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Abstract

In November 1994, a catastrophic flooding event occurred in the Piedmont region in
Northwestern Italy over a period of about 3 days. The large time and spatial scales
associated with this event prompted a number of reanalysis studies to assess the forecast
skill of the models. This paper investigates another forecasting technique using the
Weather Research and Forecasting (WRF) model coupled with post-processing tech-
niques: the analog ensemble (AnEn) and the convolutional neural network (CNN). The
complex topography found in this region presents a challenge for numerical weather
prediction (NWP) models especially for events such as these, where the orography is
crucial in determining the distribution and amount of precipitation. By applying these
post-processing techniques to WRF model output, significant improvements were ob-
served in the accumulated precipitation fields during the flooding event in both tech-
niques, although improvements using the CNN were at the expense of underestimating
the highest precipitation.

Keywords Analog Ensemble - Convolutional neural network - Piedmont flood

1 Introduction

The 1994 Piedmont flood was characterized by 72-h (4-6 November 1994) continuous rainfall
over the Italian region with recorded amounts of about 600 mm of accumulated precipitation in
some locations. Several rivers and creeks in the Po valley devastated cities like Alessandria
with significant damage to the infrastructure and a total of 70 casualties in the region. Several
numerical studies (Ferretti et al. 2000; Rotunno 2001; Cassardo et al. 2002; Buzzi et al. 1998)
showed that the flow interaction with the orography determined the extraordinary rainfall
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amount and its spatial pattern. For a thorough meteorological description of the event, we
direct the reader to Binder (1996), Doswell et al. (1998), and Romero et al. (1998).

In this work, we want to evaluate the performances of high-resolution numerical prediction
models (NWP) such as the Weather Research and Forecasting model (WRF) (Skamarock et al.
2008) coupled with post-processing techniques based on the analog ensemble (AnEn) (Delle
Monache et al. 2013) and convolutional neural networks (CNN) (Nielsen 2015) in
reconstructing the precipitation amounts during the 1994 flood event. It is worth noting that
all these models (WRF, AnEn, and CNN) were not available in 1994. In fact, they have been
developed by the scientific community in the following years and, also, the computational
power available in 1994 would not have allowed the use of NWP at a high-resolution (~3 km)
for operational forecasting in most of the European national weather services. The first novel
aspect of this study is to highlight the level of performances that could be achieved if these
models were adopted back in 1994 and, similarly, if such an event should repeat in the future.

The WRF model (Skamarock et al. 2008) is a popular atmospheric model supported and
developed by the National Center for Atmospheric Research (NCAR) and community contri-
butions. Since its release in 2000, WRF has become one of the most used atmospheric models
in terms of registered users and publications. The model provides a range of Earth system
prediction applications, such as air chemistry, hydrology, wildland fires, hurricanes, and
regional climate (Powers et al. 2017). WRF is a non-hydrostatic model that fully conserves
mass and includes several options of dynamic cores, physical parameterizations, and nesting
designed for the 1-10-km grid scale for research applications and operational forecasting. The
last version (4.1.5) was released on March 10, 2020. The model version used in this study is
version 3.5.1 (released September 23, 2013) which is the model version supported by the
Global Climatology Analysis Tool (GCAT) (NCAR 2020; Alessandrini et al. 2017) used to
run the climatology simulations. In this work, we have used WRF to generate 30-year 24-h
accumulated precipitation fields at 3-km resolution for the months of October and November
over the Italian Piedmont region.

The AnEn approach is an analog-based technique that has been used as a post-processing
scheme and therefore can be considered a model output statistic approach (MOS) for NWP
systems (e.g., Hamill and Whitaker 2006; Delle Monache et al. 2013; Sperati et al. 2017). As
an additional feature when compared with most of the MOS described in the literature, the
AnEn can provide an ensemble or probabilistic forecast of any variable for which an archive of
past observations or analysis values is available. Being that the AnEn in its standard imple-
mentation is based only on deterministic forecasts, it can generate an ensemble with lower
computational effort than what is required for running an NWP dynamical ensemble. Also, the
analog ensemble searches for analog forecasts in an archive dataset and uses the correspondent
verifying observations to build the ensemble forecast. So, the sampling of (analog) ensemble
members is made from the observed distribution, and the corresponding “true” probability
density function is estimated. The AnEn has been used in a wide range of applications ranging
from meteorological predictions (Delle Monache et al. 2013; Sperati et al. 2017), tropical
cyclone intensity forecasts (Alessandrini et al. 2018), air quality predictions (Delle Monache
et al. 2020), and renewable energy forecasting (Alessandrini et al. 2015). The works that are
more strictly related to the current one are Hamill and Whitaker (2006) and Keller et al. (2017).
In the former, the technique is used for precipitation reforecasts generated with a coarse T62
(spectral resolution) version of NCEP’s Global Forecast System. The AnEn showed some
potential to improve precipitation forecasts even though the level of performance was strongly
dependent on the calibration with respect to the set of predictors and neighborhood size. In the
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latter, the AnEn is used to downscale precipitation estimates from a regional reanalysis of 6.2-
km for Europe which was providing the predictors. Some parameters of AnEn, such as the
choice of predictors or the ensemble size, were tuned to optimize the performances. In this
work, we have used the AnEn to improve the precipitation estimate from WRF over the
Piedmont region during the 1994 flood event.

Computational hardware advances, (i.e., graphical processing units), and newly developed
flexible software packages (i.e., Chollet 2015) have inspired recent growth in the field of deep
neural networks (DNNs). DNNs are machine-learning algorithms that consist of several layers
of interconnected nodal points that are activated by nonlinear functions between each layer
(Nielsen 2015). It is the ability of the DNNs to map nonlinear relationships that make them
unique among MOS systems. They have begun to be used as NWP post-processing methods
and have been shown to outperform traditional MOS and ensemble MOS methods (i.e., Lauret
et al. 2014; Rasp and Lerch 2018). CNNs, DNNs which process matrix data rather than nodal
data, expand the spatial scope of the input forecast field by examining non-local spatial
information within the network. CNNs have been making large advances in the atmospheric
science community and have been used to construct complete (although simplified) weather
prediction models (i.e., Dueben and Bauer 2018; Scher 2018; Weyn et al. 2019), make
atmospheric physics discovery (i.e., Toms et al. 2019; Gagne Ii et al. 2019), and post-
process NWP weather forecasts (i.e., Chapman et al. 2019). Additionally, CNNs have been
used to improve precipitation estimation through spatial downscaling (Hsu et al. 2019), and
precipitation nowcasting (Kim et al. 2017). The addition of spatial encoding in CNN MOS
systems adds spatial information not accessed by traditional MOS methods and can therefore
encode non-local weather patterns which aids with the improvement of conditional biases
(Chapman et al. 2019). Like for the AnEn, CNN is also used in this work to improve the
precipitation estimate from WRF over the Piedmont region during the 1994 flood event.

As a consequence, the second novel aspect of this study is to compare a point-based MOS
(AnEn) with a spatial-based MOS (CNN). In fact, the AnEn as implemented in this work is
independently trained only from past forecasts and observations at each grid point. The CNN,
as already mentioned, is trained with past forecasts and observations from the entire grid.
Hence, the correction over a single-grid point can benefit from additional information from the
spatial patterns of the biases rather than being based on the local biases only.

This paper is organized as follows: in Section 2, we describe the observation dataset, and in
Section 3, the meteorological simulations used to build the training dataset. In Section 4, the
two post-processing techniques (AnEn and CNN) are described. In Section 5, the perfor-
mances of WRF, AnEn, and CNN are compared with the conclusions drawn in Section 6.

2 Observation dataset

Observation data were derived from two measurement networks located in Northwestern Italy:
the current telemeasure network of the regional meteorological service ARPA Piemonte
(1988—present) and the Italian legacy system “Servizio Idrografico e Mareografico
Nazionale” mechanical and manual station network (SIMN) from 1913 to 2002. These
combined measurement networks are maintained by the Forecasting Systems Department of
ARPA Piemonte and referred to as the NWIOI dataset (Ronchi et al. 2008). Both of the sensor
networks were subject to quality control measures. Logical checks monitored the consistency
of the data and excluded physically impossible values; a station’s series of measurements were
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compared with surrounding stations, as well as checks for anomalous persistence of a single
value. The number of stations increased dramatically from 119 gauges in the 1950s to 386 in
2009. During the 1994 flooding event, there were about 200 rain gauge stations cumulatively
collecting data between these two networks.

These data sets were interpolated onto a regular grid using an optimal interpolation
technique (Arpa 2010) due to the increasing number and proximity of the stations over the
total collection period from 1957 to 2009. A Voronoi Tessellation was carried out yearly on
active stations to estimate the average two-dimensional radius based on the Tessellation cell
and an approximate circular surface of the cell, which is indicative of the average distance
between the stations throughout the analysis period. This technique makes it possible to
produce a final estimate that is not influenced by extreme values as the number of stations
increases in the analysis. The ultimate result was a gridded data set of temperature and rainfall
values in an optimal 15-km (0.125 °) resolution which best represented the full temporal period
of collections. The domain extends from 44.0 to 46.5 N and 6.5-9.5 E with 297 grid points
residing within the Piedmont administrative territory.

3 Meteorological simulations

The WRF model was run on GCAT, whose development has been supported by the US Army
(Alessandrini et al. 2017), from 1984 to 2013 for a period of 2 months (October 1 00Z-
November 30 00Z) each year using initialization and lateral boundary conditions from the
NOAA (National Oceanic and Atmospheric Administration) Climate Forecast System Reanal-
ysis (CFSR) data set and nudged towards the Global Data Assimilation System (GDAS)
observations. WRF is run with 3 domains centered at 44.909 N, 8.610 E, downscaling the
CFSR 0.5° data set from 30-, 10-, to 3.3-km resolution on the innermost domain and 37 layers
in the vertical up to 50 mb. The model is restarted every 5 days at 00Z and leverages 6-hourly
updated boundary conditions. The WRF ARW (Advanced Research WRF) core used WSM
(WREF single moment) 6-class graupel scheme microphysics, RRTM (rapid radiative transfer
model) and Dudhia long- and short-wave radiation schemes, YSU (Yonsei University)
planetary boundary layer (PBL) scheme, and the Noah land-surface model.

Precipitation data is accumulated from each hour of WRF model output from 12 to 12 UTC
in order to match the accumulated daily precipitation fields from the observations temporally.
The summed daily WRF precipitation totals are then extracted from the nearest WRF grid
point for each gridded observation data point and stored. The 24-h mean of direct WRF
variables U10, V10, surface pressure, and 2-m-temperature are extracted along with relative
humidity, geopotential height, U, V, and temperature interpolated using WRF-Python (Ladwig
2017) to pressure levels 850, 700, and 500 mb and used as input to the post-processing
algorithms, AnEn and CNN.

Given that WRF is driven by reanalysis fields as initial and boundary conditions, the
simulations cannot be considered as forecasts but rather downscaled reanalysis. In fact, in a
forecast simulation, the initial conditions are usually provided by an analysis model, and the
boundary conditions are forecasts from a global forecast model like the NOAA global
forecasting system (GFS) for instance. However, given the accuracy achieved in the recent
years by global model forecasts in the 0—24-h range, the performance of our WRF simulations
can be considered very similar to those achievable by running a 0—24-h forecast. Also, our
approach guarantees to build a 30-year training dataset with a fixed model configuration and a
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stable model error probability density function (PDF). Having a fixed NWP configuration over
a long period is of great advantage when applying any post-processing technique to correct the
NWP output. In terms of the comparison between CNN and AnEn, we believe that the
outcomes of this study are very similar to those we would obtain if an archive of 0-24-h
forecast was used.

4 Post-processing techniques

The 24-h accumulated precipitation (AP) values computed by WRF and AP observations
cover a 30-year period (1984-2013) for the months of October and November and are used to
build the dataset used for the post-processing techniques described hereafter. As a training
dataset, we have used all the years of the 30-year period except for 1994 that is used as a
verification dataset. Even though the AP post-processed estimates are generated for all of the
61 days of October—November 1994, in the following sections, we focus over the period from
12 UTC of November 3 to 12 UTC of November 7 during which the highest precipitation
amounts were recorded in Piedmont.

4.1 The analog ensemble

In this section, we briefly describe the AnEn algorithm introduced by Delle Monache et al.
(2013) for 10-m wind speed and 2-m temperature ensemble predictions and already applied by
Keller et al. (2017) to downscale precipitation reanalysis datasets. The AnEn exploits a dataset
of point forecasts generated by an NWP model and a record of observations at the same point.
In this work, we focus on AP which is the AnEn predict and (the variable to be predicted). The
dataset of forecasts from WREF, besides AP, provides a set of meteorological variables used as
additional predictors for the analog search. In the current work, we have used AP, the 24-h
mean of 2-m temperature (T-2 m), 10-m U and V wind components (U-10, V-10), 700 mb U
and V wind components (U700, V700), the product of the vertical wind velocity and relative
humidity at 700 mb (W700 x RH700) and temperature at 700 mb (T700). We selected these
variables because they were considered to have some relationship with the precipitation
computed by WRF. Except for precipitation itself, which of course is the main predictor, all
the wind components (U-10 and V-10, U700 and V700) are important to determine the
orographic lifting. W700 x RH700 is also important because it can highlight orographic lifting
occurring concurrently with vapor condensation. T700 and T-2 m are helpful to determine the
type of precipitation (snow or rain). We did not use an objective method for the predictor’s
selection. On the other hand, as explained hereafter, we performed a “brute force” optimization
to objectively assess the predictors’ importance (among those selected). Indeed, we understand
that we might have missed some variables which could also have led to some further
improvement in the precipitation post-processing.

In the AnEn construction, the predictors are used to detect a given number of forecasts in
the training dataset similar to the target forecast (the forecast we aim at improving) in the
testing dataset. The corresponding past concurrent verifying AP observations form an ensem-
ble forecast. In this work, we focus on improving the deterministic AP predictions. Hence, we
have used the ensemble mean to generate a single value from the ensemble. The AnEn aims at
detecting cases in the training dataset when the model error PDF (the distribution of the
differences between predicted and observed AP) is similar to the PDF of the target forecast in
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the verification dataset. If such cases are found, then the verifying observations in the
verification dataset and target forecast are sampled from the same PDF.

The degree of similarity between an AP forecast at a given date ¢ and location to the
forecasts in the training dataset at the same location is assessed by computing the distance (D),
which is:

DP,t,ta = ZPWPDt,taa (1)

where

Dy = \/ (Pt_Pta)2 + (Pt—24h—Pm—24h)2 + (Pt+24h_Ptu+24h)27 (2)

and subscripts ¢ and fa represent, respectively, the date of the target forecast and of a
potential analog forecast in the training dataset. In Egs. (1) and (2), P is the value of the
predictor normalized by its standard deviation computed over the training dataset, and wp
is the weight assigned to each predictor. This distance is computed over a time interval
of 3 consecutive days (+ or —24 h) to also consider similar daily trends in the
predictions. As in (Alessandrini et al. 2019), a bias correction for rare events is applied
when the target AP forecast exceeds 20 mm. The 20-mm threshold has been set after
some tuning was carried out over the training dataset (not shown here). Also, in (Delle
Monache et al. 2013), the weights wp were each specified as equal to 1, thus assigning
the same importance to each predictor. Several subsequent works by Alessandrini et al.
(2015) and Junk et al. (2015) have demonstrated that a brute-force weights’ optimization
(which is computationally feasible with a limited number of predictors, as in the current
study) can improve the AnEn performance. Therefore, we have performed a weight
optimization independently at each grid point by choosing the combination that mini-
mizes the root mean squared error (RMSE) over the training dataset. Since only eight
predictors are used, eight corresponding weights can be set. All the possible combina-
tions defined with the constraint Z,ggzle =1, where wpe [0,0.1,0.2, ...,1], are tested for
the AnEn prediction over the training dataset using a leave-one-out approach over the
training period. Specifically, for each day, the AnEn predictions are issued for all
possible combinations of weights using all the remaining days in the training for the
analog search. Therefore, for any grid point of observation dataset, each weight combi-
nation can be evaluated in terms of RMSE, selecting the best one (lowest RMSE) as
previously mentioned.

In Fig. 1, the mean weight for each predictor computed across all the grid points is
depicted. As expected, AP gets the highest weight among the 8 predictors tested that all
end up receiving, on average, positive values. In general, it means that they are all used
to select analogs in the training dataset. The second predictor by importance is V700
receiving an average weight of about 0.2. This weight is consistent with the meridional
wind component determining the extent of the orographic lifting of the wet air masses
coming from the Mediterranean Sea from the South of the Piedmont region. Especially in
the case of meridional winds, the interaction of these air masses with Ligurian Alps
(South of Turin and Alessandria), and with the Alps (North of Turin and Alessandria), is
enhanced. The amount of precipitation and its spatial distribution over the Piedmont
region is strongly dependent on V700 as also highlighted by Rotunno (2001).
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Fig. 1 Mean over all the grid points of the weights received by each predictor after the brute force optimizations
4.2 Convolutional neural networks

Artificial neural networks (ANN) are capable of approximating nonlinear functions and
processes (Nielsen 2015). This approximation is accomplished through a series of feed-
forward matrix operations, which pass input variables through a series of “hidden” model
layers, to a specified output layer. Each layer is described by the number of nodal points in that
layer, with the initial layer being the number of input variables. Nodes from adjacent model
layers are connected via model weights. The hidden nodal point values are determined by the
sum of the product of associated model weights and the input values from the previous layer.
Each nodal point is then “activated” by a nonlinear function (e.g., rectified linear unit (ReLU)
max(0, x)), before passing the variables to the following layer.

Convolutional neural networks (CNN) are a subcategory of ANNs which operate on image
data by training small matrix “kernel weights (w)” which pass over the images and distinguish
relevant image features rather than nodal points; each layer operation thus results in a set of
salient feature maps which are fed to the following layer of the CNN. The task of training a
CNN (ANN) is to discover the optimal convolutional kernel (nodal) weights. The weights are
learned iteratively through backward optimization and gradient descent, in which each itera-
tion seeks to minimize the cost of a specified loss function (L) (e.g., mean squared error
between the CNN output and the target post-processed variable), by determining the gradient
field of the weights (‘31—2”) and taking a small step in the direction opposite this gradient. For
further exploration of CNNss, the reader is directed to Nielsen (2015).

Chapman et al. (2019) showed that CNNs are effective post-processing tools to develop
spatial error relationships and correct bias and conditional biases within a forecast of the
integrated vapor transport field. Here, we adopt a similar method but include multivariate
temporal data in the convolution, and we target precipitation. We input the forecasted variables
into the CNN at 3 consecutive days, in 169 WRF locations, utilizing 9 input forecast variables
(AP, U-10, V-10, and T-2 m, relative humidity, U, V, W, and temperature at 700 mb) as our
input, thus forming a 3 x 169 x 9 variable matrix, which forces a spatio-temporal relationship
to be learned by the convolutional kernels. After two convolutional layers, the salient feature
maps are then flattened and fed into a feed-forward ANN which outputs the post-processed
precipitation forecasts at 169 locations for each of the 3 days (507 output nodes). Observations
are used to determine the loss, as measured by the mean squared error, between the network
output and the observed precipitation. The data description and train/validate/test split can be
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seen in Tables 1 and 2, the data category split is separated by year to allow for temporal
decorrelation between training and testing samples. This data split ensures that model valida-
tion and tuning are done on representative data (validate), and the final model is tested on
independent data (testing) to combat false skills associated with model overfitting.

Table 2 shows the architecture and parameters of the CNN utilized in this study. This
architecture was selected after an extensive hyperparameter search, and the minimum error, as
calculated on the validation data set (Table 2), determined the final network parameters. The
CNN utilizes an Adam optimizer (Kingma and Ba 2015) with a learning rate that decreased
from 0.001 to 5¢76 upon validation plateaus of 5 or more epochs and a batch size of 30. The
network is trained until validation loss plateaus or increases for 10 or more epochs, with the
final configuration training for 30 epochs and the final model weights determined by the
lowest value of validation error. We note that, during training, the validation error showed no
sign of overfitting. Final training, testing, and validation datasets show similar magnitudes of
error. The CNN was designed and trained using the Keras (Chollet 2015) with the TensorFlow
Backend (Abadi et al. 2016) python libraries.

5 Verification

Accumulated daily precipitation totals between the WRF model and the gridded observations
averaged over a period of 30 years display a topographical bias in the Piedmont region.
Complex terrain along the Italian Alps on the Northern and Western border and the Ligurian
Apennines to the South typically receive an increased amount of precipitation than the lower-
lying interior territory. The WRF model correlates well with the gridded observations
exhibiting this same pattern (Fig. 2).

Over a period of 30 years from October 1 12Z to November 29 12Z, mean daily
precipitation differences between the WRF model and the gridded observations display a
slight overprediction within the low-lying interior region while areas of more complex
topography show discrepancies with sharper contrast (Fig. 3). The largest departures from
the observed amount can be seen in the RMSE of the Northern portion of the Piedmont region
and the Southern foothills roughly spanning from Cuneo to East of Genoa.

In Fig. 4, we present the WRF, AnEn, and CNN in terms of bias during the flooding event
between November 3 12Z and 7 12Z, 1994. The WRF model displayed a similar pattern of
overpredicting the precipitation in the Northern and Southern portions of the Piedmont region
and conversely underpredicting in the Southeast (Fig. 4). Within the interior, North—South
streaks of under and over predictions occur which may be due to the timing and position of the
meridional flow. The largest over predictions occurred along the extreme Northern portion of
the domain in the Alps and along the South and Southwestern domain border. The largest
underpredictions occurred within the aforementioned North-South streaks leading into the
Alps and in the Southeast just North of the foothills around Alessandria.

Table 1 Dataset used for CNN

Train Validate Test
Years (Oct 1-Nov 31) 1984-2012 (excluding 1994) 2013 1994
Variables Precipitation, T-2 m, U10, V10, RH700, U700, V700, W700, T700
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Table 2 Architecture of the convolutional neural network used for post-processing precipitation. Input is 3
forecast time steps, in 169 WRF locations, utilizing 9 input forecast variables (precipitation, U10, V10, and 2-m-
temperature, relative humidity, U, V, W, and temperature at 700 mb). Leaky ReLU activation is utilized in every
layer but the final, which is activated via a linear function for the final precipitation metric. The loss is determined
by the mean squared error of the output node and the observed precipitation

Layer Type Input size  Output Parameters
number size

1 Input 3x169x9 3x169x9 —
Conv2D 3x169x9 3x169x6 N.filt (6); kemnel (5, 5); activation: leaky ReLU (alpha=0.2);
batch norm.; dropout (0.2)
3 Max 3x169%x6 1x84x6 Poolsize: (2, 2)
pooli-
ng
4 Conv2D 1x84x6 1x84x12 N.filt (6); kernel (5, 5); activation: leaky ReLU (alpha=0.2);
batch norm.; dropout (0.2)
Flatten 1x84x12 1x512 -
Dense 1x512 1x100 Nodes (100); activation: leaky ReLU (alpa = 0.2); batch norm
Dense 1 x 100 1 x507 Nodes (507): activation: linear
Output  1x507 1x507 Loss (mean squared error); Adam optimizer (0.001)

00 3 N W

The AnEn reduced overpredictions from WRF in the extreme Northern portion of the
domain in the higher elevations of the Italian Alps while exacerbating underpredictions just
South of this in this area leading into the southern foothills of the Alps in the Northwestern
portion of the Piedmont Valley. WRF overpredictions in the Southern Piedmont region and
underpredictions to around Alessandria were reduced to a lesser extent. The interior North-
South streak patterns remain largely unchanged.

The convolutional neural network simulation removed the most significant overpredictions
and replaced them with a large swath of underpredictions in the Alps and meridionally through
the interior region. The largest underpredictions remain in the foothills leading into the Alps to
the North while the underpredictions in the South and Southeast of the domain are essentially
removed.

Each model is evaluated against the gridded observations over the flooding event period,
November 3 12Z-November 7 127, 1994, and during the entire verification dataset from
October 1 12Z to November 29 127, 1994, in terms of scatter diagrams (Fig. 5). The R-
squared coefficient, RMSE, and bias values are also reported. The WRF model tends to
overpredict significantly when compared with gridded observation points which were greater

Obs: 30 Year Daily Mean Precip OCT 1 - NOV 29 (mm)

WRF: 30 Year Daily Mean Precip OCT 1 - NOV 29 (mm)
B —_— S —

445

44.0

7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 7.0 75 8.0 85 9.0

Fig. 2 Thirty-year daily precipitation mean for October 1 12Z-November 29 12Z for gridded observations (left)
and WREF (right). Xs denote the cities of Torino, Alessandria, and Milano from left to right
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WRF - Obs: 30 Year Daily Mean Precip OCT 1 - NOV 29 (mm) RMSE: 30 Year Daily Precip OCT 1 -
e _—

°6
® e
45.5 i 4. L 14
XX
el
45.0 > 12
0
)80 ¢
4.5 = 10
4.0 - "

7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5

Fig. 3 Bias (left) and root mean squared error (right) of WRF against observations of the daily precipitation
computed over a 30-year period from October 1 12Z to November 29 12Z. Xs denote the cities of Torino,
Alessandria, and Milano from left to right

than 100 mm. There is an overpredictive bias during the 2-month simulation period and is
more pronounced during the flooding event. When comparing the observations to the model
estimates resulting from the AnEn, the tendency to significantly overpredict when the gridded
observations display values greater than 100 mm is largely diminished comparatively. Espe-
cially during the flooding event, this reduces the bias considerably. The CNN technique further
removes overpredictions during all types of rainfall events so much that a negative bias
emerges. Precipitation events around 75 mm and greater are increasingly underpredicted the
larger the precipitation total. Overall, the WRF model displays the highest RMSE and an
overprediction bias. AnEn reduces the model bias the most (slightly positive). CNN shows the
lowest RMSE, the highest R-squared value, but still tends to underpredict especially at higher
precipitation totals.

6 Conclusion

In this study, we wanted to explore the potential of two different post-processing techniques to
improve precipitation estimates from an NWP model such as WRF during the 1994 flood
event over the Italian Piedmont region. To this purpose, a 30-year dataset for the months of
October and November for the period 1984-2013 has been built using WRF 24-h accumulated
precipitation (AP) amounts over Piedmont at a resolution of 3 km. WRF simulations have been
driven by NOAA CFSR reanalysis fields used as initial and boundary conditions. The
dataset also includes gridded AP data generated through optimal interpolation techniques from

WRF - OBS: 3 NOV to 7 NOV ACCUMULATED PRECIP (mm)
SR

AnEn - OBS: 3 NOV to 7 NOV ACCUMULATED PRECIP (mm)
300 T 30

CN - 0BS: 3 NOV to 7 NOV ACCUMULATED PRECIP (mm)
PSSl

95 100 105

Fig. 4 Accumulated precipitation difference from observations from November 3 12Z to November 7 12Z, 1994
for WRF (left), analog ensemble (center), and convolutional neural network (right). Xs denote the cities of
Torino, Alessandria, and Milano from left to right
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1994 Oct 1 - Nov 29: WRF vs OBS AnEn vs 0BS CNN vs 0BS

Model (mm)

R2:0.71 R2: 0.79
RMSE: 10.99mm RMSE: 8.87mm
Bias: 0.46mm

R2: 0.65
RMSE: 13.10mm

Bias: 0.64mm Bias: -1.64mm

1994 Nov 3 - 7: WRF vs OBS AnEn vs 0BS CNN vs 0BS

Model (mm)

R2: 0.53 R2: 0.67
RMSE: 32.25mm RMSE: 27.51mm
Bias: 0.10mm Bias: -5.78mm

R2: 0.48
RMSE: 44.43mm
Bias: 2.98mm

obs. () obs.(m) obs (mm)

Fig. 5 Scatter diagrams of simulated WRF daily precipitation totals against observations for WRF (left), AnEn
(center), CNN (right) from October 1 12Z to November 29 12Z, 1994 (top), and November 3 127-7 12Z, 1994
(bottom). R-squared value, RMSE, and bias are also reported

the observed values of the Piedmont station network by the Forecasting Systems Department
of ARPA Piemonte and referred to as the NWIOI dataset (Ronchi et al. 2008).

Climatologically, the WRF model has a tendency to underpredict accumulated daily
precipitation in the interior Po valley of the Piedmont region of Northwestern Italy while
more significantly overpredicting in the extreme Northern portion of the region in the Italian
Alps. Specifically, the focus of this paper is the performance around a significant flooding
event that occurred from November 3 127 to 7 12Z, 1994, which had displayed unprecedented
precipitation rates in the region, largely found in the complex topography surrounding the
interior valley. Two different post-processing techniques were applied to the flood case to
improve the precipitation results. The point-based AnEn and the grid-based CNN were able to
reduce these large overprediction differences between the Piedmont rainfall observation
network and the WRF model. Both techniques significantly improve the root mean squared
error (RMSE) and the correlation of the precipitation fields with respect to WRF. However, the
AnEn retained the properties of the exceptional nature of the event while the CNN introduces a
strong underprediction bias conditional to observations, with an increasing underprediction for
larger observed precipitation values. In fact, the CNN technique reduced the WRF
overpredictions and smoothed out the local precipitation minima and maxima compared with
the results of the AnEn and WREF.

In particular, the AnEn reduced the large overpredictions found locally in WRF in the
extreme Northern portion of the Piedmont region which was surrounded by strong
underpredictions, while the CNN seemed to spread the surrounding underpredictions possibly
due to the use of spatial correlations among errors in this area. Even though this study has used
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a reanalysis precipitation dataset obtained through a dynamic downscaling with an NWP, we
expect similar results in terms of relative performances between the AnEn (point-based) and
CNN (grid-based) model output statistics techniques if these techniques were applied to
forecast precipitation data. In that case, a dataset with NWP forecast data would be needed
instead of a reanalysis dataset for the training. Hence, this study demonstrates the potential of
these post-processing techniques to improve NWP precipitation estimates in case of a future
flood event in the Piedmont region.

In terms of computational resources, both the AnEn and CNN techniques can run in less
than a minute on a common personal computer to generate a single 0—24-h AP estimate. The
computational burden is in the training process (the weight optimization in the AnEn’s case)
for both techniques which can require 2—3 h to be completed. The CNN has been trained on a
single NVIDIA Tesla V100 GPU and training speeds could be vastly sped up by distributing
to multiple GPUs. However, in an operational setup, the training can be carried out offline and
not necessarily on a daily basis.
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