different
utilities such as Volatility’s Memdump plugin [18], AMD [48] - a
live main memory acquisition method that relies on data in the
recovery partition or PASM [16] - an Android application memory
data acquisition method that uses a system-level data migration
function.

The objectives of our evaluation are mapped directly to the con-
tribution of this work. First, we seek to test the robustness of the
OAG network in generating the relationships in the allocation chain.
Second, we seek to evaluate the effectiveness of the semantic analy-
sis modules in performing analysis. Notably, we want to experiment
with the use of the developed algorithm to explore allocation paths,
find object contexts, and determine the scope of allocated objects.
We demonstrated the application of our approach in post-execution
semantic analysis components in two case studies.

4.1.1 Performance of OAG Generation. In this experiment, we mea-
sure the performance of our algorithm in constructing the OAG
across fourteen process memory images as well as evaluate the
total processing time. We utilized a MacBook Pro with a 2.6GHz
Intel processor and 16GB RAM.

ProcessingTime :As shown in Table 1,WhatsApp (com.whatsapp)
has the largest allocation network with 328,896 nodes and 459,196
edges. com.yxxinglin.xzid has the smallest allocation network, with
about 35,832 nodes and approximately 45,294 edges. The size of the
memory image and the number of allocations linearly increased the
time for the recursive generation of the network. Figure 3 also shows
an increase in processing time as the number of nodes increases,
which also corresponds to increase in the number of edges. For
instance, it takes about 847 minutes to recursively search and add
the 282,120 nodes from a 1733MB Facebook (com.facebook.katana)
memory image and create all the 411,522 edges. As a performance
measure, the throughput of the OAG generation algorithm on our
test machine is approximately 0.19Mbps. This rate represents the

efficiency of our algorithm to recursively search for an allocated ob-
ject in a 0.19MB (185KB) memory image, decode the object, find all
of its references, add them as nodes in the graph, and create edges
between them all in one second. Thus, on our test environment
with 2.6GHz speed and 16GB RAM, we consider this throughput
to be satisfactory. Appendix A provide a visual illustration of a
complete Object Allocation Graph for a test application with 3977
nodes and 6609 edges.

Macro Benchmark : In other to evaluate the robustness of OA-
Gen to accurately add and decode nodes in the OAG, we com-
pare the reconstructed graph against a known ground truth on a
smaller benchmark. Specifically, we chose three sample memory
images with large, medium, and small allocations - com.whatsapp,
com.android.messaging, and com.yandex226.yandex respectively.
We compare the number of nodes added and decoded by OAGen to
the output of the HeapDump utility in DroidScraper as well as the
cumulative total objects count from each heap region as provided
by the objects_allocated_ field in the Android heap region structure.
This macro benchmark result showed that for the same memory,
dump OAGen added 318,632 nodes to com.whatsapp OAG com-
pared to 301,467 recovered objects for DroidScraper and 301,742
from the objects_allocated_ field. For com.android.messaging, OA-
Gen added 106,304 nodes, compared to 90,053 for DroidScraper and
92,046 for the objects_allocated_. In the memory image with much
lower allocations, OAGen recovers 35,528 nodes compared to 10,328
for DroidScraper and 11,172 for objects_allocated_. The reason OA-
Gen recovered and added more nodes than DroidScraper and the
objects_allocated_ is because the Points-to analysis utilized by our
algorithm follows pointer relationships, irrespective of whether
the object resides in the heap, stack, initialized data or the code
section of the memory. The only requirement is that the new object
is referenced by an object that resides in the heap. In addition to the
nodes of the graph, OAGen generated thousands of edges in each
memory image to show the relationships between objects. This is
a unique and novel feature of OAGen that is not available in the
existing tools and literature.

4.1.2 Semantic Analysis - Case Studies. The goal of this experi-
ment is to illustrate the application of OAGen’s semantic analysis
algorithms in real forensics investigations and/or security analysis.

Cyber Crime Investigation : In recent years there has been an
increasing trend by terrorist networks in utilizing end-to-end, fully
encrypted applications as communication channels. In 2017, the
Middle East Media Research Institute published an article that de-
tailed how WhatsApp is specifically gaining popularity amongst
extremist groups and their supporters [43]. From its ease of use
and secure message delivery and storage, extremist groups are
using WhatsApp for messaging and dissemination of news and
propaganda materials.

In this experiment, we created a scenario usingWhatsApp, where
a suspect who has been on the radar was trailed. Furthermore, right
before the suspect was arrested, he sent a WhatsApp message to a
co-conspirator with details about a potential attack. The message
was then deleted almost immediately using the "Delete from Ev-
eryone" option available in the WhatsApp platform. The suspect,

ACSAC 2020, December 7–11, 2020, Austin, USA Ali-Gombe et al.

Table 1: The node- and edge- list of the object allocation graph for the sample applications as generated by OAGen.

Applications Image Size (in Mb) Number of Nodes Number of Edges Processing Throughput
Time (in Minutes) (in Mbps)

com.whatsapp 1338 318632 476586 1025.5 0.03
com.facebook.katana 1733 282120 411522 847 0.04
com.callpod.android_apps.keeper 1237 227776 330240 899.5 0.03
org.thoughtcrime.securesms 1249 150824 229308 381.5 0.06
com.peaksel.gothicwallpapers 1272 128256 183276 206.5 0.11
com.klinker.android.evolve_sms 1208 108248 154014 280 0.08
com.android.messaging 1257 106304 156318 311.5 0.07
com.dd.monkey 1169 80512 116472 133 0.15
com.android.tencent.zdevs.bah 1192 59232 81462 157.5 0.13
com.easyhin.usereasyhin 1192 57504 85212 63 0.32
com.husor.beibei 1211 39320 50964 63 0.33
org.chromium.webview_shell 1289 38560 50070 45.5 0.48
com.yandex226.yandex 1201 38528 49590 56 0.36
com.yxxinglin.xzid 1195 35832 45294 49 0.41

Figure 3: A graph illustrating the linear relationship between the number of nodes generated in each network and the pro-
cessing time per network.

Figure 4: Partial graph showing a broader context of the suspected string content with SQL insert statement, message recipient
and the hash of the message.

App-Agnostic Post-Execution Semantic Analysis of Android In-Memory Forensics Artifacts ACSAC 2020, December 7–11, 2020, Austin, USA

Figure 5: Partial graph showing the SQLiteConnection operation record for the message deletion with the valid message key.

who is willing to give up his life for the cause, refuses to cooperate.
Investigators urgently need to find the message content to stop the
attack as well as use it as admissible evidence in court.

The investigators have a memory imaging utility for Android,
such as [16, 48]. Investigators then begin to process the WhatsApp
process data by generating the OAG of the process memory dump.
After the completion of this initial phase, they then use the Search
Utility with the option to dump all the string objects with their
memory locations. They search through the strings and identified
a couple of chat messages that were not deleted (as evidence from
the correlated chats on disk), but they also found suspected human-
readable content that looks like a message. The content reads, “Tree
of Life, City of Bridges.” They then use the Search Utility again with
the option to search a target string. They found 42 occurrences of the
suspected content. While the text itself may be a red flag, without
knowing its provenance or context within the WhatsApp process,
the investigators don’t know the recipient of the message, and the
simple textual evidence by itself may not be admissible in court.
Thus, to give context to the suspected content, the investigators use
the OAGen’s Context determination option with a depth of 10 to get
one subgraph for each of the 42 instances of the string. More than
half of the 42 subgraphs are within the context of sun.misc.cleaner.
The others were within the context of the program GUI component,
except for one instance for which its broader context includes a
SQL statement that seems to insert suspected chat into the Message
table, as shown in Figure 4. From the graph, we can see that the
insertion is also associated with what seems to be a hash value
(89FF9CDE94B438E76E2D7AE2A967D229).

The investigators use this suspected hash value for the second
round of context generation. They find 51 instances of the hash
value, and only two instances seem viable with more than two
edges associated with them. They explore the broader context and
discover that in one of the instances, the hash was used as part of
the Delete Query Where clause, as shown in a cropped version of
the subgraph plot in Figure 5. Both the suspected chat content and
the hash value in the Delete query are associated with the same
message recipient. Hence, with the semantic analysis capability
provided by OAGen , investigators find the message and prove that
the content was sent by the suspect to his co-conspirator before
it was deleted to destroy the evidence. Unlike existing work that
recovers only the text data, OAGen goes a step further to determine
the origin and context of the evidence within the running process.

The recovered contextual content can be used to stop the attack be-
fore it happened and provide solid evidence for use in court. Given
that the WhatsApp process has allocated more than 350,000 objects
with about 53,000 strings, OAGen was essential for quickly zeroing
in on the important evidence.

Detecting Data Exfiltration :Mobile applications are notorious
for mishandling and misusing private user data. There is docu-
mented evidence that Android malware steals and exfiltrates var-
ious device and user data from mobile devices without consent
[4, 31]. Furthermore, Android malware continuously evades detec-
tion from existing analysis techniques by utilizing various obfusca-
tion mechanisms such as encryption, Java reflection, and dynamic
class loading.

In this case study, we run a 2015 variant of the Plankton mal-
ware that heavily used Java reflection to hide the request for device
and user data. The recreated OAG for the malware process has
128,256 nodes representing the allocated objects and 183,276 edges
for the object relations. For better illustration, we limit this case
study to tracking network-based data exfiltration from the rem-
nants of in-memory objects. We begin the analysis by searching
the graph for the presence of sink objects, which are generally the
containers used to send data across the network. We found four in-
stances of DefaultHttpClient (which is the default implementation
of the HttpClient object) and its associated DefaultClientConnec-
tion object within the scope of the RefQueueWorker thread. Ex-
ploring the path of one of the DefaultHttpClient objects, we found
its HttpParameters and Connectivity manager. Further pruning of
the Client connection using the Context determination algorithm
showed the allocation of a URI object which is associated with a
my.mobfox.com host, a request.php path, an http scheme and a URI
query that consists of different data including 818693586880159, the
device version (8.0.0), build (OPR6.170623.017), etc. To find where
the number 818693586880159 came from, we utilized the String
search utility and found eight instances of the string. Exploring one
of the instances using context determination showed that the string
is allocated at address 0x12d40168, which is in the broader context
of the com.android.internal.telephony.ITelephony$Stub$Proxy at
address 0x12d40158. Thus this showed that the string is the device
IMEI, which by the standard is requested using the Telephony-
Manager.getDeviceId() function. By creating the subgraph of these
allocations, as shown in Appendix B, with URI as the target and

ACSAC 2020, December 7–11, 2020, Austin, USA Ali-Gombe et al.

RefQueueWorker as the thread object using the Scope determina-
tion algorithm with a depth of fifty, an analyst can prove that the
malware did indeed try to steal the device ID.

One may argue that a simple string search may be enough in
some cases to get the query string, but nonetheless, knowing the
provenance and context within which the query string exists is
undoubtedly very important in documenting the malware’s ac-
tion. Besides, even in the absence of the source code, based on the
subgraph alone, the analyst can eliminate the other six instance
methods of the HTTPClient class [17] and establish that the mal-
ware called the execute() function on the HTTPClient object with
a HttpURIRequest parameter. While dynamic analysis techniques
such as TaintDroid [15] have proven effective in tracing data ex-
filtration and can offer similar insights, due to the difficulty in
developing sound taint analysis systems, especially where Java re-
flection and/or the use of dynamic code is involved, these tools are
rarely maintained. As an example, the last revision of TaintDroid
occurred in 2014.

4.1.3 Discussion and Future Work. In this evaluation, we have
shown that OAGen can indeed be of immense benefit to analysts
and investigators in finding evidence with only a post-execution
process memory image. We have shown the robustness of OAGen in
exploring relationship paths, context, and scope, even for a very
dense object allocation network.

In comparison with other userland memory forensics techniques
such as Timeliner[6], which targets the recovery of Android activi-
ties, and GUITAR[36], which targets the reconstruction of Android
GUIs using brute-force signature scanning of the windowing data
structures, OAGen is a more generic and elaborative technique that
goes beyond the reconstruction of a very specific application con-
struct. It provides a flexible approach for analysts to explore and
efficiently prune for different data classes, establishes data prove-
nance, execution flow paths, and the context and scope within
which the data exists. Furthermore, because OAGen is built on an
in-depth understanding of Android’s memory management algo-
rithm, it can find and utilize partial and deallocated data structures
as long as the memory region is not evacuated. This is a very dis-
tinct design difference compared to GUITAR, in which scanning
algorithms conservatively discard objects with partially corrupted
data fields.

Nevertheless, OAGen has some limitations, which as part of
future work, we will implement. Some of these limitations include;

• More tests need to be carried out to explore the effects of
program obfuscation, such as encryption on the network.

• Improvement in OAG generation time. We are working on
better threading and an enhanced recursive algorithm that
will shorten the current OAG generation time.

• We also believe that creating dynamic graphs where nodes
can be explored with a cursor can improve the usability of
this system.

• In order to find a tentative execution path for a program,
we are currently working on recovering program code from
memory and then mapping it to the OAG. This idea will
significantly improve our context and scope determination
algorithms.

• Utilizing machine learning to examine adjacently allocated
objects that have no direct flow to a target may prove useful
in recovering and finding relationships with local variables
and other remote objects.

5 RELATEDWORK
In this paper, we proposed a userland memory forensics technique
that generates a runtime objects’ relationship network from a post-
execution process memory image. Utilizing this relationship graph,
we developed three categories of algorithms for path exploration,
context, and object scope determination that can be employed by
investigators in performing in-depth semantic analysis of a target
memory image.

5.1 Userland Memory Forensics
In 2011, [7] made the argument for the importance of utilizing
data structures recovered from a process runtime environment in
memory forensics. Using the Android Dalvik virtual machine as a
use case, this study demonstrated that it is possible to replicate the
features of the Android framework to find instances of structured
classes and fields from the process memory dump. This line of
argument was further explored by[2, 32, 34, 35, 42] to recover and
reconstruct in-memory forensics artifacts from different runtime
environments that are built using different memory management
algorithms. [32] extended the work of [7] to cover a newer version
of Android DVM. The papers[42] and [2] presented techniques
for the volatile data extraction from the Android runtime (ART)
heap space that is based on the reconstruction of the RosAlloc and
Region-Based memory allocation algorithms. Pridgen et al.[34, 35],
on the other hand, discuss a forensic analysis framework called
RecOOP that works to recover managed memory objects from
the HotSpot Java VM. Built on the premise of these pioneering
studies and in particular [2], we argue that it is not sufficient to
simply recover and reconstruct remnants of data from process
memory. This is mostly because threats from mobile applications
continue to grow, and the data generated from process memory
increases exponentially in size and complexity. For practical and
effective semantic analysis, we will need a more efficient and robust
mechanism to understand the recovered objects’ allocation paths,
program context associated with objects, and the scope within
which the object was manipulated.

Other specialized scenario-based userlandmemory analysis were
published in the works of [6, 36–39]. Saltaformaggio et al., presents
a system called DSCRETE that allows automatic interpretation and
restructuring of data structure contents from process memory us-
ing an already extracted application execution logic for the target
application[39]. This work, while very close in purpose to OAGen ,
however, is application-dependent and requires prior knowledge of
the application execution logic, which is not feasible in some inves-
tigations. Saltaformaggio et al., [36] proposed an app-agnostic GUI
reconstruction methodology. Their system, titled GUITAR, utilizes
the low-level definition of the Android GUI framework for reassem-
bling partial GUIs from the smartphone’s memory image. The same
authors further proposed VCR - a photographic evidence recovery
from mobile device memory image[37]. In 2016, RetroScope was

App-Agnostic Post-Execution Semantic Analysis of Android In-Memory Forensics Artifacts ACSAC 2020, December 7–11, 2020, Austin, USA

presented in [38]. Using spatial-temporal forensics, RetroScope re-
covers and renders previous screens of an Android application from
a mobile device memory image. Like GUITAR, RetroScope requires
no prerequisite knowledge of the application that it is recovering
or reconstructing. In 2018, Bhatia et al. discuss a novel memory
forensics tool that addresses the challenge of the reconstruction of
a timeline of user activity[6]. The authors developed a tool called
Timeliner to reconstruct the past Android Activities of users across
a wide range of applications from a mobile device memory image.
Much like this related work, OAGen is also app-agnostic, however
with an entirely different objective, OAGen is not limited to specific
scenarios. It is generically designed to aid analysts and investiga-
tors to examine the Android post-execution memory image for any
process and can find different allocation paths from different ob-
jects, identify multiple contexts, and determine scopes for different
objects.

Furthermore, much different from the related work, our generic
object allocation network and the semantic analysis algorithms can
be applied in different security and digital forensics examinations,
ranging from user activity exploration in cybercrime investigations,
the identification of malware behavior by retracing object alloca-
tion paths, enumerating execution paths in symbolic and concolic
execution, to data tracing in fuzzing analysis.

6 CONCLUSION
As userlandmemory forensics continues to be a practical and crucial
alternative to kernel-level memory forensics and traditional disk
forensics in mobile program analysis and forensics investigations,
the need to develop better and enhanced techniques cannot be
overemphasized. The limitations of the current state-of-the-art
userland memory forensics approaches to scenario-specific data
recovery, such as images and GUIs, make them inapplicable to a
wide variety of investigations.

Thus, in this paper, we present OAGen - an approach that uses
Heap Context Points-to analysis for post-execution semantic inves-
tigation of an Android process memory image. OAGen creates a
graph of the runtime’s object allocation network (OAG) that repre-
sents the relationships between objects and their allocators. The
implementation establishes objects’ references as nodes and the
relationships between them as edges. Utilizing the OAG for seman-
tic analysis, we developed three algorithms that explore in depth
allocation paths for a target object, identify the object’s broader
context, and determine its scope of execution in the allocation net-
work. OAGen was tested against fourteen different applications.
The results showed that OAGen took an approximate 0.19Mbps
on a modest system to search and decode a node, and locate all
of its references in a process memory image. Further evaluation
of OAGen in two case studies illustrates its practical application
in a post-mortem recovery of deleted messages in the WhatsApp
application and the detection of data exfiltration for a malware
sample.

ACKNOWLEDGMENTS
This work is supported by the National Science Foundation under
Grant Number 1850054.

REFERENCES
[1] Aisha Ali-Gombe. 2019. DroidScraper. https://github.com/apphackuno/

DroidScraper [Online; accessed 10-January 2018].
[2] Aisha Ali-Gombe, Sneha Sudhakaran, Andrew Case, and Golden G Richard III.

2019. DroidScraper: A Tool for Android In-Memory Object Recovery and Recon-
struction. In 22nd International Symposium on Research in Attacks, Intrusions and
Defenses ({RAID} 2019). 547–559.

[3] Aisha Ibrahim Ali-Gombe. 2012. Volatile Memory Message Carving: A" per process
basis" Approach. Master’s Thesis. University of New Orleans, LA.

[4] Aisha I Ali-Gombe, Brendan Saltaformaggio, Dongyan Xu, Golden G Richard III,
et al. 2018. Toward a more dependable hybrid analysis of android malware using
aspect-oriented programming. computers & security 73 (2018), 235–248.

[5] Cosimo Anglano, Massimo Canonico, and Marco Guazzone. 2017. Forensic
analysis of telegram messenger on android smartphones. Digital Investigation 23
(2017), 31–49.

[6] Rohit Bhatia, Brendan Saltaformaggio, Seung Jei Yang, Aisha I Ali-Gombe, Xi-
angyu Zhang, Dongyan Xu, and Golden G Richard III. 2018. Tipped Off by
Your Memory Allocator: Device-Wide User Activity Sequencing from Android
Memory Images.. In NDSS.

[7] Andrew Case. 2011. Memory analysis of the dalvik (android) virtual machine.
Source Seattle.

[8] Andrew Case, Mohammad M Jalalzai, Md Firoz-Ul-Amin, Ryan D Maggio, Aisha
Ali-Gombe, Mingxuan Sun, and Golden G Richard III. 2019. HookTracer: A
System for Automated and Accessible API Hooks Analysis. Digital Investigation
29 (2019), S104–S112.

[9] Andrew Case and Golden G Richard III. 2015. Advancing Mac OS X rootkit
detection. Digital Investigation 14 (2015), S25–S33.

[10] Andrew Case and Golden G Richard III. 2016. Detecting objective-C malware
through memory forensics. Digital Investigation 18 (2016), S3–S10.

[11] Andrew Case and Golden G Richard III. 2016. Memory forensics: The path
forward. Digital investigation (2016), 1–11.

[12] IBM Knowlegge Center. 2015. Garbage collection roots. https:
//www.ibm.com/support/knowledgecenter/en/SS3KLZ/com.ibm.java.
diagnostics.memory.analyzer.doc/gcroots.html

[13] Yoan Chabot, Aurélie Bertaux, Christophe Nicolle, and Tahar Kechadi. 2014.
Automatic timeline construction and analysis for computer forensics purposes.
In 2014 IEEE Joint Intelligence and Security Informatics Conference. IEEE, 276–279.

[14] Jusop Choi, Jaewoo Park, and Hyoungshick Kim. 2017. Forensic analysis of
the backup database file in KakaoTalk messenger. In 2017 IEEE International
Conference on Big Data and Smart Computing (BigComp). IEEE, 156–161.

[15] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014),
1–29.

[16] Peijun Feng, Qingbao Li, Ping Zhang, and Zhifeng Chen. 2019. Private Data
Acquisition Method Based on System-Level Data Migration and Volatile Memory
Forensics for Android Applications. IEEE Access 7 (2019), 16695–16703.

[17] The Apache Software Foundation. 2020. Interface HttpClient.
https://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/
apache/http/client/HttpClient.html [Online; accessed 1-June 2020].

[18] Volatility Foundation. 2017. Volatility Command Reference. https://github.com/
volatilityfoundation/volatility/wiki/Command-Reference#memdump [Online;
accessed 21-March 2018].

[19] Genymotion. 2019. GenymotionDesktop. https://www.genymotion.com [Online;
accessed 10-January 2020].

[20] Google. 2019. Google Play. https://play.google.com/store?hl=en
[21] George Grispos, William Bradley Glisson, and Tim Storer. 2015. Recovering

residual forensic data from smartphone interactions with cloud storage providers.
arXiv preprint arXiv:1506.02268 (2015).

[22] Kristinn Guðjónsson. 2010. Mastering the super timeline with log2timeline. SANS
Institute (2010).

[23] Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure,
dynamics, and function using NetworkX. Technical Report. Los Alamos National
Lab.(LANL), Los Alamos, NM (United States).

[24] Christopher Hargreaves and Jonathan Patterson. 2012. An automated timeline
reconstruction approach for digital forensic investigations. Digital Investigation
9 (2012), S69–S79.

[25] Andrew Hoog. 2011. Android forensics: investigation, analysis and mobile security
for Google Android. Elsevier.

[26] MNA Khan and Ian Wakeman. 2006. Machine learning for post-event timeline
reconstruction. In First Conference on Advances in Computer Security and Forensics,
Liverpool, UK. Citeseer.

[27] Jon Kleinberg and Éva Tardos. 2005. Algorithm Design. Pearson.
[28] Jeff Lessard and Gary Kessler. 2010. Android Forensics: Simplifying Cell Phone

Examinations. (2010).

https://github.com/apphackuno/DroidScraper
https://github.com/apphackuno/DroidScraper
https://www.ibm.com/support/knowledgecenter/en/SS3KLZ/com.ibm.java.diagnostics.memory.analyzer.doc/gcroots.html
https://www.ibm.com/support/knowledgecenter/en/SS3KLZ/com.ibm.java.diagnostics.memory.analyzer.doc/gcroots.html
https://www.ibm.com/support/knowledgecenter/en/SS3KLZ/com.ibm.java.diagnostics.memory.analyzer.doc/gcroots.html
https://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/client/HttpClient.html
https://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/client/HttpClient.html
https://github.com/volatilityfoundation/volatility/wiki/Command-Reference#memdump
https://github.com/volatilityfoundation/volatility/wiki/Command-Reference#memdump
https://www.genymotion.com
https://play.google.com/store?hl=en

ACSAC 2020, December 7–11, 2020, Austin, USA Ali-Gombe et al.

[29] Alex Levinson, Bill Stackpole, and Daryl Johnson. 2011. Third party application
forensics on apple mobile devices. In 2011 44th Hawaii International Conference
on System Sciences. IEEE, 1–9.

[30] Nathan Lewis, Andrew Case, Aisha Ali-Gombe, and Golden G Richard III. 2018.
Memory forensics and the Windows Subsystem for Linux. Digital Investigation
26 (2018), S3–S11.

[31] Yuping Li, Jiyong Jang, Xin Hu, and Xinming Ou. 2017. Android malware cluster-
ing through malicious payload mining. In International Symposium on Research
in Attacks, Intrusions, and Defenses. Springer, 192–214.

[32] Holger Macht. 2013. Live Memory Forensics on Android with Volatility. Friedrich-
Alexander University Erlangen-Nuremberg (2013).

[33] Ana Milanova, Atanas Rountev, and Barbara G Ryder. 2002. Parameterized object
sensitivity for points-to and side-effect analyses for Java. In Proceedings of the
2002 ACM SIGSOFT international symposium on Software testing and analysis.
1–11.

[34] AdamPridgen, SimsonGarfinkel, andDanWallach. 2017. Present but unreachable:
reducing persistentlatent secrets in hotspot jvm. (2017).

[35] Adam Pridgen, Simson Garfinkel, and Dan S Wallach. 2017. Picking up the trash:
Exploiting generational GC for memory analysis. Digital Investigation 20 (2017),
S20–S28.

[36] Brendan Saltaformaggio, Rohit Bhatia, Zhongshu Gu, Xiangyu Zhang, and
Dongyan Xu. 2015. GUITAR: Piecing together android app GUIs from memory
images. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. 120–132.

[37] Brendan Saltaformaggio, Rohit Bhatia, Zhongshu Gu, Xiangyu Zhang, and
Dongyan Xu. 2015. Vcr: App-agnostic recovery of photographic evidence from an-
droid device memory images. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. 146–157.

[38] Brendan Saltaformaggio, Rohit Bhatia, Xiangyu Zhang, Dongyan Xu, and
Golden G Richard III. 2016. Screen after previous screens: Spatial-temporal
recreation of android app displays from memory images. In 25th {USENIX}
Security Symposium ({USENIX} Security 16). 1137–1151.

[39] Brendan Saltaformaggio, Zhongshu Gu, Xiangyu Zhang, and Dongyan Xu. 2014.
{DSCRETE}: Automatic Rendering of Forensic Information fromMemory Images
via Application Logic Reuse. In 23rd {USENIX} Security Symposium ({USENIX}
Security 14). 255–269.

[40] Bradley Schatz, George Mohay, and Andrew Clark. 2004. Rich event represen-
tation for computer forensics. In Proceedings of the Fifth Asia-Pacific Industrial
Engineering and Management Systems Conference (APIEMS 2004), Vol. 2. 1–16.

[41] Michael L. Scott. 2009. The Java Native Interface: Programmer’s Guide and Speci-
fication. Morgan Kaufmann.

[42] Alberto Magno Muniz Soares and Rafael Timóteo de Sousa Jr. 2017. A Technique
for Extraction and Analysis of Application Heap Objects within Android Runtime
(ART).. In ICISSP. 147–156.

[43] Steven Stalinsky and R. Sosnow. 2017. Jihadi Use Of Encrypted Messaging App
WhatsApp. https://www.memri.org/cjlab/jihadi-use-of-encrypted-messaging-
app-whatsapp [Online; accessed 04-April 2020].

[44] Tian Tan, Yue Li, and Jingling Xue. 2016. Making k-object-sensitive pointer anal-
ysis more precise with still k-limiting. In International Static Analysis Symposium.
Springer, 489–510.

[45] Cetus Team. 2004-2011. The Cetus Compiler Manual. ParaMount Research Group,
Purdue University.

[46] VirusShare. 2017. VirusShare.com - Because Sharing is Caring. https://virusshare.
com

[47] Wikipedia. 2020. Archaeology. https://en.wikipedia.org/wiki/Archaeology#cite_
note-Society_for_American_Archaeology-1 [Online; accessed 1-June 2020].

[48] Seung Jei Yang, Jung Ho Choi, Ki Bom Kim, Rohit Bhatia, Brendan Saltaformaggio,
and Dongyan Xu. 2017. Live Acquisition of Main Memory Data from Android
Smartphones and Smartwatches. Digital Investigation 23 (2017), 50–62.

[49] Michal Zalewski. 2003. Memfetch. https://github.com/citypw/lcamtuf-memfetch
[Online; accessed 17-March 2018].

https://www.memri.org/cjlab/jihadi-use-of-encrypted-messaging-app-whatsapp
https://www.memri.org/cjlab/jihadi-use-of-encrypted-messaging-app-whatsapp
https://virusshare.com
https://virusshare.com
https://en.wikipedia.org/wiki/Archaeology#cite_note-Society_for_American_Archaeology-1
https://en.wikipedia.org/wiki/Archaeology#cite_note-Society_for_American_Archaeology-1
https://github.com/citypw/lcamtuf-memfetch

App-Agnostic Post-Execution Semantic Analysis of Android In-Memory Forensics Artifacts ACSAC 2020, December 7–11, 2020, Austin, USA

Appendix A. Object allocation graph for a sample application with 3977 nodes and 6609 edges.

ACSAC 2020, December 7–11, 2020, Austin, USA Ali-Gombe et al.

Appendix B. Partial subgraph showing the broader context of the URI object and its relationship with the DefaultClientCon-
nection.

	Abstract
	1 Introduction
	2 Background
	2.1 Points-to Analysis

	3 System Design
	3.1 Generating Object Allocation Graph - OAG
	3.2 Semantic Analysis

	4 Implementation and Evaluation
	4.1 Evaluation

	5 Related Work
	5.1 Userland Memory Forensics

	6 Conclusion
	Acknowledgments
	References

