
Journal of Machine Learning Research 21 (2020) 1-45 Submitted 12/19; Revised 4/20; Published 6/20

A Data Efficient and Feasible Level Set Method for
Stochastic Convex Optimization with Expectation

Constraints

Qihang Lin qihang-lin@uiowa.edu
Tippie College of Business
University of Iowa
Iowa City, Iowa, 52242, USA

Selvaprabu Nadarajah selvan@uic.edu
College of Business Administration
University of Illinois at Chicago
Chicago, Illinois, 60607, USA

Negar Soheili nazad@uic.edu
College of Business Administration
University of Illinois at Chicago
Chicago, Illinois, 60607, USA

Tianbao Yang tianbao-yang@uiowa.edu

Department of Computer Science

University of Iowa

Iowa City, Iowa, 52242, USA

Editor: Julien Mairal

Abstract

Stochastic convex optimization problems with expectation constraints (SOECs) are encoun-
tered in statistics and machine learning, business, and engineering. The SOEC objective
and constraints contain expectations defined with respect to complex distributions or large
data sets, leading to high computational complexity when solved by the algorithms that
use exact functions and their gradients. Recent stochastic first order methods exhibit low
computational complexity when handling SOECs but guarantee near-feasibility and near-
optimality only at convergence. These methods may thus return highly infeasible solutions
when heuristically terminated, as is often the case, due to theoretical convergence criteria
being highly conservative. This issue limits the use of first order methods in several ap-
plications where the SOEC constraints encode implementation requirements. We design a
stochastic feasible level set method (SFLS) for SOECs that has low complexity and empha-
sizes feasibility before convergence. Specifically, our level-set method solves a root-finding
problem by calling a novel first order oracle that computes a stochastic upper bound on the
level-set function by extending mirror descent and online validation techniques. We estab-
lish that SFLS maintains a high-probability feasible solution at each root-finding iteration
and exhibits favorable complexity compared to state-of-the-art deterministic feasible level
set and stochastic subgradient methods. Numerical experiments on three diverse appli-
cations highlight how SFLS finds feasible solutions with small optimality gaps with lower
complexity than the former approaches.

c©2020 Qihang Lin, Selvaprabu Nadarajah, Negar Soheili, and Tianbao Yang.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/19-1022.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/19-1022.html

Lin, Nadarajah, Soheili, and Yang

Keywords: constrained stochastic optimization, level set methods, stochastic gradient
methods, min-max optimization, online validation

1. Introduction

Consider the stochastic optimization problem with expectation constraints (SOEC)

f∗ := min
x∈X
{f0(x) = E [F0(x, ξ0)]} s.t. fi(x) := E [Fi(x, ξi)] ≤ ri, i = 1, 2, . . . ,m, (1)

where X ⊂ Rd is a nonempty closed convex set, ξi, i = 0, 1, . . . ,m, is a random vector
whose probability distribution is supported on set Ξi ⊆ Rqi , and Fi(x, ξi) : X × Ξi → R is
continuous and convex in x for each realization of ξi for i = 0, 1, 2, . . . ,m. Given ε > 0, a
solution xε ∈ X is called ε-feasible if maxi=1,...,m{fi(xε) − ri} ≤ ε. A solution xε ∈ X is
referred to as ε-optimal if f0(xε)−f∗ ≤ ε. Alternatively, optimality can be measured relative
to an initial feasible solution x0 ∈ X . In this case, we say xε ∈ X is relative ε-optimal with
respect to x0 if (f(xε)− f∗)/(f(x0)− f∗) ≤ ε.

Problem (1) is pervasive in stochastic optimization and appears as a central challenge
in semi-supervised learning (Chapelle et al., 2009), shape-restricted regression (Seijo and
Sen, 2011; Sen and Meyer, 2017; Lim, 2014; Cotter et al., 2016; Fard et al., 2016), Neyman-
Pearson classification (Tong et al., 2016; Rigollet and Tong, 2011; Tong, 2013; Zhao et al.,
2016), approximate linear programming and related relaxations (de Farias and Van Roy,
2003; Adelman and Mersereau, 2013; Nadarajah et al., 2015), portfolio selection (Markowitz,
1952; Abdelaziz et al., 2007), risk management (Rockafellar and Uryasev, 2000), and multi-
objective stochastic programming (Marler and Arora, 2004; Abdelaziz, 2012; Mahdavi et al.,
2013; Barba-Gonzaléz et al., 2017). In this paper, we focus on overcoming the challenges of
applying existing methods for solving SOECs in settings that are both data rich and where
expectation constraints capture requirements that cannot be violated during real-world
implementation.

In data-rich environments, each expectation appearing in (1) is defined by a data set
containing a large number of data points (possibly infinite). The number of data points
used when solving SOEC is an important computational bottleneck, which we refer to as
the data complexity of an algorithm. Traditional approaches for solving SOECs can lead
to large data complexity. For instance, consider the popular strategy of replacing each
expectation in (1) by a sample average approximation (SAA; Shapiro, 2013; Oliveira and
Thompson, 2017) and solving the resulting model using a deterministic iterative method
(see, e.g., Nesterov, 2004; Soheili and Pena, 2012, and references therein). If the number of
samples used to construct SAAs is small, the solution from the deterministic approximation
may be highly infeasible to the original SOEC, in addition to being suboptimal (Shapiro,
2013; Oliveira and Thompson, 2017). Instead, if a large number of samples are used in each
SAA, then the data complexity becomes large because the gradient or objective function
evaluation at each iteration requires using a significant portion of each of the data sets.

In contrast, stochastic first order methods for tackling stochastic optimization problems
have low per-iteration cost and data complexity and thus play a central role in machine
learning packages such as TensorFlow and PyTorch (Robbins and Monro, 1951; Nemirovski
et al., 2009; Lan, 2012; Ghadimi and Lan, 2012, 2013; Chen et al., 2012; Lan et al., 2012;
Schmidt et al., 2017; Shalev-Shwartz et al., 2017; Lan and Zhou, 2018; Lin et al., 2014;

2

Stochastic Level-Set Methods

Duchi and Singer, 2009; Xiao and Zhang, 2014; Xiao, 2010; Hazan and Kale, 2011; Bach
and Moulines, 2013; Allen-Zhu, 2017; Goldfarb et al., 2017). These methods update so-
lutions using stochastic gradients that can be computed using a small number of sampled
data points. Stochastic first order methods typically ensure feasibility via projections onto
a convex set at each iteration, where the convex set is assumed to be simple (e.g. a box or
ball) for computational tractability. This assumption limits the applicability of first order
methods for solving SOECs with general non-linear constraints. Recently, Lan and Zhou
(2016) and Yu et al. (2017) developed stochastic subgradient (SSG) methods devoid of pro-
jections for solving (1) with single (m = 1) and multiple constraints (m > 1), respectively.
The SSG methods in these papers guarantee an ε-optimal and ε-feasible solution only at
convergence.

In practice, SSG methods are terminated before their conservative theoretical conditions
are met. Premature termination may lead to highly infeasible and sub- or super- optimal
solutions. While some deviation from optimality is likely acceptable, a highly infeasible
solution may not be implementable. Such situations arise in several data science applications
in machine learning, as well as, across business (e.g., operations and finance) and engineering
domains. We elaborate on the practical need for feasibility in a few cases below.

• Fairness constraints: Enforcing fairness criteria when learning classifiers across mul-
tiple classes (e.g., male and female) has become important in machine learning (Goh
et al., 2016). This learning problem can be cast as an SOEC where fairness is modeled
via expectation constraints. Constraint violations lead to classifiers that are biased
towards one or more classes.

• Risk constraints: Planning problems in supply chain management and portfolio op-
timization often include bounds on the Conditional Value at Risk (CVaR), which
can be cast as expectation constraints (Fábián, 2008; Chen et al., 2010). Such con-
straints also arise when modeling distributionally robust versions of chance constraints
(Wiesemann et al., 2014) and when limiting misclassification risk (i.e., misclassifica-
tion rates) in multi-class Neyman Pearson classification (Crammer and Singer, 2002).
The aforementioned problems can be formulated as SOECs. Solutions violating risk
constraints will likely fail stress tests that are performed before implementation.

• Bounding property: Approximate linear programs (ALPs) are well-known models
for approximating the value function of high-dimensional Markov decision processes
(Schweitzer and Seidmann, 1985; de Farias and Van Roy, 2003), and in particular,
are SOECs. A solution satisfying the ALP constraints provides an optimistic bound
on the optimal policy value, which is useful to evaluate the suboptimality of heuristic
policies. Infeasibility in an ALP setting thus voids this desirable bounding property.

Motivated by the importance of feasibility and the status quo of stochastic first order
methods, we design an approach for solving SOECs that has low data complexity and
provides high probability feasible solutions before convergence. As a first step, we cast
SOEC as a root-finding problem involving a min-max level set function, which is challenging
to solve because it is non-smooth and includes high-dimensional expectations in the SOEC
objective and constraints. To solve this reformulation, we develop a stochastic feasible level-
set method (SFLS) for root finding that requires evaluating a “good” upper bound (we will

3

Lin, Nadarajah, Soheili, and Yang

make this notion of goodness precise in later sections) on the challenging level set function at
each iteration. We show that employing the mirror descent method (Nemirovski et al., 2009)
for computing such an upper bound requires approximating expectations in SOEC using
SAAs at each iteration, which as already discussed above, leads to high data complexity.
To overcome this issue, we introduce an SSG method to upper bound the level-set function
by combining mirror-decent and online validation techniques, and in particular, extending
the latter technique, originally proposed for minimization problems (Lan et al., 2012), to
handle saddle point formulations. This method only requires stochastic values and gradients
of the objective and constraint functions, respectively, which can be constructed at low cost
using a small number of samples of ξi in (1), that is, it has low data complexity. Calls to
our SSG method return high-probability feasible solutions, which allows it to maintain an
implementable solution at each root-finding iteration.

We analyze the iteration complexity of SFLS to find a feasible solution path (i.e., se-
quence of feasible solutions) that becomes relative ε-optimal with high probability. It is
encouraging that the dependence of this complexity on ε is 1/ε2, which is comparable to
the method by Yu et al. (2017) (labeled YNW 1) that also finds an ε-optimal solution but
only guarantees ε-feasibility at convergence. In other words, the intermediate solutions gen-
erated by YNW are not necessarily feasible. There is indeed a cost for ensuring feasibility
in SFLS, which appears in the form of its iteration complexity depending on a condition
measure. Such condition measures do not influence the complexity of YNW.

For deterministic constrained convex optimization problems, the level-set method (DFLS)
of Lin et al. (2018b) also guarantees a feasible solution path with its iteration complexity de-
pending on a condition measure. In principle, these DFLS based approaches can be applied
to solve SOECs by viewing them as deterministic problems. This perspective is restrictive
because it entails computing expectations in fi for i = 0, 1, . . . ,m exactly or replacing them
by SAAs. In either case, the data complexity of DFLS will be high for reasons analogous
to the ones already discussed above related to the use of SAAs. Therefore, a fully stochas-
tic approach is required to achieve low data complexity when solving SOECs. Lin et al.
(2018a) extend DFLS using variance-reduced sampling, which requires the functions have a
finite-sum structure with each summand taking a specific form.2 Unfortunately, as a result,
their method cannot be applied to SOECs with generic expectation while our method does
not have such limitation and assumes little structure on the problems. We are not aware
of prior efforts to develop a fully stochastic versions of level set methods for SOECs—SFLS
in this paper fills this gap.

To assess the performance of SFLS, we provide implementation guidelines with sup-
porting theory and numerically evaluate SFLS on three applications: (i) approximate linear
programming for Markov decision processes, (ii) Neyman-Pearson multi-class classification
with risk constraints, and (iii) learning a classifier with fairness constraints. Feasibility plays
a key role in each of these applications for reasons mentioned earlier in the introduction.
Approximate linear programs in the first application are known special cases of SOECs.
For the latter two applications, we propose formulations that are SOECs. As algorithmic
benchmarks, we consider YNW and DFLS. We find that SFLS delivers feasible solutions
quicker than YNW and in several cases also leads to smaller optimality gaps. Moreover,

1. We abbreviate this method by YNW using the first letters of the last names of the authors.

2. In particular, Lin et al. (2018a) require each summand has the form of φ(x>ξ).

4

Stochastic Level-Set Methods

when YNW computes infeasible solutions it is challenging to interpret its objective value
since it can be superoptimal, an issue that does not arise with SFLS. Both SFLS and DFLS
maintain feasible solution paths (with outer iterates) but SFLS produces feasible solutions
with much smaller optimality gaps due to its lower data complexity. In other words, DFLS
requires significantly more data passes to reduce the suboptimality of its solutions and will
thus not be practical for solving SOECs based on large data sets. Our findings underscore
two important algorithmic insights: (i) feasible SOEC solutions can be computed well before
theoretical convergence criteria are satisfied but doing this hinges on methods being able
to emphasize feasibility; and (ii) ensuring that these early feasible solutions have small op-
timality gaps requires approaches with low data complexity. Both these properties are true
for SFLS, while only the first and second properties, respectively, hold for DFLS and YNW.

This paper is organized as follows. In §2, we introduce SFLS, analyze its oracle com-
plexity, and present a saddle-point reformulation of an SOEC. In §3, we discuss how the
well-known stochastic mirror descent algorithm provides an idealized stochastic oracle for
SFLS and highlight issues that complicate its use. In §4, we propose and analyze a new
stochastic oracle to overcome these issues. In §5, we analyze SFLS combined with this
oracle and provide implementation guidelines. In §6, we perform a computational study to
understand the performance of SFLS across three applications relative to two benchmark
methods. We conclude in §7.

2. Stochastic Feasible Level-set Method

Level-set methods tackle a constrained convex optimization problem by transforming it
into a one-dimensional root-finding problem that is a function of a scalar level parameter
r (Lemaréchal et al., 1995; Nesterov, 2004). We develop in this section a stochastic and
feasible level set method that adds to this framework. We make the following standard
assumption throughout the paper, which ensures that a strictly feasible and sub-optimal
solution exists.

Assumption 1 (Strict Feasibility) There exists a strictly feasible solution x̃ ∈ X such
that maxi=1,...,m{fi(x̃)− ri} < 0 and f0(x̃) > f∗.

The root-finding reformulation of (1) relies on the level-set function

H(r) := min
x∈X
P(r,x), (2)

where r ∈ R is a level parameter and

P(r,x) := max {f0(x)− r, f1(x)− r1, . . . , fm(x)− rm} .

Note that the expectation constraints of SOEC are now in the objective function of (2).
For a given (r,x) ∈ R×X , if P(r,x) ≤ 0 then x is a feasible solution to (1). Formulations
(1) and (2) are further linked by known properties of H(r), which are summarized in the
following lemma (based on lemmas 2.3.4 and 2.3.6 in Nesterov, 2004 and Lemma 1 in Lin
et al., 2018b).

Lemma 1 It holds that

5

Lin, Nadarajah, Soheili, and Yang

(a) H(r) is non-increasing and convex in r;

(b) H(f∗) = 0;

(c) H(r) > 0, if r < f∗ and H(r) < 0, if r > f∗.

Part (a) of Lemma 1 highlights that H(r) is non-increasing and convex. Moreover, its
part (b) implies that r = f∗ is the unique root of H(r) = 0. Therefore, one can use a
root finding procedure to generate both a sequence of level parameters r(1), r(2), . . . that
converges to f∗ and an associated vector x(k) := arg minx∈X P(r(k),x) at each iteration
k. Computationally, when a level parameter r(k∗) ≈ f∗ is found, the solution x(k∗) :=
arg minx∈X P(r(k∗),x) provides an “approximate” solution to (1). From the perspective
of feasibility, it is important whether we have r(k∗) < f∗ or r(k∗) > f∗. To elaborate, if
r(k∗) < f∗, then H(r(k∗)) > 0 by Lemma 1(c) and the corresponding solution x(k∗) need not
be feasible to (1). On the other hand, if r(k∗) > f∗, we have H(r(k∗)) = P(r(k∗),x(k∗)) < 0
from Lemma 1(c) and the vector x(k∗) is indeed a feasible solution. A root finding scheme
that ensures r(k) > f∗ at each iteration k will thus return a sequence of feasible solutions
x(1),x(2), . . . ,x(k∗), that is a feasible solution path, where k∗ is such that f∗ < r(k∗) < f∗+ε
for a given ε > 0 and, in addition, we have f0(x(k∗)) ≤ r(k∗) from P(r(k∗),x(k∗)) < 0. These
inequalities imply that f0(x(k∗))−f∗ ≤ ε. Thus, x(k∗) is an ε-optimal and feasible solution to
(1) and it follows that solving SOEC can be cast as a root-finding problem involving H(r).

Applying a root-finding algorithm to solve H(r) = 0 requires the exact computation of
H(r) at each iteration, which is difficult due to the nontrivial stochastic optimization in (2).
Hence, we consider an inexact root-finding method, henceforth stochastic feasible level set
method (SFLS), extending what is done in Lin et al. (2018b) and Aravkin et al. (2019) in
a deterministic setting. Level set methods require an oracle to compute an approximation
U(r) of H(r). This approximation is used to update r. A key element that we develop as
part of SFLS is the notion of a stochastic oracle, which we introduce next.

Definition 2 (Stochastic Oracle) Given r > f∗, ε > 0, and δ ∈ (0, 1), a stochastic
oracle A(r, ε, δ) returns a value U(r) and a vector x̂ ∈ X that satisfy the inequalities
P(r, x̂)−H(r) ≤ ε and |U(r)−H(r)| ≤ ε with a probability of at least 1− δ.

Lemma 3 clarifies the importance of the conditions underpinning the above definition
to ensure a feasible solution to (1).

Lemma 3 Given r > f∗, 0 < ε ≤ − θ−1
θ+1H(r), δ ∈ (0, 1), and θ > 1, the vector x̂ ∈ X

returned by a stochastic oracle A(r, ε, δ) defines a feasible solution to (1) with probability of
at least 1− δ.

This lemma states that a stochastic oracle can recover a high probability feasible solution
provided the optimality tolerance ε is less than − θ−1

θ+1H(r).

Algorithm 1 formalizes the steps of SFLS to find an approximate root to H(r) = 0. Its
inputs include a stochastic oracle A; an initial level parameter value r(0) > f∗, which exists
because we can set r(0) = f0(x̃) by Assumption 1; optimality and error tolerances εopt and
εA, respectively; a probability δ; and a parameter θ that defines a step length as 1/2θ. SFLS
begins from the level set defined by r(0). At each iteration k it executes lines 3 though 9.

6

Stochastic Level-Set Methods

Algorithm 1 Stochastic Feasible Level-Set Method (SFLS)

1: Inputs: A stochastic oracle A, a level parameter r(0) > f∗, an optimality tolerance
εopt > 0, an oracle error εA > 0, a probability δ ∈ (0, 1), and a step length parameter
θ > 1.

2: for k = 0, 1, . . . , do

3: δ(k) =
δ

2k+1
.

4:
(
U(r(k)),x(k)

)
= A

(
r(k), εA, δ

(k)
)
.

5: if U(r(k)) ≥ −εopt then
6: Halt and return x(k).
7: end if
8: r(k+1) ← r(k) + U(r(k))/(2θ).
9: k ← k + 1.

10: end for

In line 3, SFLS computes a probability δ(k) that is used in the stochastic oracle call of line
4 to obtain an approximation U(r(k)) and a high probability feasible solution x(k). The
probability δ(k) decreases with the iteration count k, that is, the probabilistic guarantee
required of the stochastic oracle becomes more stringent to ensure the entire solution path
is feasible with probability of at least 1 − δ. Lines 5-7 model the termination condition,
which involves checking whether the approximation U(r(k)) is greater than or equal to −εopt.
If this condition holds, then the algorithm halts and returns the incumbent solution x(k).
Otherwise, r(k) is updated to r(k+1) in line 8 using U(r(k)) and θ. Line 9 increments the
iteration counter. While SFLS belongs to the family of level set approaches, it differs from
known deterministic level set methods (see, e.g., Lin et al., 2018b and Aravkin et al., 2019)
in its update step, termination criterion, and stochastic oracle.

We define the notion of an input tuple to ease the exposition of theoretical statements
in the rest of the paper.

Definition 4 (Input tuple) A tuple containing a subset of the elements r, r(0), ε, εA, δ, θ,
and γt is an input tuple if its respective components satisfy r > f∗, r(0) > f∗, 1 ≥ ε > 0,
εA > 0, δ ∈ (0, 1), θ > 1, and γt = 1/(M

√
t+ 1), where M > 0 is a constant that is

formally defined in (9).

Theorem 5 provides the maximum number of calls to the stochastic oracle by Algorithm 1
to obtain a feasible and relative ε-optimal solution, which depends on a condition measure
β of SOEC (1) defined as

β := − H(r(0))

r(0) − f∗
∈ (0, 1]. (3)

It is easy to see that β provides an assessment of the slope of H(r) at r = f∗. Intuitively,
for an SOEC instance with a large β (i.e., well conditioned case), a root-finding method
will be able to move towards the root of H(r) faster compared to an instance with a small
β (i.e., ill-conditioned case). See Figure 2.1 of Lin et al. (2018b) for a graphical illustration
of this statement.

7

Lin, Nadarajah, Soheili, and Yang

Theorem 5 Given an input tuple (r(0), ε, δ, θ), suppose

εopt = −1

θ
H(r(0))ε and εA = − θ − 1

2θ2(θ + 1)
H(r(0))ε.

Algorithm 1 generates a feasible solution at each iteration with a probability of at least 1−δ.
Moreover, it returns a relative ε-optimal and feasible solution with this probability in at most

2θ2

β
ln

(
θ2

βε

)
calls to oracle A.

The bound on the number of oracle calls increases with θ because both the step-length 1/2θ
and the optimality tolerance εopt decrease with θ. The maximum number of oracle calls is
also a decreasing function of both the condition measure β and tolerance ε, that is, SFLS
requires fewer iterations for problems that are better conditioned and when εA and εopt are
larger. Here, both εA and εopt require knowledge of H(r(0)), which is difficult to compute
exactly. We want to point out that the dependence of εA and εopt on H(r(0)) are introduced
here only to simplify the theorem and its proof, which helps readers to understand the main
idea behind our technique. In §5, we will show that SFLS has a similar complexity even if
H(r(0)) in εA and εopt is replaced by an upper bound Ū with H(r(0)) ≤ Ū < 0 and Ū can
be computed (by Algorithm 4) in a low cost independent of ε.

SFLS relies on the availability of a valid stochastic oracle A. Standard subgradient
methods cannot be used as oracles to solve (2) since computing a deterministic subgradient
of P(r,x) requires exact evaluations of fi for i = 0, 1, . . . ,m (see Bertsekas, 1999 or Danskin,
2012, p.737), which is challenging due to the high-dimensional expectations in the definition
of these functions. Indeed, the expectation in each fi can be replaced by a direct SAA
to obtain a sampled version P̂(r,x) of P(r,x). This replacement is also problematic as
subgradients of P̂(r,x) provide biased subgradients of P(r,x) due to the maximization in
the definition of the latter function.

To avoid this issue, we reformulate (2) into the equivalent min-max (i.e., saddle-point)
form

H(r) = min
x∈X

max
y∈Y

{
m∑
i=0

yi(fi(x)− ri)

}
, (4)

where r0 := r and Y :=
{
y = (y0, . . . , ym)> ∈ Rm+1|

∑m
i=0 yi = 1, yi ≥ 0

}
. Given x ∈ X ,

it is easy to check that y∗ ∈ arg maxy∈Y
∑m

i=0 yi(fi(x) − ri) can be chosen as a unit vec-
tor with 1 corresponding to an index i∗ ∈ arg maxi=1,...,m{fi(x) − ri} and zeros for the

remaining indices. Let Ξ := Ξ0 × Ξ1 × . . . × Ξm, ξ = (ξ0, ξ1, . . . , ξm)> ∈ Ξ, Φ(x,y, ξ) :=∑m
i=0 yi(Fi(x, ξi)− ri), and φ(x,y) := E [Φ(x,y, ξ)], where to ease notation we suppress the

dependence of φ and Φ on the level parameter r since it is always equal to a fixed value
when these functions are invoked. Therefore, (4) can be reformulated as

H(r) = min
x∈X

max
y∈Y

φ(x,y). (5)

Let φ̂(x,y) be an SAA of φ(x,y). Subgradients of φ̂(x,y) provide an unbiased estimate of
subgradients of φ(x,y) because there is no nonlinear operator (e.g., maximization) acting on
the expectation defining φ. The oracles that we discuss for SFLS in §§3-4 will thus solve (5).

8

Stochastic Level-Set Methods

3. Idealized Stochastic Oracle

In §3.1, we present stochastic mirror descent (SMD) in the form a stochastic oracle. In
§3.2, we establish that SMD is indeed a stochastic oracle that can be used in SFLS (i.e.,
Algorithm 1) and then highlight computational issues that prevent its use. The discussion
here serves a dual role. First, it provides practical motivation and sets the stage for devel-
oping a tractable stochastic oracle in §4. Second, it provides basic concepts on primal-dual
methods needed throughout the paper, also making the paper more accessible to readers
potentially unfamiliar with such methods.

3.1. Stochastic Mirror Descent

Stochastic mirror descent (SMD) (Nemirovski et al., 2009) is a well-known primal-dual
method for solving saddle-point problems such as (5). SMD updates primal and dual
variables x and y of (5), respectively, by employing stochastic subgradients of φ(x,y) and a
projection operator. Let F ′i (x, ξi) ∈ ∂Fi(x, ξi) for i = 0, 1, . . . ,m, where ∂ is the subgradient
operator. We denote the stochastic subgradient vector of φ(x,y) by

G(x,y, ξ) :=

[
Gx(x,y, ξ)
−Gy(x,y, ξ)

]
:=

[∑m
i=0 yiF

′
i (x, ξi)

−(F0(x, ξ0)− r0, F1(x, ξ1)− r1, . . . , Fm(x, ξm)− rm)>

]
.

The projection employed by SMD relies on a Bregman divergence defined using a dis-
tance generating function ωz(z) that has as its argument z := (x,y) and operates over
Z := X × Y. Moreover, ωz(z) must be strongly convex with modulus 1 on Z and con-
tinuously differentiable on the set Zo := {z ∈ Z|∂ωz(z) 6= ∅}. The Bregman divergence
V (z′, z) : Zo ×Z → R+ expressed using ωz is

V (z′, z) := ωz(z)− [ωz(z
′) +∇ωz(z′)>(z− z′)].

The projection operator (or prox-mapping), for any ζ ∈ Rd+m+1, and z′ ∈ Zo, is defined as
Pz′(ζ) := arg minz∈Z

{
ζ>(z− z′) + V (z′, z)

}
.

Algorithm 2 summarizes the steps of SMD presented in the form of a stochastic or-
acle. The inputs to this algorithm are a level parameter r ∈ R, an optimality tolerance
εA > 0, a probability δ ∈ (0, 1), an iteration limit W (δ, εA) (we specify this limit later in
Proposition 6), and a step-length rule γt for all t ∈ Z+. Line 2 sets the initial solution
z(0) = (x(0),y(0)). Algorithm 2 executes lines 4 and 5 for W (δ, εA) iterations. At iteration
t, line 4 constructs a stochastic subgradient G(x(t),y(t), ξ(t)) using a sample ξ(t) of the ran-
dom variables underlying the expectations in the objective and constraints of (1). Line 5
computes a step-length weighted average z̄(t) of past solutions. It also uses the stochastic
subgradient computed in line 4 and a projection operator to find an updated solution z(t+1).
After exiting the for loop, line 7 uses the averaged primal solution x̄(t) to compute an upper
bound maxy∈Y φ(x̄(t),y) on H(r). The pair (U(x̄(t)), x̄(t)) is returned in line 8.

It is worth noting that the update in line 5 relies on subgradients of an SAA φ̂(x,y)
(with a single sample), which provides unbiased subgradients of φ(x,y), unlike the biased
subgradients that arise when working with SAAs of P(r,x) in the primal problem (2).
In other words, a key benefit of the primal-dual reformulation (4) is that its objective
φ(x,y) allows the computation of unbiased subgradients after using SAAs to replace exact
expectations.

9

Lin, Nadarajah, Soheili, and Yang

Algorithm 2 Stochastic Mirror Descent (SMD)

1: Inputs: Level parameter r ∈ R, optimality tolerance εA > 0, probability δ ∈ (0, 1), an
iteration limit W , and a step length rule γt for all t ∈ Z+.

2: Set z(0) := (x(0),y(0)) ∈ arg minz∈Z ωz(z).
3: for t = 0, 1, . . . ,W do

4: Sample ξ(t) = (ξ
(t)
0 , ξ

(t)
1 , . . . , ξ

(t)
m)> and compute G(x(t),y(t), ξ(t)) .

5: Execute

z̄(t) := (x̄(t), ȳ(t)) :=

∑t
s=0 γsz

(s)∑t
s=0 γs

,

z(t+1) := (x(t+1),y(t+1)) := Pz(t)(γtG(x(t),y(t), ξ(t))).

6: end for
7: Compute U(x̄(t)) = maxy∈Y φ(x̄(t),y).
8: return (U(x̄(t)), x̄(t))

3.2. Validity of Stochastic Oracle and Computational Issues

We analyze below the validity of SMD as a stochastic oracle and also discuss its computa-
tional tractability. Our analysis, based on Nemirovski et al. (2009), requires specifying the
distance generating function ωz introduced in §3.1 and stating a standard assumption.

To define ωz, we equip X and Y with their own distance-generating functions ωx : X → R
modulus αx with respect to norm ‖ · ‖x and ωy : Y → R modulus αy with respect to norm
‖ · ‖y. This means that ωx is αx-strongly convex, continuous on X , and continuously
differentiable on the set of non-zero subgradients X o := {x ∈ X |∂ωx(x) 6= ∅}. Similarly,
ωy is αy- strongly convex, continuous on Y, and continuously differentiable on Yo := {y ∈
Y|∂ωy(y) 6= ∅}. Typical choices for ‖ · ‖x and ‖ · ‖y are ‖ · ‖2 and ‖ · ‖1, respectively.
In addition, it is common to set wx(x) = 1

2‖x‖
2
2 and ωy(y) =

∑m
i=0 yi ln yi. Defining

the diameters of the sets X and Y as Dx :=
√

maxx∈X ωx(x)−minx∈X ωx(x) and Dy :=√
maxy∈Y ωy(y)−miny∈Y ωy(y), the distance-generating function associated with Z is

ωz(z) :=
ωx(x)

2D2
x

+
ωy(y)

2D2
y

.

Next, the following standard assumption is needed to analyze SMD as well as other
methods in the rest of the paper. Denote by g(x,y) expectation of the (d + m + 1)-
dimensional vector G(x,y, ξ), that is, a deterministic subgradient. Moreover, let ‖ ·‖∗,x and
‖ · ‖∗,y represent the dual norms of ‖ · ‖x and ‖ · ‖y, respectively.

Assumption 2 For any (x,y, ξ) ∈ X × Y × Ξ, there exist F ′i (x, ξi) ∈ ∂Fi(x, ξi) for i =
0, 1, . . . ,m such that g(x,y) is well defined and satisfies

g(x,y) ∈
[

∂xφ(x,y)
∂y[−φ(x,y)]

]
,

10

Stochastic Level-Set Methods

where ∂x and ∂y represent the sub-differentials with respect to x and y, respectively. More-
over, there exist positive constants Mx, My and Q such that

E
[
exp(‖Gx(x,y, ξ)‖2∗,x/M2

x)
]
≤ exp(1), (6)

E
[
exp(‖Gy(x,y, ξ)‖2∗,y/M2

y)
]
≤ exp(1), (7)

E
[
exp(|Φ(x,y, ξ)− φ(x,y)|2 /Q2)

]
≤ exp(1), (8)

for any x ∈ X and y ∈ Y, which indicate that Gx and Gy have a light-tailed distribution
and their moments are bounded.

Proposition 6 presents the iteration complexity of SMD, which follows from results in
Nemirovski et al. (2009), and in addition, establishes that SMD is a valid stochastic oracle,
that is, it satisfies Definition 2. The proof of this proposition relies on establishing that
the primal-dual gap U(x̄(t)) − L(ȳ(t)) is guaranteed to be less than a given εA > 0 with a
probability of at least 1 − δ for a given δ ∈ (0, 1), where L(ȳ(t)) := minx∈X φ(x, ȳ(t)) and
U(x̄(t)) is computed in Algorithm 2. We also require the following constants:

M :=

√
2D2

x

αx
M2
x +

2D2
y

αy
M2
y ; (9)

Ω(δ) := max

{√
12 ln

(
24

δ

)
,
4

3
ln

(
24

δ

)}
. (10)

Proposition 6 Given an input tuple (r, εA, δ, γt), the SMD solution (x̄(t), ȳ(t)) satisfies
U(x̄(t))− L(ȳ(t)) ≤ εA with probability at least 1− δ in at most

W (δ, εA) := max

{
6,

(
8 (10MΩ(δ) + 4.5M)

εA
ln

(
4 (10MΩ(δ) + 4.5M)

εA

))2

− 2

}

gradient iterations. As a consequence, SMD is a valid stochastic oracle with W ≥W (δ, εA).

When solving (5), the dependence of the iteration complexity on εA in Proposition 6 has
an additional ln(1/εA) term compared to the known SMD complexity dependence of 1/ε2A
for solving an unconstrained version of this problem. Moreover, the analogous complex-
ity dependence on δ inside logarithmic terms (see definition of Ω(δ)) in this proposition is
comparable to the unconstrained case.

We note that SMD is a valid stochastic oracle, exhibits a favorable iteration complex-
ity, and is based on unbiased subgradients of φ(x,y). Nevertheless, SMD is not directly
implementable because the upper bound U(x̄(t)) is challenging to compute exactly as the
definition of φ(x,y) embeds expectations. Replacing these expectations by an SAA leads
to a biased estimate of the upper bound U(x̄(t)). This bias can be reduced by using a large
number of samples but doing this would lead to an approach with high data complexity,
which we would like to avoid. In other words, although our saddle-point formulation facil-
itates the computation of unbiased subgradients needed by SMD to obtain a near optimal
and high probability feasible solution, its upper bound U(x̄(t)), which serves as the constant
U(r) returned by the oracle (see Definition 2), cannot be computed.

11

Lin, Nadarajah, Soheili, and Yang

The aforementioned bound computation challenge is further exacerbated if one wishes
to change the stopping criterion of Algorithm 2 (i.e., line 3) from a maximum iteration limit
to a bound on the primal-dual gap U(x̄(t))−L(ȳ(t)). In the latter case, implementing SMD
would also entail the computation of the lower bound L(ȳ(t)), which suffers from analogous
bias and data complexity issues when expectations in its definition are replaced by SAAs.
In addition, the optimization problem over x in the definition of L(ȳ(t)) is in general a high-
dimensional non-smooth convex optimization problem and solving such a problem multiple
times is computationally burdensome. Therefore, it is apriori unclear how one should go
about designing a computationally tractable oracle to overcome these issues and what the
iteration complexity of such an oracle would be.

4. Tractable Stochastic Oracle

In this section, we design a computationally viable stochastic oracle by combining SMD
and an online validation technique (Lan et al., 2012), and in particular, extending the latter
technique originally proposed for minimization problems to handle min-max saddle point
problems. This oracle overcomes the issues highlighted at the end of §3.2 by defining bounds
that are (i) tractable to compute with low data complexity and (ii) do not suffer from the
bias issue when replacing expectations in their definitions by SAAs, as was the case with
the bounds U(x̄(t)) and L(ȳ(t)). We present our algorithm in §4.1 and prove that it is a
stochastic oracle in §4.2, where we also analyze its complexity.

4.1. Online Validation Based Stochastic Mirror Descent

Algorithm 3 contains the steps of our proposed online validation based stochastic mirror
descent (OVSMD) scheme, which differs from Algorithm 2 only in line 7, where the upper

bound U(x̄(t)) on H(r) is replaced by û
(t)
∗ . The quantity û

(t)
∗ is an approximation of the

following upper bound obtained using the online validation technique:

u
(t)
∗ := max

y∈Y

{
1∑t
s=0 γs

t∑
s=0

γs

[
φ(x(s),y(s)) + gy(x

(s),y(s))>(y − y(s))
]}

.

This upper bound holds because

1∑t
s=0 γs

t∑
s=0

γs

[
φ(x(s),y(s)) + gy(x

(s),y(s))>(y − y(s))
]
≥
∑t

s=0 γsφ(x(s),y)∑t
s=0 γs

≥ φ(x̄(t),y),

where the first inequality is true because gy is a subgradient with respect to y of the function
φ(x,y), which is concave in y, and the second inequality follows directly from the convexity
of φ(x,y) in x. Therefore, we have

u
(t)
∗ ≥ U(x̄(t)) = max

y∈Y
φ(x̄(t),y) ≥ H(r), (11)

that is, u
(t)
∗ is an upper bound on H(r), albeit potentially weaker than U(x̄(t)). Computing

u
(t)
∗ requires the exact evaluations of φ, gx and gy, which are not in general available because

12

Stochastic Level-Set Methods

Algorithm 3 Online Validation based Stochastic Mirror Descent: OVSMD

1: Inputs: Level parameter r ∈ R, probability δ ∈ (0, 1), optimality tolerance εA > 0, an
iteration limit T , and a step length rule γt for all t ∈ Z+.

2: Set z(0) := (x(0),y(0)) ∈ arg minz∈Z ωz(z).
3: for t = 0, 1, . . . , T (δ, εA) do

4: Sample ξ(t) = (ξ
(t)
0 , ξ

(t)
1 , . . . , ξ

(t)
m)> and compute G(x(t),y(t), ξ(t)) .

5: Execute

z̄(t) := (x̄(t), ȳ(t)) :=

∑t
s=0 γsz

(s)∑t
s=0 γs

,

z(t+1) := (x(t+1),y(t+1)) := Pz(t)(γtG(x(t),y(t), ξ(t))).

6: end for
7: Compute

û
(t)
∗ := max

y∈Y

{
1∑t
s=0 γs

t∑
s=0

γs

[
Φ(x(s),y(s), ξ(s)) +Gy(x

(s),y(s), ξ(s))>(y − y(s))
]}

.

(12)

8: return (û
(t)
∗ , x̄

(t))

they involve expectations. In contrast, the term û
(t)
∗ computed in line 7 of Algorithm 3,

which is stochastic approximation of u
(t)
∗ , can be easily computed in an online manner by

solving a simple linear optimization problem.
As discussed in §3.2, replacing the iteration limit based stopping criterion by one that

approximates an optimality gap requires a lower bound on H(r). Following a similar argu-
ment to the upper bounding case above, we define the lower bound

l
(t)
∗ := min

x∈X

{
1∑t
s=0 γs

t∑
s=0

γs

[
φ(x(s),y(s)) + gx(x(s),y(s))>(x− x(s))

]}
.

Since φ(x,y) is convex in x, it follows that l
(t)
∗ ≤ L(ȳ(t)) = minx∈X φ(x, ȳ(t)) ≤ H(r).

Although l
(t)
∗ is in general a weaker lower bound than L(ȳ(t)), the former bound is computed

by solving a linear optimization problem as opposed to the potentially challenging non-
smooth convex optimization problem defining the latter bound. Finally, we employ an

online validation based approximation of l
(t)
∗ to avoid computing expectations and obtain

l̂
(t)
∗ := min

x∈X

{
1∑t
s=0 γs

t∑
s=0

γs

[
Φ(x(s),y(s), ξ(s)) +Gy(x

(s),y(s), ξ(s))>(x− x(s))
]}

. (13)

Despite the computational tractability of û
(t)
∗ and l̂

(t)
∗ , these are stochastic quantities

and subject to noise. Hence they do not always provide valid bounds on H(r). In §4.2, we

show that l̂
(t)
∗ and û

(t)
∗ are nevertheless sufficiently close to H(r) with high probability after

a finite number of iterations (see Theorem 8).

13

Lin, Nadarajah, Soheili, and Yang

4.2. Validity of Stochastic Oracle and Iteration Complexity

We establish here the validity of OVSMD (i.e., Algorithm 3) as a stochastic oracle and derive
its iteration complexity. Proposition 7 contains the two main ingredients underlying the
analysis of OVSMD. Part (i) of this proposition shows that for a given εA > 0 the inequality

u
(t)
∗ − l

(t)
∗ ≤ εA holds with high probability when t is sufficiently large. In other words,

the deterministic quantities u
(t)
∗ and l

(t)
∗ computed using the OVSMD solutions provide

“good” deterministic estimates of the level set function H(r). This is not directly useful
since OVSMD can only compute stochastic approximations of these quantities, as already

discussed in §4.1. Part (ii) of Proposition 7 establishes that û
(t)
∗ and l̂

(t)
∗ are respectively

close stochastic approximations of u
(t)
∗ and l

(t)
∗ at convergence with high probability. It

then follows that the quantities û
(t)
∗ and l̂

(t)
∗ are “good” stochastic estimates of the level set

function, and in particular, allows OVSMD to be used as a stochastic oracle.

Proposition 7 Given an input tuple (r, εA, δ, γt), OVSMD computes (x(t),y(t)), t = 1, 2, . . . ,
such that:

(i) The inequality Prob{u(t)
∗ − l(t)∗ > εA} ≤ δ

3 holds in at most

max

{
6,

(
8 (10MΩ(δ) + 4.5M)

εA
ln

(
4 (10MΩ(δ) + 4.5M)

εA

))2

− 2

}
gradient iterations.

(ii) The inequalities Prob{|l̂(t)∗ − l(t)∗ | > εA} ≤ δ
3 and Prob{|û(t)

∗ − u(t)
∗ | > εA} ≤ δ

3 hold in
at most

max

{
6,

(
8 (QΩ(δ) + 8MΩ(δ) + 2.5M)

εA
ln

(
4 (QΩ(δ) + 8Ω(δ)M + 2.5M)

εA

))2

− 2

}
gradient iterations.

Leveraging Proposition 7, Theorem 8 shows that OVSMD is a valid stochastic oracle
and also presents its iteration complexity.

Theorem 8 Given an input tuple (r, εA, δ, γt), the OVSMD guarantees P(r, x̄(t))−H(r) ≤
εA and |û(t)

∗ −H(r)| ≤ εA with probability at least 1− δ in at most

T (δ, εA) := max

{
6,

(
16 (QΩ(δ) + 10MΩ(δ) + 4.5M)

εA
ln

(
8 (QΩ(δ) + 10MΩ(δ) + 4.5M)

εA

))2

− 2

}
(14)

gradient iterations. As a consequence, OVSMD is a valid stochastic oracle with T ≥
T (δ, εA).

Despite OVSMD being a tractable oracle, the dependence of its iteration complexity on
both εA and δ is identical to the analogous dependence seen with the idealized SMD oracle
analyzed in Proposition 6. Moreover, in terms of εA, OVSMD is only a ln(1/εA) worse than
the known complexity of SMD in the unconstrained case, where feasibility is not a concern.

14

Stochastic Level-Set Methods

5. SFLS with OVSMD as its Stochastic Oracle

In this section, we provide theoretical support for the use of OVSMD as SFLS’s stochastic
oracle in §5.1 and then discuss implementation guidelines in §5.2.

5.1. Theoretical Analysis

Theorems 5 and 8 can be used to derive the (gradient) iteration complexity of SFLS when
using OVSMD as the stochastic oracle. We state this complexity in Corollary 9.

Corollary 9 Given an input tuple (r(0), ε, δ, γt, θ), let

εopt = −1

θ
H(r(0))ε and εA = − θ − 1

2θ2(θ + 1)
H(r(0))ε.

Moreover, suppose OVSMD with T = T (δ, εA) is chosen as the stochastic oracle A. Then
SFLS returns a relative ε-optimal and feasible solution with probability of at least 1−δ using
at most

2θ2

β
ln

(
θ2

βε

)
OVSMD calls and

O
(

1

βε2
· ln3

(
1

δ

)
· ln2

(
1

ε

)
+

1

β3ε2
· ln5

(
1

ε

))
gradient iterations.

This complexity result is somewhat idealistic because the inputs to SFLS, namely εopt and
εA, require knowledge of H(r(0)), which is difficult to compute exactly. A possible resolution
is to compute an upper bound on H(r(0)), denoted by Ū , such that H(r(0)) ≤ Ū < 0. If
|Ū | is much smaller than |H(r(0))|, then the optimality tolerance εA will be substantially
more stringent and thus lead to a larger complexity than the iteration bound in Corollary
9. Therefore, to obtain a complete theoretical assessment of the computational complex-
ity of SLFS with OVSMD, it is important to incorporate the cost of finding a Ū that is
comparable to H(r(0)) (i.e., |Ū | = Ω(|H(r(0))|)).

Fortunately, OVSMD can itself be used to compute the desired Ū . We discuss the
intuition behind its use for this purpose and then formally state the result. Recall that
H(r(0)) < 0 since r(0) > f∗. We consider obtain an upper bound Ū by solving (2) with
r = r(0) and a small enough optimality gap. By Theorem 8, OVSMD with r = r(0) can guar-

anteeH(r(0)) ≤ û(t)
∗ +εA with high probability. This suggests setting Ū = û

(t)
∗ +εA. However,

it is a priori unclear how small εA should be in order to ensure Ū < 0 and |Ū | = Ω(|H(r(0))|).
Therefore, we run OVSMD multiple times, starting from a tolerance α(0) = ᾱ, geometrically

reducing this tolerance after each run, and stopping this procedure once Ū = û
(h)
∗ +α(h) < 0

and (û
(h)
∗ − α(h))/(û

(h)
∗ + α(h)) ≤ θ hold. We can then use Theorem 8 and the condition

û
(h)
∗ + α(h) < 0 to show that |H(r(0))|/|Ū | ≤ (û

(h)
∗ − α(h))/(û

(h)
∗ + α(h)) ≤ θ, which implies

|Ū | = Ω(|H(r(0))|). We formalize the aforementioned approach in Algorithm 4.
Theorem 10 establishes the complexity of employing Algorithm 4 to compute Ū and

subsequently running SFLS leveraging this computation.

15

Lin, Nadarajah, Soheili, and Yang

Algorithm 4 Estimating an upper bound on H(r(0)) using OVSMD

1: Inputs: Level parameter r(0) > f∗, initial approximation tolerance ᾱ > 0, probability
δ ∈ (0, 1), constant θ > 1, and a step length rule γh for all h ∈ Z+.

2: Set h = 0 and α(0) = ᾱ.
3: repeat

4: Set δ(h) =
δ

2h+1
and α(h) =

α(0)

2h
.

5: Compute û
(h)
∗ ← OVSMD(r(0), δ(h), α(h), γh).

6: Set h← h+ 1.

7: until û
(h)
∗ + α(h) < 0 and

û
(h)
∗ − α(h)

û
(h)
∗ + α(h)

≤ θ.

8: return Ū = û
(h)
∗ + α(h).

Theorem 10 Given an input tuple (r(0), ε, δ, γt, θ), suppose we compute Ū using Algorithm
4 and then execute SFLS to find a relative ε-optimal and feasible solution with a probability
of at least 1− δ using εopt = −1

θ Ūε, εA = − θ−1
2θ2(θ+1)

Ūε, and OVSMD with T = T (δ, εA) as

the stochastic oracle A. This procedure requires in total at most

O
(

1

β
ln

(
1

βε

))
OVSMD calls and

O
(

1

β2
ln4

(
1

β

)
ln2

(
1

δ

))
+O

(
1

βε2
· ln3

(
1

δ

)
· ln2

(
1

ε

)
+

1

β3ε2
· ln5

(
1

ε

))
gradient iterations.

Theorem 10 provides a realistic theoretical assessment of the computational burden of solv-
ing SOECs using SFLS. Interestingly, it shows that running Algorithm 4 to compute Ū
before executing SFLS and replacing the unknown term H(r(0)) in the definitions of εA
and εopt with the computed Ū value does not change the overall big-O oracle and gradient
iteration complexities in Corollary 9, except for logarithmic terms.

The complexity of SFLS (combined with OVSMD) in Theorem 10 is comparable in
terms of its dependence on ε and δ to the complexity of the algorithm in Yu et al. (2017),
which does not ensure feasibility. This suggests that our procedure is efficient at ensuring
feasibility. The cost of ensuring feasibility, however, appears in the dependence of the SFLS
iteration complexity on the condition measure β. Such dependence is absent in approaches
that do not ensure feasibility.

Another relevant comparison is with the deterministic feasible level set approach (DFLS)
of Lin et al. (2018b) and its variant in Lin et al. (2018a), which are both applicable to solve
deterministic constrained convex optimization problems. The complexity of DFLS based
methods depend on the number of data points that define expectations and thus lead to
large data complexity, and in particular, have infinite complexity when expectations are
defined over continuous random variables. In contrast, the complexity of SFLS in Theorem

16

Stochastic Level-Set Methods

10 does not depend on the number of data points. In addition, compared to DFLS, the
iteration complexity of SFLS has only additional logarithmic factors involving ε and δ,
which is encouraging, as the stochastic level set algorithm (i.e., Algorithm 1) and OVSMD
oracle need to contend with several challenges that arise due to the presence of expectations
in SOECs.

In summary, our theoretical analysis of SFLS and comparison with known complexities of
state-of-the-art approaches suggests that SFLS is effective in terms of iteration complexity
at computing a high probability feasible solution path for SEOCs, a much broader and
challenging class of problems than deterministic constrained convex programs. Moreover,
a fully stochastic approach such as SFLS is theoretically necessary to achieve low data
complexity in this context.

5.2. Implementation Guidelines

As is common with first-order methods, the implementation of SFLS requires parameter
tuning. A direct implementation of SFLS in a manner consistent with Theorem 10 requires
selecting r(0), ε, δ, θ and γt; estimating constants M and Q (needed to define T = T (δ, εA)
in OVSMD); and then computing Ū . While these parameters can be estimated or approx-
imated, we suggest a simpler implementation strategy that largely side-steps such tuning.
Firstly, we avoid stopping SFLS by pre-specifying optimality tolerance εopt and instead stop
it based on an outer iteration limit. This is possible because the SFLS outer iterations only
affect the suboptimality of the incumbent feasible solution, that is, being a feasible level set
method, SFLS can return feasible and implementable solutions when terminated after any
number of outer iterations. Secondly, instead of choosing the number of inner iteration in
OVSMD as T = T (δ, εA) based on pre-specified δ and εA, we directly specify T . According
to (14), T (δ, εA) is strictly monotonically decreasing in εA and thus in ε so that a relative ε-
optimal and feasible solution with ε = Õ(1√

T
) can be guaranteed.3 Corollary 11 establishes

that the convergence of SFLS in this implementation.

Corollary 11 Suppose we have an input tuple (r(0), γt, θ) and the iteration limit in OVSMD
is T . Given δ ∈ (0, 1), SFLS finds a relative ε-optimal and feasible solution with ε ≤
O
(

ln(1/δ) ln(T) ln(T/β)

β
√
T

)
and with a probability of at least 1 − δ using at most O

(
1
β ln

(
T
β

))
OVSMD calls and O

(
T
β ln

(
T
β

))
gradient iterations.

Overall, following the aforementioned strategy only requires the choice of T, θ, r(0), and
γt—a significant reduction in implementation burden.

For choosing θ and T , we consider a discrete set of values and tune the algorithm, that
is, we test the performance of SFLS for a few iterations or data passes for each value, and
select the one that leads to the largest decrease in suboptimality. Selecting r(0) is easy
when an initial feasible solution x̃ is available because we have E [F0(x̃, ξ0)] > f∗. In this
case, we estimate E [F0(x̃, ξ0)] using an SAA and then set r(0) to a larger value to account
for approximation error and ensure we have r(0) > f∗. If a feasible solution is not readily

3. Here, we use the Õ complexity notation, which omits logarithmic terms.

17

Lin, Nadarajah, Soheili, and Yang

available, we can find one by applying a minor modification of Algorithm 4 to solve

min
x∈X

max
y∈Y

{
m∑
i=1

yi(fi(x)− ri)

}
,

which does not include the term in (4) corresponding to i = 0, that is, f0 − r. Finally, the
step length can be specified as γt = 1/(c

√
t+ 1) for a given constraint c > 0, which is tuned.

While c is chosen as M in our theoretical analysis to simplify proofs, analogous results hold
for a generic constant c > 0. We omit these general results for the sake of brevity as they
do not change the dependence of our iterations bounds on ε, β, and δ.

6. Numerical Experiments

In this section, we evaluate the numerical performance of SFLS on three diverse SOEC ap-
plications: (i) approximate linear programs for solving Markov decision processes, (ii) multi-
class Neyman-Pearson classification, and (iii) learning with fairness constraints. SOECs in
the first application contain expectations of continuous random variables while those in
the second and third applications involve discrete random variables. Our first algorithmic
benchmark is the stochastic subgradient method YNW of Yu et al. (2017) as it is the only
first order approach (we are aware of) that can handle SOECs with multiple constraints.
In addition, we also compare against the deterministic feasible level-set method (DFLS) of
Lin et al. (2018b) because it ensures a feasible solution path. Specifically, comparing SFLS
and DFLS allows us to evaluate the benefits of the reduced data complexity in our stochas-
tic approach. In §6.1, we describe our computational setup and then the performance of
algorithms on applications in §§6.2-6.4.

6.1. Computational Setup

We implemented SFLS, DLFS, and YNW in Matlab running on a 64-bit Microsoft Windows
10 machine with a 2.70 Ghz Intel Core i7-6820HQ CPU and 8GB of memory. We set
ωx(x) = 1

2‖x‖
2
2 and ωy(y) =

∑m
i=0 yi ln yi in all three algorithms. We followed the guidelines

in §5.2 when implementing SFLS and thus had to choose only r(0), θ, and γt. We based
r(0) on the solution x̃. We tuned θ over the discrete set {1.1, 2, 5} and T over the discrete
set {50, 100, 200, 300}. We selected γt = 1/(c

√
t+ 1) and tuned c over the set of possible

values {0.05, 0.1, 1, 2, 5}. We employed a mini-batch technique to construct the stochastic
gradients in SFLS and YNW.

Similar to SFLS, DFLS solves the subproblem minx∈X P(r(k),x) approximately in the
kth outer iteration and uses the returned solution x(k) to update r(k) as r(k+1) ← r(k) +
P(r(k),x(k))/2. Following Lin et al. (2018b), we use the standard subgradient descent
method to solve this subproblem and the parameters r(0) and γt and the inner iteration
limit T in DLFS are tuned in the same way as in SFLS as described above. To apply DLFS,
we constructed a deterministic version of each SOEC using SAAs of expectations. We found,
consistent with Lin et al. (2018b), that using SAAs in lieu of expectations over continuous
random variables in the perishable control problem (first application) did not sufficiently
represent the original problem even when using a large number of samples. We thus omitted
DFLS as a benchmark for this application. This was not an issue for the remaining two

18

Stochastic Level-Set Methods

applications because expectations are defined over discrete random variables. To avoid the
quality of SAAs confounding our performance evaluation, we chose instances for these two
applications such that expectations can be evaluated exactly, albeit requiring more time.

We followed the guidance in Yu et al. (2017) to setup YNW. Specifically, we chose the
control parameters V and α as V =

√
T and α = T , respectively, as a function of the total

number of iterations T , where V is the weight of the gradient of the objective function and
α is the weight of the proximal term in the updating equation of x in YNW. Similar to
SFLS, we used a mini-batch technique to construct the stochastic gradients and evaluate
the objective values.

6.2. Approximate Linear Programming for Markov Decision Processes

Approximate linear programs (ALPs) address the well-known curse of dimensionality asso-
ciated with directly solving large-scale Markov decision processes (MDPs; Puterman, 1994)
by computing a value function approximation. We illustrate how our SFLS method can be
applied to tackle ALPs, and thus large-scale MDPs, by considering a challenging perishable
inventory control problem with partial backlogging and lead time. We begin by presenting
the MDP for this problem and refer the reader to Lin et al. (2020) for its derivation and
detailed application context.

Consider the management of orders for a single product with a finite life time of I peri-
ods and an order lead time of J periods, that is, the product takes J periods to be delivered
from when it is ordered and I periods to perish from receipt. The state space of the MDP
is represented by the vector

s = (z0, z1, . . . , zI−1, q1, q2, . . . , qJ−1) ∈ RI+J−1,

where qj , 1 ≤ j ≤ J − 1, denotes the order quantities that will be received j periods from
now, and zi, 0 ≤ i ≤ I − 1, the on-hand inventory with i periods of lifetime remaining. The
order quantity a is at most ā and belongs to the interval [0, ā], which implies zi ∈ [0, ā] for
i = 1, . . . , I − 1 and qj ∈ [0, ā] for j = 1, . . . , J − 1. The element z0 of the state is bounded
below by ls < 0 to allow limited or partial backlogging, that is, any units backlogged beyond
|ls| are lost sales. To ease exposition, we write s ∈ S and a ∈ A to capture the state and
action domains, respectively, and use s0 to represent the initial state. Assuming orders are
served on a first-come-first-serve basis, the MDP state transitions as

f(s, a) = (max{z1 − (G− z0)+, ls −
I−1∑
i=2

zi}, z2, . . . , zI−1, q1, q2, . . . , qJ−1, a),

where G represents stochastic demand with distribution PG. Moreover, the cost associated
with ordering a at state s is

c(s, a) = γJcpa

+E

[
ch

(
I−1∑
i=1

zi − (G− z0)+

)
+

+ cb

(
G−

I−1∑
i=0

zi

)
+

+ cd (z0 −G)+ + cl

(
ls +G−

I−1∑
i=0

zi

)
+

]
,

where the per unit lost sale, disposal, purchasing, holding, and backlogging costs are cl,
cd, cp, ch, and cb, respectively; E is taken over G; and γ ∈ (0, 1) is a discount factor. The

19

Lin, Nadarajah, Soheili, and Yang

infinite horizon (discounted cost) MDP formulated using the aforementioned components
can be solved using the fixed point equations

V (s) = max
a∈A

c(s, a) + γE[V (f(s, a))], ∀s ∈ S.

ALPs approximate the high-dimensional MDP value function V (s) (Schweitzer and Seid-
mann, 1985; de Farias and Van Roy, 2003) using a linear combination of basis functions. We
construct the ALP value function approximation using an intercept τ and B basis functions
φb : S 7→ R, b = 1, . . . , B, that is, V (s) ≈ τ +

∑B
b=1 θbφb(s), where θ := (θ1, . . . , θB) ∈ RB is

the basis function weight vector. It is common to require that the pair (τ, θ) belongs to a
compact set X . The VFA weights are computed by solving

max
(τ,θ)∈X

τ +
B∑
b=1

θb
[
φb(s

0)
]

s.t. (1− γ)τ +

B∑
b=1

θb (φb(s)− γE [φb(f(s, a))])− c(s, a) ≤ 0, ∀(s, a) ∈ S ×A.

The feasibility of the ALP constraints is important because it ensures that the objective
function of a feasible solution provides a lower bound on the optimal policy value, which
can be used to assess the suboptimality of heuristic policies (see, e.g., Proposition 4 in
Adelman and Mersereau, 2008). Thus, in principle, methods to solve ALP would benefit
from emphasizing feasibility as we do in SFLS.

Since the linear program above is semi-infinite, constraint sampling is a popular strategy
to approach its solution and obtain a high-probability feasible solution (de Farias and Van
Roy, 2004). Specifically, suppose we sample m state-action pairs (si, ai), i = 1, . . . ,m. The
ALP with constraints corresponding to these samples takes the form of (1):

max
x=(τ,θ)∈X

f0(x) := τ +
B∑
b=1

θb
[
φb(s

0)
]

(15)

s.t. fi(x) := (1− γ)τ +
B∑
b=1

θb (φb(si)− γE [φb(f(si, ai))])− c(si, ai) ≤ 0, i = 1, 2, . . . ,m.

We solve this linear program in our experiments.

Following Lin et al. (2020), we constructed instances with I = 2 and J = 2, chose PG to
be a truncated normal in the interval [0, 10] with mean 5 and the standard deviation 2, and
fixed cp, cl, ā, ls, γ, and s0 equal to 20, 100, 10, −10, 0.95, and (5, 0, 0), respectively. We
experimented with three instances based on the triple (ch, cd, cb) being equal to (2, 10, 10),
(5, 10, 8), and (2, 5, 10). We employed eighteen basis functions (B = 18): z0, z1, q1, and
{(z0 − ν)+, (z0 + z1 − 2ν)+, (z0 + z1 + q1 − 3ν)+, (2ν − z0 − z1 − q1)+, (ν − z1 − q1)+|ν ∈
{E[G], G0.25, G0.5}}, where G0.25 and G0.5 are the 25-th and 50-th quartiles of the demand
distribution. The domain for the basis function weights X was taken to be the box [0, 3000]×
[−5, 5]B. We chose m as 500.

In all methods, we use the initial solution x̃ = (τ̃ , θ̃) with τ̃ = mini=1,...,m
c(si,ai)

1−γ and

θ̃ = 0 which is feasible for (15). Our SFLS implementation uses r(0) = f0(x̃) > f∗, θ = 1.1,
and the step length rule γt = 5/

√
t+ 1. We do not report results for DFLS because,

20

Stochastic Level-Set Methods

(ch, cd, cb) = (2, 10, 10) (ch, cd, cb) = (5, 10, 8) (ch, cd, cb) = (2, 5, 10)
f 0

(x
)
−
f
∗

0 0.5 1 1.5 2
Number of Iterations 104

0

500

1000

1500
SFLS
YNW

0 0.5 1 1.5 2
Number of Iterations 104

0

500

1000

1500
SFLS
YNW

0 0.5 1 1.5 2
Number of Iterations 104

0

500

1000

1500
SFLS
YNW

m
ax

i=
1
,2
,.
..
,m
{f
i(

x
)
−
r i
}

0 0.5 1 1.5 2
Number of Iterations 104

-40

-30

-20

-10

0

10
SFLS
YNW

0 0.5 1 1.5 2
Number of Iterations 104

-40

-30

-20

-10

0

10
SFLS
YNW

0 0.5 1 1.5 2
Number of Iterations 104

-40

-20

0

20
SFLS
YNW

Figure 1: Performance of SFLS and YNW for solving approximate linear programs arising
in perishable inventory control.

as alluded to in §6.1, obtaining a good deterministic approximation using SAAs is non-
trivial for the perishable inventory control problem. We use a mini-batch technique with a
batch size of 100 to construct stochastic estimates of the gradients and function values of fi,
i = 0, . . . ,m in both SFLS and YNW. In SFLS, we choose the numbers of inner (i.e. T) and
outer iterations to be 200 and 100, respectively, which leads to 20, 000 stochastic gradient
steps (inner iterations) in total. Hence, we choose the total number of iterations in YNW
as T = 20, 000 so that both methods evaluate the same number of stochastic gradients in
total which lead to similar runtime (about 1100 seconds).

Figure 1 displays the performance of SFLS and YNW. The y-axes of the top subfigures
report the optimality gap f0(x) − f∗ while these axes in the bottom subfigures show the
feasibility of solutions by plotting maxi=1,2,...,m{fi(x)− ri}. Here, fi(x) for i = 1, 2, . . . ,m
are calculated by approximating the expectations in their definitions in (15) with 10, 000
samples of demand G. The optimal value f∗ is approximated by the objective value found
by a separated run of SFLS with sufficient iterations (400 outer and 500 inner iterations).
We track these measures as a function of the number of iterations performed by each al-
gorithm in the x-axis. To indicate the values of f0(x) − f∗ and maxi=1,2,...,m{fi(x) − ri}
corresponding to the high probability feasible solutions maintained at each SFLS (outer)
iteration we use line markers in Figure 1. The YNW curves have no line markers as there
are no outer iterations ensuring feasibility. SFLS finds a feasible solution quickly and main-
tain a relatively large constraint slack but YNW does not always ensure feasibility. SFLS
also reduces the suboptimality of solutions faster, suggesting that SFLS is able to balance
optimality and feasibility well on these instances.

21

Lin, Nadarajah, Soheili, and Yang

6.3. Multi-class Neyman-Pearson classification

Another application that gives rise to (1) is Neyman-Pearson classification. In multi-class
classification, there exist m classes of data, where ψi, i = 1, 2, . . . ,m, denotes a random
variable defined using the distribution of data points associated with the i-th class. To clas-
sify a data point ψi to one of the m classes, we rely on the same number of linear models xi,
i = 1, 2, . . . ,m. The predicted class for ψ is arg maxi=1,2,...,m x>i ψ. High classification accu-

racy in this scheme requires x>i ψi−x>l ψi with i 6= l to be large and positive (Crammer and
Singer, 2002), that is, the classifiers have discriminatory power. Minimizing the expected
loss E

[
φ(x>i ψi − x>l ψi)

]
is one approach to promote this goal, where φ is a non-increasing

convex loss function and E is expectation taken over ψi.

Suppose misclassifying ψi has a cost that depends on i but not on the predicted class.
We propose a model that prioritizes classes with relatively higher misclassification costs
using constraints and simultaneously trains the set of m linear models by solving

min
‖xi‖2≤λ,
∀i=1,2,...,m

∑
l 6=1

E[φ(x>1 ψ1 − x>l ψ1)], s.t.
∑
l 6=i

E[φ(x>i ψi − x>l ψi)] ≤ ri, i = 2, 3, . . . ,m, (16)

where it is assumed (without loss of generality) that class 1 has the highest misclassification
cost and the value of ri is chosen to capture the misclassification cost of class i. Here λ is a
regularization parameter. This formulation can be easily extended to handle the case where
the mis-classification cost depends on both the true and predicted classes. Indeed, (16) is of
the form (1). Infeasible solutions may result in large misclassification costs for some classes,
which is undesirable, and creates a need for methods that emphasize feasibility.

We created test instances using the multi-class classification LIBSVM data sets connect-
4, covtype, and news20 from Chang and Lin (2011). We selected these instances as their
size still allows us to run DFLS in the manner discussed in §6.1. We summarize in Table 1
the number of classes, the number of data points in each class, and the number of features
in these four data sets. We chose the loss function (16) to be the hinge loss φ(z) = (1−z)+.
Let ψi follow the empirical distribution over the data set of class i for i = 1, 2, . . . ,m, which
implies that all the expectations in (16) become finite-sample averages over data classes.
We set the parameters λ = 5 and ri = m− 1 for i = 2, . . . ,m.

In all methods, the solution x̃ = 0 is used as the initial solution and it is feasible
for (16). To apply SFLS and DFLS, we chose T = 100, r(0) = m, and θ = 1.1 across
all data sets. Note that r(0) = m > m − 1 = f0(0) ≥ f∗ for (16). In DFLS, we solve
subproblems via standard subgradient descent method. In SFLS and DFLS, we choose step
size γt = 0.05/

√
t+ 1 for connect-4 and covtype and choose γt = 1/

√
t+ 1 for news20. Both

SFLS and YNW employed a mini-batch size of 1000 to construct the stochastic gradients
and the objective values. We chose the number of iterations in YNW so that its total
number of data passes is 200 for connect-4 and news20 and 100 for covtype. Then, we also
terminated SFLS and DFLS when the total data passes they performed exceed YNW.

Figure 2 displays the performance of each method. The y-axes of the first row reports
the term f0(x)−f∗, that is, it focuses on optimality, while this axis in the second row shows
the feasibility of solutions by plotting maxi=1,2,...,m{fi(x) − ri}. We track these measures
as a function of the number of equivalent data passes performed by each algorithm in the
x-axis, where a data pass involves going over the number of data points equal to the size of

22

Stochastic Level-Set Methods

data set Number of classes Number of instances Number of features

connect-4 3 67557 126
covtype 7 581012 54
news20 20 15935 62061

Table 1: Characteristics of multi-class classification data sets from LIBSVM library

connect-4 covtype news20

f 0
(x

)
−
f
∗

0 50 100 150 200
Number of Data Passes

0

1

2

3
SFLS
YNW
DFLS

0 50 100
Number of Data Passes

0

2

4

6

8
SFLS
YNW
DFLS

0 50 100 150 200
Number of Data Passes

0

5

10

15

20
SFLS
YNW
DFLS

m
ax

i=
1
,2
,.
..
,m
{f
i(

x
)
−
r i
}

0 50 100 150 200
Number of Data Passes

-0.5

0

0.5

1 SFLS
YNW
DFLS

0 50 100
Number of Data Passes

-1.5

-1

-0.5

0

0.5

1
SFLS
YNW
DFLS

0 50 100 150 200
Number of Data Passes

-10

-8

-6

-4

-2

0 SFLS
YNW
DFLS

Figure 2: Performance of SFLS, YNW, and DFLS on the multi-class Neyman-Pearson clas-
sification problem.

the training data. This is possible since the expectations in our instances are over discrete
random variables. Tracking data passes allows us to assess algorithms in terms of data
complexity. Similar to Figure 1, we uses line markers to indicate the values of f0(x) − f∗
and max

i=1,2,...,m
{fi(x) − ri} corresponding to the solutions maintained at each SFLS outer

iteration, while YNW has no line marker since it does not maintain feasibility. Since DFLS
needs two data passes in each inner iteration, it can only perform one or two outer iterations
with the number of data passes in Figure 1. Hence, for a better visualization, we use line
markers to also indicate the inner iterations of DFLS instead of only outer iterations. In
this figure, f∗ is approximated by the objective value returned by DFLS after a sufficient
number of data passes (i.e. at least 5000 data passes with 2T inner iterations.)

On the connect-4 data set, SFLS maintains feasibility and reduces the optimaliy gap
quite rapidly after a few data passes. Interestingly, despite providing an initial feasible so-
lution, YNW decreases the optimality gap at the beginning by moving to a highly infeasible
solution. The peformance of both methods on the covtype data are comparable. On the

23

Lin, Nadarajah, Soheili, and Yang

news20 data set, SFLS provides feasible solutions with smaller optimality gaps sooner than
the benchmark method. The comparison of SFLS and YNW highlights the advantage of
SFLS in terms of feasibility. Specifically, efficient methods that do not emphasize feasibility
could lead to highly infeasible solutions if terminated prematurely (e.g., the connect-4 data
set).

DFLS also maintains a feasible solution path on all the data sets, as expected. However,
its optimality gap reduces at a much slower rate with the number of data passes compared
to SFLS because it uses deterministic subgradients based on the entire data set. These
results thus underscore the importance of developing methods, such as SFLS, with low data
complexity to balance optimality and feasibility.

6.4. Learning with Fairness Constraints

We consider learning a classifier with fairness constraints. Other examples include training
predictive models with constraints on coverage rates, churn rates, and stability. Please see
Goh et al. (2016) for further motivation and a non-convex formulation. Here we provide a
convex formulation for these problems, which can be viewed as a tractable relaxation of the
version in Goh et al. (2016) that admits the SOEC structure (1).

Suppose (a, b) is a data point from a distribution D, where a is a feature vector and
b ∈ {1,−1} is the class label. Let DM and DF denote two different distributions of features
(that are not necessarily labeled), which may represent male and female individuals. The
goal is to train a classifier a>x that minimizes classification loss. The correct classification
of data vector a implies that ba>x > 0. One can train such a classifier subject to fairness
constraints by solving

min
‖x‖2≤λ

E(a,b)∼D[φ(−ba>x)] (17)

s.t. Ea∼DM
[σ(a>x)] ≤ Ea∼DF

[σ(a>x)]/κ,

Ea∼DF
[σ(a>x)] ≤ Ea∼DM

[σ(a>x)]/κ,

where λ is a regularization parameter, κ ∈ (0, 1] is a constant, φ is a non-increasing loss
function,

σ(z) = max{0,min{1, {0.5 + z}},

and σ(a>x) ∈ [0, 1] represents the probability of the (random) classifier x predicting a
as positive. Therefore, Ea∼DM

[σ(a>x)] and Ea∼DM
[σ(a>x)] represent the percentages of

instances in DM and DF predicted as positive, respectively. The first constraint guarantees
that the percentage of the positively predicted instances in DF is at least a κ fraction of
that in DM . The second constraint has similar interpretation. An analogous model was
considered in Goh et al. (2016) but it involves non-convex constraints.

Observing that σ(a>x) = 1 − σ(−a>x), we can reformulate the first constraint as
Ea∼DM

[σ(a>x)]+Ea∼DF
[σ(−a>x)]/κ ≤ 1/κ and approximate σ by max{0, 0.5+z} = (0.5+

z)+ so that we obtain a convex constraint Ea∼DM
[(a>x+0.5)+]+Ea∼DF

[(−a>x+0.5)+]/κ ≤
1/κ. Applying an analogous convex approximation to the second constraint, we obtain the

24

Stochastic Level-Set Methods

a9a LoanStats

f
(x

)
−
f
∗

0 100 200 300
Number of Data Passes

0

0.2

0.4

0.6 SFLS
YNW
DFLS

0 100 200 300
Number of Data Passes

-0.5

0

0.5

SFLS
YNW
DFLS

m
ax

i=
1
,2
,.
..
,m
{f
i(

x
)
−
r i
}

0 100 200 300
Number of Data Passes

-0.04

-0.02

0

0.02 SFLS
YNW
DFLS

0 100 200 300
Number of Data Passes

0

0.1

0.2

0.3

0.4

0.5
SFLS
YNW
DFLS

Figure 3: Performance of SFLS, YNW, and DFLS for solving the classification problem
with fairness constraints.

following convex formulation for training a classifier subject to fairness constraints:

min
‖x‖2≤λ

E(a,b)∼D[φ(−ba>x)]

s.t. Ea∼DM
[(a>x + 0.5)+] + Ea∼DF

[(−a>x + 0.5)+]/κ ≤ 1/κ,

Ea∼DF
[(a>x + 0.5)+] + Ea∼DM

[(−a>x + 0.5)+]/κ ≤ 1/κ.

The left hand side of the first constraint will be large if the classifier x is not “fair”, that
is, it makes a>x very negative for most of a from DM but very positive for most of a
from DF . Similarly, the left hand side of the second constraint will be large if the model x
makes a>x very positive for most of a from DF but very negative for most of a from DM .
Choosing an appropriate κ ensures that the obtained model is fair to both DM and DF .
Indeed, a solution that violates constraints in this formulation translates to a classifier that
discriminates against one of the two classes.

For testing, we considered the “a9a” data set, also used by Goh et al. (2016) and
another data set dubbed “LoanStats” from LendingClub.4 We chose λ = 5, κ = 0.95, and

4. https://www.lendingclub.com/info/statistics.action

25

https://www.lendingclub.com/info/statistics.action

Lin, Nadarajah, Soheili, and Yang

φ(z) = (1− z)+ in each case. The distributions D, DM , and DF were defined as empirical
distributions based on each data set as described below. The goal in the a9a data set is
to predict people making more than 50,000 USD. Following Goh et al. (2016), we used the
32,561 training instances (D) and the 16,281 testing instances in the data set to construct
the objective function and constraints, respectively. Since we need male and female subsets
to construct constraints, we further split the testing data into 14,720 male instances (DM)
and 1,561 female instances (DF). The LoanStats data set contains information of 128, 375
loans issued in the fourth quarter of 2018 and the goal is to predict if a loan will be
approved or rejected. After creating dummy variables, each loan is represented by a feature
vector of 250 dimensions. We randomly partitioned the data set into a set of 63, 890 loans
(D) used to construct the objective function and a set of 64, 485 loans used to build the
constraints. We further split the second set based on whether the feature “homeOwnership”
equals “Mortgage” (DM) or some other value (DF) to obtain 31,966 and 32,519 loans in
two subsets, respectively.

All methods are initialized at x̃ = 0, which is feasible for (16). In SFLS and DFLS,
we chose r(0) = 1, γt = 0.1/

√
t+ 1 and θ = 1.1 across all data sets. Note that r(0) = 1 =

f0(0) ≥ f∗. In SFLS, we chose T = 300 and T = 200 for a9a and LoanStats data sets,
respectively. In DFLS, we chose T = 100 and T = 50 for a9a and LoanStats data sets,
respectively. Both SFLS and YNW employed a mini-batch size of 500 and 1000 for a9a
and LoanStats data sets, respectively. Similar to §6.3, we chose the number of iterations in
YNW so that its total number of data passes is 300. Then, we also terminated SFLS and
DFLS when the total data passes they performed exceed 300.

Figure 3 displays the performance of SFLS, YNW, and DFLS as a function of data
passes. The interpretation of the axes and line markers in this figure are analogous to the
ones in Figure 2. In this figure, f∗ is approximated by the objective value returned by
DFLS after a sufficient number of data passes (i.e. at least 5000 data passes with 2T inner
iterations.) On the a9a data set, SFLS maintains a feasible solution path, as expected,
while the YNW solutions are initially infeasible and become feasible with more data passes.
The YNW reduces optimality gap more rapidly at the beginning while SFLS catches up
quickly. The objective function value of YNW cannot be interpreted as an optimality
gap when its solutions are infeasible since the corresponding objective function value can
be super optimal. This feature is clearly visible on the LoanStats data. Here most of the
YNW solutions are infeasible and superoptimal, that is, f(x)−f∗ is non-positive. The SFLS
solution path continues to be feasible and suboptimal on this data set, with its suboptimality
decreasing consistently after each outer iterations. DFLS also produces a feasible path but
does not effectively reduce the optimality gap because its data complexity is high, that is,
it requires a large number of data passes to achieve a small optimality gap. Similar to §6.3,
we once again find that the low data complexity of SFLS is critical to balance optimality
and feasibility when solving an SOEC.

7. Conclusion

We consider constrained optimization models where both the objective function and multi-
ple constraints contain expectations of random convex functions. These models, referred to
as stochastic optimization problems with expectation constraints (SOECs), arise in several

26

Stochastic Level-Set Methods

machine learning, engineering, and business applications. We develop a stochastic feasible
level-set method (SFLS) to solve SOECs, propose a tractable oracle to be used with SLFS,
and analyze related iteration complexities. SFLS’s total iteration complexity is comparable
to stochastic subgradient methods in terms of ε but depends on a condition number—the
cost of requiring feasibility. We evaluate the performance of SFLS across three applications
involving approximate linear programming, multi-class classification, and learning classi-
fiers with fairness constraints. We find that SFLS exhibits key advantages over existing
methods. First, it ensures a feasible solution path with high probability while an existing
state-of-the-art stochastic subgradient method can return highly infeasible solutions when
terminated before conservative termination criteria are met. Infeasibilities may void the use
of a solution in practice, especially if constraints model implementation requirements. Thus,
the ability of SFLS to compute feasible solutions before convergence is practically relevant.
Second, SFLS computes feasible solutions with small optimality gaps using only a few data
passes owing to its low data-complexity, which is a desirable property when expectations
are defined using large data sets that are expensive to scan. In contrast to SFLS, a recent
deterministic feasible level set method exhibits high data complexity and large optimality
gaps. Our theoretical and numerical findings bode well for the use of SFLS to solve SOECs
and motivates further research into stochastic first order methods that emphasize feasibility.

Acknowledgments

We would like to thank the action editor and the two anonymous referees for the time
and efforts reviewing our paper. Their suggestions have lead to an improved version of
the paper. Tianbao Yang is partially supported by National Science Foundation CAREER
Award 1844403.

Appendix A. Proofs of Theoretical Results

In this section, we provide the proofs of all technical results in the paper.
Proof of Lemma 3: Since r > f∗, it follows from Lemma 1(c) that H(r) ≤ 0. There-
fore, since θ ≥ 1 we have ε ≤ − θ−1

θ+1H(r) ≤ −H(r). Moreover, by Definition 2, we have
P(r, x̂) ≤ H(r) + ε with probability of at least 1 − δ, which implies that x̂ is a feasible
solution to (2) since P(r, x̂) ≤ H(r) + ε ≤ H(r)−H(r) ≤ 0.

Proof of Theorem 5 depends on the following lemma.

Lemma 12 Given an input tuple (r, ε, δ, θ), a stochastic oracle A(r, ε, δ) with 0 < ε ≤
− θ−1
θ+1H(r) returns U(r) and x̂ such that θU(r) ≤ H(r) ≤ P(r, x̂) ≤ U(r)/θ with probability

of at least 1− δ.

Proof The inequality H(r) ≤ P(r, x̂) holds by definition of H(r). By definition of stochas-
tic oracle (Definition 2) and the property of ε, it follows that P(r, x̂) ≤ H(r)+ε ≤ 2

θ+1H(r),

H(r) ≤ U(r) + ε ≤ U(r) − θ−1
θ+1H(r), and U(r) ≤ H(r) + ε ≤ 2

θ+1H(r) hold with proba-
bility of at least 1 − δ. Since r > f∗, Lemma 1(c) implies that H(r) ≤ 0. Therefore,
using the inequality U(r) ≤ 2

θ+1H(r) we get U(r) ≤ 0 and θU(r) ≤ θ+1
2 U(r) ≤ H(r)

27

Lin, Nadarajah, Soheili, and Yang

since θ > 1. Finally, combining the inequalities P(r, x̂) ≤ 2
θ+1H(r) and H(r) ≤ U(r) −

θ−1
θ+1H(r) (or equivalently H(r) ≤ θ+1

2θ U(r)), we get P(r, x̂) ≤ 2
θ+1 ·

θ+1
2θ U(r) = U(r)/θ.

In the proof of Theorem 5 we need the following property of the condition measure β.
In particular, it can be easily verified from the convexity of H(r) and H(r)−δ ≤ H(r+δ) ≤
H(r) for any δ ≥ 0 (Lemma 2.3.5 in Nesterov, 2004) that H(r)

r−f∗ is monotonically increasing

in r on (f∗, r(0)] and

−β =
H(r(0))

r(0) − f∗
≥ H(r)

r − f∗
≥ −1, ∀r ∈ (f∗, r(0)]. (18)

Proof Theorem 5: We first show that the Algorithm 1 generates a feasible solution at
each iteration with high probability. Let K be the largest value of k such that r(k) > f∗

and the following inequality holds:

εA = − θ − 1

2θ2(θ + 1)
H(r(0))ε ≤ −θ − 1

θ + 1
H(r(k)). (19)

Notice that K ≥ 0 since 0 < ε ≤ 1 ≤ 2θ2 and H(r(0)) ≤ 0. It follows from Lemma 12 that
with a probability of at least 1− δ(k) we have,

θU(r(k)) ≤ H(r(k)) ≤ P(r(k),x(k)) ≤ U(r(k))/θ, for any K ≥ k ≥ 0. (20)

Since r(k+1) = r(k) + U(r(k))/(2θ), we have

r(k+1) − f∗ = r(k) − f∗ + U(r(k))/(2θ) ≥ r(k) − f∗ +H(r(k))/2 ≥ 1

2
(r(k) − f∗), (21)

and

r(k+1) − f∗ = r(k) − f∗ + U(r(k))/(2θ) ≤ r(k) − f∗ +
H(r(k))

2θ2
≤
(

1− β

2θ2

)
(r(k) − f∗)

(22)

with a probability of at least 1−δ(k), where the last inequalities in both (21) and (22) follow

from (18). Inequality (21) and the condition r(k) > f∗ imply that r(k+1) > f∗. Applying

this argument recurrently and using the fact that
∑∞

k=0 δ
(k) = δ, we have (21), (22) and

r(k+1) > f∗ holds for k = 0, 1, . . . ,K. Therefore, since εA ≤ − θ−1
θ+1H(r(k)) ≤ −H(r(k)) for

k = 0, 1, . . . ,K, Lemma 3 implies the solution x(k) generated at iteration k = 0, 1, . . . ,K
is feasible to (1) with a probability of at least 1− δ. We next show that (19) holds with a
high probability until Algorithm 1 terminates. By the definition of K, we know that (19)

is violated when k = K + 1, i.e. − θ−1
2θ2(θ+1)

H(r(0))ε > − θ−1
θ+1H(r(K+1)). Since r(k+1) ≤ r(k)

and H(r)
r−f∗ is monotonically increasing, we can show that

− θ − 1

2θ2(θ + 1)
H(r(0))ε > −θ − 1

θ + 1
H(r(K+1)) ≥ −θ − 1

θ + 1
H(r(K))

r(K+1) − f∗

r(K) − f∗
≥ − θ − 1

2(θ + 1)
H(r(K)),

(23)

28

Stochastic Level-Set Methods

where the last inequality holds by (21). Using the definition of εopt, (23), and (20) for
k = K (specifically, H(r(K)) ≤ U(r(K))/θ), we have

− θ − 1

2θ(θ + 1)
εopt =

θ − 1

2θ2(θ + 1)
H(r(0))ε ≤ θ − 1

2(θ + 1)
H(r(K)) ≤ θ − 1

2θ(θ + 1)
U(r(K)),

which indicates that Algorithm 1 must stop before k = K + 1. Therefore, SFLS generates
a feasible solution with a probability of at least 1− δ at each iteration before termination.

We now proceed to establish that the terminal solution of SFLS is relative ε-optimal so-
lution. By definition of P(r(k),x(k)) and (20) it follows that f0(x(k))−r(k) ≤ P(r(k),x(k)) ≤
H(r(k))/θ2 ≤ 0 for all k. Hence,

f0(x(k))− f∗ ≤ r(k) − f∗, for all k = 0, 1, 2, . . . ,K. (24)

Combining (24) and r(k)−f∗ ≤ (r(0)−f∗)H(r(k))/H(r(0)) derived from (18) stipulates that
with a probability of at least 1− δ:

f0(x(k))− f∗

r(0) − f∗
≤ H(r(k))

H(r(0))
≤ θU(r(k))

H(r(0))
,

where we used (20) in the second inequality. Hence, at termination of Algorithm 1 we get
f0(x(k))−f∗
r(0)−f∗ ≤ ε since the algorithm stops when θU(r(k)) ≥ H(r(0))ε.

Finally we show that K :=
2θ2

β
ln

(
θ2

βε

)
. By recursively applying inequality (22) we get

0 ≤ r(k) − f∗ ≤
(

1− β

2θ2

)k
(r(0) − f∗), for all k (25)

with probability of at least 1 − δ, which implies r(K) − f∗ ≤ −H(r(0))ε
θ2

for the choice of

K. Hence, we have −U(r(K)) ≤ −θH(r(K)) ≤ θ(r(K) − f∗) ≤ −εH(r(0))/θ where the first
inequality follows by (20), the second by (18), and the third by (25). This indicates that
the stopping criterion of Algorithm 1 holds with a probability of at least 1− δ when k = K
and SFLS requires at most K calls to oracle A.

Proof of Proposition 6: The proof of the first part directly follows from Proposition 3.2
in Nemirovski et al., 2009. We only show that SMD is a valid oracle. It is straightforward to
see that the inequality U(x̄(t))− L(ȳ(t)) ≤ εA implies P(r, x̄(t))−H(r) ≤ U(x̄(t))−H(r) ≤
U(x̄(t))− L(ȳ(t)) ≤ εA, where the first inequality holds since U(x̄(t)) is an upper bound on
P(r, x̄(t)) and the second since L(ȳ(t)) is a lower bound on H(r). This indicates that the
conditions provided in Definition 2 are satisfied.

To show part (i) of Proposition 7, we use known lemmas 13 and 14 as well as prove
lemmas 15 and 16. To prove part (ii) of this proposition we need Lemma 17. Before stating
these lemmas, we present some required notation and representations, which we present
next. We denote the diameter of Z with respect to ωz by

Dz :=
√

max
z∈Z

ωz(z)−min
z∈Z

ωz(z) = 1.

29

Lin, Nadarajah, Soheili, and Yang

In addition, for any ζx ∈ Rd, ζy ∈ Rm+1, x′ ∈ X o, y′ ∈ Yo, and z′ = (x′,y′) ∈ Zo, it is easy
to verify for ζ = (ζx, ζy) that

Pz′(ζ) =
(
P xx′(2D

2
xζx), P yy′(2D

2
yζy)

)
, (26)

where P xx′(ζx) := arg minx∈X {ζ>x (x − x′) + Vx(x′,x)} and P yy′(ζy) := arg miny∈Y{ζ>y (y −
y′) + Vy(y

′,y)}.

Lemma 13 (Equation (2.37) and Lemma 6.1 in Nemirovski et al., 2009) 1. Let

ζ
(t)
x ∈ Rd, t = 0, 1, 2, . . . be a set of random variables, v(0) ∈ X o and v(t+1) =

P x
v(t)(ζ

(t)
x) for t = 0, 1, 2, For any v ∈ X and t ≥ 1, we have

t∑
s=0

(v(s) − v)>ζ(s)
x ≤ Vx(v(0),v) +

1

2αx

t∑
s=0

∥∥∥ζ(s)
x

∥∥∥2

∗,x
.

2. Let ζ
(t)
y ∈ Rm+1, t = 0, 1, 2, . . . be a set of random variables, v(0) ∈ Yo and v(t+1) =

P y
v(t)(ζ

(t)
y) for t = 0, 1, 2, For any v ∈ Y and t ≥ 1, we have

t∑
s=0

(v(s) − v)>ζ(s)
y ≤ Vy(v(0),v) +

1

2αy

t∑
s=0

∥∥∥ζ(s)
y

∥∥∥2

∗,y
.

3. Let ζ(t) ∈ Rd+m+1, t = 0, 1, 2, . . . be a set of random variables, v(0) ∈ Zo and v(t+1) =
Pv(t)(ζ(t)) for t = 0, 1, 2, For any v ∈ Z and t ≥ 1, we have

t∑
s=0

(v(s) − v)>ζ(s) ≤ V (v(0),v) +
1

2

t∑
s=0

∥∥∥ζ(s)
∥∥∥2

∗,z
.

Lemma 14 (Lemma 2 in Lan et al., 2012) Let ξ(t) and σt > 0 for t ≥ 0 be respectively
a sequence of i.i.d. random variables and deterministic numbers; ξ[t] = (ξ(0), ξ(1), . . . , ξ(t));
Et the conditional expectation conditioning on ξ[t−1] for t ≥ 1; and ψt(ξ

[t]) be a measurable
function of ξ[t] such that either

Case A: Et
[
ψt
(
ξ[t]
)]

= 0 and Et
[
exp

(
ψt
(
ξ[t]
)2
/σ2

t

)]
≤ exp(1), or

Case B: Et
[
exp

(∣∣ψt (ξ[t]
)∣∣ /σt)] ≤ exp(1) ,

almost surely for all t. Then for any Ω > 0, we have the followings:
In case A:

Prob


t∑

s=0

ψs > Ω

√√√√ t∑
s=0

σ2
s

 ≤ exp(−Ω2/3).

In case B:

Prob

{
t∑

s=0

ψs > ‖σ[t]‖1 + Ω‖σ[t]‖2

}
≤ exp(−Ω2/12) + exp(−3Ω/4),

where σ[t] = (σ0, σ1, . . . , σt)
>.

30

Stochastic Level-Set Methods

Lemma 15 shows that the stochastic subgradient G(·, ·, ·) has a light-tailed distribution
and bounds the Bregmann distances. Define

∆t := G(x(t),y(t), ξ(t))− g(x(t),y(t)) =

[
∆x
t

−∆y
t

]
:=

[
Gx(x(t),y(t), ξ(t))− gx(x(t),y(t))

gy(x
(t),y(t))−Gy(x(t),y(t), ξ(t))

]
.

Lemma 15 The following inequalities hold:

Et
[
exp

(
‖∆t‖2∗,z/(2M)2

)]
≤ exp(1), (27)

Et
[
exp

(
‖∆x

t ‖2∗,x/(2Mx)2
)]
≤ exp(1), (28)

Et
[
exp

(
‖∆y

t ‖2∗,y/(2My)
2
)]
≤ exp(1). (29)

Moreover, when z′ = (x′,y′) := arg minz∈Z ωz(z), we have

αx
2
‖x′ − x‖2x ≤ Vx(x′,x) ≤ D2

x, for all x ∈ X , (30)

αy
2
‖y′ − y‖2y ≤ Vy(y′,y) ≤ D2

y, for all x ∈ Y, (31)

1

2
‖z′ − z‖2z ≤ V (z′, z) ≤ D2

z = 1, for all z ∈ Z. (32)

Proof Applying Jensen’s inequality and using the definitions of ‖·‖∗,z, M , and the inequal-
ities (6) and (7), we have

E
[
exp

(
‖G(x,y, ξ)‖2∗,z/M2

)]
= E

exp

 2D2
x

αx
‖Gx(x,y, ξ)‖2∗,x +

2D2
y

αy
‖Gy(x,y, ξ)‖2∗,y

2D2
x

αx
M2
x +

2D2
y

αy
M2
y


≤

2D2
x

αx
M2
xE
[
exp

(
‖Gx(x,y, ξ)‖2∗,x/M2

x

)]
+

2D2
y

αy
M2
yE
[
exp

(
‖Gy(x,y, ξ)‖2∗,y/M2

y

)]
2D2

x
αx
M2
x +

2D2
y

αy
M2
y

≤ exp(1). (33)

Using (33) and Jensen’s inequality, it follows that∥∥∥g(x(t),y(t))
∥∥∥2

∗,z
≤ Et

[∥∥∥G(x(t),y(t), ξ(t))
∥∥∥2

∗,z

]
≤M2. (34)

Hence, we have

Et
[
exp

(
‖∆t‖2∗,z/(2M)2

)]
≤ Et

[
exp(2‖G(x(t),y(t), ξ(t))‖2∗,z/(2M)2) exp(2‖g(x(t),y(t))‖2∗,z/(2M)2)

]
,

≤ Et
[√

exp(‖G(x(t),y(t), ξ(t))‖2∗,z/M2) exp(1/2)

]
,

≤
√

Et
[
exp(‖G(x(t),y(t), ξ(t))‖2∗,z/M2)

]
exp(1/2),

≤ exp(1/2) exp(1/2) = exp(1), (35)

31

Lin, Nadarajah, Soheili, and Yang

where the first inequality follows from the definition of ∆t and the inequality ‖a + b‖2 ≤
2a2 + 2b2 for any a, b ∈ R, the second from (34), the third from Jensen’s inequality for con-
cave functions, and the fourth by inequalities (6) and (7). Following a similar argument, we
can also show that Et

[
exp

(
‖∆x

t ‖2∗,x/(2Mx)2
)]
≤ exp(1) and Et

[
exp

(
‖∆y

t ‖2∗,y/(2My)
2
)]
≤

exp(1). Finally, inequalities (30), (31), and (32) follow because ωx, ωy and ωz are modulus
αx, αy and 1, respectively.

Lemma 16 Let νs,t :=
γs∑t
s′=0 γs′

. Given Ω > 0, Algorithm 3 computes (x(t),y(t)), t =

1, 2, 3, . . . , such that

Prob

u(t)
∗ − l(t)∗ > 4

√
2ΩM

√√√√ t∑
s=0

ν2
s,t +

2 + 2.5M2
∑t

s=0 γ
2
s∑t

s=0 γs
+ 2.5ΩM2

√√√√ t∑
s=0

γ2
sν

2
s,t


≤ exp(−Ω2/3) + exp(−Ω2/12) + exp(−3Ω/4). (36)

Proof Since z(0) ∈ arg minz∈Z ωz(z) and z(t+1) = Pz(t)(γtG(x(t),y(t), ξ(t))) in Algorithm 3,
by Lemma 13 we have, for any z ∈ Z,

t∑
s=0

γs(z
(s) − z)>G(x(s),y(s), ξ(s)) ≤ V (z(0), z) +

1

2

t∑
s=0

γ2
s

∥∥∥G(x(s),y(s), ξ(s))
∥∥∥2

∗,z

≤ 1 +
1

2

t∑
s=0

γ2
s

∥∥∥G(x(s),y(s), ξ(s))
∥∥∥2

∗,z
, (37)

where the second inequality follows by (32). In addition, by definition of ∆t, for any z ∈ Z
we have

1∑t
s=0 γs

t∑
s=0

γs(z
(s) − z)>G(x(s),y(s), ξ(s))

=

∑t
s=0 γs(x

(s) − x)>gx(x(s),y(s))∑t
s=0 γs

−
∑t
s=0 γs(y

(s) − y)>gy(x(s),y(s))∑t
s=0 γs

+

∑t
s=0 γs(z

(s) − z)>∆s∑t
s=0 γs

(38)

Applying (37) to (38) and reorganizing terms lead to∑t
s=0 γs(x

(s) − x)>gx(x(s),y(s))∑t
s=0 γs

−
∑t

s=0 γs(y
(s) − y)>gy(x

(s),y(s))∑t
s=0 γs

≤
∑t

s=0 γs(z− z(s))>∆s∑t
s=0 γs

+
1 + 0.5

∑t
s=0 γ

2
s

∥∥G(x(s),y(s), ξ(s))
∥∥2

∗,z∑t
s=0 γs

.

Maximizing both sides of the above inequality over z ∈ Z implies

u
(t)
∗ − l(t)∗ ≤

max
z∈Z

[∑t
s=0 γs(z− z(s))>∆s

]
∑t

s=0 γs
+

1 + 0.5
∑t

s=0 γ
2
s

∥∥G(x(s),y(s), ξ(s))
∥∥2

∗,z∑t
s=0 γs

. (39)

32

Stochastic Level-Set Methods

Let v(0) = z(0) and v(t+1) = Pv(t)(−γt∆t) for t = 0, 1, 2, From Lemma 13 it follows that
for any z ∈ Z,

−
t∑

s=0

γs(v
(s) − z)>∆s ≤ 1 + 0.5

t∑
s=0

γ2
s‖∆s‖2∗,z, (40)

Rewriting z− z(s) = v(s) − z(s) + z− v(s) and applying (40) to (39) yield

u
(t)
∗ − l(t)∗ ≤

∑t
s=0 γs(v

(s) − z(s))>∆s∑t
s=0 γs

+
2 + 0.5

∑t
s=0 γ

2
s

(∥∥G(x(s),y(s), ξ(s))
∥∥2

∗,z + ‖∆s‖2∗,z
)

∑t
s=0 γs

. (41)

We next find a probabilistic bound for the right hand side of the above inequality.

Bound on
∑t

s=0 γs(v(s)−z(s))>∆s∑t
s=0 γs

: By our choice of z(0), i.e. z(0) = arg minz∈Z ωz(z) and

(32), for any s = 0, 1, . . . , t we have

‖v(s) − z(s)‖z ≤ ‖z(s) − z(0)‖z + ‖v(s) − z(0)‖z ≤
√

2V (z(0), z(s)) +
√

2V (z(0),v(s)) ≤ 2
√

2.

(42)
Define ψs := νs,t(v

(s) − z(s))>∆s and σs := 4
√

2Mνs,t. Because ξ(s) is independent of
v(s) and z(s), we have Es[ψs] = 0. In addition, it can be verified that ψ2

s ≤ ν2
s,t‖v(s) −

z(s)‖2z‖∆s‖2∗,z ≤ 8ν2
s,t‖∆s‖2∗,z, where the second inequality holds by (42). Using this in-

equality and (35), we get Es
[
exp

(
ψ2
s/σ

2
s

)]
≤ Es

[
exp

(
‖∆s‖2∗,z/(2M)2

)]
≤ exp(1). Hence,

it follows from Case A in Lemma 14 that

Prob


∑t

s=0 γs(v
(s) − z(s))>∆s∑t
s=0 γs

> 4
√

2ΩM

√√√√ t∑
s=0

ν2
s,t

 ≤ exp(−Ω2/3). (43)

Bound on

∑t
s=0 γ

2
s

(
‖G(x(s),y(s),ξ(s))‖2∗,z+‖∆s‖2∗,z

)
∑t

s=0 γs
: Let ψs := γsνs,t

(∥∥G(x(s),y(s), ξ(s))
∥∥2

∗,z+

‖∆s‖2∗,z
)

and σs := 5M2γsνs,t. We then have

E [exp (|ψs|/σs)] = E

[
exp

(
‖G(x(s),y(s), ξ(s))‖2∗,z + ‖∆s‖2∗,z

5M2

)]

= E

exp

∥∥G(x(s),y(s), ξ(s))
∥∥2

∗,z /M
2 + 4‖∆s‖2∗,z/(4M2)

5


≤ 1

5
E

exp

∥∥G(x(s),y(s), ξ(s))
∥∥2

∗,z
M2

+
4

5
E

[
exp

(
‖∆s‖2∗,z

4M2

)]
≤ exp(1),

where the first inequality is from Jensen’s inequality and the second inequality is from (33)
and (35). Hence, from Case B in Lemma 14 it follows that

Prob


∑t

s=0 γ
2
s

(
‖G(x(s),y(s), ξ(s))‖2∗,z + ‖∆s‖2∗,z

)∑t
s=0 γs

> 5M2
t∑

s=0

γsνs,t + 5ΩM2

√√√√ t∑
s=0

γ2
sν

2
s,t


≤ exp(−Ω2/12) + exp(−3Ω/4). (44)

33

Lin, Nadarajah, Soheili, and Yang

The conclusion is hence obtained by upper bounding the right hand size of (41) using
the union bound of (43) and (44).

Lemma 17 Let νs,t :=
γs∑t
s′=0 γs′

. Given Ω > 0, Algorithm 3 guarantees that

Prob

∣∣∣l̂(t)∗ − l(t)∗ ∣∣∣ >
(

ΩQ+
4
√

2ΩDxMx√
αx

)√√√√ t∑
s=0

ν2
s,t +

0.5 + 4D2
xM

2
x

αx

∑t
s=0 γ

2
s∑t

s=0 γs

+
4ΩD2

xM
2
x

αx

√√√√ t∑
s=0

γ2
sν

2
s,t

 ≤ 6 exp(−Ω2/3) + exp(−Ω2/12) + exp (−3Ω/4) .

(45)

and

Prob

∣∣∣û(t)
∗ − u(t)

∗

∣∣∣ > (ΩQ+
4
√

2ΩDyMy√
αy

)√√√√ t∑
s=0

ν2
s,t +

0.5 +
4D2

yM
2
y

αy

∑t
s=0 γ

2
s∑t

s=0 γs

+
4ΩD2

yM
2
y

αy

√√√√ t∑
s=0

γ2
sν

2
s,t

 ≤ 6 exp(−Ω2/3) + exp(−Ω2/12) + exp (−3Ω/4) .

(46)

Proof Since the proofs of (45) and (46) are very similar, we will only prove (45). Let

l(t)(x) :=
1∑t
s=0 γs

t∑
s=0

γs

[
φ(x(s),y(s)) + gx(x(s),y(s))>(x− x(s))

]
,

and

l̂t(x) :=
1∑t
s=0 γs

t∑
s=0

γs

[
Φ(x(s),y(s), ξ(s)) +Gx(x(s),y(s), ξ(s))>(x− x(s))

]
.

Define δt := Φ(x(t),y(t), ξ(t)) − φ(x(t),y(t)). Using this definition and those of l
(t)
∗ =

minx∈X l
(t)(x), l̂

(t)
∗ = minx∈X l̂

(t)(x), and ∆t we have∣∣∣l̂(t)∗ − l(t)∗ ∣∣∣ =

∣∣∣∣min
x∈X

l̂(t)(x)−min
x∈X

l(t)(x)

∣∣∣∣
≤ max

x∈X

∣∣∣l̂(t)(x)− l(t)(x)
∣∣∣

≤ max
x∈X

∣∣∣∣∣
∑t

s=0 γs(x− x(s))>∆x
s∑t

s=0 γs

∣∣∣∣∣+

∣∣∣∣∣
∑t

s=0 γsδs∑t
s=0 γs

∣∣∣∣∣ . (47)

34

Stochastic Level-Set Methods

By (26) and line 5 of Algorithm 3, we have x(t+1) = P x
x(t)(2D

2
xγtGx(x(t),y(t), ξ(t))). Let

w(0) = v(0) = x(0), w(t+1) := P x
w(t)(−2D2

xγt∆
x
t) and v(t+1) := P x

v(t)(2D
2
xγt∆

x
t) for t =

0, 1, 2, From Lemma 13 and (30) it follows that

−
t∑

s=0

γs(w
(s) − x)>∆x

s ≤
Vx(w(0),x)

2D2
x

+
D2
x

αx

t∑
s=0

γ2
s‖∆x

s‖2∗,x ≤
1

2
+
D2
x

αx

t∑
s=0

γ2
s‖∆x

s‖2∗,x,

t∑
s=0

γs(v
(s) − x)>∆x

s ≤
Vx(v(0),x)

2D2
x

+
D2
x

αx

t∑
s=0

γ2
s‖∆x

s‖2∗,x ≤
1

2
+
D2
x

αx

t∑
s=0

γ2
s‖∆x

s‖2∗,x.

Writing x − x(s) = x −w(s) + w(s) − x(s) and x(s) − x = v(s) − x + x(s) − v(s), these two
inequalities imply

t∑
s=0

γs(x− x(s))>∆x
s ≤

t∑
s=0

γs(w
(s) − x(s))>∆x

s +
1

2
+
D2
x

αx

t∑
s=0

γ2
s‖∆x

s‖2∗,x,

t∑
s=0

γs(x
(s) − x)>∆x

s ≤
t∑

s=0

γs(x
(s) − v(s))>∆x

s +
1

2
+
D2
x

αx

t∑
s=0

γ2
s‖∆x

s‖2∗,x.

Hence,∣∣∣∣∣
t∑

s=0

γs(x− x(s))>∆x
s

∣∣∣∣∣ ≤max

{∣∣∣∣∣
t∑

s=0

γs(w
(s) − x(s))>∆x

s

∣∣∣∣∣ ,
∣∣∣∣∣
t∑

s=0

γs(x
(s) − v(s))>∆x

s

∣∣∣∣∣
}

+
1

2
+
D2
x

αx

t∑
s=0

γ2
s‖∆x

s‖2∗,x. (48)

Applying (48) in (47), we get

∣∣∣l̂(t)∗ − l(t)∗ ∣∣∣ ≤ max

{∣∣∣∣∣
∑t

s=0 γs(w
(s) − x(s))>∆x

s∑t
s=0 γs

∣∣∣∣∣ ,
∣∣∣∣∣
∑t

s=0 γs(x
(s) − v(s))>∆x

s∑t
s=0 γs

∣∣∣∣∣
}

+
0.5 + (D2

x/αx)
∑t

s=0 γ
2
s‖∆x

s‖2∗,x∑t
s=0 γs

+

∣∣∣∣∣
∑t

s=0 γsδs∑t
s=0 γs

∣∣∣∣∣ . (49)

We next find a probabilistic bound for the right hand side of the above inequality.

Bounds on

∣∣∣∣∣
∑t

s=0 γs(w
(s) − x(s))>∆x

s∑t
s=0 γs

∣∣∣∣∣ and

∣∣∣∣∣
∑t

s=0 γs(x
(s) − v(s))>∆x

s∑t
s=0 γs

∣∣∣∣∣: The inequality

(30) indicates that

‖w(s) − x(s)‖x ≤ ‖x(s) − x(0)‖x + ‖w(s) − x(0)‖x ≤
√

2

αx
Vx(x(0),x(s)) +

√
2

αx
Vx(x(0),w(s))

≤ 2
√

2Dx√
αx

. (50)

35

Lin, Nadarajah, Soheili, and Yang

Define ψs := νs,t(w
(s) − x(s))>∆x

s and σs :=
4
√

2DxMxνs,t√
αx

. Since ξ(s) is independent of

w(s) and x(s), we have Es[ψs] = 0. Furthermore,

ψ2
s ≤ ν2

s,t

∥∥∥w(s) − x(s)
∥∥∥2

x
‖∆x

s‖
2
∗,x ≤ 8ν2

s,t ‖∆x
s‖

2
∗,xD

2
x/αx, (51)

where the second inequality follows from (50). Using the definition of σs, (51), and (28)-(29),
it follows that Es[exp(ψ2

s/σ
2
s)] ≤ exp(1). Hence Case A in Lemma 14 and union bound we get

Prob


∣∣∣∣∣
t∑

s=0

νs,t(w
(s) − x(s))>∆x

s

∣∣∣∣∣ > 4
√

2ΩDxMx√
αx

√√√√ t∑
s=0

ν2
s,t

 ≤ 2 exp(−Ω2/3). (52)

With a similar argument, we can also show

Prob


∣∣∣∣∣
t∑

s=0

νs,t(x
(s) − v(s))>∆x

s

∣∣∣∣∣ > 4
√

2ΩDxMx√
αx

√√√√ t∑
s=0

ν2
s,t

 ≤ 2 exp(−Ω2/3). (53)

Bound on

∑t
s=0 γ

2
s‖∆x

s‖2∗,x∑t
s=0 γs

: Define ψs := γsνs,t‖∆x
s‖2∗,x and σs := 4M2

xγsνs,t. Using

(28), it is easy to verify that Es [exp (|ψs|/σs)] ≤ exp(1). Hence, from Case B in Lemma 14
we have

Prob


∑t
s=0 γ

2
s‖∆x

s‖2∗,x∑t
s=0 γs

> 4M2
x

t∑
s=0

γsνs,t + 4ΩM2
x

√√√√ t∑
s=0

γ2
sν

2
s,t

 ≤ exp(−Ω2/12) + exp(−3Ω/4).

(54)

Bound on

∣∣∣∣∣
∑t

s=0 γsδs∑t
s=0 γs

∣∣∣∣∣: From definition of δs and (8), it follows that

Es [νs,tδs] = 0 and Es
[
exp((νs,tδs)

2/(νs,tQ)2)
]
≤ exp(1).

Hence by Case A in Lemma 14 and union bound we get

Prob


∣∣∣∣∣
t∑

s=0

νs,tδs

∣∣∣∣∣ > ΩQ

√√√√ t∑
s=0

ν2
s,t

 ≤ 2 exp(−Ω2/3). (55)

The conclusion can be then obtained by upper bounding the right hand side of (49)
using the union bound of (52), (53), (54), and (55).

Proof of Proposition 7: (i) The definition of Ω(δ) in (10) guarantees exp(−Ω(δ)2/3) +

exp(−Ω(δ)2/12) + exp(−3Ω(δ)/4) ≤ δ
3 . Recall that νs,t =

γs∑t
s′=0 γs′

. With γs =
1

M
√
s+ 1

,

it is straightforward to verify the following inequalities:

36

Stochastic Level-Set Methods

t∑
s=0

ν2
s,t =

∑t
s=0

1
s+1(∑t

s=0
1√
s+1

)2 ≤
1 + ln(t+ 1)(
2
√
t+ 2− 2

)2 , (56)

∑t
s=0 γ

2
s∑t

s=0 γs
=

1

M
·
∑t

s=0
1
s+1∑t

s=0
1√
s+1

≤ 1

M
· (1 + ln(t+ 1))

2
√
t+ 2− 2

, (57)

1∑t
s=0 γs

=
M∑t

s=0
1√
s+1

≤ M

2
√
t+ 2− 2

, (58)

t∑
s=0

γ2
sν

2
s,t =

(
1

M

)2

·
∑t

s=0
1

(s+1)2(∑t
s=0

1√
s+1

)2 ≤
2
(

1
M

)2(
2
√
t+ 2− 2

)2 . (59)

Applying these four inequalities to bound the terms in (36), we get

δ

3
≥ Prob

u(t)
∗ − l(t)∗ > 4

√
2Ω(δ)M

√√√√ t∑
s=0

ν2
s,t +

2 + 2.5M2
∑t
s=0 γ

2
s∑t

s=0 γs
+ 2.5Ω(δ)M2

√√√√ t∑
s=0

γ2
sν

2
s,t


≥ Prob

{
u

(t)
∗ − l(t)∗ >

(
4
√

2Ω(δ)M + 4.5M + 2.5
√

2Ω(δ)M
) (1 + ln(t+ 1))

2
√
t+ 2− 2

}
≥ Prob

{
u

(t)
∗ − l(t)∗ > (10Ω(δ)M + 4.5M)

(1 + ln(t+ 1))

2
√
t+ 2− 2

}
. (60)

Given εA > 0, let ε′ := εA/ (10Ω(δ)M + 4.5M). When t ≥ max

{
6,

(
8 ln(4/ε′)

ε′

)2

− 2

}
, we have

1 + ln(t+ 1)

2
√
t+ 2− 2

≤ 2 ln(t+ 2)√
t+ 2

and
2 ln(t+ 2)√

t+ 2
is monotonically decreasing in t. Hence

1 + ln(t+ 1)

2
√
t+ 2− 2

≤ 2 ln(t+ 2)√
t+ 2

≤ ε′ ln((8/ε′) ln(4/ε′))

2 ln(4/ε′)
≤ ε′ ln(4/ε′) + ε′ ln(2 ln(4/ε′))

2 ln(4/ε′)
≤ ε′. (61)

Using the above inequality in (60) we get Prob
{
u

(t)
∗ − l(t)∗ > (10Ω(δ)M + 4.5M) ε′ = εA

}
≤ δ

3 which

completes the proof.

(ii) We only prove this corollary for the lower bounds as the proof of upper bounds is similar.
The choice of Ω(δ) guarantees 6 exp(−Ω(δ)2/3)+exp(−Ω(δ)2/12)+exp(−3Ω(δ)/4) ≤ δ

3 . Recall that

νs,t =
γs∑t

s′=0 γs′
. Since γs =

1

M
√
s+ 1

, the inequalities (56), (57), (58), and (59) hold. Applying

37

Lin, Nadarajah, Soheili, and Yang

these four inequalities to (45) yields

Prob

{∣∣∣l̂(t)∗ − l(t)∗ ∣∣∣ > (Ω(δ)Q+ 8Ω(δ)M + 2.5M)
(1 + ln(t+ 1))

2
√
t+ 2− 2

}

≤ Prob


∣∣∣l̂(t)∗ − l(t)∗ ∣∣∣ >(

Ω(δ)Q+ 4
√

2Ω(δ)DxMx√
αx

+ 0.5M +
4D2

xM
2
x

Mαx
+

4
√

2Ω(δ)D2
xM

2
x

Mαx

)
(1+ln(t+1))

2
√
t+2−2


≤ δ

3
, (62)

where the first inequality follows from M2 ≥ 2D2
xM

2
x

αx
by (9).

Let ε′ := εA/ (Ω(δ)Q+ 8Ω(δ)M + 2.5M). When t ≥ max

{
6,

(
8 ln(4/ε′)

ε′

)2

− 2

}
, the

inequality (61) holds which can be applied to (62) to show that

Prob
{∣∣∣l̂(t)∗ − l(t)∗ ∣∣∣ > (Ω(δ)Q+ 8Ω(δ)M + 2.5M) ε′ = εA

}
≤ δ

3
.

Proof of Theorem 8. We begin by establishing that the following inequalities hold with
high probability in at most T (δ, ε) number of iterations:

u
(t)
∗ − l(t)∗ ≤

1

2
εA,

∣∣∣l̂(t)∗ − l(t)∗ ∣∣∣ ≤ 1

2
εA, and

∣∣∣û(t)
∗ − u(t)

∗

∣∣∣ ≤ 1

2
εA. (63)

Given Ω(δ), parts (i) and (ii) of Proposition 7 imply that when

t ≥ max

{
6,

(
16 (Ω(δ)Q+ 10Ω(δ)M + 4.5M)

εA
ln

(
8 (Ω(δ)Q+ 10Ω(δ)M + 4.5M)

εA

))2

− 2

}
,

we have Prob
{
u

(t)
∗ − l(t)∗ >

εA
2

}
≤ δ/3, Prob

{∣∣∣l̂(t)∗ − l(t)∗ ∣∣∣ > εA
2

}
≤ δ/3, and Prob

{∣∣∣û(t)
∗ −

u
(t)
∗

∣∣∣ > εA
2

}
≤ δ/3. Hence, using union bounds we get

Prob
{
u

(t)
∗ − l(t)∗ ≤

εA
2
,
∣∣∣l̂(t)∗ − l(t)∗ ∣∣∣ ≤ εA

2
,
∣∣∣û(t)
∗ − u(t)

∗

∣∣∣ ≤ εA
2

}
≥ 1− δ.

To complete the proof we show that (63) implies P(r, x̄(t))−H(r) ≤ εA and
∣∣∣û(t)
∗ −H(r)

∣∣∣ ≤
εA. First note that we have

P(r, x̄(t)) ≤ u(t)
∗ ≤ l(t)∗ +

εA
2
≤ H(r) +

εA
2
≤ H(r) + εA, (64)

where the first inequality follows from (11) as maxy∈Y φ(x̄(t),y) = P(r, x̄(t)), the second

from (63), and the third holds since l
(t)
∗ is a lower bound on H(r). Using (63) and u

(t)
∗ ≤

H(r) +
εA
2

, we get

û
(t)
∗ ≤ u(t)

∗ +
εA
2
≤ H(r) +

εA
2

+
εA
2

= H(r) + εA. (65)

38

Stochastic Level-Set Methods

In addition,

û
(t)
∗ ≥ u(t)

∗ −
εA
2
≥ H(r)− εA

2
≥ H(r)− εA, (66)

where the first inequality holds by (63) and the second since u
(t)
∗ is an upper bound on

H(r). The inequalities (64)-(66) complete the proof.

Proof of Corollary 9: By Theorem 8, OVSMD with T = T (δ, εA) is a valid stochastic
oracle for SFLS. Given the choices of εopt and εA, Theorem 5 guarantees that SFLS returns

a relative ε-optimal and feasible solution with probability 1−δ in at most
2θ2

β
ln

(
θ2

βε

)
calls

to OVSMD, which is the first conclusion of Corollary 9. According to Line 4 in Algorithm 1,

OVSMD is called in iteration k of SFLS with input δ(k) =
δ

2k+1
, which requires

O(T (δ(k), εA)) =
θ6

(θ − 1)2ε2
· ln2

(
1

δ(k)

)
· ln2

(
1

ε

)
=

θ6

(θ − 1)2ε2
·
(

ln2

(
1

δ

)
+ k2

)
· ln2

(
1

ε

)
gradient iterations based on (10), (14), and the fact that εA = O((θ−1)ε

θ3
). Note that we only

show the dominating terms in ε or δ in the complexity above. Summing this complexity for

k = 0, 1, . . . ,

⌈
2θ2

β
ln

(
θ2

βε

)⌉
, we obtain the total number of gradient iterations, that is

θ8

(θ − 1)2βε2
· ln
(
θ2

βε

)
· ln2

(
1

δ

)
· ln2

(
1

ε

)
+

θ12

(θ − 1)2β3ε2
· ln3

(
θ2

βε

)
· ln2

(
1

ε

)
,

which is the number claimed in Corollary 9 if only the dominating terms in ε or δ are shown
and the constant θ = O(1) is suppressed.

Lemma 18 below shows the number of iterations required by Algorithm 4 to find the
upper bound Ū on H(r(0)).

Lemma 18 Given an input tuple (r(0), ᾱ, δ, γt, θ), Algorithm 4 terminates with probability
of at least 1− δ after at most

O
(

log2

(
θ

(θ − 1)β

))
OVSMD calls and

O
(

θ

(θ − 1)β2
log4

2

(
1

β

)
ln2

(
1

δ

))
gradient iterations. In addition, H(r(0)) ≤ Ū < 0 and |H(r(0))|/|Ū | ≤ θ hold at termination.

Proof We first prove that Algorithm 4 terminates with a probability of at least 1 − δ.

Consider the hth iteration of this algorithm. Given û
(h)
∗ returned by OVSMD, Theorem 8

guarantees with a probability of at least 1− δ(h) that

û
(h)
∗ − α(h) ≤ H(r(0)) ≤ û(h)

∗ + α(h). (67)

39

Lin, Nadarajah, Soheili, and Yang

Since
∑∞

h=0 δ
(h) = δ, using union bound it is clear that (67) holds for h = 0, 1, 2, . . . , with a

probability of at least 1− δ. In addition, (67) implies that û
(h)
∗ +α(h) ≤ H(r(0)) + 2α(h) ≤ 0

when α(h) ≤ −H(r(0))/2. Furthermore, when α(h) ≤ − θ−1
2θ H(r(0)) (which also indicates

that α(h) ≤ −H(r(0))
2 since θ > 1 and H(r(0)) ≤ 0), we have

û
(h)
∗ − α(h)

û
(h)
∗ + α(h)

=
−û(h)
∗ + α(h)

−û(h)
∗ − α(h)

=
−û(h)
∗ + α(h)

−û(h)
∗ + α(h) − 2α(h)

≤ −H(r(0))

−H(r(0))− 2α(h)
≤ 1

1− θ−1
θ

= θ, (68)

where the first inequality follows from the inequality −H(r(0)) ≤ −û(h)
∗ + α(h) and the fact

that the function x/(x− 2α(h)) is a decreasing function in x. (68) indicates that as soon as
α(h) ≤ − θ−1

2θ H(r(0)), the stopping criteria of Algorithm 4 hold and the algorithm terminates

with a probability of 1− δ. Since α(h) = α(0)/2h = ᾱ/2h and β = |H(r(0))|/(r(0) − f∗), the

inequality α(h) ≤ − θ−1
2θ H(r(0)) can be guaranteed in at most J := log2

(
2θᾱ

(θ − 1)|H(r(0))|

)
=

O
(

log2

(
θ

(θ−1)β

))
iterations. Furthermore, the inequalities (67) and (68) imply that at

termination Ū = û
(J)
∗ + α(J) < 0 and

|H(r(0))|
|Ū |

≤ û
(J)
∗ − α(J)

û
(J)
∗ + α(J)

≤ θ.

We next compute the total number of gradient iterations taken by Algorithm 4. We
will only keep the key parameters δ, θ, and β in the complexity while suppress others in O.
Notice that by Theorem 8, the h-th call of OVSMD requires at most T (δ(h), α(h)) iterations.
Therefore, the total number of iterations can be computed as

J∑
h=0

T
(
δ(h), α(h)

)

≤
J∑
h=0

O

(
16
(
Ω(δ(h))Q+ 10Ω(δ(h))M + 4.5M

)
α(h)

ln

(
8
(
Ω(δ(h))Q+ 10Ω(δ(h))M + 4.5M

)
α(h)

))2

=
J∑
h=0

O
(

Ω(δ(h))

α(h)
ln

(
Ω(δ(h))

α(h)

))2

=
J∑
h=0

O
(
h2h

ᾱ
ln

(
1

δ

)
ln

(
h2h

ᾱ
ln

(
1

δ

)))2

=
J∑
h=0

O
(
h22h ln

(
1

δ

))2

=
J∑
h=0

O
(
J422h ln2

(
1

δ

))
= O

(
J4θ ln2(1/δ)

(θ − 1)β2

)

=O
(
θ ln2(1/δ)

(θ − 1)β2
log4

2

(
θ

(θ − 1)β

))
= O

(
θ

(θ − 1)β2
log4

2

(
1

β

)
ln2

(
1

δ

))
,

where we used Ω(δ(h)) = O
(
h log

(
1

δ

))
and α(h) = ᾱ

2h
in the second inequality, J =

O
(

log2

(
θᾱ

(θ − 1)|H(r(0))|

))
in the third and fourth equations, and |H(r(0))| = Θ (β).

Proof of Theorem 10: The proof of this theorem is a direct result of Corollary 9 and
Lemma 18. In particular, it is straightforward to see that the total number of OVSMD calls
is

O
(

ln

(
θ

(θ − 1)β

))
+O

(
θ2

β
ln

(
θ2

βε

))
= O

(
θ2

β
ln

(
θ2

(θ − 1)βε

))
= O

(
1

β
ln

(
1

βε

))
.

40

Stochastic Level-Set Methods

In addition, combining Corollary 9 and Lemma 18, the total number of gradient iterations
can be computed as

O
(

1

β2
ln4

(
1

β

)
ln2

(
1

δ

))
+O

(
1

βε2
· ln3

(
1

δ

)
· ln2

(
1

ε

)
+

1

β3ε2
· ln5

(
1

ε

))
.

Here, the universal constant θ is suppressed in O.

Proof of Corollary 11: Let δ(k) =
δ

2k
for k ≥ 0 as defined in SFLS. With a little

abuse of notation, we use Ω(n) to represent a quantity whose order of magnitude is at
least n. According to Theorem 8, for any δ ∈ (0, 1) and K ≥ 0, there exists εA satisfy-

ing Ω
(

ln(1/δK)√
T

)
≤ εA ≤ O

(
ln(1/δK) ln(T)√

T

)
such that OVSMD is a valid stochastic oracle

A
(
r(k), εA, δ

(k)
)

for iteration k = 0, 1, . . . ,K of SFLS. Let ε = − 2θ2(θ+1)

(θ−1)H(r(0))
εA such that

Ω
(
Kθ2 ln(1/δ)√

T

)
≤ ε ≤ O

(
Kθ2 ln(1/δ) ln(T)√

T

)
. Hence, there exists K = O

(
θ2

β ln
(
T
β

))
such that

K ≥ 2θ2

β ln

(
θ2

βε

)
. With such K and ε, according to Theorem 5, SFLS generates a feasible

solution at iteration k = 0, 1, . . . ,K and finds a relative ε-optimal and feasible solution with

ε ≤ O
(
θ4 ln(1/δ) ln(T) ln(T/β)

β
√
T

)
with a probability of at least 1−δ in at most K outer iterations

(calls of OVSMD), which corresponds to KT = O
(
θ2T
β ln

(
T
β

))
gradient iterations.

References

Fouad Ben Abdelaziz. Solution approaches for the multiobjective stochastic programming.
European Journal of Operational Research, 216(1):1–16, 2012.

Fouad Ben Abdelaziz, Belaid Aouni, and Rimeh El Fayedh. Multi-objective stochastic
programming for portfolio selection. European Journal of Operational Research, 177(3):
1811–1823, 2007.

Daniel Adelman and Adam Mersereau. Relaxations of weakly coupled stochastic dynamic
programs. Operations Research, 56(3):712–727, 2008.

Daniel Adelman and Adam Mersereau. Dynamic capacity allocation to customers who
remember past service. Management Science, 59(3):592–612, 2013.

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods.
Journal of Machine Learning Research, 18(1):8194–8244, 2017.

Aleksandr Aravkin, James Burke, Dmitriy Drusvyatskiy, Michael Friedlander, and Scott
Roy. Level-set methods for convex optimization. Mathematical Programming, 174(1-2):
359–390, 2019.

41

Lin, Nadarajah, Soheili, and Yang

Francis R. Bach and Eric Moulines. Non-strongly-convex smooth stochastic approximation
with convergence rate O(1/n). In Advances in Neural Information Processing Systems
(NIPS), 2013.

Cristóbal Barba-Gonzaléz, José Garćıa-Nieto, Antonio Nebro, and José Aldana-Montes.
Multi-objective big data optimization with jMetal and Spark. In International Conference
on Evolutionary Multi-Criterion Optimization. Springer, 2017.

Dimitri Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, Massashusetts, 3rd
edition, 1999.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning. IEEE
Transactions on Neural Networks, 20(3):542–542, 2009.

Wenqing Chen, Melvyn Sim, Jie Sun, and Chung-Piaw Teo. From CVaR to uncertainty
set: Implications in joint chance-constrained optimization. Operations Research, 58(2):
470–485, 2010.

Xi Chen, Qihang Lin, and Javier Peña. Optimal regularized dual averaging methods for
stochastic optimization. In Advances in Neural Information Processing Systems (NIPS),
2012.

Andrew Cotter, Maya Gupta, and Jan Pfeifer. A light touch for heavily constrained SGD.
In Conference on Learning Theory (COLT), 2016.

Koby Crammer and Yoram Singer. On the learnability and design of output codes for
multiclass problems. Machine Learning, 47(2-3):201–233, 2002.

John M Danskin. The theory of max-min and its application to weapons allocation problems,
volume 5. Springer Science & Business Media, 2012.

D. P. de Farias and B. Van Roy. The linear programming approach to approximate dynamic
programming. Operations Research, 51(6):850–865, 2003.

D. P. de Farias and B. Van Roy. On constraint sampling for the linear programming
approach to approximate dynamic programming. Mathematics of Operations Research,
29(3):462–478, 2004.

John Duchi and Yoram Singer. Efficient online and batch learning using forward backward
splitting. Journal of Machine Learning Research, 10(99):2899–2934, 2009.

Csaba Fábián. Handling CVaR objectives and constraints in two-stage stochastic models.
European Journal of Operational Research, 191(3):888–911, 2008.

Mahdi Milani Fard, Kevin Canini, Andrew Cotter, Jan Pfeifer, and Maya Gupta. Fast and
flexible monotonic functions with ensembles of lattices. In Advances in Neural Information
Processing Systems (NIPS), 2016.

42

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Stochastic Level-Set Methods

Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for
strongly convex stochastic composite optimization, i: A generic algorithmic framework.
SIAM Journal on Optimization, 22(4):1469–1492, 2012.

Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for
strongly convex stochastic composite optimization, ii: Shrinking procedures and opti-
mal algorithms. SIAM Journal on Optimization, 23(4):2061–2089, 2013.

Gabriel Goh, Andrew Cotter, Maya Gupta, and Michael Friedlander. Satisfying real-world
goals with dataset constraints. In Advances in Neural Information Processing Systems
(NIPS), 2016.

Donald Goldfarb, Garud Iyengar, and Chaoxu Zhou. Linear convergence of stochastic frank
wolfe variants. In Artificial Intelligence and Statistics, 2017.

Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: an optimal algorithm
for stochastic strongly-convex optimization. In Conference on Learning Theory (COLT),
2011.

Guanghui Lan. An optimal method for stochastic composite optimization. Mathematical
Programming, 133(1-2):365–397, 2012.

Guanghui Lan and Yi Zhou. An optimal randomized incremental gradient method. Math-
ematical programming, 171(1-2):167–215, 2018.

Guanghui Lan and Zhiqiang Zhou. Algorithms for stochastic optimization with expectation
constraints. arXiv preprint arXiv:1604.03887, 2016.

Guanghui Lan, Arkadi Nemirovski, and Alexander Shapiro. Validation analysis of mirror
descent stochastic approximation method. Mathematical programming, 134(2):425–458,
2012.

Claude Lemaréchal, Arkadii Nemirovskii, and Yurii Nesterov. New variants of bundle meth-
ods. Mathematical programming, 69(1):111–147, 1995.

Eunji Lim. On convergence rates of convex regression in multiple dimensions. INFORMS
Journal on Computing, 26(3):616–628, 2014.

Qihang Lin, Xi Chen, and Javier Peña. A smoothing stochastic gradient method for com-
posite optimization. Optimization Methods and Software, 29(6):1281–1301, 2014.

Qihang Lin, Runchao Ma, and Tianbao Yang. Level-set methods for finite-sum constrained
convex optimization. In International Conference on Machine Learning (ICML), 2018a.

Qihang Lin, Selvaprabu Nadarajah, and Negar Soheili. A level-set method for convex
optimization with a feasible solution path. SIAM Journal on Optimization, 28(4):3290–
3311, 2018b.

Qihang Lin, Selvaprabu Nadarajah, and Negar Soheili. Revisiting approximate linear pro-
gramming: Constraint-violation learning with applications to inventory control and en-
ergy storage. Management Science, 66(4):1544–1562, 2020.

43

Lin, Nadarajah, Soheili, and Yang

Mehrdad Mahdavi, Tianbao Yang, and Rong Jin. Stochastic convex optimization with
multiple objectives. In Advances in Neural Information Processing Systems (NIPS), 2013.

Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.

Timothy Marler and Jasbir Arora. Survey of multi-objective optimization methods for
engineering. Structural and Multidisciplinary Optimization, 26(6):369–395, 2004.

Selvaprabu Nadarajah, François Margot, and Nicola Secomandi. Relaxations of approximate
linear programs for the real option management of commodity storage. Management
Science, 61(12):3054–3076, 2015.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust
stochastic approximation approach to stochastic programming. SIAM Journal on Op-
timization, 19(4):1574–1609, 2009.

Yurii Nesterov. Introductory lectures on convex optimization: a basic course, volume 87 of
Applied optimization. Kluwer Academic Publishers, Norwell, MA, 2004.

Roberto Oliveira and Philip Thompson. Sample average approximation with heavier tails i:
non-asymptotic bounds with weak assumptions and stochastic constraints. arXiv preprint
arXiv:1705.00822, 2017.

Martin Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., New York, NY, USA, 1994.

Philippe Rigollet and Xin Tong. Neyman-pearson classification, convexity and stochastic
constraints. Journal of Machine Learning Research, 12(86):2831–2855, 2011.

Herbert Robbins and Sutton Monro. A stochastic approximation method. Annals of Math-
ematical Statistics, 22:400–407, 1951.

Tyrrell Rockafellar and Stanislav Uryasev. Optimization of conditional value-at-risk. Jour-
nal of risk, 2:21–42, 2000.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochas-
tic average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

Paul Schweitzer and Abraham Seidmann. Generalized polynomial approximations in Marko-
vian decision processes. Journal of Mathematical Analysis and Applications, 110(2):568–
582, 1985.

Emilio Seijo and Bodhisattva Sen. Nonparametric least squares estimation of a multivariate
convex regression function. The Annals of Statistics, 39(3):1633–1657, 2011.

Bodhisattva Sen and Mary Meyer. Testing against a linear regression model using ideas from
shape-restricted estimation. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 79(2):423–448, 2017.

Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: primal
estimated sub-gradient solver for SVM. Mathematical Programming, 1:3–30, 2017.

44

Stochastic Level-Set Methods

Alexander Shapiro. Sample average approximation. In Encyclopedia of Operations Research
and Management Science, pages 1350–1355. Springer, 2013.

Negar Soheili and Javier Pena. A smooth perceptron algorithm. SIAM Journal on Opti-
mization, 22(2):728–737, 2012.

Xin Tong. A plug-in approach to Neyman-Pearson classification. Journal of Machine
Learning Research, 14(1):3011–3040, 2013.

Xin Tong, Yang Feng, and Anqi Zhao. A survey on neyman-pearson classification and sug-
gestions for future research. Wiley Interdisciplinary Reviews: Computational Statistics,
8(2):64–81, 2016.

Wolfram Wiesemann, Daniel Kuhn, and Melvyn Sim. Distributionally robust convex opti-
mization. Operations Research, 62(6):1358–1376, 2014.

Lin Xiao. Dual averaging methods for regularized stochastic learning and online optimiza-
tion. Journal of Machine Learning Research, 11(88):2543–2596, 2010.

Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance
reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

Hao Yu, Michael Neely, and Xiaohan Wei. Online convex optimization with stochastic
constraints. In Advances in Neural Information Processing Systems (NIPS), 2017.

Anqi Zhao, Yang Feng, Lie Wang, and Xin Tong. Neyman-Pearson classification under high-
dimensional settings. Journal of Machine Learning Research, 17(1):7469–7507, 2016.

45

	Introduction
	Stochastic Feasible Level-set Method
	Idealized Stochastic Oracle
	Stochastic Mirror Descent
	Validity of Stochastic Oracle and Computational Issues

	Tractable Stochastic Oracle
	Online Validation Based Stochastic Mirror Descent
	Validity of Stochastic Oracle and Iteration Complexity

	SFLS with OVSMD as its Stochastic Oracle
	Theoretical Analysis
	Implementation Guidelines

	Numerical Experiments
	Computational Setup
	Approximate Linear Programming for Markov Decision Processes
	Multi-class Neyman-Pearson classification
	Learning with Fairness Constraints

	Conclusion
	Proofs of Theoretical Results

