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Abstract
We show that the strong slope conjecture implies that the degrees of the colored Jones
knot polynomials detect the figure 8 knot. Furthermore, we propose a characterization of
alternating knots in terms of the Jones period and the degree span of the colored Jones
polynomial
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1 Introduction

The colored Jones polynomial of a knot K ⊂ S3 is a collection of Laurent polynomials
{JK(n) := JK(n, t)}∞n=1 in a variable t, such that JK(1) = 1 and JK(2) is the classical
Jones polynomial. In this note, we use the normalization

Junknot(n) = tn/2 − t−n/2

t1/2 − t−1/2
.

Let d+[JK(n)] and d−[JK(n)] denote the maximal and minimal degrees of JK(n) in t ,
respectively. These degrees are quadratic quasi-polynomials in n. The strong slope conjec-
ture asserts that they contain information about essential surfaces in knot exteriors. More
specifically, the coefficients of the quadratic terms are boundary slopes of K and the lin-
ear terms encode information about the topology of essential surfaces that realize these
boundary slopes.

In [17], we observed that the strong slope conjecture implies that d+[JK(n)] and
d−[JK(n)] detect the unknot, and in [16] we show that they detect all the torus knots. In this
note, we show the following:
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Theorem 1.1 Let K be a knot that satisfies the strong slope conjecture. If the degrees
d+[JK(n)] and d−[JK(n)] are the same as those of the figure 8 knot then K is isotopic to
the figure 8 knot.

Theorem 1.1 implies that the degrees d+[JK(n)] and d−[JK(n)] detect the figure 8 knot
within the classes of knots for which the strong slope conjecture is known (e.g., the class of
adequate knots). The proof of the theorem relies on Gordon’s result [10] that gives bounds
of the distance between boundary slopes of punctured tori in irreducible 3-manifolds with
toroidal boundary.

We also observe that results on the strong slope conjecture, together with a result of
Howie [14], suggest the following conjecture that proposes a characterization of alternating
knots in terms of their colored Jones polynomial.

Conjecture 1.2 Given a knot K , let pK denote the Jones period of K . Then, K is
alternating if and only if we have

pK = 1 and 2d+[JK(n)] − 2d−[JK(n)] = cn2 + (2 − c)n − 2 (1.1)

for some c ∈ Z.

Alternating knots satisfy (1.1) with c = c(K), the crossing number of K . Conversely,
by [15] if K is a knot that satisfies (1.1) with c = c(K), then K must be alternating. See
Proposition 4.7. Conjecture 1.2 is seeking to remove the knot diagrammatic reference to
crossing numbers and provide a characterization only in terms of properties of the degree
of JK(n). The conjecture is known to be true for all the knots for which the strong slope
conjecture holds. These include adequate knots, large classes of non-adequate Montesinos
knots, graph knots, and knots obtained from these classes by certain satellite operations. See
Section 2 for more details.

There are non-alternating knots with Jones period one. For instance, for any adequate
knot K , we have pK = 1 but there exist also families of non-adequate knots that have this
property. On the other hand, alternating knots are the only knots with zero Turaev genus and
they form a sub-class of adequate knots. The degree span of the colored Jones polynomial
of adequate knots is known to satisfy an analogue of (1.1) involving the Turaev genus. See
(4.1) in Section 4. We show that this generalized equation, however, does not characterize
adequate knots. See Proposition 4.8.

2 Background

2.1 Slope Conjectures

Garoufalidis [7] proved that the degrees d+[JK(n)] and d−[JK(n)] are quadratic quasi-
polynomials: Given a knot K , there is nK ∈ N such that for all n > nK we have

d+[JK(n)] = a(n)n2 + b(n)n + c(n) and d−[JK(n)] = a∗(n)n2 + b∗(n)n + c∗(n),

where the coefficients are periodic functions from N to Q. For a sequence {xn}, let {xn}′
denote the set of its cluster points.

Definition 2.1 The Jones period of K , denoted by pK , is the least common multiple of the
periods of these coefficient functions.
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The elements of the sets

jsK :=
{
4n−2d+[JK(n)]

}′
and js∗

K :=
{
4n−2d−[JK(n)]

}′

are called Jones slopes of K .
Let �d+[JK(n)] and �d−[JK(n)] denote the linear terms of d+[JK(n)] and d−[JK(n)],

respectively. Now, we set

jxK :=
{
2n−1�d+[JK(n)]

}′
and jx∗

K :=
{
2n−1�d−[JK(n)]

}′
.

Given a knot K ⊂ S3, let n(K) denote a tubular neighborhood of K and let MK :=
S3 \ n(K) denote the exterior of K . Let 〈μ, λ〉 be the canonical meridian–longitude basis
of H1(∂n(K)).

Definition 2.2 A properly embedded surface (S, ∂S) ⊂ (MK, ∂n(K)), is called essential
if it is π1-injective and it is not a boundary parallel annulus. An element α/β ∈ Q ∪ {1/0},
where α and β are relatively prime integers, is called a boundary slope of K if there is
an essential surface (S, ∂S) ⊂ (MK, ∂n(K)), such that each component of ∂S represents
αμ + βλ ∈ H1(∂n(K)).

The longitude λ of every knot bounds an essential orientable surface in the exterior of
K . Thus, 0 = 0/1 is a boundary slope of every knot in S3. Hatcher showed that every knot
K ⊂ S3 has finitely many boundary slopes [12].

For a surface (S, ∂S) ⊂ (MK, ∂n(K))we will use the notation |∂S| to denote the number
of boundary components of S.

Garoufalidis conjectured [8, Conjecture 1.2] that the Jones slopes of any knot K are
boundary slopes. The following statement, which is a refinement of the original conjecture,
was stated by the author and Tran in [18, Conjecture 1.6].

Conjecture 2.3 (Strong slope conjecture)

• Given a Jones slope a(n) = α/β ∈ jsK , with β > 0 and gcd(α, β) = 1, there is an
essential surface S in MK such that each component of ∂S has slope α/β and we have
2b(n) = χ(S)

|∂S|β ∈ jxK .
• Given a Jones slope a∗(n) = α∗/β∗ ∈ js∗

K , with β∗ > 0 and gcd(α∗, β∗) = 1, there is
an essential surface S∗ in MK such that each component of ∂S∗ has slope α∗/β∗ and we
have 2b∗(n) = − χ(S∗)

|∂S∗|β∗ ∈ jx∗
K .

Remark 2.4 Strictly speaking in [18, Conjecture 1.6], we only required that χ(S)
|∂S|β ∈ jxK

and − χ(S∗)
|∂S∗|β∗ ∈ jx∗

K without specifying that these values should correspond to points that
correspond to the same values of n for which the slopes a(n) and a∗(n) occur. We do not
know if the seemingly stronger version statement of [18, Conjecture 1.6] is stronger than
Conjecture 2.3. A related point is that, at the moment, we do not know if there exist knots
for which the sets jsK or js∗

K contain more than one point. In all cases for which the Jones
slopes are computed, we have exactly one Jones slope in each of jsK or js∗

K .
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2.2 Progress

Conjecture 2.3 is known for the following families of knots:

• Adequate knots and in particular alternating knots [4, 5].
• Iterated torus knots and iterated cables of adequate knots [1, 18, 26].
• Graph knots [2].
• Families of non-alternating 3-tangle pretzel knots [21, 22].
• Families of non-adequate Montesinos knots [9, 21, 23].
• Knots with up to 9 crossings [8, 13, 18].
• Near-alternating knots [20] constructed by taking Murasugi sums of an alternating
diagram with a non-adequate diagram.
• Iterated untwisted generalized Whitehead doubles of adequate knots and torus knots [2].
•Knots obtained by any finite sequence of cabling, connect sums, and untwisted generalized
Whitehead doubles of adequate knots and torus knots [1, 18, 26].

Under certain conditions, Conjecture 2.3 is known to be closed under cabling operations
and Whitehead doubling operations [2, 18].

3 Exceptional Surgeries and the Figure 8 Knot

In [16], we noted that Conjecture 2.3 implies that the degrees of the colored Jones
polynomial distinguish torus knots and in particular the unknot:

Theorem 3.1 Suppose thatK is a knot that satisfies the strong slope conjecture and let Tp,q

denote the (p, q)-torus knot. If d+[JK(n)] = d+[JTp,q (n)] and d−[JK(n)] = d−[JTp,q (n)]
for all n, then, up to orientation change, K is isotopic to Tp,q .

The proof of Theorem 3.1 begins with the observation that one of the Jones surfaces for
Tp,q is an annulus (the cabling annulus). This implies that K also admits a Jones surface
of zero Euler characteristic, which in turn implies that K must be a cable knot. The proof
of the next theorem is similar in flavor as it begins with the observation that both the Jones
surfaces of the figure 8 knot are punctured Klein bottles.

Theorem 3.2 Suppose that K is a knot that satisfies the strong slope conjecture and let F8
denote the figure 8 knot. If d+[JK(n)] = d+[JF8(n)] and d−[JK(n)] = d−[JF8(n)] for all
n, then K is isotopic to F8.

Proof The degrees d±[JF8(n)] are known (see, for example, [4, 8]). We have

d−[JK(n)] = d−[JF8(n)] = −n2 + 1

2
n + 1

2
,

and

d+[JK(n)] = d+[JF8(n)] = n2 − 1

2
n − 1

2
.

Thus, we obtain

jsK :=
{
4n−2d+[JK(n)]

}′ = {4} and js∗
K :=

{
4n−2d−[JK(n)]

}′ = {−4} ,
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and

jxK :=
{
2n−1�d+[JK(n)]

}′ = {−1} and jx∗
K :=

{
2n−1�d−[JK(n)]

}′ = {−1} .

SinceK satisfies the strong slope conjecture, we have essential surfaces S, S∗ in the exterior
of K such that

(1) The boundary slope of S is 4 and χ(S)
|∂S| = −1, and

(2) The boundary slope of S∗ is −4 and χ(S∗)
|∂S∗| = −1.

This implies that χ(S) = − |∂S| and χ(S∗) = −|∂S∗|. Thus, S, S∗ are either punctured
tori or punctured Klein bottles. By passing to the orientable double, we can assume that each
component of S, S∗ is a punctured torus. Thus, the knot exterior MK contains punctured
tori with boundary slopes s = 4 and s∗ = −4. Let i(s, s∗) denote the geometric intersection
of s, s∗ on ∂MK . In this case, we have i(s, s∗) = 8. By a result of Gordon [10, Theorem
1.1], there are only two irreducible 3-manifolds M such that a toroidal component of ∂M

contains two boundary slopes s, s∗ of punctured tori with i(s, s∗) = 8. These are the lowest
volume hyperbolic 3-manifolds with one cusp. From these two, the only one that is a knot
complement in S3 is the complement of the figure 8 knot. Thus, we conclude that MK is
homeomorphic to the complement of F8. By the Gordon-Luecke Knot Complement theorem
[11], K has to be isotopic to F8.

To continue, we briefly recall the definition and some notation about adequate knots:
Let D be a link diagram, and x be a crossing of D. Associated to D and x are two link
diagrams, called the A–resolution and B–resolution of the crossing. See Fig. 1. A state on
D is a function σ = σ(D) that assigns one of these two resolutions to each crossing of
D. Applying the A–resolution (resp. B–resolution) to each crossing leads to a collection of
disjointly embedded circles sA(D) (resp. sB(D)).

Definition 3.3 The diagramD is calledA–adequate (resp.B–adequate) if for each crossing
of D the two arcs of sA(D) (resp. sB(D)) resulting from the resolution of the crossing lie
on different circles. A knot diagram D is adequate if it is both A– and B–adequate. Finally,
a knot that admits an adequate diagram is also called adequate.

Starting with a state σ = σ(D) we construct a state surface Sσ = Sσ (D) as follows:
Each circle of σ(D) bounds a disk on the projection sphere S2 ⊂ S3. This collection of
disks can be disjointly embedded in the ball below the projection sphere. At each crossing
of D, we connect the pair of neighboring disks by a half-twisted band to construct a surface
whose boundary is K . For details, see [4, 5].

Fig. 1 From left to right: a crossing, the A-resolution and the B-resolution
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The state surfaces corresponding to sA(D) and sB(D) are denoted by SA(D) and SB(D),
respectfully. In [27], Ozawa showed that the state surface SA(D) is essential in the exterior
of K if and only if D is an A-adequate diagram. Similarly, SB(D) is essential in the exterior
of K if and only if D is an B-adequate diagram. For a different proof of these results, see
[5]. Thus, in particular, if D is an adequate diagram of a knot K , then SA(D) and SB(D)

are essential surfaces in the exterior of K .
To continue, we recall the following well-known definition.

Definition 3.4 A slope s for a hyperbolic knot is called exceptional if the 3-manifold
obtained by filling MK along s is not hyperbolic.

The proof of Theorem 3.1 shows that both the Jones slopes of the knot F8 are exceptional.
Next we will see that F8 is the only adequate knot that has this property.

Corollary 3.5 Suppose thatK is a hyperbolic adequate knot such that both the Jones slopes
of K are exceptional. Then, K = F8.

Proof It is known that the number of negative crossings c−(D) of an A–adequate knot
diagram is a knot invariant. Similarly, the number of positive crossings c+(D) of a B-
adequate knot diagram is a knot invariant. In fact, ifK is adequate, then the crossing number
of K is realized by the adequate diagram; that is, we have c(K) = c(D) = c−(D) + c+(D)

[24]. Let vA(D) and vB(D) be the numbers of circles in sA(D) and sB(D), respectively. The
boundary slope of SA is −2c−(D) and χ(SA) = vA(D) − c(D). The boundary slope of SB

is 2c+(D) and χ(SB) = vB(D)−c(D). By [4], the surfaces SA = SA(D) and SB = SB(D)

satisfy the strong slope conjecture for K .
That is, we have

4 d−[JK(n)] = −2c−(D)n2 + 2(c(D) − vA(D))n + 2vA(D) − 2c+(D),

and

4 d+[JK(n)] = 2c+(D)n2 + 2(vB(D) − c(D))n + 2c−(D) − 2vB(D).

Thus, the distance of the two Jones slopes is i(2c+(D), −2c−(D)) = |2c+(D) +
2c−(D)| = 2c(D).

Gordon’s conjecture, proved by Lackenby and Meyerhoff [19], states that if s, s∗ are
exceptional boundary slopes for K then i(s, s∗) ≤ 8. Thus, in order for s = 2c+(D)

and s∗ = −2c−(D) to be exceptional, we must have c(D) ≤ 4. Since K is hyperbolic,
K = F8.

Example 3.6 Consider the 3-string pretzel knots K = P(r, s, t) such that r < 0 < s, t

and −2r < s, t . It has exactly two Jones slopes with distance 2(s + t) (see Proposition 4.8
below). Since by assumption s, t > 2, we cannot have 2(s + t) ≤ 8. Thus, not both of the
Jones slopes can be exceptional.

As another example, let us mention the knot pretzel knot P(−2, 3, 7), which is known to
have seven exceptional slopes. The Jones slopes of P(−2, 3, 7) are { 372 , 0} and from these
only 37

2 is exceptional.

Question 3.7 Are there hyperbolic knots, other than the figure 8, that have more than one
exceptional Jones slopes?
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4 Characteristic Jones Surfaces and Alternating Knots

We begin by recalling from [17] that in all the cases where Conjecture 2.3 is proved, for
each Jones slope, we can find a Jones surface where the number of sheets b|∂S| divides the
Jones period pK . This observation led to the following definition [17, Definition 3.2].

Definition 4.1 We call a Jones surface S of a knot K characteristic if the number of sheets
of S divides the Jones period of K .

Example 4.2 An adequate knot (and thus in particular an alternating knot) has Jones period
pK = 1, two Jones slopes and two corresponding Jones surfaces each with a single bound-
ary component [4, 6]. Note that the characteristic Jones surfaces are spanning surfaces that
are often non-orientable. In these cases, the orientable double cover is also a Jones surface
but it is no longer characteristic since it has two boundary components.

Question 4.3 Is it true that for every Jones slope of a knot K we can find a characteristic
Jones surface?

If K is an alternating knot, then we have

pK = 1 and 2d+[JK(n)] − 2d−[JK(n)] = cn2 + (2 − c)n − 2,

where c = c(K) is the crossing number of K . Thus, one direction Conjecture 1.2 is known.
Furthermore, an alternating knot K satisfies the strong slope conjecture and every Jones
slope is realized by a characteristic Jones surface. This follows, for example, from the dis-
cussion in the proof of Corollary 3.5. The state surfaces SA(D), SB(D) corresponding to
any reduced alternating diagram D = D(K) are in fact the checkerboard surfaces of D.

We have the following converse:

Theorem 4.4 Suppose that K is a knot that satisfies the strong slope conjecture and such
that every Jones slope is realized by a characteristic Jones surface. Suppose, moreover, that
we have

pK = 1 and 2d+[JK(n)] − 2d−[JK(n)] = cn2 + (2 − c)n − 2

for some c ∈ Z. Then, K is alternating and c is the crossing number of K .

Proof Since we have pK = 1, for each of d±[JK(n)] we have exactly one Jones slope. That
is, we have jsK = {s} and js∗

K = {s∗}. Furthermore, since knots of period one have integer
Jones slopes ([8, Lemma 1.11], [17, Proposition 3.1]), both s and s∗ are integers.

Since we assumed that each Jones slope of K is realized by a characteristic Jones sur-
face, we conclude that we can take the Jones surfaces, say S, S∗, corresponding to s, s∗,
respectively, to be spanning surfaces of K .

Finally, since we assumed that 2d+[JK(n)] − 2d−[JK(n)] = cn2 + (2 − c)n − 2, for
some c ∈ Z, we conclude that i(∂S, ∂S∗) = s − s∗ = 2c, where i(∂S, ∂S∗) denotes the
geometric intersection of the curves ∂S, ∂S∗ on ∂MK , and that χ(S) + χ(S∗) = 2 − c.
Thus, in particular, we have

χ(S) + χ(S∗) + 1

2
i(∂S, ∂S∗) = 2.
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By Howie’s result [14, Theorem 2], it follows that K is alternating and in fact S, S∗ are
the checkerboard surfaces corresponding to an alternating diagram of K . But then c = c(K)

by the discussion before the statement of the theorem.

As a corollary of Theorem 4.4 we have the following.

Corollary 4.5 Suppose that K is an adequate knot. Then, K is alternating if and only if we
have

2d+[JK(n)] − 2d−[JK(n)] = cn2 + (2 − c)n − 2

for some c ∈ Z.

Proof Conjecture 2.3 has been proved for adequate knots [18]. Furthermore, as discussed
earlier, adequate knots have period one and for every Jones slope we can find a characteristic
Jones surface. Thus, the conclusion follows from Theorem 4.4.

Remark 4.6 Theorem 4.4 shows that the strong slope conjecture together with a positive
answer to Question 4.3 implies Conjecture 1.2 stated in the Introduction. We also note that
if Conjecture 1.2 is true then the degrees d±[JK(n)] would detect an alternating knot as long
as they detect it among alternating knots with the same crossing number. That is, if we had
a knot K such that d±[JK(n)] = d±[JK ′(n)], where K ′ is alternating, then by Theorem 4.4
we would conclude that K is also alternating with c(K) = c(K ′). So if d±[JK(n)] distin-
guishes K ′ among alternating knots of the same crossing number, it will detect it among all
knots. Given a prime reduced alternating diagram D = D(K), the degrees d±[JK(n)] are
completely determined by the quantities c−(D), c+(D), vB(D), vA(D), introduced in the
proof of Corollary 3.5. Thus, since vB(D), vA(D) are also the numbers of the checkerboard
regions of D, given two reduced alternating diagrams of the same crossing number, one can
decide whether they are distinguished by the degree of their colored Jones polynomial by a
direct diagrammatic inspection. We illustrate these points with a few examples. We already
know that Conjecture 2.3 implies that d±[JK(n)] detect the trefoil and figure 8 knots.

• If Conjecture 1.2 is true then the degrees d±[JK(n)], would detect the 52 knot: suppose
that for a knot K the degrees d±[JK(n)] are the same as those of the knot 52. Then by
Theorem 4.4 K is alternating, and we have c(K) = 5. Thus K = T2,5 or K = 52. Since
T2,5 is distinguished from 52 by the degrees of the colored Jones polynomial, we conclude
that K = 52.
• Now, we discuss alternating knots with crossing number 6: The degrees d±[JK(n)] distin-
guish the knots 61, 62, 63 from each other. More specifically, the quantities c−(D), c+(D)

(a.k.a. the Jones slopes) distinguish 61 from 62 and 63, while the quantities vB(D), vA(D)

distinguish 62 and 63 from each other. Hence, if Conjecture 1.2 is true then the degrees
d±[JK(n)] would detect any of 61, 62, 63.

The next proposition shows that in order to prove Conjecture 1.2, it is enough to show
that if K is a knot that satisfies (1.1), then we must have c = c(K).

Proposition 4.7 If K is a knot such that

2d+[JK(n)] − 2d−[JK(n)] = c(K)n2 + (2 − c(K))n − 2,

then K is alternating.

296 E. Kalfagianni

Author's personal copy



Proof Let D be a knot diagram of K that realizes c(K) and let gT (D) denote the Turaev
genus of D [3]. Then, we have

2d+[JK(n)] − 2d−[JK(n)] ≤ c(K)n2 + (2 − c(K) − 2gT (D))n + 2gT (K) − 2

for all n ∈ N. See for example [15]. Thus, we must have 2 − c(K) ≤ 2 − c(K) − 2gT (D),
which implies gT (D) = 0. Now by [3, Corollary 4.6], D must be an alternating diagram.

As mentioned above, alternating knots are the only knots that have Turaev genus zero
[3, Corollary 4.6]. Thus, the degree span condition in the statement of Conjecture 1.2 can
be reformulated to say

2d+[JK(n)] − 2d−[JK(n)] = cn2 + (2 − 2gT (K) − c)n + 2gT (K) − 2, (4.1)

where gT (K) denotes the Turaev genus of K and c is an integer. By [15], adequate knots
satisfy condition (4.1) above, and they have Jones period equal to 1. One can ask whether
these conditions characterize adequate knots. The following proposition, shown to me by
Christine Lee, shows that this is not the case.

Proposition 4.8 Consider any 3-string pretzel knot K = P(r, s, t) with r < 0 < s, t and
−2r < s, t . Then, we have pK = 1 and

2d+[JK(n)] − 2d−[JK(n)] = cn2 + (2 − 2gT (K) − c)n + 2gT (K) − 2,

but K is non-adequate.

Proof The standard 3-string pretzel diagram D of K = P(r, s, t) has s+ t −r crossings and
by [25] this is the crossing number of K . That is c(K) = c(D) = s + t − r . The diagram D

is also B-adequate with c+(D) = c(D) = s + t − r and vB(D) = −r + 1. Thus, we have

2 d+[JK(n)] = (s + t − r)n2 + (−s − t + 1)n + (r − 1).

On the other hand, Lee [20] shows that

• The Jones slope coming from d+[JK(n)] is equal to 2c−(D) − 2r = −2r;
• It is realized by a Jones surface that is actually the state surface Sσ corresponding to
the state σ that assigns the −r crossings the B-resolution and the s + t crossings the A-
resolution.

Note that the hypothesis −2r < s, t is needed for these claims.
The number of state circles for above state σ is given by vσ (D) = −r − 1+ s − 1+ t −

1 + 2 = −r + s + t − 1. We have

−χ(Sσ ) = −(vσ (D) − c(D)) = −(−r + s + t − 1 − s − t + r) = 1,

and

2 d−[JK(n)] = −rn2 + n + (r − 1).

It follows that

2 d+[JK(n)] − 2 d−[JK(n)] = (s + t)n2 − (s + t)n.

The Turaev genus of non-alternating 3-string pretzel knots is known to be one and hence
2 − 2gT (K) = 0. With this observation, we see that the last equation can be written in the
form of (4.1) where c = s + t ∈ Z. Finally since s + t < s + t − r = c(K), the knot K is
not adequate.
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Remark 4.9 In [15], we show that if in (4.1) we require that the constant c is actually the
crossing number of K , then K must be adequate. Proposition 4.8 and its proof show that the
condition c = c(K) is necessary.

Remark 4.10 The proof of Proposition 4.8 shows, in particular, that there are non-adequate
knots K that admit spanning surfaces S, S∗ such that

χ(S) + χ(S∗) + 1

2
i(∂S, ∂S∗) = 2 − 2gT (K).

This should be compared with the main result of [14] that states that for gT (K) = 0 this
equation characterizes alternating knots and with [15, Problem 1.3].
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