GROTHENDIECK-WITT GROUPS OF SOME
SINGULAR SCHEMES

MAX KAROUBI, MARCO SCHLICHTING, AND CHARLES WEIBEL

ABSTRACT. We establish some structural results for the Witt and
Grothendieck-Witt groups of schemes over Z[1/2], including ho-
motopy invariance for Witt groups and a formula for the Witt
and Grothendieck—Witt groups of punctured affine spaces over a
scheme. All these results hold for singular schemes and at the level
of spectra.

1. INTRODUCTION

Let X be a quasi-projective scheme, or more generally a scheme
with an ample family of line bundles, such that 2 € O(X)*. In this
paper, we show how new techniques can help calculate Balmer’s 4-
periodic Witt groups W"(X) of X, in particular when X is singular,
including the classical Witt group W°(X) of [8]. For example, we
establish homotopy invariance in Theorem 1.1: if V' — X is a vector
bundle then W*(X) = W*(V). (If X is affine, this was proven by the
first author in [5, 3.10]; if X is regular, it was proven by Balmer [2] and
Gille [4].)

The formula WY(X x G,,) & W% X) @ WY X), which holds for
nonsingular schemes by a result of Balmer—Gille [3], fails for curves
with nodal singularities (see Example 6.5), but holds if K _;(X) = 0;
see Theorem 1.2. We show in loc. cit. that a similar result holds for the
punctured affine space X x (A" —0) over X.

All of this holds at the spectrum level. Recall from [12, 7.1] that there
are spectra LI(X) whose homotopy groups are Balmer’s 4-periodic
triangular Witt groups: m; LI'(X) = LZ[T] (X) =2 W (X). We write
L(X) for L(X). Our first main theorem shows that the functors L")
are homotopy invariant.
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Theorem 1.1. Let X be a scheme over Z[1/2], with an ample family of
line bundles. If V' — X 1is a vector bundle, then the projection induces
a stable equivalence of L-theory spectra L(X) = L(V). On homotopy

groups, W™(X) = W*(V) for alln € Z.

Our second main theorem generalizes a result of Balmer and Gille
3], from regular to singular schemes, because K_1(X) = 0 when X is
regular and separated. However, their proof uses Localization for Witt
groups Emd Devissage, both of which fail for singular schemes.

Let H(K_1X) denote the Zy-Tate spectrum of the abelian group
K_4(X) with respect to the standard involution (sending a vector bun-
dle to its dual). Its homotopy groups are the Tate cohomology groups

H*(Zy, K_1 X).

Theorem 1.2. Let X be a scheme with an ample family of line bundles,
such that 2 € O(X)*. Then:
(i) There is a homotopy fibration of spectra for each n > 1:

ST UAH(K_ X) — L(X) @& LX) — L(X x (A"—0)).

(ii) Suppose that K_1X =0, or more generally that H (Zy, K_1X) =0
foriv=0,1. Then
W (X x (A"=0)) = W"(X) & W (X).

When n = 1 this becomes W' (X x G,,) = W"(X) & W"(X), and
specializes for r =0 to: W(X x G,,) = W(X)® W(X).

Note that taking homotopy groups of part (i) yields part (ii). The
main ingredient in proving Theorem 1.2 is Theorem 5.1 in the text
which gives a direct sum decomposition of the hermitian K-theory of
X x (A" —0) into four canonical pieces, generalising Bass’ Fundamental
Theorem for Hermitian K-theory [12, Theorem 9.13].

We also prove parallel results for the higher Witt groups W;(X) (and
coWitt groups) defined by the first author (see [6]), and their variants

I/Viw (X). These results include homotopy invariance and:

Proposition 1.3. Let X be a scheme with an ample family of line
bundles, such that 2 € O(X)*. Then the higher Witt groups satisfy:

WX x (A"=0)) = W(X) @ W (X).

In particular, the higher Witt groups Wi[r] (X x (A"—0)) are 4-periodic
mn.

Since Wém = W is the classical Witt group and I/Vi[r] is 4-periodic in
r we obtain the following.
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Corollary 1.4. For X as in Proposition 1.3, the classical Witt group
W(X x (A"—0)) is 4-periodic in n.

Here is a short overview of the contents of this paper. In Section 2
we establish homotopy invariance of Witt and stabilized Witt groups
and prove Theorem 1.1. In Section 3 we give an elementary proof of
Theorem 1.2 (ii) when n = 1, based on Bass’ Fundamental Theorem for
Grothendieck—Witt groups. In Section 4 we compute the K-theory of
X x(A"—=0). In Section 5 we compute the Witt and Grothendieck—Witt
groups of X x (A" —0) and prove Theorem 1.2. In Section 6 we compute
the Witt groups of a nodal curve over a field of characteristic not 2 and
show that the formula of Balmer-Gille [3] does not hold for this curve.
In Section 7 we generalise Theorems 1.1 and 1.2 to the higher Witt and
coWitt groups of the first author, see Proposition 1.3. Finally, in the
Appendix the second author computes the higher Grothendieck—Witt
groups of X x IP" in a form that is needed in the proofs in Section 5.
This generalises some unpublished results of Walter [15].

Notation. Following [3], we write C,, = A™ — 0 for the affine n-space
minus the origin.

We work in the (triangulated) homotopy category of spectra. Here
are the various spectra associated to a scheme X that we use.

For any abelian group A with involution (or more generally a spec-
trum with involution), we write H(A) for the (Tate) spectrum repre-
senting Tate cohomology of the cyclic group Z, with coefficients in A. If
A is a spectrum, then H(A) is the homotopy cofiber of the hypernorm
map Aue — A"C:if A is a group then mH(A) = Hi(Zy, A).

As usual, for any functor F' from schemes to spectra or groups, and
any vector bundle V' — X, we write F'(V, X)) for the cofiber (or cok-
ernel) of F(X) — F(V), or equivalently the fiber (or kernel) of the
O-section F(V) — F(X), so F(V) ~ F(X) @ F(V,X). In the special
case V = AL it is traditional to write NF(X) for F(AL, X).

Following [12], we write K(X) for the nonconnective K-theory spec-
trum,; the groups K;(X) are the homotopy groups m;K(X) for all i € Z.
In particular, K_;(X) = 7_1K(X). (See [18, 13] for example.) We shall
write K9(X) for Quillen’s connective K-theory spectrum, and K -o(X)
for the cofiber of the natural map K9(X) — K(X).

There is a standard involution on these K-theory spectra, and their
homotopy groups K;(X), induced by the functor on locally free sheaves
sending & to its dual sheaf £ = Homp, (£, Ox); the corresponding

Tate cohomology groups ITIZ'(ZQ, K;X) are written as k; and £} in the
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classical “clock” sequence [6, p.278]. There are other involutions on K-
theory; we shall write K i[r] (X) for K;(X) endowed with the involution
obtained using duality with values in Ox|[r]; see [12, 1.12].

The second author defined the Grothendieck—Witt spectra GW (X))
and the Karoubi-Grothendieck— Witt spectra GW(X); see [12, 5.7 and
8.6]; the element 7 € GWE” (Z[1/2]) plays an important role. We
write GW/(X) for mGWI(X), and similarly for GW/ (X). Note
that GW/(X) = W (X) for i > 0 by [12, 8.7].

LI"(X) denotes the spectrum obtained from GWII(X) by invert-
ing 7; see [12, Def.7.1]. The homotopy groups 7; LI'(X) are Balmer’s
A-periodic triangular Witt groups LI(X) = Wri(X) [12, 7.2]. In
particular, W°(X) is the classical Witt group of Knebusch [8] of sym-
metric bilinear forms on X and W?(X) is the classical Witt group of
symplectic (that is, —l-symmetric) forms on X. The groups W' (X)
and W3(X) are the Witt groups of formations (M, Ly, Ly) on X, where
L, and L, are Lagrangians on the form M; see [9, p.147] or [14]. When
X = Spec R is affine, then these groups are also Ranicki’s L-groups
L;(R) = W™(R); see [9].

The stabilized L-theory spectrum LI(X) is the spectrum obtained
from GWI1(X) by inverting n; see [12, 8.12]. It is better behaved than
LIN(X), as LI (X) satisfies excision, as well as Zariski descent (for open
subschemes U and V in X = U UV); see [12, 9.6].

These spectra fit into the following morphism of fibration sequences.
(See [12, 7.6 and 8.13].)

(1.5) KQ(X)y), — GWI(X) —— LI(X)

l l l

K(X)p, — GWI(X) — LI(X).

The functors in the bottom row (those with blackboard bold font)
satisfy Zariski and Nisnevich descent; the functors in the top row don’t.

Lemma 1.6. There is a fibration sequence
STIAH(KIL(X)) = LX) - LI(X) —» H(KZ)(X)).

Proof. By Verdier’s exercise [17, 10.3.6], the cofibers in (1.5) form a
homotopy fibration sequence. The cofiber of the left vertical map is
K%(X Jnz,, the cofiber of the middle vertical map is the homotopy

fixed point spectrum K%(X )22 and the map between them is the
hypernorm; see [12, 7.4, 8.13-14]. O
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2. HOMOTOPY INVARIANCE OF WITT GROUPS

In order to prove homotopy invariance of L(X) (Theorem 1.1), we
first establish homotopy invariance of L(X).

Lemma 2.1. Let X be a scheme with an ample family of line bundles
over Z[1/2]. Then for every vector bundle V over X, the projection
V — X induces an equivalence of spectra

LX) =L (v).

Proof. Since X has an ample family of line bundles, it is quasi-compact
(and quasi-separated). Thus every cover on which V' is trivial has a
finite subcover. Since LI satisfies Zariski descent, we may assume
that X = Spec(A) is affine, that V is trivial, and even that V =

Spec(A[t]). In this case, the homotopy groups LI (A) and LI7(A[t])
are the colimits of ordinary Witt groups LI (A) = colim W3~i(A;) and
LI(A[t]) = colim Wi—i(A;[t]), by [12, 7.2, 8.12]. These colimits are
isomorphic because W*(A) = W*(A[t]) by [5, 3.10]. Hence LI”(A) =
LI Af). O
Proof of Theorem 1.1. Recall that the notation F(V, X) denotes the
cofiber of F'(X) — F(V). By Lemma 1.6, we have a fiber sequence

LIV, X) = LIV, X) — H(EL(V, X)),

The middle term is zero by Lemma 2.1. The right hand term is zero
because K _o(V, X) has uniquely 2-divisible homotopy groups [16]; see
[12, B.14]. This implies that LI'(V,X) = 0, i.e., L' is homotopy
invariant. U

Remark 2.1.1. If R is a ring with involution containing 1/2, the proof
of Lemma 2.1 goes through to show that LI'(R) = LI'I(R[t]) for all 7.
The proofs of Lemma 1.6 and hence Theorem 1.1 also go through. This
gives a new proof that W*(R) = W*(R]t]), a result known to experts
(this result is proven for * = 0,2 in [5, 3.10]).

3. BASS” FUNDAMENTAL THEOREM FOR WITT GROUPS

The map GW(X) — GW/"(X) is an isomorphism for all i > 0
and all n; see [12, 9.3]. For i = —1, we have the following result.

Lemma 3.1. Let X be a scheme with an ample family of line bundles,
such that 2 € O(X)*. Then WO(X)=GW5LY(X).

IfK_1(X)=0, then GW V(X)) S WYX and hence WO(X) =
Gw(x).
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Proof. The isomorphism W°(X') = GWE_IH(X ) holds by [12, 6.3]. Since
K2(X) = K,(X) for i > 0, we see from [12, B.9] that mo(K"22X) = 0
and 71 (K"22 X)) = H%(Z,, K_,(X)). Hence the middle column of (1.5)
yields an exact sequence

0— GWHX) = GWN(X) = HY(Zy, K_1(X)) = 0.
If the third term vanishes then GW:” (X) — GWE” (X). O

Theorem 3.2. Let X be a quasi-projective scheme over Z[1/2]. If
K_1(X) =0, then

WoX) e WoX) = WoUX x G,,).

Proof. The second author proved in [12, 9.13-14] that there is a natu-
rally split exact “contracted functor” sequence (for all n and i)

0= G (X) = GW (X[t]) & GW, (X[1 /1]
— GW(X[t, 1/t) — GW (X) — 0.
The splitting map GW}:” (X) — GWi[r] (X[t, 1/t]) is multiplication by
the element [t] € GWIY(k[t,1/t) defined just before Lemma 6.9 in [7],
where k = 7Z[1/2]; see [12, 9.14]. Taking n =i =0 (so GW, = GW)),

we get a naturally split exact sequence
0 — GWH(X) — GWo(Xt]) ® GWo(X[1/t])
— GW(Xt, 1/4]) = GWHY(X) — 0.
When K_;(X) = 0 we also have a split exact sequence [18, X.8.3]:

0— Ko(X) — Ko(X[t]) @ KO(X[%]) — Ko(XTt, %]) — 0.

The two splittings are compatible because the forgetful functor F' sends
[t] to t € Ky(k[t,t7']) and the hyperbolic map satisfies H(a U F(b)) =
H(a) Ub. Mapping the K-theory sequence to the GW-sequence, we
have a split exact sequence on cokernels:

0= W0(X) = WX ) @WK ) = WO(XTr, 1]) > EWI(X) =0

By Lemma 3.1, we have
awh(x) = ewh(x) =2 wox).
Since W*(X) =2 W*(X[t]) by Theorem 1.1, the result follows. O
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4. K-THEORY OF PUNCTURED AFFINE SPACE

The following result generalizes the “Fundamental Theorem” of K-
theory, which says that there is an equivalence of spectra

K(X) @ S'AK(X) @ NK(X)® NK(X) — K(X x G,,).
Write V(1) for the vector bundle V(O(1)) on P% ! associated with
the invertible sheaf O(1). Recall that K(A%,X) denotes the fiber
of K(A%) — K(X) induced by the inclusion of X as the zero-section

of A%, and K(V(1),Px ") denotes the fiber of the map K(V(1)) —
K(P% 1), induced by the inclusion of P% ! as the zero-section of V/(1).

Theorem 4.1. For every integer n > 1 and every quasi-compact and
quasi-separated scheme X, there is an equivalence of spectra

K(X) @ S'AK(X) @ K(V(1),Py!) @ KAY, X) — K(X x C,)
functorial in X.

Remark 4.1.1. If X is regular, Theorem 4.1 is immediate from the
fibration sequence K(X) — K(X x A") — K(X x C,,) since the final
two summands of K(X x C),) vanish; see [18, V.6].

If Z is a closed subscheme of a scheme X, we write K(X on Z) for
the homotopy fiber of K(X) — K(X — Z).

Proof. Consider the points 0 = (0,...,0) of A" and z = [1 : 0 : --- :
0] of P", and consider A™ embedded into P" via the open immersion
(t1,.ytn) — [1 ity -+ @ t,] sending 0 to z. We will write Ox (resp.,
zx) for the corresponding subschemes of A% (resp., P%); both are
isomorphic to X. We have a commutative diagram of spectra

(4.1.1) K(P% on zx) — K(P%)

| |

K(A% on 0x) —=K(A%) —=K(X x C,,)

in which the lower row is a homotopy fibration, by definition, and the
left vertical arrow is an equivalence, by Zariski-excision [13]. We will
first show that ¢ = 0, that is, we will exhibit a null-homotopy of &
functorial in X.

Recall that K(P% ) is a free K(X)-module of rank n + 1 on the basis

(4.1.2) br:®<0ﬂyn(—1) i>(9]Pm>, r=0,..n

i=1
where Opn is placed in degree 0 and P" = Proj(Z[Ty, ..., T,,]). By con-
vention, the empty tensor product by is the tensor unit Opn. Note that
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the restriction of b, to A™ is trivial in Ky(A") for » = 1,...,n. This
defines a null-homotopy of the middle vertical arrow of (4.1.1) on the
components K(X) - b, of K(P%) for » = 1,...,n. The remaining com-
ponent K(X) - by maps split injectively into K(X x C),) with retraction
given by any rational point of C),. Since the composition of the two
lower horizontal maps is naturally null-homotopic, this implies € = 0.
Thus, we obtain a functorial direct sum decomposition

K(X x C,) ~K(A%) & S'AK(P% on zx)

and it remains to exhibit the required decomposition of the two sum-
mands.

The composition 0 — A™ — pt is an isomorphism and induces the
direct sum decomposition of K(A%) as K(X) @ K(A%, X). For the
other summand, note that b, has support in z = V(T},...,T),), as it is
the Koszul complex for (77, ...,7,). Since b, is part of a K(X)-basis of
K(P%), the composition

K(X) 22 K(P% on zx) —= K(P%)

is split injective, and defines a direct sum decomposition
K(P% on zx) 2 K(X) & K(P% on zx).

It remains to identify ]INQ(]P”}( on zx) with STTK(V(1),P%!'). Con-
sider the closed embedding j : P"~! = Proj(Z[Ty, ..., T,]) C P". Since
J(P™1) lies in P — {2}, we have a commutative diagram of spectra

1

K(X) 0

N

K(P% on zx) —K(P%) —— K(P% — zx)

(l) | E

K(Py™) K(Py™)

(4.1.3) K(X)

1

in which the rows are homotopy fibrations, and the middle column is
split exact. It follows that we have a homotopy fibration

S'AR(PL on zy) — K(PY — 2x) oK@ ).
Since V(1) — P¥ ' is P} — zy LN P!, and pj = 1, it follows that

S'AK(PY on zx) > K(PY —zx, Py ) = K(V(1),Py 1) O
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Remark 4.2. The proof of Theorem 4.1 also applies to the homo-
topy K-theory spectrum KH of [18]. Since KH(A%,X) = 0 and
KH(V(1)x,P% ") = 0, by homotopy invariance, we obtain an equiva-
lence:
KH(X)®S'ANKH(X) ~ KH(X x C,,).
The following fact will be needed in the next section.

Lemma 4.3. Let V' be a vector bundle over a scheme X defined over
Z[1/2]. Then the homotopy groups of K(V, X) are uniquely 2-divisible.
In particular, for any involution on K(V, X) we have H(K(V, X)) = 0,
and even H(K_o(V, X)) = 0.

Proof. This follows from [16] and Zariski-Mayer-Vietoris [13]. O

5. GW AND L-THEORY OF PUNCTURED AFFINE SPACE

A modification of the argument in Theorem 4.1 yields a computation
of the Hermitian K-theory of X x C),. This generalises the case n =1
of [12, Theorem 9.13].

For any line bundle £ on X, we write KI'(X; £) (resp., GWI(X; L))
for the K-theory spectrum of X (resp., GW-spectrum) with involution
E — Hom(E,L[r]). If p: V — X is a vector bundle on X, then
p embeds GWUI(X; L) into GWI(V; L) as a direct summand with
retract given by the zero section. We write GWI(V, X; £) for the
complement of GWI(X; £) in GWUI(V:p*L). If L = Ox, we simply
write K'(X), GWI(X) and GWI(V, X).

Theorem 5.1. For all integers r,n with n > 1 and every scheme X

over Z[1/2] with an ample family of line bundles, there is a functorial
equivalence of spectra

GWI(X xC,) & GWI(X)p S'AGWI—"(X)

& GWI(V (1), Py O(1-n)) & GIVFI(A%, X).

Proof. The proof is the same as that of Theorem 4.1 with the following
modifications. For space reasons, we write £ (resp., L) for the sheaf
O(1 —n) on P (resp., on P"!). Consider the commutative diagram

of spectra, analogous to (4.1.1),
(5.1.1)

GWII(P% on zx; L) — GWI(PY: L)

| l

GWII(A% on 0x) ——— GWI(AL) —— GWI(X x C,)
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in which the lower row is a homotopy fibration (by definition), and the
left vertical arrow is an equivalence, by Zariski-excision [11, Thm. 3],
noting that £ = O(1 — n) is trivial on A%. Again, we will first show
that € = 0.

Recall the complexes b; from (4.1.2). We equip by = Opn with the
unit form Opn ® Opn — Opn @ x @ y — xy. The target of the quasi-
isomorphism

by = b, ® O b, @ O(1)
is canonically isomorphic to b ® L[n], and endows b, with a non-
degenerate symmetric bilinear form with values in L£[n]. In detail, the
complex 3; = (T; : O(—1) — O) with O placed in degree 0 is endowed
with a symmetric form with values in O(—1)[1]:

(-7)

(13,13)

B ® Bi O(-2)—=0(-1)p0(-1) —0O
J{%‘ l l(l,l) l
O(-1)[1] 0 O(-1) 0.

Hence the tensor product b, = @, 3; is equipped with a symmetric
form with values in £[n]:
R i To

(5.1.2) b, @ b, ————— O(—n)[n] —= O(1 —n)[n] = L[n].
Of course, to make sense of the map ®' ,¢; we have to rearrange the
tensor factors in b, ® b,, using the symmetry of the tensor product of
complexes given by the Koszul sign rule. Note that b,, restricted to A"
is 0 in GW&"] (A™) since it is the external product of the restrictions
of B; to A! = SpecZ[T;,1/2] which are trivial in GW(AY), by [12,
Lemma 9.12].

By Corollary A.5, the right vertical map of (5.1.1) is

, H(@"5'0(=1)),

bn a
CWI—(X) @ K(X)om @ A ‘Gwtl(an)
where m = | 2] and A—GWII(A%) is either GW (X)) 2GWII(A%)
or 0, depending on the parity of n. Since O(7) is isomorphic to by over
A% this map is equal to (b,,by o H,...,by o H,a). In other words, the
map ¢ factors through
(bn, b, bo)
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Changing basis and using the fact that b, =0 € GWOH} (A™), this map
is isomorphic to

(0, 0, bo)

In other words, the map ¢ factors through by : GWI(X) — GWII(A%).
Since the composition

GwWi(x) - ewlaL) - ewl(x x ¢,)

is split injective and the composition of the lower two horizontal arrows
in (5.1.1) is zero, it follows that € is null-homotopic functorially in X,
and we obtain the functorial direct sum decomposition

CWI(X x C,) ~GWI(AL) @ STAGWI(PYL on zx; L)

As before, the composition 0 — A" — pt is an isomorphism and
induces the direct sum decomposition

GWI(AL) = GWI(X) @ GWIT(AL, X).

To decompose the other direct summand we use the analogue of dia-
gram (4.1.3) which is:

GWIr—l(X) ! GWI—nl(X) 0

N o |

GWI(PY on zx; L) —— GWI(Py; £) —— GWI(PY — 2x; L)

| S

0 GWI(PL . £y — = GWI(Py: £).

The rows are homotopy fibrations and the middle column is split ex-
act, by Theorem A.1. It follows that GWU="(X) is a direct factor of
GWI(P% on zx;L) with complement equivalent to

STGWIPY, — 2y, Py £) = STCWI(V (1), Py L),

since the restriction of £ along the embedding P"—z < P" is isomorphic
to the pullback of £’ along the projection (P"— z) — P~ 1. O

When X is regular, the last two terms in Theorem 5.1 vanish. In this
case, Theorem 5.1 gives the exact computation of GW (X x C),) and
hence of WI'(X x C,,); the latter recovers a result of Balmer-Gille, cf.
3].
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Corollary 5.2. For all integers r,n with n > 1 and every noether-
ian regqular separated scheme X over Z[1/2], there is an equivalence of
spectra

GwW(xX)ye STAGWI(X) = GWI(X x C,).

Proof. Recall that a noetherian regular separated scheme has an ample
family of line bundles. The corollary follows from Theorem 5.1 since
GW is homotopy invariant on such schemes [12, Thm. 9.8]. O

Remark 5.3. Here is a description of the map
fx : STAGWI(X) - GWI(X x C))
appearing in Theorem 5.1 and Corollary 5.2. Set k = Z[1/2] and define
b, to be the element of GW[ (C) represented by the map
St = S'A S LY st A GWI(k) L awil(Cy),

where S® % GWDl(k) is the unit map. Since all maps in Theorem

5.1 are GWH(X)-module maps, and all maps are functorial in X, fx
is part of the commutative diagram

ST A SO AGWIr—nl(X)

1
1Au

SEAGW (k) AGW =7 (X) —— STAGWII(X) A GWIr—7nl(X) — STAGWIr=nl(X)

fk/\ll fXAl\L fxl

GWIN(Cn) AGWIT—7(X) — > GWIM(X xCp) AGWIT—7(X) ——s GWITl (X x Cp)
The outer diagram shows that fx is the cup product with by.

Recall that the L-theory spectrum LI(X) and the stabilized L-
theory spectrum LI"(X) are obtained from GW+4(X) and GW I+ (X)
by inverting the element

ne Gwhlz/2) = 6wz 2)) = w(z[1/2))

corresponding to the unit of W(Z[1/2]). See [12, Definitions 7.1 and
8.12]. Inverting 7 therefore yields canonical maps

(1,b,) : LX) @ S'ALF"(X) — LI(X x C)),
(1,b,) : LX) @ S'ALF(X) - LI(X x C,).

Theorem 5.4. Let X be a scheme over Z[1/2] with an ample family
of line bundles. Then the following map is an equivalence of spectra

(1,b,) : LI(X) @ S'ALF (X)) = LI(X x C,).
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Proof. This follows from the GW formula in Theorem 5.1 by inverting
the element n of GW ] (Z[1/2]) and noting that

LV (1), P 0(1 = n)) = LI(A%, X) =0
by homotopy invariance of L. (Lemma 2.1). O

We can now deduce Theorem 1.2 from Theorem 5.4. Recall that
KI"(X) denotes the spectrum K(X) endowed with the involution ob-
tained using duality with Ox|r].

Proof of Theorem 1.2. The proof of Theorem 5.1 shows that the equiv-
alence in Theorem 4.1 is Zs-equivariant. In other words, the spectrum
KIM(X x C,) with Zy-action is equivalent to

KX)o STAKI(X) @ KNV (1), Pyt 01 —n) @ KP(AL, X).

Since truncation is functorial, the spectrum KLT%(X x Cy,) with Zs-
action is equivalent to

En(X)® S'AKE- (X)) @ KE (V(1), Py 01 —n) @ KD (A%, X).

We saw in Lemma 4.3 that the Tate spectra H of the last two summands
in K%(X x C,,) are trivial. Hence the map

KX)o S'AKIT(X) — KI(X x C))

is an equivalence after applying H. Suppressing X, consider the map
of homotopy fibrations of spectra (see Lemma 1.6):

L[r]® QLA ]L[r]@ FSE N a0 I?I(KE(])) ® SlAPAI(KE(;"})

| - |

L(C,) LI(C,) H(KU)(C)).

The homotopy fiber of the right vertical map is
STAHS I AKT) = H(KITY) = 57 AH(K ).

Hence the homotopy fiber of the left vertical map is S™""! A ﬁ(K 1),
proving part (i). Part (ii) of the theorem is the case r = 0. O

6. THE WITT GROUPS OF A NODE AND ITS TATE CIRCLE

To give an explicit example where W (R|[t, 1/t]) # W(R)®W (R), i.c.,
where the conclusion of Theorem 1.2(ii) fails for X = Spec(R), we con-
sider the coordinate ring of a nodal curve over a field of characteristic
not 2.
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The following lemma applies to the coordinate ring R of any curve,
as it is well known that K,(R) = 0 for n < —2. (See [18, Ex.I11.4.4]
for example.)

Lemma 6.1. If R is a Z[1/2]-algebra with K;(R) = 0 fori < —2, then
LO(R[t,1/t]) = L(R) @ LO(R).
Proof. The assumption that K;(R) = 0 for i < —2 implies that
Koo(R[t,1/1]) = K<o(R) ® NK<o(R) & NK<o(R).

Now ﬁ(NK<0) = 0, because the homotopy groups of NK_q(R) are
2-divisible (by [16]). Hence H(KoR) ~ H(KR[t,7]) The lemma
now follows from the following diagram, whose rows and columns are
fibrations by Lemma 1.6 and Theorem 5.4, and whose first two columns
are split (by ¢t +— 1).
L(R) L(R) H(K<oR)
\L split i/ split ¢ ~
L(R[t, ]) —= L(R[t, }]) —= H(K(R[t, 7]))

P P |

~

cofiber —— L(R) 0.

O

In what follows, R will denote the node ring k[z,y]/(y* = 2* + 2?)
over a field k of characteristic # 2.

If F' is any homotopy invariant functor from k-algebras to spectra
satisfying excision, such as L or K H (see 4.2), the usual Mayer-Vietoris
argument for R C k[t] (with ¢ = y/z and I = (z,y)R) yields F(R) ~
F(k) & S~'F(k); see [18, IV, 12.4 and 12.6]. In particular,

(6.2)

L(R) ~L(k)® S 'L(k), and KH(R)~ KH(k)® S™' KH(k).

Examples 6.3. (i) Since KH_ (k) = 0 and KHy(k) = Z, we have
K_o(R) ~ KH_o(R) ~ S™* A Z. 1t follows that mH(K_o(R)) =
Ht(Zy, Z).
(i) It is well known that W"(k) = 0 for n # 0 (mod 4); the case
W2(k) = 0 (symplectic forms) is classical; a proof that W'(k) =
W3(k) = 0 is given in [1, Thm.5.6], although the result was proba-
bly known to Ranicki and Wall. Since L(k) ~ L(k), L,(R) = L™"(R)
is: W(k) for n = 0,3 (mod 4), and 0 otherwise.

Recall that the fundamental ideal I (k) is the kernel of the (surjective)
rank map W (k) — Z/2.
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Lemma 6.4. When R is the node ring, W(R) = W (k) & Z/2.
In addition, WY (R) = I(k) and W?*(R) = W3(R) = 0.

Proof. Since ﬁO(ZQ,Z> = 7/2 and ﬁ1<Zg,Z) = 0, Lemma 1.6 and
Example 6.3(ii) yield the exact sequences:

0 — L3(R) — L3(R) — H(Zs,Z) — La(R) — Ly(R) — 0,

0 — Li(R) = Li(R) — H(Zy,7Z) — Lo(R) — Lo(R) — 0.
Now the map Ls(R) = WO(k) — H%(Zs,Z) = Z/2 is the rank map
W(k) — Z/2; it follows that Ls3(R) = I(k) and Le(R) = 0. Since
L, (R) = 0, the second sequence immediately yields W?(R) = L;(R) =

0. Finally, the decomposition W (R) = W (k)& Z/2 follows because the
map Lo(R) — Lo(R) = Lo(k) is a surjection, split by the natural map

Lo(k) — Lo(R). O
Example 6.5. By Lemma 6.4, W(R) = W(k) & Z/2. Lemma 6.1
yields:

WO(R[t,1/t])) = W(R) ® L°(R) = W (k) ® Z/2 ® W (k).
In addition, W'(R) = I(k) but WY(R[t,1/t]) = I(k) & W (k).
Example 6.5 shows that Theorem 1.2(ii) can fail when K_;(X) # 0.

7. HIGHER WITT GROUPS

Recall that the higher Witt group W;(X) is defined to be the cokernel
of the hyperbolic map K;(X) — GW;(X); see [6]. More generally, we

can consider the cokernel W) (X) of K;(X) — GW/)(X). Similarly,
one can define the higher coWitt group W' ET] (X) to be the kernel of
the forgetful map (GVVi[T] (X) — K;(X). In this section we show that

I/Vi[r] (X) and W’ Er}(X ) are homotopy invariant and we compute their
values on X x C,,.
Recall from Lemma 4.3 that the homotopy groups K;(V,X) are

uniquely 2-divisible. Writing KZ-M(V, X) for these groups, endowed
with the involution arising from duality with Olr|, we have a natu-
ral decomposition of Kim (V, X) as the direct sum of its symmetric part
K"V, X), and its skew-symmetric part K" (V,X)_ . By [12, B.6],
KNV, X) = m(KP(V, X)) = oy (KPU(V, X)1z,).

Lemma 7.1. For every vector bundle V over X, and for all i and r,
KV, X), =GV, X).
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Proof. There is a fibration K(V,X)g]z2 — GWI(V, X) — LI'(V, X);
see (1.5) and [12, 8.13]. Since we proved in Lemma 2.1 that LI'(V, X) =
0, we get an isomorphism of spectra K(V, X )Z’]@i GWI(V, X) and
hence group isomorphisms KZ-M(V, X))y = GWZ-[T](V, X). O
Theorem 7.2. Let X be a scheme over Z[1/2] with an ample family of
line bundles. The higher Witt and co Witt groups are homotopy invari-

ant in the sense that for every vector bundle V' over X, the projection
V' — X induces isomorphisms of higher Witt and coWitt groups:

wivy=2wh(x) and W)= w!(X).

Proof. The hyperbolic map H is a surjection, as it factors:

K(V. X) 28 KWV, X)), = 6wV, X).
Hence the cokernel Wi[r](V, X) is zero. Similarly, the forgetful functor
GWIN(V, X)—K(V, X)I'! factors as the equivalence GW(V, X) ~
K(V, X )%2 followed by the canonical map K(V, X )%2 — K(V, X)),
On homotopy groups, GW/(V, X) =~ K'(v, X), — K'(V, X) is an
inclusion, so the kernel W/I"(V, X) is zero. O

A similar argument applies to W (X x Cp).

Theorem 7.3. W/ (X x C,) 2 W'(X) o W ["(X), and
WX x C) =W X) @ W (X).

Proof. As we saw in Sections 4 and 5, the hyperbolic map
H:K(X xC,) — GWI(X x C,)

is the sum of four maps. On homotopy groups, the cokernel WZ-[T] (X x
C,) of H is the sum of the corresponding cokernels. The first two

cokernels are Wi[r] (X) and I/Vi[:n] (X), while the last two are zero by
Theorem 7.2.

A similar argument applies to the coWitt groups, which are the
kernels of the map F'. O
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APPENDIX A. GROTHENDIECK—-WITT GROUPS OF P%

Marco Schlichting

The goal of this appendix is to prove Theorem A.1 which was used
in the proof of Theorem 5.1. As a byproduct we obtain a computation
of the GWl-spectrum of the projective space P% over X. The -
versions are due to Walter [15], and the methods of loc.cit. could be
adapted to give a proof of Theorem A.1. Here we will give a more
direct proof. Using similar methods, a more general treatment of the
Hermitian K-theory of projective bundles will appear in [10].

Recall from (4.1.2) and (5.1.2) that there is a strictly perfect complex
b, on P" equipped with a symmetric form b, ®b,, — L[n], whose adjoint
is a quasi-isomorphism; here L is the line bundle O(1 — n) on P". Let
j PP~ — P" denote the closed embedding as the vanishing locus of
To.

Theorem A.1. Let X be a scheme over Z[1/2] with an ample family of
line bundles, and let n > 1 be an integer. Then the following sequence
of Karoubi-Grothendieck—Witt spectra is a split fibration for all r € Z:

GWI=l(X) =2 GWI(PY, £) 5 GWI(PY, L),

The proof will use the following slight generalization of [12, Prop. 8.15]
(“Additivity for GW?”), which was already used in the proof of the
blow-up formula for GW in [12, Thm. 9.9]. If (A, w, V) is a dg category
with weak equivalences and duality, we write 7 A for w™' A, the asso-
ciated triangulated category with duality obtained from A by formally
inverting the weak equivalences; see [12, §1]. The associated hyperbolic
category is HA = Ax A%, and GW (HA, w x w?) = K(A, w); see [12,
4.7].

Lemma A.2. Let (U, w,V) be a pretriangulated dg category with weak
equivalences and duality such that % eU. Let A and B be full pretri-
angulated dg subcategories of U containing the w-acyclic objects of U.
Assume that: (i) BY = B;

(1)) TUX,Y) =0 for all (X,Y) in AY x B, Bx A or AY x A; and
(11i) TU is generated as a triangulated category by TA, TB and T.AY.
Then the exact dg form functor

BxHA—U:X,Y,Z)—»XDY ®ZY
induces a stable equivalence of Karoubi—Grothendieck—Witt spectra:

GW (B, w) x K(A,w) = GW (B,w) x GW (HA, w x w?)—GW (U, w).
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Proof. Let v be the class of maps in U which are isomorphisms in
TU/TB. Then the sequence (B,w) — (U,w) — (U,v) induces a
fibration of Grothendieck—Witt spectra

GW (B, w) — GW U, w) — GW(U,v)

by the Localization Theorem [12, Thm. 8.10]. Let A’ C U be the full dg
subcategory whose objects lie in the triangulated subcategory of TU
generated by T.A and TB. By Additivity for GW [12, Prop. 8.15], the
inclusion (A’,v) C (U, v) induces an equivalence of spectra K(A', v) ~
GW (U, v). Finally, the map (A, w) — (A’,v) induces an equivalence
of associated triangulated categories and thus a K-theory equivalence:
K(A, w)—K(A",v) ~ GW (U,v). The result follows. O

For the proof of Theorem A.1, we shall need some notation. Recall
that sPerf(X) is the dg category of strictly perfect complexes on X,
and w is the class of quasi-isomorphisms; the localization w~! sPerf(X)
is the triangulated category D Vect(X).

Now consider the structure map p: P¥ — X for m = n,n — 1, and
L= O(1—n). Recall that D® Vect(P'%) has a semi-orthongonal decom-
position with pieces O(i) ® p*D° Vect(X), i = 0, —1,...., —m. Let U be
the full dg subcategory of sPerf(IP%) on the strictly perfect complexes
on P% lying in the full triangulated subcategory of D Vect(PP;) gen-
erated by O(i) ® p* D? Vect(X) for i =0, —1,....,1 — n. Note that U is
closed under the duality V with values in £. Finally, let v denote the
class of maps in sPerf(P%) which are isomorphisms in D Vect(P% ) /TU.

Proof of Theorem A.1. Consider the following commutative diagram of
Karoubi—Grothendieck—Witt spectra:

GWI—(X)

i@)” \

GWIu,w,v) —— GWI(P%, £) —— GWI(sPerf P, v, V)

T b

GWI(PLt 5*L).

The middle row is a homotopy fibration by Localization [12, Thm. 8.10].
The upper right diagonal arrow is a weak equivalence, because the
standard semi-orthogonal decomposition on P% yields an equivalence
of triangulated categories @b, : D° Vect(X)— D" Vect(P%)/TU. Fi-
nally, the lower left diagonal arrow is a weak equivalence by Lemma
A.2, where we choose the full dg subcategories A, A" and B, B’ of U and



WITT GROUPS OF SOME SINGULAR SCHEMES 19

U' = sPerf(P% 1) as follows. They are determined by their associated
triangulated categories.

When n = 2m+11is odd, we let T.A C TU, respectively TA C TU',
be the triangulated subcategories generated by

O(—i) @ p*D° Vect(X), i=0,...,m—1

and we let TB, resp. TB, be the subcategory O(—m) ® p* D Vect(X).
By Lemma A.2, GW (U, w,V) and GW (U',w,V) are both equivalent
to GWI(X) @ K(X)®™. In particular,

(A.3) GWI(PE, O(-2m)) ~ GWI(X) @ K(X)®™.

When n = 2m is even, we let T.A C TU, respectively TA C TU',
be the triangulated subcategories generated by

O(—i) @ p* D’ Vect(X), i=0,...,m—1

and B = B’ = 0. In this case, GW (U, w, V) and GW (U, w, V) are both
equivalent to K(X)®™ by Lemma A.2. In particular,

(A.4) GWI(P2=1, 0(1 — 2m)) ~ K(X)®™. O

We denote by O(—m) the map GWI(X) — GWII(PY; O(—2m))
given by the cup product with the non-degenerate symmetric bilinear
form 1: O(—m)®@ O(—m) — O(—2m), and we denote by H(O(j)) the
composition of the map K(X) — K(P%) given by cup product with
O(j) followed by the hyperbolic map H : K(P%) — GWI(P%; O(i)).
As a consequence of Theorem A.1 and its proof, we obtain a spectrum
level version of some of Walter’s calculations [15]:

Corollary A.5. Let X be a scheme over Z[1/2] with an ample fam-
tly of line bundles. For all integers r,n,i with n > 0, the Karoubi—
Grothendieck-Witt spectrum GWI(P%; O(i)) is equivalent to

GWI(X) @ K(X)®™ n=2m, i even,
(A.6) GWI(X) o K(X)®" @ GWI(X) n=2m+1, i even,
O K(x)em n=2m-—1, i odd,

K(X)®™ @ GWI—(X) n =2m, i odd.
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The equivalences with target GWU(P%; O(i)) are given on each com-
ponent by the following maps

(A.7)
O(—m),H(O),..., HO(—m + 1)) n=2m, i=—2m
O(—m),H(O),...,HO(-m+1)), b, n=2m+1, i=—-2m
H(O),..,HO(-m+1)) n=2m-—1,i=-2m+1
H(O),..,HO(—m+1)), b, n=2m, i =—2m+ 1,

followed by the equivalences for q € Z
(A.8) ® O(q) : GWI(PL O>)) = GWI(PL, O>i + 29)).

Proof. The inverse of the map (A.8) is the cup product with O(—q),
equipped with the form 1 : O(—q) ® O(—q) — O(—2q). The equiv-
alence (A.8) reduces the computations in (A.6) to checking that the
maps in (A.7) are indeed equivalences of spectra. The first and third
maps in (A.7) are equivalences in view of the proof of Theorem A.1;
see (A.3) and (A.4). By Theorem A.1, the other two maps in (A.7) are
also equivalences. O
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