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Abstract

The topological study of existing random simplicial complexes is non-trivial and has led to several
seminal works. However, the applicability of such studies is limited since a single parameter usually
governs the randomness in these models. With this in mind, we focus here on the topology of the recently
proposed multi-parameter random simplicial complex. In particular, we introduce a dynamic variant of
this model and look at how its topology evolves. In this dynamic setup, the temporal evolution of
simplices is determined by stationary and possibly non-Markovian processes with a renewal structure.
Special cases of this setup include the dynamic versions of the clique complex and the Linial-Meshulam
complex. Our key result concerns the regime where the face-count of a particular dimension dominates.
We show that the Betti number corresponding to this dimension and the Euler characteristic satisfy a
functional strong law of large numbers and a functional central limit theorem. Surprisingly, in the latter
result, the limiting process depends only upon the dynamics in the smallest non-trivial dimension.
© 2021 Elsevier B.V. Allrights reserved.
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1. Introduction

The classical Erdos—Rényi graph G(n, p) is a random graph on n vertices in which each
edge is present with probability p independently. Even in such a simple model, answering
topological questions such as the threshold (in terms of the rate of decay of p = p, asn — o0)
for connectivity [6] or for the existence of cycles [17] is completely non-trivial. Not surprisingly
then, such a study becomes even more interesting and difficult when posed in the context of
random simplicial complexes—the higher dimensional generalizations of random graphs. Our
focus in this work is on the general multi-parameter model of combinatorial random simplicial
complexes introduced by Costa and Farber [4,5].

A summary of the recent progress made in the study of random complexes generalizing
the Erdos—Rényi graph is as follows. The natural complex built over any graph is its clique
complex, otherwise known as the flag complex, in which a set of vertices form a face or a
simplex if they form a clique in the original graph. The topological properties of the random
clique complex built over the Erdos—Rényi graph were studied in [12]. This paper revealed, in
particular, the existence of a “dominating dimension”, i.e., Betti numbers® of this dimension
significantly exceed those of other dimensions, at least on average.

The k-dimensional Linial-Meshulam complex is another important extension of the Erdos—
Rényi graph. The k = 2 case of this model was introduced by Linial and Meshulam [15],
which was then extended to general k by Meshulam and Wallach [16]. Here, one starts with a
full (k — 1)-skeleton on n vertices and then adds k-simplices with probability p independently.
Recently, topological features of the k-dimensional Linial-Meshulam complex, with potential
k-simplices weighted by independent standard uniform random variables, were investigated
by Hiraoka and Shirai [10], Hino and Kanazawa [9], Skraba et al. [20], and Fraiman et al. [8].

The multi-parameter model introduced in [4,5] is a generalization of all of these models
(see the next section for the formal definition). It was analyzed to some extent in [7], in which
it was shown that a dominating dimension exists in this model as well. In this work, we go
beyond and examine the topological behavior in this dominating dimension as well as study
its deviation from the expected behavior.

Kahle and Meckes [14] did such a study in the context of random clique complexes and
proved a central limit theorem for the dominating Betti number. To obtain an even deeper
understanding, Thoppe et al. [21] investigated the topological fluctuations in the dynamic
variant of this model. Specifically, they considered the setup in which every edge can change
its state between being ON and being OFF, i.e., between being present and being absent, at
the transition times of a continuous-time Markov chain. They then derived a functional central
limit theorem for the Euler characteristic and the dominating Betti number of the resulting
dynamic clique complex.

Within the context of the combinatorial simplicial complexes, few attempts have been made
at deriving “process-level” limit theorems for topological invariants (with a few exceptions
such as Thoppe et al. [21], Skraba et al. [20], and Fraiman et al. [8]). Our work fills in this
gap. We introduce a dynamic variant of the general multi-parameter random simplicial complex
and derive a functional strong law of large numbers and a functional central limit theorem for
the Euler characteristic and the dominating Betti number. Both of our results are proved in the
space D[0, co) of right continuous functions with left limits. Additionally, unlike Thoppe et al.
[21], we do not assume a Markovian structure for the process according to which the faces of
the complex are switched on or off. Instead, the evolution here is determined by a stationary

3 The kth Betti number is a count of “holes” of dimension k -+ 1.
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process with a renewal structure. Surprisingly, our key results indicate that the limiting Gaussian
process in the central limit theorem depends only upon the dynamics of the faces in the smallest
non-trivial dimension, irrespective of the dominating dimension. This happens mainly because
the faces in the smallest non-trivial dimension are crucial for the existence of all higher order
faces.

The generality of our multi-parameter setup forces us to devise new tools not needed under
the random clique complex assumptions of Kahle and Meckes [14] and Thoppe et al. [21]. In
the latter case, for example, all Betti numbers of order greater than the dominating dimension
vanish with high probability. This is, generally, not the case under our general setup. We solve
this difficulty by devising new ways of a much more detailed analysis of these Betti numbers;
see Section 7. New coupling arguments play a crucial role as well, especially in the proof of
functional strong laws of large numbers. Such coupling arguments enable one to stochastically
dominate the face-counts in the dynamic complex by those of a suitably defined static complex,
e.g., see (6.5). We believe that such arguments could have applications beyond the present
context.

This paper is organized as follows. In Section 2, we construct the dynamic multi-parameter
simplicial complex and study some of its elementary properties. A functional central limit
theorem for the face counts in this complex is stated in Section 3. Section 4 contains the main
theorems for the Euler characteristic and the Betti number in the dominating dimension. The
limit theorem for the face counts is proved in Section 5, and the limit theorems for the Euler
characteristic are proved in Section 6, while the limit theorems for the Betti numbers in the
critical (dominating dimension) are proved in Section 7. Some of the proofs are postponed to
the Appendix.

The following notation will be used throughout the paper. The cardinality of a set A will be
denoted by |A|. The indicator function of an event will be denoted by 1{-}. For two positive
sequences (a,) and (b,), the notation a, ~ b, means that a,/b, — 1 as n — oo. The “fat
arrow” = is reserved for weak convergence, where the topology is obvious from the context
(in this paper it is mostly the Skorohod J;-topology on D0, 00)). The stochastic domination
of a random variable X by a random variable Y (meaning that P(X < x) > P(Y < x) for all

x) is denoted by X % Y.

2. The dynamic multi-parameter simplicial complex

We begin by recalling the original multi-parameter simplicial complex introduced by Costa
and Farber [4,5]. Starting with the alphabet [n] = {1,...,n} and parameters p = p(n) =

(p1y--vs pu—1) with p; € [0,1],i = 1,...,n — 1, one constructs the complex X([n], p)
incrementally, one dimension at a time. Specifically, begin with X([n], p)® = [n]. For
i = 1,...,n — 1, once the skeleton* X([n], p)“~" has been constructed, add to X([n], p)

each i-simplex® whose boundary is in X([n], p)“~", with probability p; independently of all
other potential i-simplices. Note that the probabilities in p may depend on 7.

Next, we define the “dynamic” version of the multi-parameter simplicial complex with a
parameter sequence p. The key ingredient for our construction is a collection of independent
stochastic processes

(Aia®), 1=0), 1<i<n—1, AeW,, 2.1)
4 The ith skeleton of a complex consists of all of its faces with dimension less than or equal to i.
5 A subset of [n] with cardinality 7 + 1.
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Fig. 1. Eleven independent stochastic processes with n = 4. Each process stays at an “on” state whenever a line
segment appears, and it is at an “off” state if the line segment disappears.

where W, = {A C[n]:|Al =i+ 1}. Each of the processes in (2.1) is a {0, 1}-valued
stationary process and, for | <i <n—1and A e W,,

A forms an i-face at time ¢

2.2

& App()=1 forall £ €{l,...,i}, Be W, with B C A. 2.2)
Equivalently, A does not form an i-face at time ¢ if and only if A, p(t) = 0 for some
¢ ef{l,...,i}and B € W, with B € A. We say that the process A; 4 is “on” at time #

if A;a(t) = 1, and it is “off” otherwise. We assume that, for each i > 1, (4; 4, A € W)
constitutes a family of (independent) processes with a common distribution. We often drop the
subscript A when only the dimension i matters.

To give a clear picture of our model, we provide a simple example for n = 4 in Fig. 1.
In this case, there appears a 3-face on [4] = {1, 2, 3, 4} if and only if the eleven independent
processes (A; 4, 1 <i <3,A € W,) are all at an “on” state. For example, such a 3-face is
present at time #,. At time #;, the process A ;i 3; is “oft”, while all the others are “on”. Then,
the 2-faces [1, 2, 3], [1, 3, 4] and the 3-face [1, 2, 3, 4] do not appear in the model, whereas all
the other 2-faces do exist.

We now model each A;, i = 1,...,n — 1, via a specific {0, 1}-valued stationary renewal
process. Let (Zy), j > 2) be a sequence of iid positive random variables with a common
distribution function G; and a finite positive mean p;. The following assumption on the
distribution functions (G;) will be a standing assumption throughout the paper: letting g =
min{i > 1 : p; < 1}, assume that

there is @ > 0 such that G;(a) < 1/2 foreachi =¢q,q+1,.... 2.3)

Separately, let (IJ(.i), j = O) be a sequence of iid Bernoulli variables with parameter p;.
Finally, let D) be an equilibrium random variable with the distribution

P(DY < x) = L /x(l — Gi(y))dy =: (G).(x), x>0. 2.4
i JO

1
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All the random objects (Zy)), (IJ(.i)), and DY are independent. We define a delayed renewal
sequence by S\’ =0, S\ = D®, and

J
S$P=p0+> 70, j=2 (2.5)
=2

and the corresponding counting process,

oo
Ni(t) = Z sy <1}, t>0. (2.6)
j=1
Since the first renewal time has the equilibrium distribution given by (2.4), the delayed process
N; in (2.6) has stationary increments [19]. In particular, E(N,- (t)) =t/u;. We finally define
[o¢]

Ay =) {5V <1 < SY)

D, =0 2.7)
j=0

Definition 2.1. The dynamic multi-parameter simplicial complex (X ([nl,p; 1), t = 0) on n
vertices is defined by (2.2). For each dimension i, the temporal evolution of the i-dimensional
faces is determined by the independent processes (A[, AL l<i<n-—1, Acec Wi) described in
2.7).

Remark 2.2. As stated below in Lemma 2.4, A; is a stationary process for every i which
implies that (X([n], p; 1), t > 0) itself is stationary. In fact, for each r > 0, X([n], p; ¢) has the
same distribution as that of the static multi-parameter simplicial complex in [4,5].

Remark 2.3. If p = (p,1,1,...) and Gi(x) = 1 —e™, x > 0 for some A > 0, then
X([n], p; t) is a reparametrization of the dynamic clique complex, for which the evolution of
the edges is determined by the {0, 1}-valued stationary continuous-time Markov chain [21].

The next result formally records the fact that, for each i, A; is a stationary process. It also
states and proves a couple of useful properties concerning it. In particular, it shows that if p;
is small, then A; is off most of the times.

Lemma 2.4. (i) For every i € {1,...,n — 1}, (A,-(t), t > O) is a stationary process with
]P’(A,-(t) = 1) = p;. In addition,
P(Ai0) = 1] 4i0) = 1) = 1 = (1 = p)(G)elt). 1> 0.
(ii) For every i > q and T > 0,

(G(T)
P A; =1)<pll 1—pH)———). 2.8
(Q% ® )<p<+( p%—aaﬂ @9

Proof. The first statement in part (i) is obvious, because the process N;(¢) has stationary
increments. For the second one,
P(A(t)=1|20)=1)=P(0 <t < DV) + p;P(t = D)
=1 == pi)(Gi)(r).
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For Part (ii), denote
K=N(T)=max{j>1:8" <T} (K=0if s’ > T).
Then,

IP’( sup A;(t) = 1) = p;i +IP’(A,<(O) =0, sup A;(¥) = 1)

0<t<T 0<t<T
= pi+ (1= p)E[1 — (1= p)*].
It is clear that K is dominated by

K min{j >2:Z¥ > T} -1 if DO <T
o if DO > T.

Evaluating the above expression with K replaced by K’ gives us (2.8). O

Sometimes we will also impose the following additional assumption on the distributions
(Gi).
) Gi(y+h)—Gi(y)
c:=sup sup <
i>q h>0,0<y<l hY

oo for some 0 <y <1, 2.9)

Note that (2.9) holds if G;’s have a common bounded density function (such as an exponential
density).
Under this additional assumption, we have the following estimates.

Lemma 2.5. Assume (2.9). Then for all 0 <r <s <t <1,
2
P(Ai(r) = 0, Ai(s) = 1, Ai(t) = 0) < = pi(t — )7 (2.10)
a
and

P(Ai(r)=1,4:5)=0,4;(1)=1) < Ep,?(t — ), (2.11)
a

Proof. Rewrite (2.10) as
piP(Ai(r) =0, A1) =0 Ai(s) = 1) < piP(Ai(s) <5 —r, Ri(s) <1 —s),

where A; and R; are respectively, the age and the residual lifetime of a renewal process (2.6)
with the interarrival distribution G;. It then follows from standard calculation in renewal theory
(see e.g., [18]) that

IP(A,(S) =s-—r, R,'(S) =r- S) = ]P(r = Sj(\i/?(s)’ Sj\l};(s)+1 = t)

1
=— | (Giy+1t—5—Gi(y)dy
Hi Jo

%(s —r)(t —s).
a

IA

The last inequality comes from (2.3) and (2.9). The argument for (2.11) is similar; since the
process A; is now required to be “on” in two distinct time intervals, p; in (2.10) is replaced
by p;. O
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Recall that the probabilities in p for the dynamic multi-parameter simplicial complex
X([n], p; t) may depend on n. In the sequel, following Costa and Farber [5], we “couple”
p with n in a particular way: we set p; = n~%, o; € [0,00] for i = 1,2, .... Accordingly, we
can work with an infinite sequence « = (¢, a2, ... ), independent of n, to control the rates at
which the entries in p decay. Below, we introduce some additional terms and notation, which
we try to keep as consistent as possible with those in [5].

Let

J .
%m=2@%hjm.
i=1

By convention, we set ({) = 0 whenever j < i. Note that v ;(e) is non-decreasing in j,
ie., ¥i(a) < ¥;(a) for each & and i < j. We also let

J J .
: . i+ 1) ,
Tilae)=j+1— )=j7+1-— . o, 1<j<n-—1.
() = ;:11//( )= ,§=1 <l+1 J
Additionally, we consider the following sets of parameters:

D= {a:yj@) <1<y}

for j > 1 and Dy := {e : ¥1(at) > 1}.
Recalling the notation ¢ = g(e¢) = min{i > 1 : o; > 0} in (2.3), note that

Yie)=0, tj(@)=j+1, j=1,...,9—1.
Importantly, if « € D, for some k > ¢, then

0<vyla) < - <yn(a) <1 <Ypqi) <...,
so that,

q =14-1(a) < y(a) < --- < (@) > Tp1(e) > ...

In this case, the index k is referred to as the critical dimension. Note that 7;(et), j > k + 1,
can be negative. Observe also that, for j > k,

L (42 i1
qwrwqmm+wﬂhﬁw+§xc+d)—G+i»m 2.12)

:—1+Z<j-;1>a,->—1+1[/j(u)>0.

i=1
3. Limit theorems for the face counts

We consider the dynamic multi-parameter simplicial complex (X ([n],p; 1), t = 0) con-
structed in the previous section. Our basic assumption from now on will be that

o € Dy for some k > q. 3.1

Let B, ,() = ,Bj,n(X([n], P; t)) be the jth (reduced) Betti number of the complex at time
t. Note that (ﬂj,,,(t),t > O) is a stationary process. We will often use B;, to mean
B;,»(0). Similarly, we let x,(¢) denote the Euler characteristic of the complex at time ¢. Then,
( Xn(t), t > 0) also is a stationary process, and x, will be used to denote x, = x,(0). Recall
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that our goal is to establish functional strong laws of large numbers (SLLN) and functional
central limit theorems (FCLT) for the Euler characteristic and the Betti number in the critical
dimension k of the dynamic multi-parameter simplicial complex. This section is of preparatory
nature and deals with the face counts of the complex.

We write the face counts in dimension j as

fin®)y= Y 1{o formsa j-face in X(Inl. p; )} = > &), t=0.
oCln], lo|=j+1 oCln], lo|=j+1
Once again, let &, = &,(0). As in [14] and [21], we analyze the face counts first, and then
relate them to the Euler characteristic and the Betti numbers through the relations
n—1

Xn() =Y (=1 fia(0), >0, 3.2)
j=0
and
n—1
Xn(t) =14y (1) Ba(t), t=0. (3.3)
j=0

We start with the asymptotic behavior of the expected value and the covariances of the face
counts. Note that not all results below require the assumption (3.1).

Proposition 3.1. For any j > 1, we have

nti@

E(fj,l’l) ~ m, n — oQ.

Furthermore, for j > q and 0 <s <t < 0o, we have
n21:j(oz)—rq(ot)

Cov(fjn(t), fjn(s)) ~ 1 —(Gy)e(t —5)
(1), fin(9)) (q+1)!((j_q)!)2( ‘ )
nti@ (!
VGED E(l — (1= PGt =)

as n — oo, where a v b = max{a, b} for a, b € R. In particular, if (3.1) holds, then
n2t(@)—tg(@)
Cov(fen(®), fen(s)) ~ S (1= (Gyelt —5)), n— oo. (3.4)
(g + DIk —q))

Remark 3.2. For j < g, fja() is, of course, nonrandom, so in this case,

Cov(fin(®), fin(s)) = 0.

Proof. The asymptotics of the mean face count is easy to obtain. In fact,

J j+1 ) Ti(a)
E(fjn) = ( " )]_[ G < " >nff<°‘><f+‘> ~ L snooce. (35
J+Yi, j+1 (J+D!

For the covariances, we write

Jj+1

E(fjnt) fjn(s)) = ZE( > Z a,(r)sf(s))

oCln]
lol=j+1 |t|= j+l \Jﬁr\ L
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_§<]il><jzl>(]+{ ) (5 (D&:(9))1{lo NT| = £}.

If£e{0,1,...,q}, all faces of o Nt exist with probability one; thus,

j+1 )
E(é}a(t)&(s)) ]]_{|0 Nzl = g} = (H (l+1 ) — 2T @=2(+1)
i=q
On the other hand, if £ € {g + 1, ...,j + 1}, we have

E(éa(t)ér(s)):ﬂ-{la n T| = K 1_[ (I-H X H]P A (t) =1 | A (S) — 1)(l+l)
i=q

JHIN_(. ¢t
% Hpi(H-l) (H—l)

= A, X B, x C,.

Here, A, is the probability of 7 spanning a j-face at time s, while B, is the conditional
probability that all faces of o N T are present at time ¢, given that T spans a j-face at time s.
Finally, C, is the conditional probability of o forming a j-face at time ¢, given that all faces
of o N t are present at time . Calculating the product of three terms via Lemma 2.4,
. J 14
A, x B, xC, = n 2T @=te-1()=2(j+D+£ 1_[(] — (1= p)(G).(t — S))(iJrl)‘
i=q

By the stationarity of face counts, together with (3.5), we have that

2
E(fin)E(fjn(s)) = (E( f,,,l))2 = (j j_ 1) 20 @=2(+1)

Jj+1 .
_ Z n J +1\(n—j—1 W2 @241
J+1 j+1-4¢

Combining all these results ylelds that, as n — oo,

j+1 . .

3 n JHEIN(n—J—=1\ o (@- ;i
C i), fin — Tj(e)—tg—1(@)=2(j+1)+¢
30 S0 = 2 <,-+1>< ¢ )<j+1—e>”

l=qg+1
J £
<TI0 = 0= p(Goete =)&) — et |
i=q
jtl 2@ty 1
~y H 1= (1= pGielt — )+
G +1=0Y)"
n2tj@)—tg(e) ( )
~ 1= (Gy)e(t — 5)
(g + DG — ) !
TJ(“) ] j+1

(] + 1) 1_[ - (1 - pt)(G )g([ — S))(z+1
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where the last equivalence comes from the fact that (‘L'g (o), £ > q) is a sequence that increases
for £ < k and then decreases. For the derivation of (3.4), use the fact that 27 (e) — 7,(et) >
(o). O

Remark 3.3. It follows immediately from the proposition that, under the assumption (3.1),
for every j # k,

E(f] n) . Var(fj,n)

im = lim ————

n=00 B( fin)  n—oo Var(fi,n)

That is, the face counts in the critical dimension dominate those in the other dimensions both
in their means and their variances.

=0. (3.6)

The following corollary will be useful in the sequel. Since time parameter plays no role due
to stationarity, we remove it to simplify the notation. Denote

M(a) = min{i : 7;(a) < O}; 3.7)

this is a finite number since 7;(0¢) —> —00 as i — Q.

Corollary 3.4. As n — oo,

o0

> E(fja) — 0.

j=M(e)
Proof. It follows from (3.5) that

E(fjn) <n%® < <n—ﬁ> ,
where

B= inf [—t;(0)/(j+ D]

J=M(a)
Note that 8 > 0, since 7;(a) < O for all j > M(a), and

fim —9® _ {Z() i —1}2 lim{<]) % —l}zoo.
j—>00 ]+ ]aoo 1 j—ool\g q+1

Hence,
o0 [ee) 1 j+1
YRS Y, (n—ﬁ) —~0, n— oo,
j=M(@) j=M(@)

as desired. [

As stated below, the face counts in the critical dimension & turn out to satisfy a functional
central limit theorem. The limit turns out to be a stationary Gaussian process whose covariance
function is given by the limit in (3.4). Specifically, let (Zk(t), t > 0) be a zero-mean stationary
Gaussian process with covariance function

Ri(1) = E(Zu(1) Zi(0)) = 1 = (G (1), 1= 0. (3-8)
The basic sample path properties of this process are described in the next proposition.
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Proposition 3.5. The process Z; admits a continuous version, whose sample paths are
8-Holder continuous for any § € (0, 1/2).

Proof. Since Z; is a stationary Gaussian process and

2
E[(Zi(1) = Zu(9))"] = 2Gye(lt — s]) < M—It — s,

q
the claim follows from the Kolmogorov continuity criterion. [J

The statement below is a FCLT for the face counts in the critical dimension k. We view
Jen(-) as a (piecewise constant) random element of D[0, 0o), the space of right continuous
functions with left limits, which is equipped with the Skorohod J;-topology.

Proposition 3.6. Assume (3.1). Then, as n — oo,

fk,n(t) - E(fk,n)
v Var(fin)

in the sense of convergence of the finite-dimensional distributions. If the assumption (2.9) is
satisfied then (3.9) also holds in the sense of weak convergence in the J-topology on D[0, 00).

1= 0) = (Zk(®), 1= 0) 3.9)

The proof is deferred to Section 5.

Remark 3.7. It is interesting and, initially, unexpected that only the state change distribution
G, in the lowest nontrivial dimension ¢ contributes to the asymptotics of the face counts in the
critical dimension. This is due to the fact that the “flipping” of a g-simplex from “on” to “off”
or vice versa affects the distribution of k-simplices more than does any flipping in a different
dimension. Note that if G, is exponential with mean 1/, then Ri(t) = e and Z; is the
Ornstein—Uhlenbeck Gaussian process, as in [21].

4. FCLT for topological invariants

In this section, we present the main results of this paper: the functional SLLN and the FCLT
for the Euler characteristic and the Betti numbers in the critical dimension. We defer the proofs
to Sections 6 and 7.

We start with the strong laws of large numbers.

Theorem 4.1. Assume (3.1). Then, as n — o0,

1k
(X"(t), t > O) — D a.s. “.1)
no(@) (k+ 1)!
and
Brn(t) 1
< @ t> O) — T a.s. “4.2)

in the Ji-topology on D[0, 00), where the right hand sides of (4.1) and (4.2) are viewed as
constant elements of D[0, 00).

After stating the functional strong law of large numbers, we proceed, as it is frequently
done, with the functional central limit theorem. Note the similarity with the corresponding
limit theorem for the face counts in Proposition 3.6.
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Theorem 4.2. Assume (3.1). Then, as n — o0,

Xn(t) - E(Xn)
VVar(fin)

t > O) = (Z(1), 1 = 0) 4.3)

and

ﬂk,n(t) - E(ﬂkn)
vV Var(fk,n)

in the sense of convergence of the finite-dimensional distributions.

1> O) = (Z(1), t = 0) (4.4)

In addition, assume (2.9) and

7,(a)
2

T(o) — > Tpqr(a). 4.5)

Then, (4.3) and (4.4) also hold in the sense of weak convergence in the Ji-topology on D[0, 00).

Remark 4.3. By Proposition 3.1, (4.3) can be restated as

<xn(t) —E(xn)

nik@—tg()/2 °

t > 0) = ({(g + D1}k = 9)1Ze0), 1 = 0).

A similar reformulation is possible for (4.4).

Remark 4.4. We think that (2.9) alone is sufficient for weak convergence in the J;-topology
on D[0, c0) in (4.3) and (4.4). We have chosen to assume (4.5) in order to simplify an already

long and technical argument.

Example 4.5. The dynamic variants of the Linial-Meshulam complex and the clique complex
are special cases of our model. An explicit form of Theorem 4.2 is stated here for these two
setups.

The Linial-Meshulam simplicial complex (see [15,16]) corresponds, in our description, to
oa=(0,...,0,0,00,00,...), with 0 < o < 1 in some position k > 2. This k is then the
critical dimension with g = k, and 7;(e) = k+ 1 — ot.. Furthermore, (3.1) holds. If X([n], p; ¢)
is the dynamic Linial-Meshulam complex, then Theorem 4.2 says that

172

(B 240, 120),

/nk+1—o

at least in the sense of finite-dimensional distributions.

- 0) = ({¢+ 1}
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Consider now the dynamic clique complex, for which ¢ = («;,0,0,...) with 0 < o; < 1
and oy # 1/m for any m € N. Then, ¢ = 1 and the critical dimension is k = |[1/a;] > q.
Once again, (3.1) holds. Here, t;(a) = k+1— (k;’])a] and 7,(e) = 2 — ;. Now, Theorem 4.2
says that

n(l) — E n
<% t> 0) = (V2(k — D!Z(1), 1 > 0),
once again, at least in the finite-dimensional distributions.

For both models, we also obtain corresponding results for the Betti numbers in the critical
dimension. In the dynamic clique complex, if G, is an exponential distribution, then, as
mentioned above, Z; is a zero-mean stationary Ornstein—Uhlenbeck Gaussian process, as
in [21].

As for the technical conditions for tightness, in the dynamic Linial-Meshulam complex, we
only need to check (2.9) just for i = k, while (4.5) always holds as t;(e¢) = —oc. In the case
of a dynamic clique complex, one needs to check (2.9) just for i = 1. On the other hand, (4.5)
reduces to «; > 4/(2k 4 3), implying that the corresponding functional convergence follows
only when 4/5 < o) < 1 and the critical dimension is &k = |[1/a;] = 1.

Remark 4.6. For the dynamic clique complex, the assumption (4.5) fails in a certain range
of the parameter. Therefore, Theorem 4.2 does not claim the functional convergence in full
generality, for the Euler characteristic and the Betti numbers in the critical dimension. On
the other hand, Thoppe et al. [21] who only discuss this model, established tightness in full
generality, and hence FCLT in the J;-topology on D[0, o). The reason for this discrepancy is
the generality of our setup. In particular, in the dynamic clique complex, all Betti numbers
except that in the critical dimension are known to vanish with a very high probability
(see [13,14]), which makes it possible to obtain the required tightness in [21]. In the general
multi-parameter simplicial complex, however, this is no longer necessarily the case, and the
Betti number in the dimension greater than the critical one may not vanish; see Corollary 1.7
of Fowler [7]. To overcome the resulting difficulty, we have imposed an extra condition (4.5).
We anticipate that the tightness holds without that extra condition; one way to avoid this is via
very complicated fourth moment estimates for the Betti numbers based on the expression in
Proposition A.6.

5. Proof of the FCLT for the face counts

In the sequel, we omit the subscript n from all face count and Betti number notations. For
example, we simply write f;(t), B,(t) etc. Everywhere, C denotes a generic positive constant,
which is independent of n but may vary between (or even within) the lines.

We start with proving the finite-dimensional convergence in Proposition 3.6. By the Cramér—
Wold device, it is enough to show that forall 0 <t < --- <t, <00, a; e R, i =1,...,m,
m>1,

S ai(felt) — ECfe)
«/ Var( fi)

Clearly, it is enough to consider such choices of the coefficients for which the variance in the
right hand side of (5.1) does not vanish, so fix such a set of coefficients.

) = Y a;iZi(t}) inR. (5.1)
i=1
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Let J be the collection of k-faces or, equivalently, words of length k£ + 1 in [n]. For j € J,
let

X — Yo ai (&) — EE)) )
i = ;
\/VM(Z;L a; fi (1))

recall that &;(¢) is the indicator function that the k-face associated with the word j is “on” at
time ¢. Finally, define

W= x; = Sy ai(fult) — B(fO)
i (D )

so that E(W) =0 and Var(W) = 1.
In the terminology of Barbour et al. [2] (see Equ. (2.7) therein), (X;, j € J) constitutes
a dissociated set of random variables. To see this, identify each k-face j € J by the tuple

’

i = (jl, cee j(f,ﬂ))’ where each j; corresponds to a g-face in j. For example, when k = 3

and g = 1, identify the 3-face [1, 2, 3, 4] by the tuple ([1, 21,11,3],11,4],...,[3, 4]). Then,
for any sets K, L C J; = {j, : j € J} such that

U {ieesdemp )0 U {j;,...,jgw)} =,
ji el

. +1
JjgeK f 4

we have that (X : j, € K) is independent of (Xj : j, € L). This verifies the claim that
(Xj : j € J)is a dissociated set of random variables. We can thus invoke the central limit
theorem of Barbour et al. [2] for sums of dissociated random variables.

The approach is to estimate the L;-Wasserstein metric between the distribution Ly of W
and the standard normal distribution, i.e.

di(Lw, £v) = sup [E((W) ~ B(p()

9

where Y has the standard normal distribution and the supremum is taken over all ¢ : R — R
such that sup,, ., |¢(y1)—¢(y2)|/|y1 — y| < 1. Assuming we have shown that d\(Ly, Ly) —
0, we have W = Y as n — oo. Furthermore, direct applications of Proposition 3.1 and (3.8)
yield

Var(37L ai fu(1)) N Var(z a; Zy(1;)), n— oo.
i=1

Var( fi)

Therefore, di(Lw, Ly) — 0 would give us

Yo a (fk(l‘i) — ]E(fk)) m oy m
\/Var(fk) = {Var(gaizk(ti))} Y = gaiZk(ti), n — 0o,

as required.

It remains to actually show that di(Lw,Ly) — O asn — oo. Let Lj = {k € J :
|k N j| > g + 1} be the dependency neighborhood of j € J, that is, a collection of simplices k
having at least one g-face in common with j. Then a slight reformulation of (3.4) in [2] and
Proposition 3.1 shows that for a constant C that may depend on the coefficients ay, ..., dp,
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but on nothing else,

di(Lw, £y) = €YD S LE(XXX1) + E(IX X E( X))}

jeJ keLjlel;

< n”f—”m I { E [ (&) + EE)) () + Eo)

i1,ip,i3=1 jeJ keLjleL;

x (&(t,) + EG)) ] (5.2)

+ Z]E[(Sj(fi]) + E(&))) (&(t:,) + E(Sk))]]E(El) } .
For fixed j € J,k € Lj,1 € Lj denote
Lio=1iNkKkl, Liz=jN]], fs=kNl, Lin=I|jnkNI|.

Since k, 1 € Lj, it must be that £1, > g + 1 and £;3 > g + 1, whereas £»3 and £»3 can be less
than ¢ + 1. Given €5, €13, £23, and €153 as above, the expression between the braces in the
right hand side of (5.2) can, up to a constant factor, be bounded by

k ¢ ¢ ¢ ¢
np f—tll) (zﬁ)’(zﬁ)’(zﬁ)*(z??)
1

i=q

For example, for 0 <r <s <t < oo, by the inclusion—exclusion formula,

E(&(r)&(s)&(1))

zﬁ,, DR -(+CED)
'=q

XH}P’ (Ai(s) = 1| As(r) = 1)@21 '+1)1_[IP’ Aty = 1] Ai(s) = 1)¢ -G
i=q i=q

k k
< [P0 = 1] 2,09 = DGV D T R(Ai6s) = 40y = 1] A4y = 1) 0D

'=q i=q

k+1 i 4 12 L
< 1—[ i+~ G =G -GDHGE)
b

and the terms of the other types can be bounded in a similar manner.
Furthermore, observe that for every €1 > g + 1, €13 > g+ 1, €3 > 0, and €153 > O,

the number of the corresponding terms in (5.2) does not exceed a constant multiple of
n3ktD—=C1p—l13—L3+€123 Therefore,

< -
dl(W’ Y) - nSrk(oz)73rq(oc)/2
k+1 k+1 k+1 L1aALi3nl3 k ka1 ¢ ¢ ¢ ¢
Z Z Z Z 1—[ (111)*(,}rzl)*(,ﬁ)*(lﬁ)*(,f?)
Liz=q+1L13=q+1€3=0 £123=0 i=¢q
70



T. Owada, G. Samorodnitsky and G. Thoppe Stochastic Processes and their Applications 138 (2021) 56-95
x pkHD—tiz—t13—023+0123

kil: kil: kil: EleZXB:AZB
- C 73T (@) 2= T 5 1) = Tg 31 (@)= Tgp5— 1 (@) F+T¢ 31 (@)
Lip=q+1L13=q+1£3=0  £123=0

(a A b = min{a, b} for a, b € R). The latter sum is a finite sum, and each term in it does not
exceed Cn~"®/2 which can be seen by noticing that To,;_;(et) — T¢,,;—1() > 0 and setting
L1y = €13 = q + 1. Therefore, the sum goes to 0 as n — oo and, hence, we have established
the convergence of the finite-dimensional distributions in Proposition 3.6.

In order to prove tightness in the J;-topology, we use Theorem 13.5 in [3]. By the
stationarity of fi(¢), it is sufficient to show that for every T > 0, there exists B > 0 such
that

B[ (A0 = ) (fe5) = £i)’]
(Var(f)”

foral0 <r <s <t <T,n > 1, with y as in (2.9). By Proposition 3.1, we only need to
show existence of B such that

B[ (A0 = i) () = £i)’]

n4rk ()—274(a)

< B(t — )

< B(r — r)*7. (5.3)

This will be established while proving tightness in the proof of Theorem 4.2. [

6. Proofs of the limit theorems for the Euler characteristic

We start with the strong law of large numbers. As in the last section, C denotes a generic
positive constant, which is independent of #.

Proof of (4.1) in Theorem 4.1. Fix 0 < T < oo for the duration of the proof. We first check
that for each j > 0,
|£i0) = E(f))]
sup ——————— —
0<i=T E(fo)

If j € {0,...,q — 1}, the left hand side is identically zero (see Remark 3.2). For j > ¢, by
the Borel-Cantelli lemma, it suffices to show that for every € > 0,

0 as. 6.1)

ZIP’(()supT |fi() —E(f))| > 6E(fk)> < 09,
o \o=i<

which will follow once we prove the following two statements:

Z]P’( sup f;(t) > E(f;) + €E( fk)) < oo, and 6.2)
=1 0<t<T

ZP(OglgT () < E(f;) — e]E(fk)) < c0. 6.3)

n=1 -
Choose a positive integer m so large that

j (j_'-H)
(G)e(T/m) \ it €
[ (1 + T GTim Gi(T/m)) <14 > 6.4)
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By stationarity,
P(sup f;0) > E(f)) +€B(fi)) =mP( sup fi0) > B(f;) + €B(fi))-

0<t<T 0<t<T/m
We now construct a new static multi-parameter simplicial complex X ([n], p") by setting
Pt = P(supoe, <y Ai(t) = 1) for i > 1. If fi(l) is the j-face count in this static complex,
then, by a straightforward coupling argument,
st )
sup  fi(0) < £V, 6.5)
0<t<T/m

Since by part (ii) of Lemma 2.4 and (6.4),

/ j+1
E(f") = <,~ i 1) [TinGe
i=q

n\ O T (Gi)e(/m) \ D :
= () I T (2 6m) =02
we conclude that

P(sup [0 > E(f)+ GE(fk)) <P(f;" - E(f;") > B(f)) + €E(fi) — E(f]))

0<t<T/m
€
=P(f" ~E(") > €E(fi) - SE(1))).
As E(f))/E(fr) — 0, n — oo for j # k, it holds that, for sufficiently large n,
€ €
B(f" — B > €B(fo - SEU)) = B(|£" — B > SER)
4 Var(f")  Var(f;")
< — - < -
T € (E)° T mme

where the last inequality comes from Proposition 3.1. Further, since each p?l) is asymptotically
bounded by p; times a positive constant fori = ¢, ..., j, the argument of the above proposition
shows that for large enough n,

Var(fj(l)) < C;l)nzfj(a)—fq(a) v C_(/.2>nfj(°‘)

for some finite positive constants C;U and C;z). Hence,

n21:j (0)—74(a) v nti (o)

P( sup fi0) > E(fp)+€B(f) = €

0<t<T/m n2T@)

< Cnffq(ot) < Cnffl(vt) — Cn*(Z*al).
As o) = Yri(a) < Yr(a) < 1, we get Y oo, n= @) < 00, and so (6.2) holds.
We now turn our attention to (6.3). The stationarity of f;(#) implies that

B(inf f3(0) < E(f)) — €B(fo) < mB(_inf f;0) < E(f)) — €B(fo).

where this time m is chosen so that
J Jj+1 €
[1(1 = Gour/m) ) =12,
i=q
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Once again, we construct a new static multi-parameter simplicial complex X([n], p®) by

setting this time p@ = IP’(infoS,ST/m Ai(t) = 1) fori > 1. If f]@ is the j-face count in

1

this static complex, then, f;z) % info<,<7/m f;j(t). Notice that for i > ¢,
p® > P(A0) =1, D > T/m) = p;(1 = (G)(T/m)),

so by the choice of m,
E(F™) = (1= 3)ECH).

Proceeding as above we conclude that, for sufficiently large n,

2
Var(f;*)
n2Tk(°l) ’

IP( inf/m i@ <E(f) — EE(fk)) =C

0<t<T
Noting that pfz) < pfl), the same logic as above tells that
2) M) 27 ()14 () 2) 1i(a)
Var(f;7) < C;'n"Y TNV Cnt

for some finite positive constants C;I), C;z), and (6.3) follows in the same way as (6.2) did.
The next step is to show that as n — oo,
|Xn(t) - IE(Xn)|
sup ————
0<t<T E(f k)

and by stationarity it is enough to prove that

[ xa(®) — E(x)|

sup —————
0<r<T/m E(fi)

for an integer m large enough so that 7/m < a/4; the constant a is given in the assumption

(2.3). It is not difficult to see that the choice of m implies (G;).(T/m) < 1/2. Combining

this with part (ii) of Lemma 2.4 and recalling that pfl) = ]P’(supoqq/m Ai(t) = 1), we get
(1) g

— 0 as., (6.6)

— 0 a.s. 6.7)

p;’ < pi(2 — p;). It is now elementary to check that there is a function # : [0, co] — [0, o]
with 2(0) = 0, h(co) = oo, and h(x) € (0, o0) for 0 < @ < oo, such that
PV < pi@—p)<n7M if p=nw iz 1 6.8)

(for example, one may take h(e) = o — log(2 — 27*)/log2). Define now « by &; = h(w;),
i =1,2,.... Then, M(a) defined by (3.7) is finite, and we use (3.2) to bound
1) = B M | £ — E(f))
sup ————— = sup ——————
0<t<T/m E(f) oy 0si=T/m E(f)
— wp!ﬂm—Eum
0<t<T/m E(f) .

By (6.1), the first sum in the right hand side almost surely goes to 0 as n — oo. For the second
sum, we again use the Borel-Cantelli lemma by initially showing that, for every € > 0,

+
Jj=M(&)

e n—1

YoP Y. sup [0 —E(f)] > €B(fo) | < oo

n=M@+1 \j=m@ =<1/
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Using Markov’s inequality and recalling our notation for the face counts in the static multi-
parameter simplicial complex X ([zn], p), we bound the above sum by

) 00 1 n—1 20C oo 1 00

z 2 2 E (1)) < == 2 B 2 E(f") < 0o

e ~ E(fi) “~ <0<§l<l¥/m fi€ )) T e pn@ L (fl ) =
n=M (a)+1 j=M(a) n=1 j=M(a)

since Y oo, n~1® < oo and Z?’;M(&)E(fj(l)) — 0 as n — oo by Corollary 3.4. We have
now obtained (6.7) and, hence, also (6.6).
Finally, we can use (3.2) to write

EGw) _ e 2oz s CDEGD
E(f) E(fx)
With M(«) defined by (3.7),

Yo DR M R -
: <y +C Y E(f)—>0, n—o0
E(fo) =0, jk E(fi) j=M(@)

by Proposition 3.1 and Corollary 3.4. Hence E(x,)/E(fi) — (=1)%, and (4.1) follows. O

We now prove the functional central limit theorem for the Euler characteristic.

Proof of (4.3) in Theorem 4.2. Note, first of all, that for every M > k+ 1 the truncated Euler
characteristic
M-1

M@ =Y (=1 f;0)

j=0

satisfies, in terms of convergence of the finite-dimensional distributions,

(x,im(r) — E(x{™)

v Var(fin)

This follows from finite-dimensional convergence in Proposition 3.6 and the fact that by (3.6)
and Chebyshev’s inequality,
i) —E(f) »
e 5,

v Var(fi)

for each j # k.
Choosing now M = M(e) defined by (3.7), we have by Corollary 3.4 that

i

as n — oo for any € > 0. Therefore,
X = E(x)  x M) = ExM)
-0

VVar(fi) VVar(fi) ’

so we have established (4.3) in terms of convergence of the finite-dimensional distributions.

, tzO) = (Z(1), t = 0).
n — 00,

X)) —E(xn)  xM@ (1) — E(x M)

VVar(f)  NVar(fi)

e) 5; Z E(fj) = 0
€~/ Var( fi) Py
6.9)
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Assuming (2.9) and (4.5), we now establish tightness in the Skorohod J;-topology. Denote
Mi(e) = minf{i > k : 7;(@) < 74()}.

Fix T > 0 and choose m so that T/m < a/4, where a is the constant from (2.3). Recall once
again the notation p!" = P(supo; <7, Ai(t) = 1), i = 1, so that pV < pi2—pi) < n,
where & = (&, &, ...) is as defined below (6.8). Note that M;(a) < M(et) < M(&) < 00,
where M(a) and M(«) are as defined in (3.7). Recall also that for j > ¢, fj(l) is the j-face

d
counts in X([n], p"), such that fj(l) > SUPg< <7, f(1). Write

My(a)—1 n—1
= Y D0+ Y D 0= x"O+ @), 0<t < T.
Jj=0 J=M; (@)

We start with proving that, as n — oo,

SUPg</<T1 |Xr(12)(t) - E(XVEZ))| 2
~/ Var(fi)

By stationarity, it suffices to show that

SUPo<s<7m | X7(1) = EG?)|

NATO) (6.10)
Let € > 0 be arbitrary. Then, by Markov’s inequality, for all sufficiently large n,
IP(O sup X2 — B\ > e/WﬁJ) 6.11)
<t<T/m
) n—1
= w3, L ) o

) n—1
<—= E(FO
e en j_;m ;"

<20y M U2 5 gy,
€ j=;:<a> v Var(fk) € j—XM;@ !

where the last inequality is due to Proposition 3.1, together with the fact that p}l) < 2p;. The
second term vanishes because Z?‘;M(&) IE(f_;l)) — 0, as n — o0, by Corollary 3.4. On the

other hand, the first vanishes since, by (4.5),

E(f;) <n%® < 1@ = o(n* @~ @/%) = o(\/Var(f;)), n — oc.

Now (6.10) follows as desired, and so it remains to prove the tightness of (X,Sl)(t), 0<t< T).
For this, it is enough to show the existence of B € (0, co) such that

E[ (") = 176))* (") = %)’

AT =274 (@)

< B(t — )t (6.13)

forall 0 <r <s <t <T and n > 1. In the course of the proof, we will also establish (5.3)
which is needed for the tightness in Proposition 3.6.
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We begin by setting up the notation. For ¢ + 1 < ji, o < Mj(¢) and 0 <r <s <t <T,
denote

Fpntts.r) = E[(£0) = £50)* (£ = £)"]:

Consider a potential subcomplex ¢ in [r] consisting of the 4 simplices o1, 03, 03, 04 and their
faces, with |o| = |0z = ji1 + 1, |o3| = |os] = j» + 1, and let

aij=|0,~ﬁa_,-|, 1§I<J§4, Cl,‘jk=|0’,‘ﬁ0’jﬂ0'k|, 1§l<]<k§4,

a4 = o Nox No3 Noyl.

The number of i-faces in o is

. 1 . 1
comb;(0) =2 J.' + +2 1'2 +1\ .alz B 'a13 _ .a14 B .a23

i+1 i+1 i+1 i+ 1 i+ 1 i1

a4 asz4 apn;s ajoa

<i+1) (i+1>+<i+l>+<i+l>
a
+( 134 + .61234 _ f11234 :
i+1 i+1 i+1

it depends only on ji, jo, and a = (a1, ..., a1234). We let
V(a, a) = Tapp—1(0) + Tap3—1(0) + Tayy—1(0) + Tapy—1(0) + Tapy—1(a) + Tazy—1(a) (6.14)
— Tayps—1(0) = Taypy—1(00) — Tyy5y—1(00) — Tupyy—1(0) + Ty, —1(@)
(with 7_;(a) = 0). By independence,
Fjpt.sr)= Y E[(éal (1) = £5,(5)) (§0, (1) = £6,(9)) (505 (5) — €03 (1))

6CE(1.42)

X (£ay(5) = 0,()

> E[st s ri5). (6.15)
0 CE(j1.J2)

with the summation restricted to the set
EGr ) ={6=(01....,00) : o1] = |oa] = j1 + 1, |o3| = |o4| = jo + 1,
and (oq, ..., 04) satisfies at least one of the conditions in (6.16) below} :
Dan>qg+1l,aa>qg+1, (iDaz>qg+1,a4>¢qg+1,
(iiyay 2g+1l,a3>q+1, (i(VVan>qg+1l,a3>qg+1,a4>q+1, (6.16)
Man>qg+la3>qg+1l,au>q+1, (vVijaz >q+1,a53>q+1,a34>q+1,

(vibdayy >qg+1,a04 >q+1,a34 > g+ 1.

Indeed, if none of the conditions in (6.16) holds, then the corresponding term in (6.15)
vanishes by independence and stationarity.
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Our goal is to bound the expectation E[g(t,s, r; 6)] in (6.15). Note that g(¢,s,r; o) €
{—1,0, +1}. Hence, for g(¢, s, r; d) not to vanish, every i-face of the simplex o; must exist
either at time s or at time ¢, i = ¢, ..., j|, and the same is true for the simplex o,. Similarly,
every i-face of the simplex o3 must exist either at time r or at time s, i = ¢, ..., j, and the
same is true for the simplex o4. The probability that this happens is bounded from above by

J1Vi2

16 [T pi™ . 6.17)
i=q

where we take into account only the first (smallest) time a face exists if it is required to exist
multiple times. Additionally, at least one face of the complex spanned by the simplices oy, o,
must switch from existence to non-existence, or vice versa, between times s and #, and at
least one face of the complex spanned by the simplices o3, 04 must switch from existence to
non-existence, or vice versa, between times r and s. This may be the same face or two different
faces. Let us denote the corresponding (non-disjoint) events by A; and A,. Consider the event
A first. The number of possible faces that can change their status does not exceed the total
number of faces in &, which is, in turn, bounded by 22U1+72), For such an i-face the probability
p; in (6.17) will be replaced by one by of following two probabilities:

P(Ai(r) =0, Ai(s) = 1, Ai(1) = 0)
and
P(Ai(r) =1, Ai(s) =0, Ai(1) = 1),
both of which are bounded by (2c/a)p;(t — )ity by Lemma 2.5. Therefore,

J1Vi2

IP(AI) < C22(j1+j2)(f _ r)l+y 1_[ picombi(&).
i=q

Considering the event A, now, we see that the number of possible pairs of faces that can
change their status does not exceed 2*/1+72)_ For each such a pair of an i;-face and an i,-face,
the product p;, p;, in (6.17) will be, up to renaming, replaced by

P(A;,(r) =1, A;,(s) = 0)P(A;,(s) = 1, A, (1) = 0),

or similar expressions obtained by flipping Is and Os. By Lemma 2.4, any such expression is
bounded by

2\° )
Piy Piy <;> (t—r).

Since y < 1, we conclude that
J1Vi2
P(A,) < C24(j1+j2)(t _ r)1+y 1_[ picomb,-(&)’
i=q
and so
J1Vi2
E[lg(t, 5, r; 5)|] < C2M+)(¢ — py+7 l—[ picomb,-([f).
i=q
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Substituting this back into (6.15), we obtain
J1Vi2
41+ 1 b; (6)
Fj p(t.s.r) < C2HER ¢ — ity N~ T pim
0eE(j1.j2) i=q

= C2URG =)y Y o Neal =anlor Nosl = ans. ...

acAceZ(j1./2)

J1Vij2
b; (5
loyNo, Nos Noy| = 611234} 1_[ P?om (0)7
i=q
where A is the collection of a = (ayy, ..., ajp34) satisfying at least one of the conditions in
(6.16). Note that comb; (o) depends only on a, and for any a,
Z oy Noal = ap, loy Nosl = ais, ..., lo1 No2 No3 Noyl = apas} < nm"0@,
6€E(j1.J2)
Since
J1Vi2
ncombo(é) 1_[ picomb,-((?) — n2(rjl(oc)+tj2(oc))— ¥(a,o)
i=q
with ¥(a, «) given in (6.14), we obtain
Fjlsz(t’ s,7) < C2*U1 +j2)(t _ r)l+y ZHZ(IJ-] ()+), (@)~ lI/(a,a). (6.18)
acA
We proceed with the following lemma.
Lemma 6.1. Forq+ 1< ji, jo < Mi(«) and a = (aja, ..., a4 € A, we have

n2(rjl () +7, (@)~ ¥(a,0)

<1.
n4rk(oc)72rq () —

Proof. Notice that

D = 2(tj,(a) + 7j,(a)) — ¥(a, &)

< 25, (00) + T, (@) — Tapy—1(00) = Tayy—1 (@) = Tayy—1(0) = Tayy—1(e)
= Tapy—1(0) — Tagy—1(00) + Tappy—1(00) + Tappy—1() + Tz —1(0) + Tapyy—1(e),

and, by the choice of j;, j,, all the terms 7.(«) in the right hand side are non-negative. Since
the sequence (7;(e¢), i > —1) is unimodal—it increases until i = k and then decreases—we
have

Tayp—1(0) = min(z;, (@), Tayp5—1(0) V Tappy—1 (@), (6.19)

Tays—1(@) = min (g, (0) V T,(@), Ty 1(@) V Tapy,—1(00)),

Tayu—1(00) = min(t;, (@) V Tj,(00), Taypy—1(0) V Taypy—1 (@),

Tays—1(0t) = min(z;,(6) V Tj, (&), Tuyp3—1(0) V Tapyy—1(00)),

Tayy—1(a) = min(zj, (@) V T, (0), Taypy—1(0) V Tapyy—1(@0)),

Tay—1(00) = min (), (@), Tay5y—1(0) V Tayyy—1(00)).

Since a € A, at least one of the 7 conditions in (6.16) holds. We will consider in detail what
happens under condition (i); the situation under the other conditions is similar.
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Under condition (i) in (6.16) the first and the last bounds in (6.19) are supplemented by
the bounds 7,,_1(a) > 7,(&), T4y —1(a) > 7,(at). We now use the remaining 4 inequalities
in (6.19). Note that 7,,,_((er) “kills” (i.e., is at least as large as) 7, (&), Tj,(a) Or 74,,1(et).
Similarly, 7,,,—1(e) “kills” 7}, (et), Tj,(a) or 7, ,,—1(et). Further, 74, () “kills” 7, (), T},(0t)
O Tyy,,—1(a). Finally, 7,,,_1(e) “kills” 7, (), Tj,(@) or 7,,,—1(et). This leaves 4 non-negative
terms in the upper bound for D, neither of which exceeds 7i(a), so D < 47 () — 27,(ex), as
required. [

Since A is parameterized by the 11 variables a3, ..., aj234, its cardinality does not exceed
(j1 + j» + D''. Hence, by Lemma 6.1 and (6.18)

1 1 200 1 2
E[(X,E () = %)) (V) = 1P () ] M & Fyy (s r) < Bl
n4‘:k(¢x)—2rq(oc) Z Z 417\(05) 2t4(0) — (t I‘)

j1=q+1 ja=g+1

for some 0 < B < 00, as required for (6.13). O

7. Proofs of the limit theorems for the betti numbers in the critical dimension

Once again, we start with the strong law of large numbers.

Proof of (4.2) in Theorem 4.1. For 0 < T < 0o, we have to demonstrate that
sup |Be(t) — E(fo)|
0<t<T E(f k)
By the Morse inequalities
Ji(@®) = fir1(0) = fim1(0) < Bi(@) = fi (@),

we have

|Be(®) = E(fo)| < [ i) = E(fo)] + firr (@) + fimr ().
By (6.1) with j =k, it is enough to prove that as n — oo,

Sir1(®) Jiw1(0)

sup — 0 a.s. and sup — 0 as
0<t<T E(fk) 0<t<T E(fk)
This is, however, an immediate conclusion of (6.1) with j = k £ 1, since by Proposition 3.1,
E(fir1) .. E(fi-1)
im = lim
nooo BE(fi)  nooe E(fi)
We continue with the functional central limit theorem for Betti numbers.

— 0 as.

=0. O

Proof of (4.4) in Theorem 4.2. For convenience, we drop the subscript n in expressions such
as fB; , for the duration of the proof. We start with introducing some terminology related to the
connectivity of a simplicial complex. It is analogous to the terminology used in [12] and [7].
An {-dimensional simplicial complex X, is called pure if every face of X is contained in an
£-face. A simplicial complex K is said to be strongly connected of order ¢ if the following
two conditions hold:

e The ¢-skeleton of K is pure.
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e Every pair of {-faces o, T € K, can be connected by a sequence of {-faces,
o =O'0,0'1,...,O'j,1,0’j =T
for some j > 1, such that dim(o; No;+1)) =€ —1,0<i <j—1.

In this case, we will simply say that K is an ¢-strongly connected simplicial complex. Note that
the dimension of K itself may be greater than £. We call an ¢-strongly connected subcomplex
K of X maximal if there is no other £-strongly connected subcomplex K O K. We start with
a useful estimate similar to the computation in [7], p.117.

Lemma 7.1. Let K be a (k + 1)-strongly connected simplicial complex on j > k + 3 vertices
with a non-zero (k + 1)-st Betti number. Then, for o C [n] with |o| = j,

P(the restriction of X([n], p) to o is isomorphic to K)
k4L s ket

: L (krTyy k-3
Sj!l_[pil+l (l_[p,( i )) .
i=q

i=q

Proof. The argument consists of estimating the number of faces of different dimensions K has
to contain. We start by denoting by m the number of the (k + 1)-faces in K. We order these
faces as follows. Fix an arbitrary (k+ 1)-cycle in K and choose any (k+ 1)-face from this cycle
to be fi. Since K is (k + 1)-strongly connected, we can order the rest of the (k 4 1)-faces in
the order fi,..., fi, such that each f),, p > 1, has a k-dimensional intersection with at least
one f, with ¢ < p. This ordering of the (k + 1)-faces induces an ordering on the vertices in K,
as follows. First, let vy, ..., vg42 be the vertices, chosen in an arbitrary order, in the support
of f1. Each vertex after vy, corresponds to the addition of a (k 4 1)-face f;; in that, it lies
in the support of f; but is not contained in f; U---U f;_;. Since each vertex of K belongs to
some (k + 1)-face, we obtain, in this way, an ordering vi43, ..., v; of all remaining vertices in
K. Note at this point that each vertex after vy,, for each 1 <i < k + 1, is a vertex of (kfl)
of i-faces of some new (k + 1)-face f, being considered at that point. We let

c=max{k+3 <m < j:v, is a vertex of the initially fixed (k + 1)-cycle}

and note that ¢ is well defined since the cycle must contain at least k + 3 vertices. The
corresponding vertex v, is, actually, contained in at least k 4 2 faces of dimension k + 1, just
as other vertices in the initially fixed (k + 1)-cycle. Furthermore, v, is contained in the fewest
number of i-faces if it is a part of exactly k+2 faces of dimension k+-1. The latter occurs when,
excluding v,, there are precisely k + 2 other vertices in this cycle and they together form a
(k+1)-face. Therefore, when v, entered our enumeration of the vertices, foreach 1 <i < k+1,

it was a vertex of at least (1@;2) new i-faces in K. We now see that foreach 1 <i <k +1,

e f1 contains (];1'12) distinct i-faces in K;
e each vertex in {viy3, ..., v;} \ {v.} corresponds to (le.rl) new distinct i-faces in K
e v, corresponds to at least (“7*) new distinct i-faces in K.

i

Therefore, for each 1 <i <k + 1, K contains at least

k+2 k+1 k+2 k+3 k+1
(i)ra-e=a(7 )+ (77) = () ra-x-2(7)
i-faces. Finally, since there are j! ways of ordering vertices in o, we get the assertion of the

lemma. O
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By (3.3), the already established convergence in (4.3) tells us that

Y= B (1) — E(X (=1 B))

v Var(fi)
in finite dimensional distributions. In order to prove convergence in finite dimensional distri-
butions in (4.4), we need to show that all (normalized) Betti numbers except that of critical
dimension are asymptotically negligible in (7.1). Proposition A.l in the Appendix shows

negligibility of the Betti numbers in dimension smaller than the critical dimension. Together
with (7.1), this gives that

(=D B — E(X I (— 1) ;)
VVar(fo)

Furthermore, by repeating the same argument as in (6.9), along with an obvious bound 8; < f;,
we obtain that

(Z,’}_Ma)(—l)fﬁj(t) “EE VA 0) = 0.

> 0) = (Zi(1), t = 0) 7.1

, > 0) = (Z(@), t = 0).

/Var( fi)

in finite-dimensional distributions, where M () is defined in (3.7) and 0 is the constant zero
process. Hence, we can conclude that

(Z?ﬁi‘)”(—l)’ﬂj(t) —E(XMe!

i) t>0) = (Z(),t>0), n— oo
V/Var(fi) T e n= ’

(7.2)

in finite-dimensional distributions.

Note that if M(a) = k+ 1, then (4.4) is automatic, so only the case M () > k + 1 needs to
be considered. It is, of course, sufficient to show that for any j = k+1, ..., M(e)—1, Var(B;)
is negligible relative to Var(f;) as n — oco. We will consider in detail the case M(a) = k + 2,
and prove negligibility of the variance of fiy;. If M () > k+2, the higher-order Betti numbers
can be treated in a similar way.

Our argument relies on an explicit representation of S () given by

Beni () = B (Xl ps ) = D Y Y ), (7.3)

j=k+3 r=1 oClnl, lo|=j

where nffj ’r’kH)(t) is the indicator function of the event that o forms a maximal (k 4 1)-strongly

connected subcomplex X (o, p; 1), such that By (X(o, p; 1)) = r. See Proposition A.6 for
a formal derivation of (7.3). We often omit superscripts from the indicator if the context is
clear enough. Note that the second sum over » > 1 is a sum of at most (ijrz) terms, because
Bx+1(X (o, p; 1)) is bounded by the number of (k + 1)-faces of o, which itself is bounded by
(kiz)-

As M(a) = k + 2, it follows that 7;41(e) > 0, and we can find a positive integer D such
that

k+2
ps k2 F @ (7.4)

Vis1(e) — 1
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and we use it to define a truncated version of the representation of the Betti number in (7.3)
as
D+k+1

Bt = B (X(nlps )= Y Y Dm0,

j=k+3 r>=1 oCln], lo|=j
As before, we write Bis1 i= Brs1(0) and n"* T = ¥ T(0). We claim that

B) —E(B) B (1) — E(Biy)
VVar(f) V/Var(fi)

in finite-dimensional distributions. Indeed, by (7.2) with M(«) = k + 2, it is enough to prove
that E(Br11 — ﬂk+1) — 0, n — o0. Since the sum over » > 1 in (7.3) contains at most (k+2)
terms,

> 0) = (Z(@), 1 >0), n— o0 (7.5)

n

E(Br+1 —Bk+1)§IE|: Z (k—{-Z) Z Zn(/rk+1):|

j=D+k+2 oCln], |lo|=j r=1
n
§E|:nk+2 } : § : § :77(] rk+1):|
Jj=D+k+20C[n], lo|=j r>1

Whenever a (k 4 1)-strongly connected subcomplex is formed on j > D 4 k + 2 vertices,
it contains a further (k 4 1)-strongly connected subcomplex on exactly D + k + 2 vertices.
Furthermore, no two different such maximal subcomplexes can contain the same (k+-1)-strongly
connected subcomplex on D + k + 2 vertices. Therefore,

n
D+k+2

nD+2k+4

< -
~ (D +k+2)!

E(Bis1 — Brs1) < nkH( ) Z P(0pik+2 is isomorphic to K)

K:|K|=D+k+2

Z P(opti+2 is isomorphic to K),
K:|K|=D+k+2
where opy42 is the restriction of the complex to fixed D 4 k + 2 vertices, and the sum above
is taken over all isomorphism classes of (k + 1)-strongly connected complexes on D + k + 2
points. Note that the number of terms in this sum is independent of n. Any such complex K
contains at least (1;112) + D(kfl) faces of dimension i for each 1 <i < k + 1; this counting is
presented in the proof of Lemma 8.1 in [7]. Hence,
k+2y | py (k+1
P(op4i+2 is isomorphic to K) < (D + k + 2)! Hpi(’“)+ ¢ ),
i=q

and so, by (7.4),

E(Bir1 — Brg1) < Caf P21 @=DWini@=h 0y — oo,

Thus, (7.5) follows and, by Chebyshev’s inequality, the claim (4.4) is established once we

check that
Var(Bi11)
Var( f;)

—- 0, n— oo.
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It suffices to show that for every j =k +3,...,D+k+ 1 and r > 1, we have

(j,rk+1)
Var(ZaC[n],lo\:j No )

Var( fi)
Simplifying the notation, we get

var| Y ne | = )0 Y [Eene) — EoiwEG)]

oCln], |o|=j oCln], tCln],
lol=j ltl=j

J
> 3 [Eaen) — EaoEmo | 1{io nel =)

£=0 ocCln], =C[n],
lol=j Itl=j

N\ [
= g <J> (£> (J _ 2) I:]E(nanr) - E(UG)E(nI)] ]l{|0‘ N Tl — e}

We consider six cases, depending on the value of £ := |0 N T]|.
) Lef0,....,q -2}

We claim that in this case the events underlying the indicator functions n, and 5, are
independent, so that the corresponding terms have no contribution to the numerator in (7.6).
Indeed, the event underlying 1, can be stated as saying that the restriction of the complex to
o is a (k + 1)-strongly connected subcomplex with Betti number in dimension k + 1 equal to
r and that no (k + 1)-simplex carried by o has k 4+ 1 common vertices, i.e., a common k-face,
with a (k 4 1)-simplex not carried by o. We also have an analogous description of the event
underlying n,. Stated this way, it is clear if a face s; plays a role in the former event, and a
face s, plays a role in the latter event, then these faces have at most g vertices in common and,
hence, the restrictions of the complex to these faces are independent.

Inet=q-—1.

First, let

— 0, n— oo. (7.6)

k+1 el
Ve = p( M = n Vkt1(@)
l

i=q
denote the probability that a fixed k-face and a vertex not in that face form a (k 4 1)-simplex.
For j e {k+3,...,D+k+ 1} and r > 1, let K denote a fixed (k + 1)-strongly connected
complex on j vertices whose Betti number in dimension k£ + 1 is equal to r. For ¢ C [r] with
lo| = j, let Ax be the event that the restriction of the complex to ¢ is isomorphic to K, and
define gx = P(Ag).
We first claim that, for every o C [n] with |o| = j,

Eme)= Y aqx(l—skye+ux)" 7, (1.7)
K:K|=j
where the sum is taken over all (k + 1)-strongly connected complexes, up to an isomorphism
class, such that the Betti number in dimension k+1 is equal to r. Moreover, sk is the number of
k-faces in K, and ux = O(y;) as functions of n, i.e., there exists C > 0 such that ug/y, < C
for all n > 1 and all K. Note that gk, 3%, and ug depend on n, whereas s is independent of
n. For the proof of (7.7), write

E(y) = Z gxP(o is maximal |Ag).
K:|K|=j
83



T. Owada, G. Samorodnitsky and G. Thoppe Stochastic Processes and their Applications 138 (2021) 56-95

Let us fix a vertex v € o¢. By the inclusion—exclusion formula, the probability of forming
at least one (k + 1)-simplex between v and a k-face in o, can be written as sxyx — ug. The
largest term in ug corresponds to v forming two (k + 1)-simplices with k-faces f; and f,
respectively, such that dim( f; N f,) = k — 1. Therefore, the largest term in ug is of the order
ykzykjll = O(yx)- Since there are n — j vertices in o, we have

P(o is maximal |Ag) = (1 —sxyx +ux)" ™/,

and (7.7) follows as required.

Next, let K, K’ be fixed (k + 1)-strongly connected complexes on j vertices with Betti
number in dimension k£ 4 1 equal to r. Denote by Ak g/ the event that the restriction of the
complex to o and that to T are isomorphic to K and K’, respectively. It then follows from
(7.7) that

[E(on:) — E(mo)EMm)] 1{lo Nt =g — 1} (7.8)
= Z Z [P(o and 7 are maximal |Ag x/)P(Ak k')

K:|K|=j K":|K'|=j
—qrqr (I —sgye +ug)" (1 = spy + MK’)'H‘] {loNnt|=¢q—1},

where the sums are again taken over all (k + 1)-strongly connected complexes whose Betti
numbers in dimension k + 1 are equal to r, and sg’, ugs are defined analogously to those
for K. Since |0 Nt| = g — 1 and all the (¢ — 2)-faces exist with probability one, we have
P(Ak k') = qkqk’. For every v € (o U ), let B, be the event that v forms a (k + 1)-simplex
with a k-face in o U 7. Further, let D; denote the event that at least one (k 4 1)-simplex exists
between a k-face in o and a point in 7 \ (¢ N 1), and D, is an event obtained by switching the
role of o and t. Then, by independence we see that

P(o and 7 are maximal |Ag g/) = IP’(( ﬂ B;) N DN Dj AK,Kr> (7.9
ve(oUr)¢
= [[ (1 =PBAxx))PDS N DS Ak x0).
ve(oUt)©

By the inclusion—exclusion formula, we have

P(B,|Ak k') = (Sk +Sx/)Vk—Ukx —Uk' —Sk Sk Ve +SKVillg' +Sg/ Vil —UKUEK =: AK K/~
(7.10)

Indeed, the probabilities that v forms (k + 1)-simplices with multiple k-faces in o are grouped
into ug, while the probabilities that v forms (k + 1)-simplices with multiple k-faces in 7 are
grouped into ug’. Moreover, the probabilities that v forms (k + 1)-simplices with both k-faces
in o and those in 7, are grouped into one of the last four terms in (7.10). Above, we have also
exploited the fact that the events concerning v forming (k 4 1)-simplices with k-faces in o are
independent from events concerning v forming (k + 1)-simplices with k-faces in t.

Noting that there are n —2j + g — 1 points in (o U 7)¢, the right hand side of (7.8) is equal
to

Yoo > axar(—ag )" T P(DE N DS| A k) — (1= ag ) 9T (7.11)
K:|K|=j K":|K'|=j
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By the binomial expansion, it is easy to see that
(1= ag )"~ = (1= 00)" ™" = 0,
(I —ag )™ =1—(j — g+ Dag.x + O,
and, further,
P(Di|Ag k) =1—(1 —sgy +ug) 1 = (j —q + Disky —ux) — O,
P(Da|Ag,x) =1 — (1 = sy +ug)) ™ = (j — g + Dsxrye — ug) — OW)-
Suppose now that
there exist two k-faces f; C o and f, C t such that |fi N fo| =¢q — 1. (7.12)
Under (7.12), we claim that
P(Dy N Da| Ak k) = O p, ).

Indeed, the largest term in the right hand side corresponds to the case in which a vertex in
fi\(fiN fp) forms a (k 4 1)-simplex with f>, and a vertex in f, \ (f1 N f2) forms a (k + 1)-
simplex with f;. Because of a double-count of a g-face consisting of the vertices in f; N f>
and the two selected vertices, the largest rate is of order y; p‘1 By combining all these results,
it is now straightforward to get that

P(D§ N D§|Ag k) — (1 —ag k) ™" = O p, ). (7.13)

If (7.12) does not hold, the same analysis gives the behavior as in (7.13), but with a smaller
correction term; O(yk) instead of O(yk p’l) From all of these results, (7.11) can be written

as
C Y Y akaxOWiph,
K:K|=j K"|K'|=j
(7.12) holds
and, thus,
n J n—j
E —E(n.)E LiloNnt|=¢q—1
<j><q—1><j—q+1>[ (o) = E(e)EMmo)] 1{lo Nt =g — 1}
<C Y > T TakaeOWiph.
K:|K|=j K’|K'|=j
(7.12) holds
By Lemma 7.1,
anK < Cn’ l_[p ]5113 (Hp(kﬂ))] k=3 _ Cnfk+2(0‘)+'1k+2(n1*¢k+l(“))j7k73.
l
=q i=q

Since ¥, 1(a) > 1 and j > k + 3, we get (nl_‘”kJrl("‘))j_k_3 < 1, and hence,
nzjqKqK/ < Cn2@ta(@) o) (7.14)

It now remains to check that
n2(fk+2(°‘)+ak+2)(9(n —g+1 szpgl)

Var( fi)

— 0 asn — oo.
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But this actually follows, since by Proposition 3.1 and (2.12), the expression on the left hand
side is bounded by

Cn2(fk+1(a)—fk(w))(g(nfq(a)—qHyk2pq—|) — CO(I)O(nz(l—‘//k+l(“))) -0, n-— oo.

) L =gq.
The case £ = ¢ is similar but easier. Using the same notation as in Case (/I), we once again
consider

[E(o1:) — E(o)E(M:)] L{lo N 2| = ¢}
= Z Z [P(a and 7 are maximal |Ag x/)P(Ak k')
K:|K|=j K"|K'|=]
—qrqr (1 —sgye +ug)" /(1 = sprye + MK')n_j] I{lo Nt =g}

Since |0 N 7| = g and all the (¢ — 1)-faces exist with probability one, we still get P(Ag /) =
gk qk’- By the same reasoning as before, we only consider the situation that

there exist two k-faces f; C o and f, C t such that |fi N f2] =gq. (7.15)
Under this assumption, for each v € (o U 7)¢, the inclusion—exclusion formula gives that
P(B,|Ak k) = (sk + s)vi —ux —ugr — O p, ),

The largest term in the big-O expression is associated with the case in which v forms two
(k + 1)-simplices with f; and f5, respectively. By (7.9), we see that

P(o and T are maximal |Ag g/) < 1_[ (1 - P(B”MK*K/))
ve(@Ur)e
— (1 —(sg +sg)ve tug +ug + O(szpq_l))n_ZHq
= (1= Gk + sk +ux +ugr)" A+ 0@ + 0 p, )
= (1= (sx + sk +ux +ug) (14 O(ykp(;l)).

Here, we have made use of the following facts: y7p; ' = O, (1+0(1)" =% = 1+0(w),
and (14+ O(Zp, )" =14+ Omytp, ") =1+ Oip, ).
Similarly, we derive that

n—j

(1= sgye +ug)" (L= spy +ug)" ™ = (1= (sx + sx)me +ux +ugr + OWD)
= (1 — (sg +sg)v +ux + ul(’)n
x (1+O0m)).

Putting all these results together, along with the binomial expansion (1 —(sx +Sx)vk +ug +
ug’)" = O(1) as n — oo, we can conclude that

(’f) (’) (”. B j)[Emam) — B 1{lo N7l = g}

i)\a)\i-q
<CY > nY ke Onp, ).

KiK|=j K’:|K'|=j
(7.15) holds
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Using Lemma 7.1 as in (7.14), it follows that the right hand side above can be bounded by
Cn*On2@+ea2) O(n=1y, pq’l). Finally, Proposition 3.1 and (2.12) help to conclude that

2Atq2(0)Fag42) -4 -1
" O yepy ) < O @—T(@) Oy Tg @ —g Vi @+
Var(fi)
= Co()On'V=+1®y 5 0, n — oo.

UVytel{g+1,....k+2}.
Note first that

<J') <E> (j - g) [E("f’"f) - E(ﬂa)E(m)] 1o Nt| = ¢}

< n*EMon.) 1{lo Nt| = ¢}
<n?t Z Z P(Ag k) 1{lo Nz| = ¢}.
K:K|=j K':|K'|=j

where Ak g is as in Case (/). Since there are finitely many isomorphism classes of (k 4 1)-
strongly connected complexes on j vertices, we only have to show that for all such K, K’ with
loNt|=¢,

(Var(f)) ' n¥"P(Ax k) — 0, n — oc. (7.16)
By Lemma 7.1,
L gy KL a2 KL
]P)(AK,K/) < C[l_[ pi i+1 (l_[ pl( i )) ] X l_lpl (1+1)’
i=q i=q i=q

with the last factor accounting for the faces on the vertices common to o and . We conclude
that

A okl iy ey AL N 26-k=3)
nz‘]—[]P)(AK’K/) < anj—z Hpiz(iJrl) (i+l) (H pi( i ))
i=q i=q

:Cn2(7k+2(ﬂl)+0lk+2)*f£—1(0‘)(nlfl//k+1(°¢))2(j7k73) < Cp2Ts2(@) )T 1(@)
By Proposition 3.1 and (2.12),

n2@2()tar2)—te—1(@)

Var( fi)

because the exponent is clearly negative if £ € {g+ 1, ..., k+ 1}, and it is still true in the case
L =k + 2, because

2(ths1(e) — (@) + (zq(00) — Te—1(@)) = (Ths1 (@) — (@) + (z4(et) — Ti(ew)) < 0.

Vytefk+3,...,j—1}
It is still sufficient to prove (7.16), which we presently do. We note that

< Cn2@t1@—n (@) +rg@——1(@) _, ()

P(Ak k') =P(the complex restricted to o is isomorphic to K)
P(the complex restricted to T is isomorphic to K')D(K, K'),
where D(K, K’) is the correction term, resulting from the fact that some of the faces in the
restriction of the complex to o Nt are used in both K and K’. Hence, for each fixed ¢, we obtain
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an upper bound on P(Ag g/) by considering the worst case scenario (from the perspective of
showing (7.16)).

To see how it works, consider the case £ = k + 3. Clearly, the worst case scenario is when
both K and K’ have the least number of i-faces for ¢ < i < k + 1; further, in the complex
restricted to o N 7, there is a maximum overlapping of faces. However, since K and K’ are
(k+ 1)-strongly connected, even in this worst case scenario, the complex restricted to the k43
vertices in o N t should have at least two (k + 1)-faces; of course, these two may have a
common shared k-face.

Hence,
k+1 gy KL -
D(K K)_l_[p, i+1 l_lpl(l)a
i=q i=q

so, by Lemma 7.1, we have

2k+1 fg2y K1

W2 EIB(A ) < anj—<k+3>[l—[ (0 (Hp(”l)) J=k= 3} le () Hp:(k-;—l)‘
i=q

Suppose next that £ = k 4+ 4. In the worst case scenario now, the restriction of the complex
to k + 3 (out of the k +4) common points of the intersection should have the same setup as in
the previous case, while the last (k+4)th common point should form a (k+ 1)-simplex with one
of the two (k + 1)-simplices constructed before. Once again, this is the minimal requirement
since both K and K’ are (k + 1)-strongly connected. Hence,

2
kL o [k ¢y

Do (K K =[]p, """ ([Ir" ")

i=q i=q
so, by Lemma 7.1

an‘("*“)IP’(AK,K/)
2

K3y AL k3 2y (AL en
< Cn¥- (k+4)|:1_[ pliH (1—[ Pl( )) ] le it Hpi @)
i=q i=q i=q
Proceeding in the same manner for any £ € {k + 3, ..., j — 1}, we see that

k+1 2k+1 )

n I P(Ag k1) < cnzf‘f[l_[ m)(1"[ p(kH))j o 3} ]‘[ oD (l_[ —(’f“))f (k2

1= l_

Therefore, as before,

) e[l—[ P('“)G—[ p("“)>f k= 3} ﬁp, z+1)<l—[ ) ("“))
i=q

- n2<rk+z<a>+ak+z)—rk+1(a>(nl—wkma))zf—k—f -4

{—(k+2)

< n2(7k+2(‘¥)+04k+2)—fk+1(Ol)’

which is the same bound as that for £ = k + 2 in the previous case. Thus, we get (7.16), as
desired.
Ve =j.
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We again prove (7. 16) this time only with K = K’. Now, by Lemma 7.1,

k+1
k+3 k+1yy j—k—3
nIP(Ag ) < Cnl le (I1e)
=q i=q
— Cntk+2(a)+ak+2 (n1*1/f1<+1(0l))j*k*3 < pl2@Fy

and, by Proposition 3.1 and (2.12),

nk2@+
< Cn(fk-H(“)*fk(“))Jr(Tq(“)*Tk(a)) -0, n— oo.

Var(fy) —

This completes the proof of (7.6) and, hence, of (4.4) in Theorem 4.2.

Finally, assuming (2.9) and (4.5), we establish tightness in the Skorohod J;-topology. First
of all, we already proved that under these assumptions, the convergence in (4.3) holds in the
sense of weak convergence in the Jj-topology on D[0, co). Fixing T > 0 and choosing m
so large that T/m < a/4 with a defined in (2.3), we again consider a statlc multi-parameter
simplicial complex X([n], p'") and the corresponding j-face counts f\", that were used for
the proof of (6.7). By Proposition A.l in the Appendix, all we have to do is to show that

Z;l‘;llﬁ-l(_l)jﬁj(t) - E(Z?;Ji.ﬂ(—l)jﬂj) 0<p< Z -0

/ Var(fi) T T m

in probability in the J;-topology. This will follow once we show that for every € > 0,

n—1 n—1
]P’( sup | S (—1B;(0) - E( 3 (-1)/‘ﬁ,) > e‘/Var(fk)) 0. n— oo

O=t=T/m | ;114 j=k+1
(7.17)
To this end, observe that by (4.5), for any j > k + 1, we have
E(f) = O™ ®) = o(n*@~@/2) = o(/Var(fy)), n — oc. (7.18)
Proceeding as in (6.11), while using M (a) defined in (3.7) and (6.8), we can bound the left
hand side of (7.17) by

_2z i E[ sup f5()] < — e f E(f;")
6«/Var(fk —— 0<t<T/m - €/ Var(fk) j=k+1 !
2('+1)E(f1 7 X

(1)
Z JW + = > EU).

j=k+1 j=M&)
The last term converges to 0 as n — oo due to (7.18) and Corollary 3.4. [
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Appendix

A.l. Analysis of the Betti numbers in lower dimensions

We begin with introducing additional notions of connectivity. Given a simplicial complex X
and an ¢-dimensional simplex o in X, let the simplicial complex lkx(c) ={re X :o N1 =
@, 0 Ut € X} denote the link of ¢ in X. In other words, lkx (o) denotes the subcomplex of X
consisting of all simplices whose vertex support is disjoint from that of ¢ but, together with
o, they form a simplex in X. If X is pure £-dimensional and o is (£ — 2)-dimensional for
some £ > 2, then lkx (o) necessarily is a one-dimensional simplicial complex. We say that an
(€ — 1)-face in X is free if it is not contained in any of the ¢-faces in X. Given a graph G,
we denote by A,(G) the second smallest eigenvalue of the normalized graph Laplacian of G.
We will use the cohomology vanishing theorem of Ballmann and Swiatkowski [1]:if X is a
finite pure ¢-dimensional simplicial complex such that for every (¢ — 2)-simplex o € X, the
link Ikx (o) is connected and has spectral gap A>(lkx(c)) > 1 —1/¢, then H*~'(X; Q) = 0. In
particular, B;—1(X) = 0.

Proposition A.1. Under the assumptions of Theorem 4.2,
<ﬂj(t) —E@B)
VvVar(fi)

in probability as n — oo for all j = 0,1, ...,k — 1, where 0 is the constant zero process.

,tzO)—>0 in D[0, c0)

Proof. If k = 1 the claim is trivial, so assume that k > 2. We consider j = k — | only; smaller
dimensions can be treated in a similar way. Proposition A.1 will be established by combining
a series of lemmas provided below. Let F;(¢) be the number of free j-faces of X([n], p; t), and
Xi(2) the k-skeleton of X([n], p; 1). For a (k — 2)-face o in Xi(z), write L, (?) := [lkx, )(0)],
i.e., the number of vertices in the link of o in Xi(¢). We set F; := F;(0), X; = X(0), and
L, := L,(0).

Consider the delayed renewal sequences defined in (2.5) corresponding to the stationary
renewal processes (A; 4, ¢ < i < k, A € W;). Enumerating the different arrival times, we
denote the resulting sequence by 7y < < ---, and set no = 0. For 0 < T < oo, we denote
by N(T) the number of these points in the interval [0, T']. Clearly, IE(N (T)) = O~ for
every such 7.

Lemma A.2. Foreach0<j<k-—1,
E(F;) = o(e_”é), n— oo,

for some € > 0.

Proof. A simple calculation shows that
E(F;) < n%® (1 —p Vin@)" =71

If ¥j41(a) = 0, the claim is trivial. Otherwise,

1=vj41(@)

E(F;) < Cn"i®e™
Since ¥j41(e) < Ye(ar) < 1, the result follows. [
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Lemma A.3.
P(Xy is pure) = 1 — o(e™), n— oo,

for some € > 0.

Proof. By Lemma A.2,
P(Xy is pure) =P(F; =0, j=0,...,k—1)

k—1 k—1
>1-Y P(F;=)=1-) E(F)=1-o™). O
Jj=0 j=0

Lemma A4. Fix § > 0. For a (k — 2)-face o of X,

P ((1 +8)log L,
L,

for some € > 0.

> pl) = 0(87’16), n— 00,

Proof. Note that
1 — Y1) > Ylo) — Yp_1() > ay,

and (1 + 8)x~'log x is decreasing for x > e. Therefore, if L, > n!=V-1©® /2 then
(1+8logL, _(1+ 8)log(n'~Vi-1@/2)
L, - nl=Vi-1(@ /2
for large n. Hence, for large n,
1+8)logL, 1=Yg—1(e0)

and the claim follows from the basic properties of the binomial distribution because L, has a
binomial distribution with parameters n —k 4+ 1 and n=%-1©®; see, e.g., Lemma 4.2 in [7]. O

<n % = p

Lemma A.5. For every 0 < T < o0,

P( sup B 1) £0) = O, n— oo

0<t<T

Proof. By the cohomology vanishing theorem,

P(sup fir)=0) =B( sup it (X:(1) =0)

0<t=<T <t<T
- P(ﬁk_l(Xk(ng)) —0fore=0,1,..., N(T))
> P(ﬁk,l(xk(m)) —0fore=0,1,...,n%*2 N(T) < n2k+2>
242
> ]P’( ﬂ ({Ag(lkxk(w)(a)) >1- % and lky, (,,)(0) is connected
=0

for every (k — 2)-face o in Xk(ng)} N {Xk(mg) is pure}) N {N(T) < n2k+2}>
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2k+2
n 1 L
>1-— Z (k B 1>IP (Az(lkxk(w)(oo)) <1- % or Iky, ;,)(00) is dlsconnected>
=0

n2k+2

N Z P(Xk(n¢) is not pure) — P(N(T) - n2k+2).
=0

Here oy is a fixed (k — 2)-simplex. Clearly,

E[N(T)]

_ —k—1y.
n2k+2 = O )i

P(N(T) > n***?) <
so, by Lemma A.3 and the stationarity of Xy,

P( sup Bi1(t) = 0)
0<t<T
1
>1- n3k+1]}”()»2(lkka)(ao)) <1- 7o 1K, (n,)(00) is disconnected) —Om™* ),
Given oy € X;, we have by Lemma A.4 and its proof that, for some € > 0,

1
P(Az(lkxk(w)(oo)) <1- Zor 1Ky, (5,)(00) is disconnected)

1
= ]P({)\z(lkxk(w)(cro)) <1- A or Iky, (;,)(00) is disconnected}

(1+8)logL,, n! V-1 e
M, s bz Ty e
n—k+1 1
= Z P(Az(lkxk(w)(ao)) <1- zor IKx, (,)(00) is disconnected ‘ Loy = m)
m=1
1481 1=y —1(@) .
X ﬂ{w < p1, m > n—}]p(L” =m)—|—0(ef” )
m

However, Iky, (00)|Ls, = m has the law of the Erd6s—Rényi graph with parameters m and py;

see Lemma 4.2 in [7]. Furthermore, in the range of m we are considering, p; > %

It follows from the spectral gap theorem of Theorem 1.1 in [11] that for some §-dependent
constant C,

1
P()‘Q(lka(w)(o'O)) < 1-— z or lkxk(w)(()'o) is disconnected ‘ LH = m) < Cmié.
We conclude that

1
P(Xz(lkxk(w)(ao)) <1- or 1Ky, (,)(00) is disconnected)
pl—Vic1@

-0 P _ _
. ) +o(e™) = O(n~ -1 @),

< C(
and so

P( sup /3](,1(1‘) = 0) > 1— O(n3k+l_5(l_‘//k—1(°l))) _ O(}’L—k—l),
0<i<T

As 1 — ¥_1(a) > 0, the claim follows by taking large enough § > 0. O
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We can now complete the proof of the proposition. Since Var(f;) — oo, we have for any
0<T < oo and € > 0, using Lemma A.5,

P( sup [Be(®) ~ EBen)| > ey/NVar(fo) =

0<t<T

LN \S)

E( sup pir(0))

0<t<T

(Z) P(oi?g Bi—1(t) # 0)

IA
™

2
“E( sup fia) 1 sup fi(1) #0}) <

0<t<T 0<t<T
2 —1
= —O(n ) — O, n — 00,
€
as required. [J
A.2. Representation of the Betti number

In this section we verify (7.3).

Proposition A.6. For ¢ > 1,

But) = Be(X(Inl.pi)) = Y > Y 0, (A.1)

j=t+2 r=1 oC[nl, |o|=j

where néi’r’z)(t) is the indicator function in (7.3).

Proof. For ¢-simplices o, T in X([n], p; t), write o ~ t if they can be connected by a sequence

of ¢-simplices 0 = 0y, 01, ...,0_1,0; = T such that dim(o; N0 1) =€ —-1,0<i <j—1.
Clearly ~ is an equivalence relation. Consider the equivalence classes Gy, ..., Gy associated
with this relation. For each i = 1,..., N, let X; be the smallest subcomplex of X([n], p; ?)

containing all the simplices for which some £-simplex in G; is a face. Then X; is necessarily
a maximal £-strongly connected subcomplex, such that dim(X; N X;,) < £—2 for any distinct
I < i # iy < N.Let XV := [JY, X; and let Xy, be a subcomplex of X([n], p; 1)
containing all simplices in X([n], p; f) \ XM, By construction dim(Xy4+;) < € — 1 and
dim(Xy1 N X™) < £ — 2. With this setup, establishing the claim of the proposition reduces
to proving the following statements:

Be(X([n], p; 1)) = (XM, (A2)

and

N
BuXN) =" Bu(X)). (A3)

i=1

Indeed, since ZlN=1 Be(X;) in (A.3) is clearly equal to the right hand side of (A.1), our proof
will be done once (A.2) and (A.3) are both established. For the proof of (A.2) we exploit the
following Mayer—Vietoris exact sequence:

o= H(XMNX 1) B Ho(XY) @ Ho(X 1) — He(X(Inl, p; 1)
= He (XY 0 X)) 5! ey (XY) @ Hooy (X)) —

where H; represents the homology group of order ¢, and A, = (Aél),kf)) denotes the
homomorphism induced by the inclusions X™ N Xy, < XM and XN N Xy, <= Xy
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An elementary rank calculation (see e.g., Lemma 2.3 in [22]) yields

Be(X(nl, p; 1)) = Be(XN) +Be(X n41) +rank(kerio)+rank(kerre—1) —Be (XN N Xy 11).
Since dim(Xy1) <€ — 1 and dim(X™ N Xy,;) < € — 2, we have that

H(Xn:) =0, H(XMNXyp) =0, He (XM NXys)=0.

In particular, kerA, and kerd,_; are both trivial. Combining all these observations we obtain
(A.2).

We now turn to deriving (A.3). The statement is trivial for N = 1. If N > 1, we denote
XU = J_, X; and prove that B,(X) = >"/_, Bu(X;) for j = 1,..., N inductively. Once
again, the case j = 1 is trivial, so suppose for induction that B, (XY~V) = {:—11 Be(X;) for
some 1 < j < N. We consider another Mayer—Vietoris exact sequence, given by

o= Ho (XU N XG) B H(XUTY) @ He(X ;) — He(XY)

Ve—1

- H 1 (XV""nX;) > Ho (XYY@ Ho (X)) — ...

where v;, v, are group homomorphisms analogous to the earlier situation. Since dim(X G=-bn
X j) < £ — 2, the same rank computation as above gives us

Be(XY) = Be(XY™V) + Be(X ;) + rank(kervy) + rank(kerve_1) — B (XY™ N X ;)

J
= BuX),
i=1

completing the induction step. O
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