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Abstract

The topological study of existing random simplicial complexes is non-trivial and has led to several
eminal works. However, the applicability of such studies is limited since a single parameter usually
overns the randomness in these models. With this in mind, we focus here on the topology of the recently
roposed multi-parameter random simplicial complex. In particular, we introduce a dynamic variant of
his model and look at how its topology evolves. In this dynamic setup, the temporal evolution of
implices is determined by stationary and possibly non-Markovian processes with a renewal structure.
pecial cases of this setup include the dynamic versions of the clique complex and the Linial–Meshulam
omplex. Our key result concerns the regime where the face-count of a particular dimension dominates.
e show that the Betti number corresponding to this dimension and the Euler characteristic satisfy a

unctional strong law of large numbers and a functional central limit theorem. Surprisingly, in the latter
esult, the limiting process depends only upon the dynamics in the smallest non-trivial dimension.
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1. Introduction

The classical Erdös–Rényi graph G(n, p) is a random graph on n vertices in which each
dge is present with probability p independently. Even in such a simple model, answering
opological questions such as the threshold (in terms of the rate of decay of p = pn as n → ∞)
or connectivity [6] or for the existence of cycles [17] is completely non-trivial. Not surprisingly
hen, such a study becomes even more interesting and difficult when posed in the context of
andom simplicial complexes—the higher dimensional generalizations of random graphs. Our
ocus in this work is on the general multi-parameter model of combinatorial random simplicial
omplexes introduced by Costa and Farber [4,5].

A summary of the recent progress made in the study of random complexes generalizing
he Erdös–Rényi graph is as follows. The natural complex built over any graph is its clique
omplex, otherwise known as the flag complex, in which a set of vertices form a face or a
implex if they form a clique in the original graph. The topological properties of the random
lique complex built over the Erdös–Rényi graph were studied in [12]. This paper revealed, in
articular, the existence of a “dominating dimension”, i.e., Betti numbers3 of this dimension
ignificantly exceed those of other dimensions, at least on average.

The k-dimensional Linial–Meshulam complex is another important extension of the Erdös–
ényi graph. The k = 2 case of this model was introduced by Linial and Meshulam [15],
hich was then extended to general k by Meshulam and Wallach [16]. Here, one starts with a

ull (k − 1)-skeleton on n vertices and then adds k-simplices with probability p independently.
ecently, topological features of the k-dimensional Linial–Meshulam complex, with potential
-simplices weighted by independent standard uniform random variables, were investigated
y Hiraoka and Shirai [10], Hino and Kanazawa [9], Skraba et al. [20], and Fraiman et al. [8].

The multi-parameter model introduced in [4,5] is a generalization of all of these models
see the next section for the formal definition). It was analyzed to some extent in [7], in which
t was shown that a dominating dimension exists in this model as well. In this work, we go
eyond and examine the topological behavior in this dominating dimension as well as study
ts deviation from the expected behavior.

Kahle and Meckes [14] did such a study in the context of random clique complexes and
roved a central limit theorem for the dominating Betti number. To obtain an even deeper
nderstanding, Thoppe et al. [21] investigated the topological fluctuations in the dynamic
ariant of this model. Specifically, they considered the setup in which every edge can change
ts state between being ON and being OFF, i.e., between being present and being absent, at
he transition times of a continuous-time Markov chain. They then derived a functional central
imit theorem for the Euler characteristic and the dominating Betti number of the resulting
ynamic clique complex.

Within the context of the combinatorial simplicial complexes, few attempts have been made
t deriving “process-level” limit theorems for topological invariants (with a few exceptions
uch as Thoppe et al. [21], Skraba et al. [20], and Fraiman et al. [8]). Our work fills in this
ap. We introduce a dynamic variant of the general multi-parameter random simplicial complex
nd derive a functional strong law of large numbers and a functional central limit theorem for
he Euler characteristic and the dominating Betti number. Both of our results are proved in the
pace D[0,∞) of right continuous functions with left limits. Additionally, unlike Thoppe et al.
21], we do not assume a Markovian structure for the process according to which the faces of
he complex are switched on or off. Instead, the evolution here is determined by a stationary

3 The kth Betti number is a count of “holes” of dimension k + 1.
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process with a renewal structure. Surprisingly, our key results indicate that the limiting Gaussian
process in the central limit theorem depends only upon the dynamics of the faces in the smallest
non-trivial dimension, irrespective of the dominating dimension. This happens mainly because
the faces in the smallest non-trivial dimension are crucial for the existence of all higher order
faces.

The generality of our multi-parameter setup forces us to devise new tools not needed under
he random clique complex assumptions of Kahle and Meckes [14] and Thoppe et al. [21]. In
he latter case, for example, all Betti numbers of order greater than the dominating dimension
anish with high probability. This is, generally, not the case under our general setup. We solve
his difficulty by devising new ways of a much more detailed analysis of these Betti numbers;
ee Section 7. New coupling arguments play a crucial role as well, especially in the proof of

functional strong laws of large numbers. Such coupling arguments enable one to stochastically
dominate the face-counts in the dynamic complex by those of a suitably defined static complex,
e.g., see (6.5). We believe that such arguments could have applications beyond the present
context.

This paper is organized as follows. In Section 2, we construct the dynamic multi-parameter
implicial complex and study some of its elementary properties. A functional central limit
heorem for the face counts in this complex is stated in Section 3. Section 4 contains the main
heorems for the Euler characteristic and the Betti number in the dominating dimension. The
imit theorem for the face counts is proved in Section 5, and the limit theorems for the Euler
haracteristic are proved in Section 6, while the limit theorems for the Betti numbers in the
ritical (dominating dimension) are proved in Section 7. Some of the proofs are postponed to
he Appendix.

The following notation will be used throughout the paper. The cardinality of a set A will be
enoted by |A|. The indicator function of an event will be denoted by 1{·}. For two positive
equences (an) and (bn), the notation an ∼ bn means that an/bn → 1 as n → ∞. The “fat
rrow” ⇒ is reserved for weak convergence, where the topology is obvious from the context
in this paper it is mostly the Skorohod J1-topology on D[0,∞)). The stochastic domination
f a random variable X by a random variable Y (meaning that P(X ≤ x) ≥ P(Y ≤ x) for all

x) is denoted by X
st
≤ Y .

2. The dynamic multi-parameter simplicial complex

We begin by recalling the original multi-parameter simplicial complex introduced by Costa
and Farber [4,5]. Starting with the alphabet [n] = {1, . . . , n} and parameters p = p(n) =

(p1, . . . , pn−1) with pi ∈ [0, 1], i = 1, . . . , n − 1, one constructs the complex X ([n],p)
incrementally, one dimension at a time. Specifically, begin with X ([n],p)(0)

= [n]. For
= 1, . . . , n − 1, once the skeleton4 X ([n],p)(i−1) has been constructed, add to X ([n],p)

each i-simplex5 whose boundary is in X ([n],p)(i−1), with probability pi independently of all
other potential i-simplices. Note that the probabilities in p may depend on n.

Next, we define the “dynamic” version of the multi-parameter simplicial complex with a
arameter sequence p. The key ingredient for our construction is a collection of independent
tochastic processes(

∆i,A(t), t ≥ 0
)
, 1 ≤ i ≤ n − 1, A ∈ Wi , (2.1)

4 The i th skeleton of a complex consists of all of its faces with dimension less than or equal to i .
5 A subset of [n] with cardinality i + 1.
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Fig. 1. Eleven independent stochastic processes with n = 4. Each process stays at an “on” state whenever a line
egment appears, and it is at an “off” state if the line segment disappears.

here Wi :=
{

A ⊆ [n] : |A| = i + 1
}
. Each of the processes in (2.1) is a {0, 1}-valued

tationary process and, for 1 ≤ i ≤ n − 1 and A ∈ Wi ,

A forms an i-face at time t

⇔ ∆ℓ,B(t) = 1 for all ℓ ∈ {1, . . . , i}, B ∈ Wℓ with B ⊆ A.
(2.2)

Equivalently, A does not form an i-face at time t if and only if ∆ℓ,B(t) = 0 for some
ℓ ∈ {1, . . . , i} and B ∈ Wℓ with B ⊆ A. We say that the process ∆i,A is “on” at time t
f ∆i,A(t) = 1, and it is “off” otherwise. We assume that, for each i ≥ 1, (∆i,A, A ∈ Wi )
onstitutes a family of (independent) processes with a common distribution. We often drop the
ubscript A when only the dimension i matters.

To give a clear picture of our model, we provide a simple example for n = 4 in Fig. 1.
In this case, there appears a 3-face on [4] = {1, 2, 3, 4} if and only if the eleven independent
processes (∆i,A, 1 ≤ i ≤ 3, A ∈ Wi ) are all at an “on” state. For example, such a 3-face is
present at time t0. At time t1, the process ∆1,{1,3} is “off”, while all the others are “on”. Then,
the 2-faces [1, 2, 3], [1, 3, 4] and the 3-face [1, 2, 3, 4] do not appear in the model, whereas all
the other 2-faces do exist.

We now model each ∆i , i = 1, . . . , n − 1, via a specific {0, 1}-valued stationary renewal
process. Let

(
Z (i)

j , j ≥ 2
)

be a sequence of iid positive random variables with a common
distribution function G i and a finite positive mean µi . The following assumption on the
distribution functions (G i ) will be a standing assumption throughout the paper: letting q :=

min{i ≥ 1 : pi < 1}, assume that

there is a > 0 such that G i (a) ≤ 1/2 for each i = q, q + 1, . . .. (2.3)

Separately, let
(
I (i)

j , j ≥ 0
)

be a sequence of iid Bernoulli variables with parameter pi .
Finally, let D(i) be an equilibrium random variable with the distribution

P(D(i)
≤ x) =

1
∫ x(

1 − G i (y)
)
dy =: (G i )e(x), x ≥ 0. (2.4)
µi 0
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All the random objects
(
Z (i)

j

)
,
(
I (i)

j

)
, and D(i) are independent. We define a delayed renewal

sequence by S(i)
0 = 0, S(i)

1 = D(i), and

S(i)
j = D(i)

+

j∑
ℓ=2

Z (i)
ℓ , j ≥ 2, (2.5)

and the corresponding counting process,

Ni (t) =

∞∑
j=1

1{S(i)
j ≤ t}, t ≥ 0. (2.6)

Since the first renewal time has the equilibrium distribution given by (2.4), the delayed process
Ni in (2.6) has stationary increments [19]. In particular, E

(
Ni (t)

)
= t/µi . We finally define

∆i (t) :=

∞∑
j=0

1
{

S(i)
j ≤ t < S(i)

j+1

}
I (i)

j , t ≥ 0. (2.7)

Definition 2.1. The dynamic multi-parameter simplicial complex
(
X ([n],p; t), t ≥ 0

)
on n

vertices is defined by (2.2). For each dimension i , the temporal evolution of the i-dimensional
faces is determined by the independent processes

(
∆i,A, 1 ≤ i ≤ n − 1, A ∈ Wi

)
described in

2.7).

emark 2.2. As stated below in Lemma 2.4, ∆i is a stationary process for every i which
mplies that (X ([n],p; t), t ≥ 0) itself is stationary. In fact, for each t ≥ 0, X ([n],p; t) has the

same distribution as that of the static multi-parameter simplicial complex in [4,5].

Remark 2.3. If p = (p, 1, 1, . . .) and G1(x) = 1 − e−λx , x ≥ 0 for some λ > 0, then
X ([n],p; t) is a reparametrization of the dynamic clique complex, for which the evolution of
he edges is determined by the {0, 1}-valued stationary continuous-time Markov chain [21].

The next result formally records the fact that, for each i , ∆i is a stationary process. It also
tates and proves a couple of useful properties concerning it. In particular, it shows that if pi

s small, then ∆i is off most of the times.

emma 2.4. (i) For every i ∈ {1, . . . , n − 1},
(
∆i (t), t ≥ 0

)
is a stationary process with(

∆i (t) = 1
)

= pi . In addition,

P
(
∆i (t) = 1

⏐⏐∆i (0) = 1
)

= 1 − (1 − pi )(G i )e(t), t ≥ 0.

(ii) For every i ≥ q and T > 0,

P
(

sup
0≤t≤T

∆i (t) = 1
)

≤ pi

(
1 + (1 − pi )

(G i )e(T )
1 − G i (T )

)
. (2.8)

roof. The first statement in part (i) is obvious, because the process Ni (t) has stationary
increments. For the second one,

P
(
∆i (t) = 1

⏐⏐∆i (0) = 1
)

= P
(
0 ≤ t < D(i))

+ pi P
(
t ≥ D(i))

= 1 − (1 − pi )(G i )e(t).
60
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For Part (i i), denote

K = Ni (T ) = max
{

j ≥ 1 : S(i)
j ≤ T

}
(K = 0 if S(i)

1 > T ).

hen,

P
(

sup
0≤t≤T

∆i (t) = 1
)

= pi + P
(
∆i (0) = 0, sup

0<t≤T
∆i (t) = 1

)
= pi + (1 − pi )E

[
1 − (1 − pi )K ].

t is clear that K is dominated by

K ′
:=

{
min{ j ≥ 2 : Z (i)

j > T } − 1 if D(i)
≤ T

0 if D(i) > T .

valuating the above expression with K replaced by K ′ gives us (2.8). □

Sometimes we will also impose the following additional assumption on the distributions
G i ).

c := sup
i≥q

sup
h>0, 0≤y≤1

G i (y + h) − G i (y)
hγ

< ∞ for some 0 < γ ≤ 1, (2.9)

ote that (2.9) holds if G i ’s have a common bounded density function (such as an exponential
ensity).

Under this additional assumption, we have the following estimates.

emma 2.5. Assume (2.9). Then for all 0 ≤ r < s < t ≤ 1,

P
(
∆i (r ) = 0,∆i (s) = 1,∆i (t) = 0

)
≤

2c
a

pi (t − r )1+γ (2.10)

nd

P
(
∆i (r ) = 1,∆i (s) = 0,∆i (t) = 1

)
≤

2c
a

p2
i (t − r )1+γ . (2.11)

roof. Rewrite (2.10) as

piP
(
∆i (r ) = 0,∆i (t) = 0

⏐⏐∆i (s) = 1
)

≤ piP
(

Ai (s) ≤ s − r, Ri (s) ≤ t − s
)
,

here Ai and Ri are respectively, the age and the residual lifetime of a renewal process (2.6)
ith the interarrival distribution G i . It then follows from standard calculation in renewal theory

see e.g., [18]) that

P
(

Ai (s) ≤ s − r, Ri (s) ≤ t − s
)

= P(r ≤ S(i)
Ni (s), S(i)

Ni (s)+1 ≤ t)

=
1
µi

∫ s−r

0

(
G i (y + t − s) − G i (y)

)
dy

≤
2c
a

(s − r )(t − s)γ .

he last inequality comes from (2.3) and (2.9). The argument for (2.11) is similar; since the
rocess ∆i is now required to be “on” in two distinct time intervals, pi in (2.10) is replaced
y p2. □
i
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Recall that the probabilities in p for the dynamic multi-parameter simplicial complex
X ([n],p; t) may depend on n. In the sequel, following Costa and Farber [5], we “couple”

with n in a particular way: we set pi = n−αi , αi ∈ [0,∞] for i = 1, 2, . . .. Accordingly, we
an work with an infinite sequence α = (α1, α2, . . . ), independent of n, to control the rates at
hich the entries in p decay. Below, we introduce some additional terms and notation, which
e try to keep as consistent as possible with those in [5].
Let

ψ j (α) =

j∑
i=1

(
j
i

)
αi , j ≥ 1.

y convention, we set
( j

i

)
= 0 whenever j < i . Note that ψ j (α) is non-decreasing in j ,

.e., ψi (α) ≤ ψ j (α) for each α and i ≤ j . We also let

τ j (α) := j + 1 −

j∑
i=1

ψi (α) = j + 1 −

j∑
i=1

(
j + 1
i + 1

)
αi , 1 ≤ j ≤ n − 1.

dditionally, we consider the following sets of parameters:

D j :=
{
α : ψ j (α) < 1 < ψ j+1(α)

}
or j ≥ 1 and D0 := {α : ψ1(α) > 1}.

Recalling the notation q = q(α) = min{i ≥ 1 : αi > 0} in (2.3), note that

ψ j (α) = 0, τ j (α) = j + 1, j = 1, . . . , q − 1.

mportantly, if α ∈ Dk for some k ≥ q , then

0 < ψq (α) < · · · < ψk(α) < 1 < ψk+1(α) < . . . ,

so that,

q = τq−1(α) < τq (α) < · · · < τk(α) > τk+1(α) > . . . .

In this case, the index k is referred to as the critical dimension. Note that τ j (α), j ≥ k + 1,
can be negative. Observe also that, for j > k,

τ j (α) − (τ j+1(α) + α j+1) = − 1 +

j∑
i=1

((
j + 2
i + 1

)
−

(
j + 1
i + 1

))
αi (2.12)

= − 1 +

j∑
i=1

(
j + 1

i

)
αi > −1 + ψ j (α) > 0.

3. Limit theorems for the face counts

We consider the dynamic multi-parameter simplicial complex
(
X ([n],p; t), t ≥ 0

)
con-

structed in the previous section. Our basic assumption from now on will be that

α ∈ Dk for some k ≥ q. (3.1)

et β j,n(t) := β j,n
(
X ([n],p; t)

)
be the j th (reduced) Betti number of the complex at time

. Note that
(
β j,n(t), t ≥ 0

)
is a stationary process. We will often use β j,n to mean

j,n(0). Similarly, we let χn(t) denote the Euler characteristic of the complex at time t . Then,)

χn(t), t ≥ 0 also is a stationary process, and χn will be used to denote χn := χn(0). Recall
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F

that our goal is to establish functional strong laws of large numbers (SLLN) and functional
central limit theorems (FCLT) for the Euler characteristic and the Betti number in the critical
dimension k of the dynamic multi-parameter simplicial complex. This section is of preparatory
ature and deals with the face counts of the complex.

We write the face counts in dimension j as

f j,n(t) =

∑
σ⊂[n], |σ |= j+1

1{σ forms a j-face in X ([n],p; t)} =:

∑
σ⊂[n], |σ |= j+1

ξσ (t), t ≥ 0.

Once again, let ξσ := ξσ (0). As in [14] and [21], we analyze the face counts first, and then
relate them to the Euler characteristic and the Betti numbers through the relations

χn(t) :=

n−1∑
j=0

(−1) j f j,n(t), t ≥ 0, (3.2)

and

χn(t) := 1 +

n−1∑
j=0

(−1) jβ j,n(t), t ≥ 0. (3.3)

We start with the asymptotic behavior of the expected value and the covariances of the face
counts. Note that not all results below require the assumption (3.1).

Proposition 3.1. For any j ≥ 1, we have

E( f j,n) ∼
nτ j (α)

( j + 1)!
, n → ∞.

Furthermore, for j ≥ q and 0 ≤ s ≤ t < ∞, we have

Cov
(

f j,n(t), f j,n(s)
)

∼
n2τ j (α)−τq (α)

(q + 1)!
(
( j − q)!

)2

(
1 − (Gq )e(t − s)

)
∨

nτ j (α)

( j + 1)!

j∏
i=q

(
1 − (1 − pi )(G i )e(t − s)

)( j+1
i+1)

s n → ∞, where a ∨ b = max{a, b} for a, b ∈ R. In particular, if (3.1) holds, then

Cov
(

fk,n(t), fk,n(s)
)

∼
n2τk (α)−τq (α)

(q + 1)!
(
(k − q)!

)2

(
1 − (Gq )e(t − s)

)
, n → ∞. (3.4)

emark 3.2. For j < q , f j,n(t) is, of course, nonrandom, so in this case,
ov
(

f j,n(t), f j,n(s)
)

= 0.

Proof. The asymptotics of the mean face count is easy to obtain. In fact,

E( f j,n) =

(
n

j + 1

) j∏
i=q

p
( j+1

i+1)
i =

(
n

j + 1

)
nτ j (α)−( j+1)

∼
nτ j (α)

( j + 1)!
as n → ∞. (3.5)

or the covariances, we write

E
(

f j,n(t) f j,n(s)
)

=

j+1∑
ℓ=0

E
( ∑

σ⊂[n]

∑
τ⊂[n]

ξσ (t)ξτ (s)
)

|σ |= j+1 |τ |= j+1, |σ∩τ |=ℓ
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H
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F
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=

j+1∑
ℓ=0

(
n

j + 1

)(
j + 1
ℓ

)(
n − j − 1
j + 1 − ℓ

)
E
(
ξσ (t)ξτ (s)

)
1
{
|σ ∩ τ | = ℓ

}
.

f ℓ ∈ {0, 1, . . . , q}, all faces of σ ∩ τ exist with probability one; thus,

E
(
ξσ (t)ξτ (s)

)
1
{
|σ ∩ τ | = ℓ

}
=

( j∏
i=q

p
( j+1

i+1)
i

)2

= n2τ j (α)−2( j+1).

n the other hand, if ℓ ∈ {q + 1, . . . , j + 1}, we have

E
(
ξσ (t)ξτ (s)

)
1
{
|σ ∩ τ | = ℓ

}
=

j∏
i=q

p
( j+1

i+1)
i ×

j∏
i=q

P
(
∆i (t) = 1

⏐⏐∆i (s) = 1
)( ℓ

i+1)

×

j∏
i=q

p
( j+1

i+1)−(
ℓ

i+1)
i

=: An × Bn × Cn.

ere, An is the probability of τ spanning a j-face at time s, while Bn is the conditional
robability that all faces of σ ∩ τ are present at time t , given that τ spans a j-face at time s.
inally, Cn is the conditional probability of σ forming a j-face at time t , given that all faces
f σ ∩ τ are present at time t . Calculating the product of three terms via Lemma 2.4,

An × Bn × Cn = n2τ j (α)−τℓ−1(α)−2( j+1)+ℓ
j∏

i=q

(
1 − (1 − pi )(G i )e(t − s)

)( ℓ
i+1).

By the stationarity of face counts, together with (3.5), we have that

E
(

f j,n(t)
)
E
(

f j,n(s)
)

=
(
E( f j,n)

)2
=

(
n

j + 1

)2

n2τ j (α)−2( j+1)

=

j+1∑
ℓ=0

(
n

j + 1

)(
j + 1
ℓ

)(
n − j − 1
j + 1 − ℓ

)
n2τ j (α)−2( j+1).

ombining all these results yields that, as n → ∞,

Cov
(

f j,n(t), f j,n(s)
)

=

j+1∑
ℓ=q+1

(
n

j + 1

)(
j + 1
ℓ

)(
n − j − 1
j + 1 − ℓ

)
n2τ j (α)−τℓ−1(α)−2( j+1)+ℓ

×

{ j∏
i=q

(
1 − (1 − pi )(G i )e(t − s)

)( ℓ
i+1) − nτℓ−1(α)−ℓ

}

∼

j+1∑
ℓ=q+1

n2τ j (α)−τℓ−1(α)

ℓ!
(
( j + 1 − ℓ)!

)2

ℓ−1∏
i=q

(
1 − (1 − pi )(G i )e(t − s)

)( ℓ
i+1)

∼
n2τ j (α)−τq (α)

(q + 1)!
(
( j − q)!

)2

(
1 − (Gq )e(t − s)

)
∨

nτ j (α)

( j + 1)!

j∏
i=q

(
1 − (1 − pi )(G i )e(t − s)

)( j+1
i+1),
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where the last equivalence comes from the fact that
(
τℓ(α), ℓ ≥ q

)
is a sequence that increases

or ℓ ≤ k and then decreases. For the derivation of (3.4), use the fact that 2τk(α) − τq (α) ≥

k(α). □

emark 3.3. It follows immediately from the proposition that, under the assumption (3.1),
or every j ̸= k,

lim
n→∞

E( f j,n)
E( fk,n)

= lim
n→∞

Var( f j,n)
Var( fk,n)

= 0. (3.6)

hat is, the face counts in the critical dimension dominate those in the other dimensions both
n their means and their variances.

The following corollary will be useful in the sequel. Since time parameter plays no role due
o stationarity, we remove it to simplify the notation. Denote

M(α) = min
{
i : τi (α) < 0

}
; (3.7)

this is a finite number since τi (α) → −∞ as i → ∞.

Corollary 3.4. As n → ∞,
∞∑

j=M(α)

E( f j,n) → 0.

Proof. It follows from (3.5) that

E( f j,n) ≤ nτ j (α)
≤

(
1

nβ

) j+1

,

here

β = inf
j≥M(α)

[
−τ j (α)/( j + 1)

]
.

Note that β > 0, since τ j (α) < 0 for all j ≥ M(α), and

lim
j→∞

−τ j (α)
j + 1

= lim
j→∞

{ j∑
i=1

(
j
i

)
αi

i + 1
− 1

}
≥ lim

j→∞

{( j
q

)
αq

q + 1
− 1

}
= ∞.

ence,
∞∑

j=M(α)

E( f j,n) ≤

∞∑
j=M(α)

(
1

nβ

) j+1

→ 0, n → ∞,

as desired. □

As stated below, the face counts in the critical dimension k turn out to satisfy a functional
central limit theorem. The limit turns out to be a stationary Gaussian process whose covariance
function is given by the limit in (3.4). Specifically, let

(
Zk(t), t ≥ 0

)
be a zero-mean stationary

Gaussian process with covariance function

Rk(t) = E
(
Zk(t)Zk(0)

)
= 1 − (Gq )e(t), t ≥ 0. (3.8)

The basic sample path properties of this process are described in the next proposition.
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Proposition 3.5. The process Zk admits a continuous version, whose sample paths are
δ-Hölder continuous for any δ ∈ (0, 1/2).

Proof. Since Zk is a stationary Gaussian process and

E
[(

Zk(t) − Zk(s)
)2]

= 2(Gq )e(|t − s|) ≤
2
µq

|t − s|,

the claim follows from the Kolmogorov continuity criterion. □

The statement below is a FCLT for the face counts in the critical dimension k. We view
fk,n(·) as a (piecewise constant) random element of D[0,∞), the space of right continuous
functions with left limits, which is equipped with the Skorohod J1-topology.

Proposition 3.6. Assume (3.1). Then, as n → ∞,(
fk,n(t) − E( fk,n)√

Var( fk,n)
, t ≥ 0

)
⇒
(
Zk(t), t ≥ 0

)
(3.9)

in the sense of convergence of the finite-dimensional distributions. If the assumption (2.9) is
satisfied then (3.9) also holds in the sense of weak convergence in the J1-topology on D[0,∞).

The proof is deferred to Section 5.

Remark 3.7. It is interesting and, initially, unexpected that only the state change distribution
Gq in the lowest nontrivial dimension q contributes to the asymptotics of the face counts in the
critical dimension. This is due to the fact that the “flipping” of a q-simplex from “on” to “off”
r vice versa affects the distribution of k-simplices more than does any flipping in a different
imension. Note that if Gq is exponential with mean 1/λ, then Rk(t) = e−λt and Zk is the
rnstein–Uhlenbeck Gaussian process, as in [21].

. FCLT for topological invariants

In this section, we present the main results of this paper: the functional SLLN and the FCLT
or the Euler characteristic and the Betti numbers in the critical dimension. We defer the proofs
o Sections 6 and 7.

We start with the strong laws of large numbers.

heorem 4.1. Assume (3.1). Then, as n → ∞,(
χn(t)
nτk (α) , t ≥ 0

)
→

(−1)k

(k + 1)!
a.s. (4.1)

nd (
βk,n(t)
nτk (α) , t ≥ 0

)
→

1
(k + 1)!

a.s. (4.2)

in the J1-topology on D[0,∞), where the right hand sides of (4.1) and (4.2) are viewed as
constant elements of D[0,∞).

After stating the functional strong law of large numbers, we proceed, as it is frequently
done, with the functional central limit theorem. Note the similarity with the corresponding
limit theorem for the face counts in Proposition 3.6.
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Theorem 4.2. Assume (3.1). Then, as n → ∞,(
χn(t) − E(χn)√

Var( fk,n)
, t ≥ 0

)
⇒
(
Zk(t), t ≥ 0

)
(4.3)

and (
βk,n(t) − E(βk,n)√

Var( fk,n)
, t ≥ 0

)
⇒
(
Zk(t), t ≥ 0

)
(4.4)

in the sense of convergence of the finite-dimensional distributions.

In addition, assume (2.9) and

τk(α) −
τq (α)

2
> τk+1(α). (4.5)

hen, (4.3) and (4.4) also hold in the sense of weak convergence in the J1-topology on D[0,∞).

emark 4.3. By Proposition 3.1, (4.3) can be restated as(
χn(t) − E(χn)
nτk (α)−τq (α)/2 , t ≥ 0

)
⇒
({

(q + 1)!
}1/2(k − q)!Zk(t), t ≥ 0

)
.

A similar reformulation is possible for (4.4).

Remark 4.4. We think that (2.9) alone is sufficient for weak convergence in the J1-topology

on D[0,∞) in (4.3) and (4.4). We have chosen to assume (4.5) in order to simplify an already

ong and technical argument.

xample 4.5. The dynamic variants of the Linial–Meshulam complex and the clique complex

re special cases of our model. An explicit form of Theorem 4.2 is stated here for these two

setups.

The Linial–Meshulam simplicial complex (see [15,16]) corresponds, in our description, to

α = (0, . . . , 0, αk,∞,∞, . . .), with 0 < αk < 1 in some position k ≥ 2. This k is then the

critical dimension with q = k, and τk(α) = k +1−αk . Furthermore, (3.1) holds. If X ([n],p; t)

is the dynamic Linial–Meshulam complex, then Theorem 4.2 says that(
χn(t) − E(χn)

√
nk+1−αk

, t ≥ 0
)

⇒
({

(k + 1)!
}1/2 Zk(t), t ≥ 0

)
,

t least in the sense of finite-dimensional distributions.
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Consider now the dynamic clique complex, for which α = (α1, 0, 0, . . .) with 0 < α1 < 1
and α1 ̸= 1/m for any m ∈ N. Then, q = 1 and the critical dimension is k = ⌊1/α1⌋ ≥ q.
Once again, (3.1) holds. Here, τk(α) = k +1−

(k+1
2

)
α1 and τq (α) = 2−α1. Now, Theorem 4.2

ays that(
χn(t) − E(χn)

nk−(k+1
2 )α1+α1/2

, t ≥ 0
)

⇒
(√

2(k − 1)!Zk(t), t ≥ 0
)
,

once again, at least in the finite-dimensional distributions.
For both models, we also obtain corresponding results for the Betti numbers in the critical

dimension. In the dynamic clique complex, if G1 is an exponential distribution, then, as
mentioned above, Zk is a zero-mean stationary Ornstein–Uhlenbeck Gaussian process, as
in [21].

As for the technical conditions for tightness, in the dynamic Linial–Meshulam complex, we
only need to check (2.9) just for i = k, while (4.5) always holds as τk+1(α) = −∞. In the case
f a dynamic clique complex, one needs to check (2.9) just for i = 1. On the other hand, (4.5)
educes to α1 > 4/(2k + 3), implying that the corresponding functional convergence follows

only when 4/5 < α1 < 1 and the critical dimension is k = ⌊1/α1⌋ = 1.

emark 4.6. For the dynamic clique complex, the assumption (4.5) fails in a certain range
f the parameter. Therefore, Theorem 4.2 does not claim the functional convergence in full
enerality, for the Euler characteristic and the Betti numbers in the critical dimension. On
he other hand, Thoppe et al. [21] who only discuss this model, established tightness in full
enerality, and hence FCLT in the J1-topology on D[0,∞). The reason for this discrepancy is
he generality of our setup. In particular, in the dynamic clique complex, all Betti numbers
xcept that in the critical dimension are known to vanish with a very high probability
see [13,14]), which makes it possible to obtain the required tightness in [21]. In the general
ulti-parameter simplicial complex, however, this is no longer necessarily the case, and the
etti number in the dimension greater than the critical one may not vanish; see Corollary 1.7
f Fowler [7]. To overcome the resulting difficulty, we have imposed an extra condition (4.5).
e anticipate that the tightness holds without that extra condition; one way to avoid this is via

ery complicated fourth moment estimates for the Betti numbers based on the expression in
roposition A.6.

. Proof of the FCLT for the face counts

In the sequel, we omit the subscript n from all face count and Betti number notations. For
xample, we simply write f j (t), β j (t) etc. Everywhere, C denotes a generic positive constant,
hich is independent of n but may vary between (or even within) the lines.
We start with proving the finite-dimensional convergence in Proposition 3.6. By the Cramér–

old device, it is enough to show that for all 0 ≤ t1 < · · · < tm < ∞, ai ∈ R, i = 1, . . . ,m,
≥ 1,∑m

i=1 ai
(

fk(ti ) − E( fk)
)

√
Var( fk)

⇒

m∑
i=1

ai Zk(ti ) in R. (5.1)

Clearly, it is enough to consider such choices of the coefficients for which the variance in the
right hand side of (5.1) does not vanish, so fix such a set of coefficients.
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Let J be the collection of k-faces or, equivalently, words of length k + 1 in [n]. For j ∈ J ,
et

X j =

∑m
i=1 ai

(
ξj(ti ) − E(ξj)

)√
Var

(∑m
i=1 ai fk(ti )

) ;

recall that ξj(t) is the indicator function that the k-face associated with the word j is “on” at
time t . Finally, define

W :=

∑
j∈J

X j =

∑m
i=1 ai

(
fk(ti ) − E( fk)

)√
Var

(∑m
i=1 ai fk(ti )

) ,

so that E(W ) = 0 and Var(W ) = 1.
In the terminology of Barbour et al. [2] (see Equ. (2.7) therein), (X j, j ∈ J ) constitutes

a dissociated set of random variables. To see this, identify each k-face j ∈ J by the tuple
jq ≡

(
j1, . . . , j(k+1

q+1)

)
, where each ji corresponds to a q-face in j. For example, when k = 3

and q = 1, identify the 3-face [1, 2, 3, 4] by the tuple
(
[1, 2], [1, 3], [1, 4], . . . , [3, 4]

)
. Then,

for any sets K , L ⊂ Jq := {jq : j ∈ J } such that⏐⏐⏐⏐⏐⏐
⋃

jq∈K

{
j1, . . . , j(k+1

q+1)

}
∩

⋃
j′q∈L

{
j ′

1, . . . , j ′

(k+1
q+1)

}⏐⏐⏐⏐⏐⏐ = ∅,

e have that (X j : jq ∈ K ) is independent of (X j : jq ∈ L). This verifies the claim that
X j : j ∈ J ) is a dissociated set of random variables. We can thus invoke the central limit
heorem of Barbour et al. [2] for sums of dissociated random variables.

The approach is to estimate the L1-Wasserstein metric between the distribution LW of W
nd the standard normal distribution, i.e.

d1(LW ,LY ) = sup
φ

⏐⏐⏐E(φ(W )
)
− E

(
φ(Y )

)⏐⏐⏐,
here Y has the standard normal distribution and the supremum is taken over all φ : R → R

uch that supy1 ̸=y2

⏐⏐φ(y1)−φ(y2)
⏐⏐/|y1 − y2| ≤ 1. Assuming we have shown that d1(LW ,LY ) →

, we have W ⇒ Y as n → ∞. Furthermore, direct applications of Proposition 3.1 and (3.8)
ield

Var
(∑m

i=1 ai fk(ti )
)

Var( fk)
→ Var

( m∑
i=1

ai Zk(ti )
)
, n → ∞.

Therefore, d1(LW ,LY ) → 0 would give us∑m
i=1 ai

(
fk(ti ) − E( fk)

)
√

Var( fk)
⇒

{
Var

( m∑
i=1

ai Zk(ti )
)}1/2

Y d
=

m∑
i=1

ai Zk(ti ), n → ∞,

as required.
It remains to actually show that d1(LW ,LY ) → 0 as n → ∞. Let L j = {k ∈ J :

|k ∩ j| ≥ q + 1} be the dependency neighborhood of j ∈ J , that is, a collection of simplices k
having at least one q-face in common with j. Then a slight reformulation of (3.4) in [2] and
Proposition 3.1 shows that for a constant C that may depend on the coefficients a , . . . , a ,
1 m
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but on nothing else,

d1(LW ,LY ) ≤ C
∑
j∈J

∑
k∈Lj

∑
l∈Lj

{
E
(
|X j Xk X l|

)
+ E

(
|X j Xk|

)
E
(
|X l|

)}

≤
C

n3τk (α)−3τq (α)/2

m∑
i1,i2,i3=1

∑
j∈J

∑
k∈Lj

∑
l∈Lj

{
E
[ (
ξj(ti1 ) + E(ξj)

)(
ξk(ti2 ) + E(ξk)

)
×
(
ξl(ti3 ) + E(ξl)

) ]
(5.2)

+ 2E
[(
ξj(ti1 ) + E(ξj)

)(
ξk(ti2 ) + E(ξk)

)]
E(ξl)

}
.

or fixed j ∈ J,k ∈ L j, l ∈ L j denote

ℓ12 = |j ∩ k|, ℓ13 = |j ∩ l|, ℓ23 = |k ∩ l|, ℓ123 = |j ∩ k ∩ l|.

ince k, l ∈ L j, it must be that ℓ12 ≥ q + 1 and ℓ13 ≥ q + 1, whereas ℓ23 and ℓ123 can be less
han q + 1. Given ℓ12, ℓ13, ℓ23, and ℓ123 as above, the expression between the braces in the
ight hand side of (5.2) can, up to a constant factor, be bounded by

k∏
i=q

p
3(k+1

i+1)−(
ℓ12
i+1)−(

ℓ13
i+1)−(

ℓ23
i+1)+(

ℓ123
i+1 )

i

or example, for 0 ≤ r ≤ s ≤ t < ∞, by the inclusion–exclusion formula,

E
(
ξj(r )ξk(s)ξl(t)

)
=

k∏
i=q

p
3(k+1

i+1)−(
ℓ12
i+1)−(

ℓ13
i+1)−(

ℓ23
i+1)+(

ℓ123
i+1 )

i

×

k∏
i=q

P
(
∆i (s) = 1

⏐⏐∆i (r ) = 1
)(ℓ12

i+1)−(
ℓ123
i+1 )

k∏
i=q

P
(
∆i (t) = 1

⏐⏐∆i (s) = 1
)(ℓ23

i+1)−(
ℓ123
i+1 )

×

k∏
i=q

P
(
∆i (t) = 1

⏐⏐∆i (r ) = 1
)(ℓ13

i+1)−(
ℓ123
i+1 )

k∏
i=q

P
(
∆i (s) = ∆i (t) = 1

⏐⏐∆i (r ) = 1
)(ℓ123

i+1 )

≤

k∏
i=q

p
3(k+1

i+1)−(
ℓ12
i+1)−(

ℓ13
i+1)−(

ℓ23
i+1)+(

ℓ123
i+1 )

i ,

and the terms of the other types can be bounded in a similar manner.
Furthermore, observe that for every ℓ12 ≥ q + 1, ℓ13 ≥ q + 1, ℓ23 ≥ 0, and ℓ123 ≥ 0,

he number of the corresponding terms in (5.2) does not exceed a constant multiple of
3(k+1)−ℓ12−ℓ13−ℓ23+ℓ123 . Therefore,

d1(W, Y ) ≤
C

n3τk (α)−3τq (α)/2

×

k+1∑ k+1∑ k+1∑ ℓ12∧ℓ13∧ℓ23∑ k∏
p

3(k+1
i+1)−(

ℓ12
i+1)−(

ℓ13
i+1)−(

ℓ23
i+1)+(

ℓ123
i+1 )

i

ℓ12=q+1 ℓ13=q+1 ℓ23=0 ℓ123=0 i=q
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C

× n3(k+1)−ℓ12−ℓ13−ℓ23+ℓ123

= C
k+1∑

ℓ12=q+1

k+1∑
ℓ13=q+1

k+1∑
ℓ23=0

ℓ12∧ℓ13∧ℓ23∑
ℓ123=0

n3τq (α)/2−τℓ12−1(α)−τℓ13−1(α)−τℓ23−1(α)+τℓ123−1(α)

a ∧ b = min{a, b} for a, b ∈ R). The latter sum is a finite sum, and each term in it does not
xceed Cn−τq (α)/2 which can be seen by noticing that τℓ23−1(α) − τℓ123−1(α) > 0 and setting
12 = ℓ13 = q + 1. Therefore, the sum goes to 0 as n → ∞ and, hence, we have established
he convergence of the finite-dimensional distributions in Proposition 3.6.

In order to prove tightness in the J1-topology, we use Theorem 13.5 in [3]. By the
tationarity of fk(t), it is sufficient to show that for every T > 0, there exists B > 0 such
hat

E
[(

fk(t) − fk(s)
)2( fk(s) − fk(r )

)2
]

(
Var( fk)

)2 ≤ B(t − r )1+γ

or all 0 ≤ r ≤ s ≤ t ≤ T , n ≥ 1, with γ as in (2.9). By Proposition 3.1, we only need to
how existence of B such that

E
[(

fk(t) − fk(s)
)2( fk(s) − fk(r )

)2
]

n4τk (α)−2τq (α) ≤ B(t − r )1+γ . (5.3)

his will be established while proving tightness in the proof of Theorem 4.2. □

. Proofs of the limit theorems for the Euler characteristic

We start with the strong law of large numbers. As in the last section, C denotes a generic
ositive constant, which is independent of n.

roof of (4.1) in Theorem 4.1. Fix 0 < T < ∞ for the duration of the proof. We first check
hat for each j ≥ 0,

sup
0≤t≤T

⏐⏐ f j (t) − E( f j )
⏐⏐

E( fk)
→ 0 a.s. (6.1)

f j ∈ {0, . . . , q − 1}, the left hand side is identically zero (see Remark 3.2). For j ≥ q, by
he Borel–Cantelli lemma, it suffices to show that for every ϵ > 0,

∞∑
n=1

P
(

sup
0≤t≤T

⏐⏐ f j (t) − E( f j )
⏐⏐ > ϵE( fk)

)
< ∞,

hich will follow once we prove the following two statements:
∞∑

n=1

P
(

sup
0≤t≤T

f j (t) > E( f j ) + ϵE( fk)
)
< ∞, and (6.2)

∞∑
n=1

P
(

inf
0≤t≤T

f j (t) < E( f j ) − ϵE( fk)
)
< ∞. (6.3)

hoose a positive integer m so large that
j∏(

1 +
(G i )e(T/m)

1 − G i (T/m)

)( j+1
i+1)

< 1 +
ϵ

2
. (6.4)
i=q
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By stationarity,

P
(

sup
0≤t≤T

f j (t) > E( f j ) + ϵE( fk)
)

≤ mP
(

sup
0≤t≤T/m

f j (t) > E( f j ) + ϵE( fk)
)
.

We now construct a new static multi-parameter simplicial complex X ([n],p(1)) by setting
p(1)

i = P
(
sup0≤t≤T/m ∆i (t) = 1

)
for i ≥ 1. If f (1)

j is the j-face count in this static complex,
hen, by a straightforward coupling argument,

sup
0≤t≤T/m

f j (t)
st
≤ f (1)

j . (6.5)

ince by part (ii) of Lemma 2.4 and (6.4),

E( f (1)
j ) =

(
n

j + 1

) j∏
i=q

(p(1)
i )(

j+1
i+1)

≤

(
n

j + 1

) j∏
i=q

p
( j+1

i+1)
i

j∏
i=q

(
1 +

(G i )e(T/m)
1 − G i (T/m)

)( j+1
i+1)

≤

(
1 +

ϵ

2

)
E( f j ),

e conclude that

P
(

sup
0≤t≤T/m

f j (t) > E( f j ) + ϵE( fk)
)

≤ P
(

f (1)
j − E( f (1)

j ) > E( f j ) + ϵE( fk) − E( f (1)
j )
)

≤ P
(

f (1)
j − E( f (1)

j ) > ϵE( fk) −
ϵ

2
E( f j )

)
.

s E( f j )/E( fk) → 0, n → ∞ for j ̸= k, it holds that, for sufficiently large n,

P
(

f (1)
j − E( f (1)

j ) > ϵE( fk) −
ϵ

2
E( f j )

)
≤ P

(⏐⏐ f (1)
j − E( f (1)

j )
⏐⏐ > ϵ

2
E( fk)

)
≤

4
ϵ2

Var( f (1)
j )(

E( fk)
)2 ≤ C

Var( f (1)
j )

n2τk (α) ,

here the last inequality comes from Proposition 3.1. Further, since each p(1)
i is asymptotically

ounded by pi times a positive constant for i = q, . . . , j , the argument of the above proposition
hows that for large enough n,

Var( f (1)
j ) ≤ C (1)

j n2τ j (α)−τq (α)
∨ C (2)

j nτ j (α)

or some finite positive constants C (1)
j and C (2)

j . Hence,

P
(

sup
0≤t≤T/m

f j (t) > E( f j ) + ϵE( fk)
)

≤ C
n2τ j (α)−τq (α)

∨ nτ j (α)

n2τk (α)

≤ Cn−τq (α)
≤ Cn−τ1(α)

= Cn−(2−α1).

s α1 = ψ1(α) ≤ ψk(α) < 1, we get
∑

∞

n=1 n−(2−α1) < ∞, and so (6.2) holds.
We now turn our attention to (6.3). The stationarity of f j (t) implies that

P
(

inf
0≤t≤T

f j (t) < E( f j ) − ϵE( fk)
)

≤ mP
(

inf
0≤t≤T/m

f j (t) < E( f j ) − ϵE( fk)
)
,

here this time m is chosen so that
j∏(

1 − (G i )e(T/m)
)( j+1

i+1) > 1 −
ϵ

2
.

i=q
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Once again, we construct a new static multi-parameter simplicial complex X ([n],p(2)) by
etting this time p(2)

i = P
(
inf0≤t≤T/m ∆i (t) = 1

)
for i ≥ 1. If f (2)

j is the j-face count in

his static complex, then, f (2)
j

st
≤ inf0≤t≤T/m f j (t). Notice that for i ≥ q ,

p(2)
i ≥ P

(
∆i (0) = 1, D(i)

≥ T/m
)

= pi
(
1 − (G i )e(T/m)

)
,

o by the choice of m,

E( f (2)
j ) ≥

(
1 −

ϵ

2

)
E( f j ).

Proceeding as above we conclude that, for sufficiently large n,

P
(

inf
0≤t≤T/m

f j (t) < E( f j ) − ϵE( fk)
)

≤ C
Var( f (2)

j )

n2τk (α) .

oting that p(2)
i ≤ p(1)

i , the same logic as above tells that

Var( f (2)
j ) ≤ C (1)

j n2τ j (α)−τq (α)
∨ C (2)

j nτ j (α)

or some finite positive constants C (1)
j ,C (2)

j , and (6.3) follows in the same way as (6.2) did.
The next step is to show that as n → ∞,

sup
0≤t≤T

⏐⏐χn(t) − E(χn)
⏐⏐

E( fk)
→ 0 a.s., (6.6)

nd by stationarity it is enough to prove that

sup
0≤t≤T/m

⏐⏐χn(t) − E(χn)
⏐⏐

E( fk)
→ 0 a.s. (6.7)

or an integer m large enough so that T/m ≤ a/4; the constant a is given in the assumption
2.3). It is not difficult to see that the choice of m implies (G i )e(T/m) ≤ 1/2. Combining

this with part (ii) of Lemma 2.4 and recalling that p(1)
i = P

(
sup0≤t≤T/m ∆i (t) = 1

)
, we get

p(1)
i ≤ pi (2 − pi ). It is now elementary to check that there is a function h : [0,∞] → [0,∞]

with h(0) = 0, h(∞) = ∞, and h(α) ∈ (0,∞) for 0 < α < ∞, such that

p(1)
i ≤ pi (2 − pi ) ≤ n−h(αi ) if pi = n−αi , i ≥ 1; (6.8)

(for example, one may take h(α) = α − log(2 − 2−α)/ log 2). Define now α̃ by α̃i = h(αi ),
= 1, 2, . . .. Then, M(α̃) defined by (3.7) is finite, and we use (3.2) to bound

sup
0≤t≤T/m

⏐⏐χn(t) − E(χn)
⏐⏐

E( fk)
≤

M(α̃)−1∑
j=0

sup
0≤t≤T/m

⏐⏐ f j (t) − E( f j )
⏐⏐

E( fk)

+

n−1∑
j=M(α̃)

sup
0≤t≤T/m

⏐⏐ f j (t) − E( f j )
⏐⏐

E( fk)
.

By (6.1), the first sum in the right hand side almost surely goes to 0 as n → ∞. For the second
sum, we again use the Borel–Cantelli lemma by initially showing that, for every ϵ > 0,

∞∑
P

⎛⎝ n−1∑
sup

0≤t≤T/m

⏐⏐ f j (t) − E( f j )
⏐⏐ > ϵE( fk)

⎞⎠ < ∞.
n=M(α̃)+1 j=M(α̃)
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Using Markov’s inequality and recalling our notation for the face counts in the static multi-
parameter simplicial complex X ([n],p(1)), we bound the above sum by

2
ϵ

∞∑
n=M(α̃)+1

1
E( fk)

n−1∑
j=M(α̃)

E
(

sup
0≤t≤T/m

f j (t)
)

≤
2C
ϵ

∞∑
n=1

1
nτ1(α)

∞∑
j=M(α̃)

E
(

f (1)
j

)
< ∞

ince
∑

∞

n=1 n−τ1(α) < ∞ and
∑

∞

j=M(α̃) E
(

f (1)
j

)
→ 0 as n → ∞ by Corollary 3.4. We have

ow obtained (6.7) and, hence, also (6.6).
Finally, we can use (3.2) to write

E(χn)
E( fk)

= (−1)k
+

∑n−1
j=0, j ̸=k(−1) jE( f j )

E( fk)
.

With M(α) defined by (3.7),⏐⏐⏐⏐
∑n−1

j=0, j ̸=k(−1) jE( f j )

E( fk)

⏐⏐⏐⏐ ≤

M(α)−1∑
j=0, j ̸=k

E( f j )
E( fk)

+ C
∞∑

j=M(α)

E( f j ) → 0, n → ∞

y Proposition 3.1 and Corollary 3.4. Hence E(χn)/E( fk) → (−1)k , and (4.1) follows. □

We now prove the functional central limit theorem for the Euler characteristic.

roof of (4.3) in Theorem 4.2. Note, first of all, that for every M ≥ k +1 the truncated Euler
characteristic

χ (M)
n (t) =

M−1∑
j=0

(−1) j f j (t)

satisfies, in terms of convergence of the finite-dimensional distributions,(
χ (M)

n (t) − E(χ (M)
n )√

Var( fk,n)
, t ≥ 0

)
⇒
(
Zk(t), t ≥ 0

)
.

This follows from finite-dimensional convergence in Proposition 3.6 and the fact that by (3.6)
and Chebyshev’s inequality,

f j (t) − E( f j )
√

Var( fk)
p

→ 0, n → ∞,

for each j ̸= k.
Choosing now M = M(α) defined by (3.7), we have by Corollary 3.4 that

P
(⏐⏐⏐⏐χn(t) − E(χn)

√
Var( fk)

−
χ (M(α))

n (t) − E(χ (M(α))
n )

√
Var( fk)

⏐⏐⏐⏐ > ϵ

)
≤

2
ϵ
√

Var( fk)

∞∑
j=M(α)

E( f j ) → 0

(6.9)

s n → ∞ for any ϵ > 0. Therefore,

χn(t) − E(χn)
√

Var( fk)
−
χ (M(α))

n (t) − E(χ (M(α))
n )

√
Var( fk)

p
→ 0,

o we have established (4.3) in terms of convergence of the finite-dimensional distributions.
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Assuming (2.9) and (4.5), we now establish tightness in the Skorohod J1-topology. Denote

M1(α) = min
{
i > k : τi (α) < τq (α)

}
.

Fix T > 0 and choose m so that T/m ≤ a/4, where a is the constant from (2.3). Recall once
again the notation p(1)

i = P
(
sup0≤t≤T/m ∆i (t) = 1

)
, i ≥ 1, so that p(1)

i ≤ pi (2 − pi ) ≤ n−α̃i ,
here α̃ = (α̃1, α̃2, . . . ) is as defined below (6.8). Note that M1(α) ≤ M(α) ≤ M(α̃) < ∞,
here M(α) and M(α̃) are as defined in (3.7). Recall also that for j ≥ q, f (1)

j is the j-face

ounts in X ([n],p(1)), such that f (1)
j

sd
≥ sup0≤t≤T/m f j (t). Write

χn(t) =

M1(α)−1∑
j=0

(−1) j f j (t) +

n−1∑
j=M1(α)

(−1) j f j (t) =: χ (1)
n (t) + χ (2)

n (t), 0 ≤ t ≤ T .

e start with proving that, as n → ∞,

sup0≤t≤T

⏐⏐χ (2)
n (t) − E(χ (2)

n )
⏐⏐

√
Var( fk)

p
→ 0.

By stationarity, it suffices to show that

sup0≤t≤T/m

⏐⏐χ (2)
n (t) − E(χ (2)

n )
⏐⏐

√
Var( fk)

p
→ 0. (6.10)

et ϵ > 0 be arbitrary. Then, by Markov’s inequality, for all sufficiently large n,

P
(

sup
0≤t≤T/m

⏐⏐χ (2)
n (t) − E(χ (2)

n )
⏐⏐ > ϵ

√
Var( fk)

)
(6.11)

≤
2

ϵ
√

Var( fk)

n−1∑
j=M1(α)

E
[

sup
0≤t≤T/m

f j (t)
]

(6.12)

≤
2

ϵ
√

Var( fk)

n−1∑
j=M1(α)

E( f (1)
j )

≤
2
ϵ

M(α̃)−1∑
j=M1(α)

∏ j
i=q 2(

j+1
i+1)E( f j )

√
Var( fk)

+
2
ϵ

∞∑
j=M(α̃)

E( f (1)
j ),

where the last inequality is due to Proposition 3.1, together with the fact that p(1)
i ≤ 2pi . The

second term vanishes because
∑

∞

j=M(α̃) E( f (1)
j ) → 0, as n → ∞, by Corollary 3.4. On the

other hand, the first vanishes since, by (4.5),

E( f j ) ≤ nτ j (α)
≤ nτk+1(α)

= o
(
nτk (α)−τq (α)/2)

= o
(√

Var( fk)
)
, n → ∞.

ow (6.10) follows as desired, and so it remains to prove the tightness of
(
χ (1)

n (t), 0 ≤ t ≤ T
)
.

For this, it is enough to show the existence of B ∈ (0,∞) such that

E
[(
χ (1)

n (t) − χ (1)
n (s)

)2(
χ (1)

n (s) − χ (1)
n (r )

)2
]

n4τk (α)−2τq (α) ≤ B(t − r )1+γ (6.13)

or all 0 ≤ r ≤ s ≤ t ≤ T and n ≥ 1. In the course of the proof, we will also establish (5.3)
hich is needed for the tightness in Proposition 3.6.
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We begin by setting up the notation. For q + 1 ≤ j1, j2 < M1(α) and 0 ≤ r ≤ s ≤ t ≤ T ,
enote

F j1, j2 (t, s, r ) := E
[(

f j1 (t) − f j1 (s)
)2( f j2 (s) − f j2 (r )

)2
]
.

onsider a potential subcomplex σ̄ in [n] consisting of the 4 simplices σ1, σ2, σ3, σ4 and their
faces, with |σ1| = |σ2| = j1 + 1, |σ3| = |σ4| = j2 + 1, and let

ai j = |σi ∩ σ j |, 1 ≤ i < j ≤ 4, ai jk = |σi ∩ σ j ∩ σk |, 1 ≤ i < j < k ≤ 4,

a1234 = |σ1 ∩ σ2 ∩ σ3 ∩ σ4|.

The number of i-faces in σ̄ is

combi (σ̄ ) := 2
(

j1 + 1
i + 1

)
+ 2

(
j2 + 1
i + 1

)
−

(
a12

i + 1

)
−

(
a13

i + 1

)
−

(
a14

i + 1

)
−

(
a23

i + 1

)

−

(
a24

i + 1

)
−

(
a34

i + 1

)
+

(
a123

i + 1

)
+

(
a124

i + 1

)

+

(
a134

i + 1

)
+

(
a234

i + 1

)
−

(
a1234

i + 1

)
;

t depends only on j1, j2, and a = (a12, . . . , a1234). We let

Ψ (a,α) := τa12−1(α) + τa13−1(α) + τa14−1(α) + τa23−1(α) + τa24−1(α) + τa34−1(α) (6.14)

− τa123−1(α) − τa124−1(α) − τa134−1(α) − τa234−1(α) + τa1234−1(α)

with τ−1(α) ≡ 0). By independence,

F j1, j2 (t, s, r ) =

∑
σ̄⊂Ξ ( j1, j2)

E
[(
ξσ1 (t) − ξσ1 (s)

)(
ξσ2 (t) − ξσ2 (s)

)(
ξσ3 (s) − ξσ3 (r )

)
×
(
ξσ4 (s) − ξσ4 (r )

)]
=:

∑
σ̄⊂Ξ ( j1, j2)

E
[
g(t, s, r; σ̄ )

]
, (6.15)

ith the summation restricted to the set

Ξ ( j1, j2) =
{
σ̄ = (σ1, . . . , σ4) : |σ1| = |σ2| = j1 + 1, |σ3| = |σ4| = j2 + 1,

and (σ1, . . . , σ4) satisfies at least one of the conditions in (6.16) below
}

:

(i) a12 ≥ q + 1, a34 ≥ q + 1, (ii) a13 ≥ q + 1, a24 ≥ q + 1,

(iii) a14 ≥ q + 1, a23 ≥ q + 1, (iv) a12 ≥ q + 1, a13 ≥ q + 1, a14 ≥ q + 1, (6.16)

(v) a12 ≥ q + 1, a23 ≥ q + 1, a24 ≥ q + 1, (vi) a13 ≥ q + 1, a23 ≥ q + 1, a34 ≥ q + 1,

(vii) a14 ≥ q + 1, a24 ≥ q + 1, a34 ≥ q + 1.

Indeed, if none of the conditions in (6.16) holds, then the corresponding term in (6.15)
anishes by independence and stationarity.
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Our goal is to bound the expectation E
[
g(t, s, r; σ̄ )

]
in (6.15). Note that g(t, s, r; σ̄ ) ∈

−1, 0,+1}. Hence, for g(t, s, r; σ̄ ) not to vanish, every i-face of the simplex σ1 must exist
ither at time s or at time t , i = q, . . . , j1, and the same is true for the simplex σ2. Similarly,
very i-face of the simplex σ3 must exist either at time r or at time s, i = q, . . . , j2, and the
ame is true for the simplex σ4. The probability that this happens is bounded from above by

16
j1∨ j2∏
i=q

pcombi (σ̄ )
i , (6.17)

here we take into account only the first (smallest) time a face exists if it is required to exist
ultiple times. Additionally, at least one face of the complex spanned by the simplices σ1, σ2

ust switch from existence to non-existence, or vice versa, between times s and t , and at
east one face of the complex spanned by the simplices σ3, σ4 must switch from existence to
on-existence, or vice versa, between times r and s. This may be the same face or two different
aces. Let us denote the corresponding (non-disjoint) events by A1 and A2. Consider the event
A1 first. The number of possible faces that can change their status does not exceed the total
umber of faces in σ̄ , which is, in turn, bounded by 22( j1+ j2). For such an i-face the probability

pi in (6.17) will be replaced by one by of following two probabilities:

P
(
∆i (r ) = 0,∆i (s) = 1,∆i (t) = 0

)
nd

P
(
∆i (r ) = 1,∆i (s) = 0,∆i (t) = 1

)
,

oth of which are bounded by (2c/a)pi (t − r )1+γ by Lemma 2.5. Therefore,

P(A1) ≤ C22( j1+ j2)(t − r )1+γ

j1∨ j2∏
i=q

pcombi (σ̄ )
i .

onsidering the event A2 now, we see that the number of possible pairs of faces that can
hange their status does not exceed 24( j1+ j2). For each such a pair of an i1-face and an i2-face,
he product pi1 pi2 in (6.17) will be, up to renaming, replaced by

P
(
∆i1 (r ) = 1,∆i1 (s) = 0

)
P
(
∆i2 (s) = 1,∆i2 (t) = 0

)
,

r similar expressions obtained by flipping 1s and 0s. By Lemma 2.4, any such expression is
ounded by

pi1 pi2

(
2
a

)2

(t − r )2.

ince γ ≤ 1, we conclude that

P(A2) ≤ C24( j1+ j2)(t − r )1+γ

j1∨ j2∏
i=q

pcombi (σ̄ )
i ,

nd so

E
[
|g(t, s, r; σ̄ )|

]
≤ C24( j1+ j2)(t − r )1+γ

j1∨ j2∏
pcombi (σ̄ )

i .
i=q
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Substituting this back into (6.15), we obtain

F j1, j2 (t, s, r ) ≤ C24( j1+ j2)(t − r )1+γ
∑

σ̄∈Ξ ( j1, j2)

j1∨ j2∏
i=q

pcombi (σ̄ )
i

= C24( j1+ j2)(t − r )1+γ
∑
a∈A

∑
σ̄∈Ξ ( j1, j2)

1
{
|σ1 ∩ σ2| = a12, |σ1 ∩ σ3| = a13, . . . ,

|σ1 ∩ σ2 ∩ σ3 ∩ σ4| = a1234
} j1∨ j2∏

i=q

pcombi (σ̄ )
i ,

where A is the collection of a = (a12, . . . , a1234) satisfying at least one of the conditions in
(6.16). Note that combi (σ̄ ) depends only on a, and for any a,∑

σ̄∈Ξ ( j1, j2)

1
{
|σ1 ∩ σ2| = a12, |σ1 ∩ σ3| = a13, . . . , |σ1 ∩ σ2 ∩ σ3 ∩ σ4| = a1234

}
≤ ncomb0(σ̄ ).

Since

ncomb0(σ̄ )
j1∨ j2∏
i=q

pcombi (σ̄ )
i = n2(τ j1 (α)+τ j2 (α))−Ψ (a,α)

with Ψ (a,α) given in (6.14), we obtain

F j1, j2 (t, s, r ) ≤ C24( j1+ j2)(t − r )1+γ
∑
a∈A

n2(τ j1 (α)+τ j2 (α))−Ψ (a,α)
. (6.18)

We proceed with the following lemma.

Lemma 6.1. For q + 1 ≤ j1, j2 < M1(α) and a = (a12, . . . , a1234) ∈ A, we have

n2(τ j1 (α)+τ j2 (α))−Ψ (a,α)

n4τk (α)−2τq (α) ≤ 1.

Proof. Notice that

D := 2(τ j1 (α) + τ j2 (α)) − Ψ (a,α)
≤ 2(τ j1 (α) + τ j2 (α)) − τa12−1(α) − τa13−1(α) − τa14−1(α) − τa23−1(α)

− τa24−1(α) − τa34−1(α) + τa123−1(α) + τa124−1(α) + τa134−1(α) + τa234−1(α),

nd, by the choice of j1, j2, all the terms τ·(α) in the right hand side are non-negative. Since
he sequence (τi (α), i ≥ −1) is unimodal—it increases until i = k and then decreases—we
ave

τa12−1(α) ≥ min
(
τ j1 (α), τa123−1(α) ∨ τa124−1(α)

)
, (6.19)

τa13−1(α) ≥ min
(
τ j1 (α) ∨ τ j2 (α), τa123−1(α) ∨ τa134−1(α)

)
,

τa14−1(α) ≥ min
(
τ j1 (α) ∨ τ j2 (α), τa124−1(α) ∨ τa134−1(α)

)
,

τa23−1(α) ≥ min
(
τ j1 (α) ∨ τ j2 (α), τa123−1(α) ∨ τa234−1(α)

)
,

τa24−1(α) ≥ min
(
τ j1 (α) ∨ τ j2 (α), τa124−1(α) ∨ τa234−1(α)

)
,

τa34−1(α) ≥ min
(
τ j2 (α), τa134−1(α) ∨ τa234−1(α)

)
.

ince a ∈ A, at least one of the 7 conditions in (6.16) holds. We will consider in detail what
appens under condition (i); the situation under the other conditions is similar.
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Under condition (i) in (6.16) the first and the last bounds in (6.19) are supplemented by
the bounds τa12−1(α) ≥ τq (α), τa34−1(α) ≥ τq (α). We now use the remaining 4 inequalities
in (6.19). Note that τa13−1(α) “kills” (i.e., is at least as large as) τ j1 (α), τ j2 (α) or τa123−1(α).
Similarly, τa14−1(α) “kills” τ j1 (α), τ j2 (α) or τa134−1(α). Further, τa23−1(α) “kills” τ j1 (α), τ j2 (α)
or τa234−1(α). Finally, τa24−1(α) “kills” τ j1 (α), τ j2 (α) or τa124−1(α). This leaves 4 non-negative
terms in the upper bound for D, neither of which exceeds τk(α), so D ≤ 4τk(α) − 2τq (α), as
required. □

Since A is parameterized by the 11 variables a12, . . . , a1234, its cardinality does not exceed
( j1 + j2 + 1)11. Hence, by Lemma 6.1 and (6.18)

E
[(
χ (1)

n (t) − χ (1)
n (s)

)2(
χ (1)

n (s) − χ (1)
n (r )

)2
]

n4τk (α)−2τq (α) ≤

M1(α)−1∑
j1=q+1

M1(α)−1∑
j2=q+1

F j1, j2 (t, s, r )
n4τk (α)−2τq (α) ≤ B(t−r )(1+γ )

or some 0 < B < ∞, as required for (6.13). □

. Proofs of the limit theorems for the betti numbers in the critical dimension

Once again, we start with the strong law of large numbers.

roof of (4.2) in Theorem 4.1. For 0 < T < ∞, we have to demonstrate that

sup
0≤t≤T

⏐⏐βk(t) − E( fk)
⏐⏐

E( fk)
→ 0 a.s.

y the Morse inequalities

fk(t) − fk+1(t) − fk−1(t) ≤ βk(t) ≤ fk(t),

we have⏐⏐βk(t) − E( fk)
⏐⏐ ≤

⏐⏐ fk(t) − E( fk)
⏐⏐+ fk+1(t) + fk−1(t).

By (6.1) with j = k, it is enough to prove that as n → ∞,

sup
0≤t≤T

fk+1(t)
E( fk)

→ 0 a.s. and sup
0≤t≤T

fk−1(t)
E( fk)

→ 0 a.s.

his is, however, an immediate conclusion of (6.1) with j = k ± 1, since by Proposition 3.1,

lim
n→∞

E( fk+1)
E( fk)

= lim
n→∞

E( fk−1)
E( fk)

= 0. □

We continue with the functional central limit theorem for Betti numbers.

Proof of (4.4) in Theorem 4.2. For convenience, we drop the subscript n in expressions such
as β j,n for the duration of the proof. We start with introducing some terminology related to the
connectivity of a simplicial complex. It is analogous to the terminology used in [12] and [7].
An ℓ-dimensional simplicial complex X , is called pure if every face of X is contained in an
ℓ-face. A simplicial complex K is said to be strongly connected of order ℓ if the following
two conditions hold:

• The ℓ-skeleton of K is pure.
79



T. Owada, G. Samorodnitsky and G. Thoppe Stochastic Processes and their Applications 138 (2021) 56–95

I
t

a

L
w

P
t
f
t
t
o
a
o
i
s

o

a
c
a
n
e
(
i

T

i
l

• Every pair of ℓ-faces σ, τ ∈ K , can be connected by a sequence of ℓ-faces,

σ = σ0, σ1, . . . , σ j−1, σ j = τ

for some j ≥ 1, such that dim(σi ∩ σi+1) = ℓ− 1, 0 ≤ i ≤ j − 1.

n this case, we will simply say that K is an ℓ-strongly connected simplicial complex. Note that
he dimension of K itself may be greater than ℓ. We call an ℓ-strongly connected subcomplex
K of X maximal if there is no other ℓ-strongly connected subcomplex K ′

⊃ K . We start with
useful estimate similar to the computation in [7], p.117.

emma 7.1. Let K be a (k + 1)-strongly connected simplicial complex on j ≥ k + 3 vertices
ith a non-zero (k + 1)-st Betti number. Then, for σ ⊂ [n] with |σ | = j ,

P(the restriction of X ([n],p) to σ is isomorphic to K )

≤ j !
k+1∏
i=q

p(
k+3
i+1)

i

(k+1∏
i=q

p(
k+1

i )
i

) j−k−3
.

roof. The argument consists of estimating the number of faces of different dimensions K has
o contain. We start by denoting by m the number of the (k + 1)-faces in K . We order these
aces as follows. Fix an arbitrary (k +1)-cycle in K and choose any (k +1)-face from this cycle
o be f1. Since K is (k + 1)-strongly connected, we can order the rest of the (k + 1)-faces in
he order f1, . . . , fm such that each f p, p > 1, has a k-dimensional intersection with at least
ne fq with q < p. This ordering of the (k +1)-faces induces an ordering on the vertices in K ,
s follows. First, let v1, . . . , vk+2 be the vertices, chosen in an arbitrary order, in the support
f f1. Each vertex after vk+2 corresponds to the addition of a (k + 1)-face fℓ; in that, it lies
n the support of fℓ but is not contained in f1 ∪ · · · ∪ fℓ−1. Since each vertex of K belongs to
ome (k + 1)-face, we obtain, in this way, an ordering vk+3, . . . , v j of all remaining vertices in

K . Note at this point that each vertex after vk+2, for each 1 ≤ i ≤ k + 1, is a vertex of
(k+1

i

)
f i-faces of some new (k + 1)-face fℓ being considered at that point. We let

c = max{k + 3 ≤ m ≤ j : vm is a vertex of the initially fixed (k + 1)-cycle}

nd note that c is well defined since the cycle must contain at least k + 3 vertices. The
orresponding vertex vc is, actually, contained in at least k + 2 faces of dimension k + 1, just
s other vertices in the initially fixed (k + 1)-cycle. Furthermore, vc is contained in the fewest
umber of i-faces if it is a part of exactly k+2 faces of dimension k+1. The latter occurs when,
xcluding vc, there are precisely k + 2 other vertices in this cycle and they together form a
k+1)-face. Therefore, when vc entered our enumeration of the vertices, for each 1 ≤ i ≤ k+1,
t was a vertex of at least

(k+2
i

)
new i-faces in K . We now see that for each 1 ≤ i ≤ k + 1,

• f1 contains
(k+2

i+1

)
distinct i-faces in K ;

• each vertex in {vk+3, . . . , v j } \ {vc} corresponds to
(k+1

i

)
new distinct i-faces in K ;

• vc corresponds to at least
(k+2

i

)
new distinct i-faces in K .

herefore, for each 1 ≤ i ≤ k + 1, K contains at least(
k + 2
i + 1

)
+ ( j − k − 3)

(
k + 1

i

)
+

(
k + 2

i

)
=

(
k + 3
i + 1

)
+ ( j − k − 3)

(
k + 1

i

)
-faces. Finally, since there are j ! ways of ordering vertices in σ , we get the assertion of the

emma. □
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By (3.3), the already established convergence in (4.3) tells us that(∑n−1
j=0(−1) jβ j (t) − E

(∑n−1
j=0(−1) jβ j

)
√

Var( fk)
, t ≥ 0

)
⇒
(
Zk(t), t ≥ 0

)
(7.1)

n finite dimensional distributions. In order to prove convergence in finite dimensional distri-
utions in (4.4), we need to show that all (normalized) Betti numbers except that of critical
imension are asymptotically negligible in (7.1). Proposition A.1 in the Appendix shows
egligibility of the Betti numbers in dimension smaller than the critical dimension. Together
ith (7.1), this gives that(∑n−1

j=k(−1) jβ j (t) − E
(∑n−1

j=k(−1) jβ j
)

√
Var( fk)

, t ≥ 0

)
⇒
(
Zk(t), t ≥ 0

)
.

Furthermore, by repeating the same argument as in (6.9), along with an obvious bound β j ≤ f j ,
we obtain that(∑n−1

j=M(α)(−1) jβ j (t) − E
(∑n−1

j=M(α)(−1) jβ j
)

√
Var( fk)

, t ≥ 0

)
→ 0,

n finite-dimensional distributions, where M(α) is defined in (3.7) and 0 is the constant zero
rocess. Hence, we can conclude that(∑M(α)−1

j=k (−1) jβ j (t) − E
(∑M(α)−1

j=k (−1) jβ j
)

√
Var( fk)

, t ≥ 0

)
⇒
(
Zk(t), t ≥ 0

)
, n → ∞,

(7.2)

in finite-dimensional distributions.
Note that if M(α) = k + 1, then (4.4) is automatic, so only the case M(α) > k + 1 needs to

be considered. It is, of course, sufficient to show that for any j = k +1, . . . ,M(α)−1, Var(β j )
is negligible relative to Var( fk) as n → ∞. We will consider in detail the case M(α) = k + 2,
and prove negligibility of the variance of βk+1. If M(α) > k+2, the higher-order Betti numbers
can be treated in a similar way.

Our argument relies on an explicit representation of βk+1(t) given by

βk+1(t) = βk+1
(
X ([n],p; t)

)
=

n∑
j=k+3

∑
r≥1

∑
σ⊂[n], |σ |= j

rη( j,r,k+1)
σ (t), (7.3)

where η( j,r,k+1)
σ (t) is the indicator function of the event that σ forms a maximal (k +1)-strongly

connected subcomplex X (σ,p; t), such that βk+1
(
X (σ,p; t)

)
= r . See Proposition A.6 for

a formal derivation of (7.3). We often omit superscripts from the indicator if the context is
clear enough. Note that the second sum over r ≥ 1 is a sum of at most

( j
k+2

)
terms, because

βk+1
(
X (σ,p; t)

)
is bounded by the number of (k + 1)-faces of σ , which itself is bounded by( j

k+2

)
.

As M(α) = k + 2, it follows that τk+1(α) > 0, and we can find a positive integer D such
that

D >
k + 2 + τk+1(α)

> 0, (7.4)

ψk+1(α) − 1
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and we use it to define a truncated version of the representation of the Betti number in (7.3)
s

β̃k+1(t) = β̃k+1
(
X ([n],p; t)

)
=

D+k+1∑
j=k+3

∑
r≥1

∑
σ⊂[n], |σ |= j

rη( j,r,k+1)
σ (t).

s before, we write β̃k+1 := β̃k+1(0) and η( j,r,k+1)
σ := η

( j,r,k+1)
σ (0). We claim that(

βk(t) − E(βk)
√

Var( fk)
−
β̃k+1(t) − E(β̃k+1)

√
Var( fk)

, t ≥ 0

)
⇒
(
Zk(t), t ≥ 0

)
, n → ∞ (7.5)

n finite-dimensional distributions. Indeed, by (7.2) with M(α) = k + 2, it is enough to prove
that E(βk+1 − β̃k+1) → 0, n → ∞. Since the sum over r ≥ 1 in (7.3) contains at most

( j
k+2

)
terms,

E(βk+1 − β̃k+1) ≤E
[ n∑

j=D+k+2

(
j

k + 2

) ∑
σ⊂[n], |σ |= j

∑
r≥1

η( j,r,k+1)
σ

]

≤E
[

nk+2
n∑

j=D+k+2

∑
σ⊂[n], |σ |= j

∑
r≥1

η( j,r,k+1)
σ

]
.

Whenever a (k + 1)-strongly connected subcomplex is formed on j ≥ D + k + 2 vertices,
it contains a further (k + 1)-strongly connected subcomplex on exactly D + k + 2 vertices.
Furthermore, no two different such maximal subcomplexes can contain the same (k+1)-strongly
connected subcomplex on D + k + 2 vertices. Therefore,

E(βk+1 − β̃k+1) ≤ nk+2
(

n
D + k + 2

) ∑
K :|K |=D+k+2

P(σD+k+2 is isomorphic to K )

≤
nD+2k+4

(D + k + 2)!

∑
K :|K |=D+k+2

P(σD+k+2 is isomorphic to K ),

where σD+k+2 is the restriction of the complex to fixed D + k + 2 vertices, and the sum above
s taken over all isomorphism classes of (k + 1)-strongly connected complexes on D + k + 2
oints. Note that the number of terms in this sum is independent of n. Any such complex K
ontains at least

(k+2
i+1

)
+ D

(k+1
i

)
faces of dimension i for each 1 ≤ i ≤ k + 1; this counting is

resented in the proof of Lemma 8.1 in [7]. Hence,

P(σD+k+2 is isomorphic to K ) ≤ (D + k + 2)!
k+1∏
i=q

p(
k+2
i+1)+D(k+1

i )
i ,

nd so, by (7.4),

E(βk+1 − β̃k+1) ≤ Cnk+2+τk+1(α)−D(ψk+1(α)−1)
→ 0, n → ∞.

hus, (7.5) follows and, by Chebyshev’s inequality, the claim (4.4) is established once we
heck that

Var(β̃k+1)
→ 0, n → ∞.
Var( fk)
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It suffices to show that for every j = k + 3, . . . , D + k + 1 and r ≥ 1, we have

Var
(∑

σ⊂[n], |σ |= j η
( j,r,k+1)
σ

)
Var( fk)

→ 0, n → ∞. (7.6)

Simplifying the notation, we get

Var

⎛⎝ ∑
σ⊂[n], |σ |= j

ησ

⎞⎠ =

∑
σ⊂[n],
|σ |= j

∑
τ⊂[n],
|τ |= j

[
E(ησητ ) − E(ησ )E(ητ )

]

=

j∑
ℓ=0

∑
σ⊂[n],
|σ |= j

∑
τ⊂[n],
|τ |= j

[
E(ησητ ) − E(ησ )E(ητ )

]
1
{
|σ ∩ τ | = ℓ

}

=

j∑
ℓ=0

(
n
j

)(
j
ℓ

)(
n − j
j − ℓ

)[
E(ησητ ) − E(ησ )E(ητ )

]
1
{
|σ ∩ τ | = ℓ

}
.

We consider six cases, depending on the value of ℓ := |σ ∩ τ |.
(I ) ℓ ∈ {0, . . . , q − 2}.

We claim that in this case the events underlying the indicator functions ησ and ητ are
independent, so that the corresponding terms have no contribution to the numerator in (7.6).
Indeed, the event underlying ησ can be stated as saying that the restriction of the complex to
σ is a (k + 1)-strongly connected subcomplex with Betti number in dimension k + 1 equal to

and that no (k + 1)-simplex carried by σ has k + 1 common vertices, i.e., a common k-face,
with a (k + 1)-simplex not carried by σ . We also have an analogous description of the event
underlying ητ . Stated this way, it is clear if a face s1 plays a role in the former event, and a
face s2 plays a role in the latter event, then these faces have at most q vertices in common and,
hence, the restrictions of the complex to these faces are independent.
(II ) ℓ = q − 1.

First, let

γk :=

k+1∏
i=q

p(
k+1

i )
i = n−ψk+1(α)

denote the probability that a fixed k-face and a vertex not in that face form a (k + 1)-simplex.
For j ∈ {k + 3, . . . , D + k + 1} and r ≥ 1, let K denote a fixed (k + 1)-strongly connected
complex on j vertices whose Betti number in dimension k + 1 is equal to r . For σ ⊂ [n] with
|σ | = j , let AK be the event that the restriction of the complex to σ is isomorphic to K , and
define qK := P(AK ).

We first claim that, for every σ ⊂ [n] with |σ | = j ,

E(ησ ) =

∑
K :|K |= j

qK (1 − sKγk + uK )n− j , (7.7)

where the sum is taken over all (k + 1)-strongly connected complexes, up to an isomorphism
class, such that the Betti number in dimension k+1 is equal to r . Moreover, sK is the number of

-faces in K , and uK = O(γk) as functions of n, i.e., there exists C > 0 such that uK /γk < C
or all n ≥ 1 and all K . Note that qK , γk , and uK depend on n, whereas sK is independent of
. For the proof of (7.7), write

E(ησ ) =

∑
qKP(σ is maximal |AK ).
K :|K |= j
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Let us fix a vertex v ∈ σ c. By the inclusion–exclusion formula, the probability of forming
at least one (k + 1)-simplex between v and a k-face in σ , can be written as sKγk − uK . The
argest term in uK corresponds to v forming two (k + 1)-simplices with k-faces f1 and f2

espectively, such that dim( f1 ∩ f2) = k − 1. Therefore, the largest term in uK is of the order
2
k γ

−1
k−1 = O(γk). Since there are n − j vertices in σ c, we have

P(σ is maximal |AK ) = (1 − sKγk + uK )n− j ,

nd (7.7) follows as required.
Next, let K , K ′ be fixed (k + 1)-strongly connected complexes on j vertices with Betti

number in dimension k + 1 equal to r . Denote by AK ,K ′ the event that the restriction of the
complex to σ and that to τ are isomorphic to K and K ′, respectively. It then follows from
(7.7) that[

E(ησητ ) − E(ησ )E(ητ )
]
1
{
|σ ∩ τ | = q − 1

}
(7.8)

=

∑
K :|K |= j

∑
K ′:|K ′|= j

[
P(σ and τ are maximal |AK ,K ′ )P(AK ,K ′ )

− qK qK ′ (1 − sKγk + uK )n− j (1 − sK ′γk + uK ′ )n− j
]
1{|σ ∩ τ | = q − 1},

where the sums are again taken over all (k + 1)-strongly connected complexes whose Betti
numbers in dimension k + 1 are equal to r , and sK ′ , uK ′ are defined analogously to those
for K . Since |σ ∩ τ | = q − 1 and all the (q − 2)-faces exist with probability one, we have
P(AK ,K ′ ) = qK qK ′ . For every v ∈ (σ ∪ τ )c, let Bv be the event that v forms a (k + 1)-simplex
with a k-face in σ ∪ τ . Further, let D1 denote the event that at least one (k + 1)-simplex exists
between a k-face in σ and a point in τ \ (σ ∩ τ ), and D2 is an event obtained by switching the
role of σ and τ . Then, by independence we see that

P(σ and τ are maximal |AK ,K ′ ) = P
(( ⋂

v∈(σ∪τ )c

Bc
v

)
∩ Dc

1 ∩ Dc
2

⏐⏐⏐ AK ,K ′

)
(7.9)

=

∏
v∈(σ∪τ )c

(
1 − P(Bv|AK ,K ′ )

)
P(Dc

1 ∩ Dc
2|AK ,K ′ ).

By the inclusion–exclusion formula, we have

P(Bv|AK ,K ′ ) = (sK +sK ′ )γk −uK −uK ′ −sK sK ′γ 2
k +sKγkuK ′ +sK ′γkuK −uK uK ′ =: aK ,K ′ .

(7.10)

ndeed, the probabilities that v forms (k + 1)-simplices with multiple k-faces in σ are grouped
nto uK , while the probabilities that v forms (k + 1)-simplices with multiple k-faces in τ are
rouped into uK ′ . Moreover, the probabilities that v forms (k + 1)-simplices with both k-faces
n σ and those in τ , are grouped into one of the last four terms in (7.10). Above, we have also
xploited the fact that the events concerning v forming (k + 1)-simplices with k-faces in σ are
ndependent from events concerning v forming (k + 1)-simplices with k-faces in τ .

Noting that there are n − 2 j + q − 1 points in (σ ∪ τ )c, the right hand side of (7.8) is equal
to ∑ ∑

′ ′

qK qK ′ (1−aK ,K ′ )n−2 j+q−1[P(Dc
1 ∩ Dc

2|AK ,K ′ )− (1−aK ,K ′ ) j−q+1]. (7.11)

K :|K |= j K :|K |= j
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By the binomial expansion, it is easy to see that

(1 − aK ,K ′ )n−2 j+q−1
=
(
1 − O(γk)

)n−2 j+q−1
= O(1),

(1 − aK ,K ′ ) j−q+1
= 1 − ( j − q + 1)aK ,K ′ + O(γ 2

k ),

and, further,

P(D1|AK ,K ′ ) = 1 − (1 − sKγk + uK ) j−q+1
= ( j − q + 1)(sKγk − uK ) − O(γ 2

k ),

P(D2|AK ,K ′ ) = 1 − (1 − sK ′γk + uK ′ ) j−q+1
= ( j − q + 1)(sK ′γk − uK ′ ) − O(γ 2

k ).

Suppose now that

there exist two k-faces f1 ⊂ σ and f2 ⊂ τ such that | f1 ∩ f2| = q − 1. (7.12)

nder (7.12), we claim that

P(D1 ∩ D2|AK ,K ′ ) = O(γ 2
k p−1

q ).

ndeed, the largest term in the right hand side corresponds to the case in which a vertex in
f1 \ ( f1 ∩ f2) forms a (k + 1)-simplex with f2, and a vertex in f2 \ ( f1 ∩ f2) forms a (k + 1)-
implex with f1. Because of a double-count of a q-face consisting of the vertices in f1 ∩ f2

nd the two selected vertices, the largest rate is of order γ 2
k p−1

q . By combining all these results,
t is now straightforward to get that

P(Dc
1 ∩ Dc

2|AK ,K ′ ) − (1 − aK ,K ′ ) j−q+1
= O(γ 2

k p−1
q ). (7.13)

If (7.12) does not hold, the same analysis gives the behavior as in (7.13), but with a smaller
orrection term; O(γ 2

k ) instead of O(γ 2
k p−1

q ). From all of these results, (7.11) can be written
s

C
∑

K :|K |= j
(7.12) holds

∑
K ′:|K ′|= j

qK qK ′O(γ 2
k p−1

q ),

nd, thus,(
n
j

)(
j

q − 1

)(
n − j

j − q + 1

)[
E(ησητ ) − E(ησ )E(ητ )

]
1
{
|σ ∩ τ | = q − 1

}
≤ C

∑
K :|K |= j

(7.12) holds

∑
K ′:|K ′|= j

n2 j−q+1qK qK ′O(γ 2
k p−1

q ).

y Lemma 7.1,

n j qK ≤ Cn j
k+1∏
i=q

p(
k+3
i+1)

i

(k+1∏
i=q

p(
k+1

i )
i

) j−k−3
= Cnτk+2(α)+αk+2

(
n1−ψk+1(α)) j−k−3

.

ince ψk+1(α) > 1 and j ≥ k + 3, we get
(
n1−ψk+1(α)

) j−k−3
≤ 1, and hence,

n2 j qK qK ′ ≤ Cn2(τk+2(α)+αk+2). (7.14)

t now remains to check that

n2(τk+2(α)+αk+2)O(n−q+1γ 2
k p−1

q )
→ 0 as n → ∞.
Var( fk)
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But this actually follows, since by Proposition 3.1 and (2.12), the expression on the left hand
ide is bounded by

Cn2(τk+1(α)−τk (α))O(nτq (α)−q+1γ 2
k p−1

q ) = Co(1)O(n2(1−ψk+1(α))) → 0, n → ∞.

III ) ℓ = q .
The case ℓ = q is similar but easier. Using the same notation as in Case (II ), we once again

onsider[
E(ησητ ) − E(ησ )E(ητ )

]
1
{
|σ ∩ τ | = q

}
=

∑
K :|K |= j

∑
K ′:|K ′|= j

[
P(σ and τ are maximal |AK ,K ′ )P(AK ,K ′ )

− qK qK ′ (1 − sKγk + uK )n− j (1 − sK ′γk + uK ′ )n− j
]
1{|σ ∩ τ | = q}.

ince |σ ∩ τ | = q and all the (q − 1)-faces exist with probability one, we still get P(AK ,K ′ ) =

K qK ′ . By the same reasoning as before, we only consider the situation that

there exist two k-faces f1 ⊂ σ and f2 ⊂ τ such that | f1 ∩ f2| = q. (7.15)

nder this assumption, for each v ∈ (σ ∪ τ )c, the inclusion–exclusion formula gives that

P(Bv|AK ,K ′ ) = (sK + sK ′ )γk − uK − uK ′ − O(γ 2
k p−1

q ),

he largest term in the big-O expression is associated with the case in which v forms two
k + 1)-simplices with f1 and f2, respectively. By (7.9), we see that

P(σ and τ are maximal |AK ,K ′ ) ≤

∏
v∈(σ∪τ )c

(
1 − P(Bv|AK ,K ′ )

)
=
(
1 − (sK + sK ′ )γk + uK + uK ′ + O(γ 2

k p−1
q )
)n−2 j+q

=
(
1 − (sK + sK ′ )γk + uK + uK ′

)n(1 + O(γk))−(2 j−q)(1 + O(γ 2
k p−1

q ))n

=
(
1 − (sK + sK ′ )γk + uK + uK ′

)n(1 + O(γk p−1
q )
)
.

ere, we have made use of the following facts: γ 2
k p−1

q = O(γk), (1+O(γk))−(2 j−q)
= 1+O(γk),

nd (1 + O(γ 2
k p−1

q ))n
= 1 + O(nγ 2

k p−1
q ) = 1 + O(γk p−1

q ).
Similarly, we derive that

(1 − sKγk + uK )n− j (1 − sK ′γk + uK ′ )n− j
=
(
1 − (sK + sK ′ )γk + uK + uK ′ + O(γ 2

k )
)n− j

=
(
1 − (sK + sK ′ )γk + uK + uK ′

)n

×
(
1 + O(γk)

)
.

utting all these results together, along with the binomial expansion
(
1 − (sK + sK ′ )γk + uK +

K ′

)n
= O(1) as n → ∞, we can conclude that(

n
j

)(
j
q

)(
n − j
j − q

)[
E(ησητ ) − E(ησ )E(ητ )

]
1
{
|σ ∩ τ | = q

}
≤ C

∑
K :|K |= j

∑
K ′:|K ′|= j

n2 j−qqK qK ′O(γk p−1
q ).
(7.15) holds
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Using Lemma 7.1 as in (7.14), it follows that the right hand side above can be bounded by
n2(τk+2(α)+αk+2)O(n−qγk p−1

q ). Finally, Proposition 3.1 and (2.12) help to conclude that

n2(τk+2(α)+αk+2)O(n−qγk p−1
q )

Var( fk)
≤ Cn2(τk+1(α)−τk (α))O(nτq (α)−q−ψk+1(α)+αq )

= Co(1)O(n1−ψk+1(α)) → 0, n → ∞.

I V ) ℓ ∈ {q + 1, . . . , k + 2}.
Note first that(

n
j

)(
j
ℓ

)(
n − j
j − ℓ

)[
E(ησητ ) − E(ησ )E(ητ )

]
1
{
|σ ∩ τ | = ℓ

}
≤ n2 j−ℓE(ησητ )1

{
|σ ∩ τ | = ℓ

}
≤ n2 j−ℓ

∑
K :|K |= j

∑
K ′:|K ′|= j

P(AK ,K ′ )1
{
|σ ∩ τ | = ℓ

}
.

here AK ,K ′ is as in Case (II ). Since there are finitely many isomorphism classes of (k + 1)-
trongly connected complexes on j vertices, we only have to show that for all such K , K ′ with
σ ∩ τ | = ℓ,(

Var( fk)
)−1n2 j−ℓP(AK ,K ′ ) → 0, n → ∞. (7.16)

y Lemma 7.1,

P(AK ,K ′ ) ≤ C
[k+1∏

i=q

p(
k+3
i+1)

i

(k+1∏
i=q

p(
k+1

i )
i

) j−k−3
]2

×

k+1∏
i=q

p
−( ℓ

i+1)
i ,

ith the last factor accounting for the faces on the vertices common to σ and τ . We conclude
hat

n2 j−ℓP(AK ,K ′ ) ≤ Cn2 j−ℓ
k+1∏
i=q

p
2(k+3

i+1)−(
ℓ

i+1)
i

(k+1∏
i=q

p(
k+1

i )
i

)2( j−k−3)

=Cn2(τk+2(α)+αk+2)−τℓ−1(α)(n1−ψk+1(α))2( j−k−3)
≤ Cn2(τk+2(α)+αk+2)−τℓ−1(α).

y Proposition 3.1 and (2.12),

n2(τk+2(α)+αk+2)−τℓ−1(α)

Var( fk)
≤ Cn2(τk+1(α)−τk (α))+(τq (α)−τℓ−1(α))

→ 0

ecause the exponent is clearly negative if ℓ ∈ {q +1, . . . , k +1}, and it is still true in the case
ℓ = k + 2, because

2
(
τk+1(α) − τk(α)

)
+
(
τq (α) − τℓ−1(α)

)
=
(
τk+1(α) − τk(α)

)
+
(
τq (α) − τk(α)

)
< 0.

V ) ℓ ∈ {k + 3, . . . , j − 1}.
It is still sufficient to prove (7.16), which we presently do. We note that

P(AK ,K ′ ) =P(the complex restricted to σ is isomorphic to K )

P(the complex restricted to τ is isomorphic to K ′)D(K , K ′),

here D(K , K ′) is the correction term, resulting from the fact that some of the faces in the
estriction of the complex to σ∩τ are used in both K and K ′. Hence, for each fixed ℓ, we obtain
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s

b

an upper bound on P(AK ,K ′ ) by considering the worst case scenario (from the perspective of
howing (7.16)).

To see how it works, consider the case ℓ = k + 3. Clearly, the worst case scenario is when
oth K and K ′ have the least number of i-faces for q ≤ i ≤ k + 1; further, in the complex

restricted to σ ∩ τ , there is a maximum overlapping of faces. However, since K and K ′ are
(k +1)-strongly connected, even in this worst case scenario, the complex restricted to the k +3
vertices in σ ∩ τ should have at least two (k + 1)-faces; of course, these two may have a
common shared k-face.

Hence,

D(K , K ′) =

k+1∏
i=q

p
−(k+2

i+1)
i

k+1∏
i=q

p
−(k+1

i )
i ;

so, by Lemma 7.1, we have

n2 j−(k+3)P(AK ,K ′ ) ≤ Cn2 j−(k+3)
[k+1∏

i=q

p(
k+3
i+1)

i

(k+1∏
i=q

p(
k+1

i )
i

) j−k−3
]2 k+1∏

i=q

p
−(k+2

i+1)
i

k+1∏
i=q

p
−(k+1

i )
i .

Suppose next that ℓ = k + 4. In the worst case scenario now, the restriction of the complex
to k + 3 (out of the k + 4) common points of the intersection should have the same setup as in
the previous case, while the last (k+4)th common point should form a (k+1)-simplex with one
of the two (k + 1)-simplices constructed before. Once again, this is the minimal requirement
since both K and K ′ are (k + 1)-strongly connected. Hence,

Dσ,τ (K , K ′) =

k+1∏
i=q

p
−(k+2

i+1)
i

⎛⎝k+1∏
i=q

p
−(k+1

i )
i

⎞⎠2

;

so, by Lemma 7.1

n2 j−(k+4)P(AK ,K ′ )

≤ Cn2 j−(k+4)
[k+1∏

i=q

p(
k+3
i+1)

i

(k+1∏
i=q

p(
k+1

i )
i

) j−k−3
]2 k+1∏

i=q

p
−(k+2

i+1)
i

⎛⎝k+1∏
i=q

p
−(k+1

i )
i

⎞⎠2

.

Proceeding in the same manner for any ℓ ∈ {k + 3, . . . , j − 1}, we see that

n2 j−ℓP(AK ,K ′ ) ≤ Cn2 j−ℓ
[k+1∏

i=q

p(
k+3
i+1)

i

(k+1∏
i=q

p(
k+1

i )
i

) j−k−3
]2 k+1∏

i=q

p
−(k+2

i+1)
i

(k+1∏
i=q

p
−(k+1

i )
i

)ℓ−(k+2)
.

Therefore, as before,

n2 j−ℓ
[k+1∏

i=q

p(
k+3
i+1)

i

(k+1∏
i=q

p(
k+1

i )
i

) j−k−3
]2 k+1∏

i=q

p
−(k+2

i+1)
i

(k+1∏
i=q

p
−(k+1

i )
i

)ℓ−(k+2)

= n2(τk+2(α)+αk+2)−τk+1(α)(n1−ψk+1(α))2 j−k−ℓ−4

≤ n2(τk+2(α)+αk+2)−τk+1(α),

which is the same bound as that for ℓ = k + 2 in the previous case. Thus, we get (7.16), as
desired.
(V I ) ℓ = j .
88



T. Owada, G. Samorodnitsky and G. Thoppe Stochastic Processes and their Applications 138 (2021) 56–95

a

T

P
h

T

D

r

A

c

We again prove (7.16), this time only with K = K ′. Now, by Lemma 7.1,

n jP(AK ,K ′ ) ≤ Cn j
k+1∏
i=q

p(
k+3
i+1)

i

(k+1∏
i=q

p(
k+1

i )
i

) j−k−3

= Cnτk+2(α)+αk+2
(
n1−ψk+1(α)) j−k−3

≤ nτk+2(α)+αk+2 ,

nd, by Proposition 3.1 and (2.12),

nτk+2(α)+αk+2

Var( fk)
≤ Cn(τk+1(α)−τk (α))+(τq (α)−τk (α))

→ 0, n → ∞.

This completes the proof of (7.6) and, hence, of (4.4) in Theorem 4.2.
Finally, assuming (2.9) and (4.5), we establish tightness in the Skorohod J1-topology. First

of all, we already proved that under these assumptions, the convergence in (4.3) holds in the
sense of weak convergence in the J1-topology on D[0,∞). Fixing T > 0 and choosing m
so large that T/m ≤ a/4 with a defined in (2.3), we again consider a static multi-parameter
simplicial complex X ([n],p(1)) and the corresponding j-face counts f (1)

j , that were used for
the proof of (6.7). By Proposition A.1 in the Appendix, all we have to do is to show that⎛⎝∑n−1

j=k+1(−1) jβ j (t) − E
(∑n−1

j=k+1(−1) jβ j

)
√

Var( fk)
, 0 ≤ t ≤

T
m

⎞⎠ → 0

in probability in the J1-topology. This will follow once we show that for every ϵ > 0,

P
(

sup
0≤t≤T/m

⏐⏐⏐⏐⏐⏐
n−1∑

j=k+1

(−1) jβ j (t) − E
( n−1∑

j=k+1

(−1) jβ j

)⏐⏐⏐⏐⏐⏐ > ϵ
√

Var( fk)
)

→ 0, n → ∞.

(7.17)

o this end, observe that by (4.5), for any j ≥ k + 1, we have

E( f j ) = O(nτk+1(α)) = o
(
nτk (α)−τq (α)/2)

= o
(√

Var( fk)
)
, n → ∞. (7.18)

roceeding as in (6.11), while using M(α̃) defined in (3.7) and (6.8), we can bound the left
and side of (7.17) by

2
ϵ
√

Var( fk)

n−1∑
j=k+1

E
[

sup
0≤t≤T/m

f j (t)
]

≤
2

ϵ
√

Var( fk)

n−1∑
j=k+1

E( f (1)
j )

≤
2
ϵ

M(α̃)−1∑
j=k+1

∏ j
i=q 2(

j+1
i+1)E( f j )

√
Var( fk)

+
2
ϵ

∞∑
j=M(α̃)

E( f (1)
j ).

he last term converges to 0 as n → ∞ due to (7.18) and Corollary 3.4. □
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Appendix

A.1. Analysis of the Betti numbers in lower dimensions

We begin with introducing additional notions of connectivity. Given a simplicial complex X
nd an ℓ-dimensional simplex σ in X , let the simplicial complex lkX (σ ) := {τ ∈ X : σ ∩ τ =

∅, σ ∪ τ ∈ X} denote the link of σ in X . In other words, lkX (σ ) denotes the subcomplex of X
consisting of all simplices whose vertex support is disjoint from that of σ but, together with

, they form a simplex in X . If X is pure ℓ-dimensional and σ is (ℓ − 2)-dimensional for
ome ℓ ≥ 2, then lkX (σ ) necessarily is a one-dimensional simplicial complex. We say that an
ℓ − 1)-face in X is free if it is not contained in any of the ℓ-faces in X . Given a graph G,
e denote by λ2(G) the second smallest eigenvalue of the normalized graph Laplacian of G.
e will use the cohomology vanishing theorem of Ballmann and Świa̧tkowski [1]: if X is a

finite pure ℓ-dimensional simplicial complex such that for every (ℓ − 2)-simplex σ ∈ X , the
link lkX (σ ) is connected and has spectral gap λ2

(
lkX (σ )

)
> 1 − 1/ℓ, then H ℓ−1(X;Q) = 0. In

articular, βℓ−1(X ) = 0.

Proposition A.1. Under the assumptions of Theorem 4.2,(
β j (t) − E(β j )

√
Var( fk)

, t ≥ 0
)

→ 0 in D[0,∞)

n probability as n → ∞ for all j = 0, 1, . . . , k − 1, where 0 is the constant zero process.

Proof. If k = 1 the claim is trivial, so assume that k ≥ 2. We consider j = k −1 only; smaller
imensions can be treated in a similar way. Proposition A.1 will be established by combining

a series of lemmas provided below. Let F j (t) be the number of free j-faces of X ([n],p; t), and
Xk(t) the k-skeleton of X ([n],p; t). For a (k − 2)-face σ in Xk(t), write Lσ (t) := |lkXk (t)(σ )|,
i.e., the number of vertices in the link of σ in Xk(t). We set F j := F j (0), Xk := Xk(0), and
Lσ := Lσ (0).

Consider the delayed renewal sequences defined in (2.5) corresponding to the stationary
renewal processes

(
∆i,A, q ≤ i ≤ k, A ∈ Wi

)
. Enumerating the different arrival times, we

denote the resulting sequence by η1 ≤ η2 ≤ · · · , and set η0 = 0. For 0 < T < ∞, we denote
by N (T ) the number of these points in the interval [0, T ]. Clearly, E

(
N (T )

)
= O(nk+1) for

every such T .

Lemma A.2. For each 0 ≤ j ≤ k − 1,

E(F j ) = o(e−nϵ ), n → ∞,

for some ϵ > 0.

Proof. A simple calculation shows that

E(F j ) ≤ nτ j (α) (1 − n−ψ j+1(α))n− j−1
.

If ψ j+1(α) = 0, the claim is trivial. Otherwise,

E(F j ) ≤ Cnτ j (α)e−n1−ψ j+1(α)
.

Since ψ (α) ≤ ψ (α) < 1, the result follows. □
j+1 k
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Lemma A.3.

P(Xk is pure) = 1 − o(e−nϵ ), n → ∞,

for some ϵ > 0.

Proof. By Lemma A.2,

P(Xk is pure) = P(F j = 0, j = 0, . . . , k − 1)

≥ 1 −

k−1∑
j=0

P(F j ≥ 1) ≥ 1 −

k−1∑
j=0

E(F j ) = 1 − o(e−nϵ ). □

emma A.4. Fix δ > 0. For a (k − 2)-face σ of Xk ,

P
(

(1 + δ) log Lσ
Lσ

> p1

)
= o(e−nϵ ), n → ∞,

or some ϵ > 0.

roof. Note that

1 − ψk−1(α) > ψk(α) − ψk−1(α) ≥ α1,

and (1 + δ)x−1 log x is decreasing for x ≥ e. Therefore, if Lσ ≥ n1−ψk−1(α)/2, then

(1 + δ) log Lσ
Lσ

≤
(1 + δ) log

(
n1−ψk−1(α)/2

)
n1−ψk−1(α)/2

< n−α1 = p1

or large n. Hence, for large n,

P
(

(1 + δ) log Lσ
Lσ

> p1

)
≤ P

(
Lσ <

n1−ψk−1(α)

2

)
,

and the claim follows from the basic properties of the binomial distribution because Lσ has a
binomial distribution with parameters n − k +1 and n−ψk−1(α); see, e.g., Lemma 4.2 in [7]. □

Lemma A.5. For every 0 < T < ∞,

P
(

sup
0≤t≤T

βk−1(t) ̸= 0
)

= O(n−k−1), n → ∞.

Proof. By the cohomology vanishing theorem,

P
(

sup
0≤t≤T

βk−1(t) = 0
)

= P
(

sup
0≤t≤T

βk−1
(
Xk(t)

)
= 0

)
= P

(
βk−1

(
Xk(ηℓ)

)
= 0 for ℓ = 0, 1, . . . , N (T )

)
≥ P

(
βk−1

(
Xk(ηℓ)

)
= 0 for ℓ = 0, 1, . . . , n2k+2, N (T ) ≤ n2k+2

)
≥ P

(n2k+2⋂
ℓ=0

({
λ2
(
lkXk (ηℓ)(σ )

)
> 1 −

1
k

and lkXk (ηℓ)(σ ) is connected

for every (k − 2)-face σ in Xk(ηℓ)
}

∩

{
Xk(ηℓ) is pure

})
∩

{
N (T ) ≤ n2k+2

})
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H
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H
s
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c

W

a

A

≥ 1 −

n2k+2∑
ℓ=0

(
n

k − 1

)
P
(
λ2
(
lkXk (ηℓ)(σ0)

)
≤ 1 −

1
k

or lkXk (ηℓ)(σ0) is disconnected
)

−

n2k+2∑
ℓ=0

P
(
Xk(ηℓ) is not pure

)
− P

(
N (T ) > n2k+2

)
.

ere σ0 is a fixed (k − 2)-simplex. Clearly,

P
(
N (T ) > n2k+2)

≤
E[N (T )]

n2k+2 = O(n−k−1);

o, by Lemma A.3 and the stationarity of Xk ,

P
(

sup
0≤t≤T

βk−1(t) = 0
)

≥ 1 − n3k+1P
(
λ2
(
lkXk (ηℓ)(σ0)

)
≤ 1 −

1
k

or lkXk (ηℓ)(σ0) is disconnected
)

− O(n−k−1).

Given σ0 ∈ Xk , we have by Lemma A.4 and its proof that, for some ϵ > 0,

P
(
λ2
(
lkXk (ηℓ)(σ0)

)
≤ 1 −

1
k

or lkXk (ηℓ)(σ0) is disconnected
)

= P
({
λ2
(
lkXk (ηℓ)(σ0)

)
≤ 1 −

1
k

or lkXk (ηℓ)(σ0) is disconnected
}

∩

{ (1 + δ) log Lσ0

Lσ0

≤ p1, Lσ0 ≥
n1−ψk−1(α)

2

})
+ o(e−nϵ )

=

n−k+1∑
m=1

P
(
λ2
(
lkXk (ηℓ)(σ0)

)
≤ 1 −

1
k

or lkXk (ηℓ)(σ0) is disconnected
⏐⏐⏐ Lσ0 = m

)
× 1

{ (1 + δ) log m
m

≤ p1, m ≥
n1−ψk−1(α)

2

}
P(Lσ = m) + o(e−nϵ ).

owever, lkXk (σ0)|Lσ0 = m has the law of the Erdös–Rényi graph with parameters m and p1;
ee Lemma 4.2 in [7]. Furthermore, in the range of m we are considering, p1 ≥

(1+δ) log m
m .

t follows from the spectral gap theorem of Theorem 1.1 in [11] that for some δ-dependent
onstant C ,

P
(
λ2
(
lkXk (ηℓ)(σ0)

)
≤ 1 −

1
k

or lkXk (ηℓ)(σ0) is disconnected
⏐⏐⏐ Lσ = m

)
≤ Cm−δ.

e conclude that

P
(
λ2
(
lkXk (ηℓ)(σ0)

)
≤ 1 −

1
k

or lkXk (ηℓ)(σ0) is disconnected
)

≤ C
(n1−ψk−1(α)

2

)−δ

+ o(e−nϵ ) = O
(
n−δ(1−ψk−1(α))),

nd so

P
(

sup
0≤t≤T

βk−1(t) = 0
)

≥ 1 − O
(
n3k+1−δ(1−ψk−1(α)))

− O(n−k−1).

s 1 − ψ (α) > 0, the claim follows by taking large enough δ > 0. □
k−1
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We can now complete the proof of the proposition. Since Var( fk) → ∞, we have for any
0 < T < ∞ and ϵ > 0, using Lemma A.5,

P
(

sup
0≤t≤T

⏐⏐βk−1(t) − E(βk−1)
⏐⏐ > ϵ

√
Var( fk)

)
≤

2
ϵ
E
(

sup
0≤t≤T

βk−1(t)
)

≤
2
ϵ
E
(

sup
0≤t≤T

fk−1(t)1
{

sup
0≤t≤T

βk−1(t) ̸= 0
})

≤
2
ϵ

(
n
k

)
P
(

sup
0≤t≤T

βk−1(t) ̸= 0
)

=
2
ϵ
O(n−1) → 0, n → ∞,

as required. □

A.2. Representation of the Betti number

In this section we verify (7.3).

Proposition A.6. For ℓ ≥ 1,

βℓ(t) = βℓ
(
X ([n],p; t)

)
=

n∑
j=ℓ+2

∑
r≥1

∑
σ⊂[n], |σ |= j

rη( j,r,ℓ)
σ (t), (A.1)

where η( j,r,ℓ)
σ (t) is the indicator function in (7.3).

Proof. For ℓ-simplices σ, τ in X ([n],p; t), write σ ∼ τ if they can be connected by a sequence
of ℓ-simplices σ = σ0, σ1, . . . , σ j−1, σ j = τ such that dim(σi ∩ σi+1) = ℓ− 1, 0 ≤ i ≤ j − 1.
Clearly ∼ is an equivalence relation. Consider the equivalence classes G1, . . . ,GN associated
with this relation. For each i = 1, . . . , N , let X i be the smallest subcomplex of X ([n],p; t)
ontaining all the simplices for which some ℓ-simplex in Gi is a face. Then X i is necessarily
maximal ℓ-strongly connected subcomplex, such that dim(X i1 ∩ X i2 ) ≤ ℓ− 2 for any distinct

1 ≤ i1 ̸= i2 ≤ N . Let X (N )
:=

⋃N
i=1 X i and let X N+1 be a subcomplex of X ([n],p; t)

containing all simplices in X ([n],p; t) \ X (N ). By construction dim(X N+1) ≤ ℓ − 1 and
im(X N+1 ∩ X (N )) ≤ ℓ− 2. With this setup, establishing the claim of the proposition reduces
o proving the following statements:

βℓ
(
X ([n],p; t)

)
= βℓ(X (N )), (A.2)

nd

βℓ(X (N )) =

N∑
i=1

βℓ(X i ). (A.3)

ndeed, since
∑N

i=1 βℓ(X i ) in (A.3) is clearly equal to the right hand side of (A.1), our proof
ill be done once (A.2) and (A.3) are both established. For the proof of (A.2) we exploit the

ollowing Mayer–Vietoris exact sequence:

· · · → Hℓ

(
X (N )

∩X N+1
) λℓ

→ Hℓ

(
X (N ))

⊕ Hℓ(X N+1) → Hℓ

(
X ([n],p; t)

)
→ Hℓ−1

(
X (N )

∩ X N+1
) λℓ−1

→ Hℓ−1
(
X (N ))

⊕ Hℓ−1(X N+1) → . . . ,

here Hℓ represents the homology group of order ℓ, and λℓ = (λ(1)
ℓ , λ

(2)
ℓ ) denotes the

(N ) (N ) (N )
omomorphism induced by the inclusions X ∩ X N+1 ↪→ X and X ∩ X N+1 ↪→ X N+1.
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w

An elementary rank calculation (see e.g., Lemma 2.3 in [22]) yields

βℓ
(
X ([n],p; t)

)
= βℓ

(
X (N ))

+βℓ(X N+1)+rank(kerλℓ)+rank(kerλℓ−1)−βℓ
(
X (N )

∩X N+1
)
.

ince dim(X N+1) ≤ ℓ− 1 and dim
(
X (N )

∩ X N+1
)

≤ ℓ− 2, we have that

Hℓ(X N+1) ∼= 0, Hℓ

(
X (N )

∩ X N+1
)

∼= 0, Hℓ−1
(
X (N )

∩ X N+1
)

∼= 0.

n particular, kerλℓ and kerλℓ−1 are both trivial. Combining all these observations we obtain
A.2).

We now turn to deriving (A.3). The statement is trivial for N = 1. If N > 1, we denote
X ( j)

:=
⋃ j

i=1 X i and prove that βℓ
(
X ( j)

)
=
∑ j

i=1 βℓ(X i ) for j = 1, . . . , N inductively. Once
again, the case j = 1 is trivial, so suppose for induction that βℓ

(
X ( j−1)

)
=
∑ j−1

i=1 βℓ(X i ) for
ome 1 ≤ j < N . We consider another Mayer–Vietoris exact sequence, given by

· · · → Hℓ

(
X ( j−1)

∩ X j
) νℓ

→ Hℓ

(
X ( j−1))

⊕ Hℓ(X j ) → Hℓ

(
X ( j))

→ Hℓ−1
(
X ( j−1)

∩ X j
) νℓ−1

→ Hℓ−1
(
X ( j−1))

⊕ Hℓ−1(X j ) → . . . ,

here νℓ, νℓ−1 are group homomorphisms analogous to the earlier situation. Since dim
(
X ( j−1)

∩

X j
)

≤ ℓ− 2, the same rank computation as above gives us

βℓ
(
X ( j))

= βℓ
(
X ( j−1))

+ βℓ(X j ) + rank(kerνℓ) + rank(kerνℓ−1) − βℓ
(
X ( j−1)

∩ X j
)

=

j∑
i=1

βℓ(X i ),

completing the induction step. □
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