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Abstract  
Utilizing electric fields to catalyze chemical reactions is not a new idea, but in 

enzymology it undergoes a renaissance, inspired by Warhsel’s concept of 

electrostatic preorganization. According to this concept, the source of the immense 

catalytic efficiency of enzymes is the intramolecular electric field that permanently 

favors the reaction transition state over the reactants. Within enzyme design, 

computational efforts have fallen short in designing enzymes with natural-like 

efficacy. The outcome could improve if long-range electrostatics (often omitted in 

current protocols) would be optimized. Here, we highlight the major developments 

in methods for analyzing and designing electric fields generated by the protein 

scaffolds, in order to both better understand how natural enzymes function, and aid 

artificial enzyme design.  
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Introduction 

Understanding the role and utilization of electric field to catalyze reactions has become a major 

topic of research. Electric field mediated catalysis breaks the canonical idea that a catalyst must 

be a reaction-specific chemical entity, such as a molecule or a surface. In general, any reaction that 

includes repolarization of the reacting system during the transition state (TS) could be influenced 

by an external electric field toward improvement of the forward reaction rate. Pioneering research 

by Warshel suggested that enzymes are efficient due to their ability to better stabilize the charge 

redistribution during the reaction than in solution [1–3]. A protein’s ability to stabilize the charge 

redistribution arises from the optimal orientation of permanent dipoles within the enzyme scaffold. 

Warshel then summarized his ideas into his theory of protein electrostatic preorganization in 1998 

[4] – the notion that enzyme-catalyzed reactions avoid an entropic penalty associated with the 

reorganization of the environment during TS crossing, since the scaffold (with its electric field) 

remains relatively fixed (Figure 1). At the same time, this field differentially favors the TS over 

the reactants. Thus, both the enthalpy and the entropy components of the free energy barrier are 

lowered. Electrostatic preorganization indeed has been shown to be present in several enzymes, 

including the most famously studied enzyme, Ketosteroid Isomerase [5–9]. While the generality 

of electrostatic preorganization in enzymes (and the role activation entropy plays in enzyme 

kinetics more generally) has been fiercely debated [10–16], a properly chosen electric field has 

been irrefutably shown (theoretically [17–23] and experimentally [24]) to increase the forward rate 

of various reactions. Thus, understanding enzymatic catalysis requires including intramolecular 

fields as one of the likely reactivity regulators.   
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Figure 1. Schematics of a reaction coordinate for a model system in solvent (left) and an enzyme (right). 
For the reaction in solvent, there is a re-alignment of the solvent dipoles upon going from the reactant to 
TS, which is reflected in a large entropic contribution to the free energy barrier. Within the protein, the 
surrounding dipoles (and the field that they produce) are fixed along the reaction coordinate, and thus, no 
re-alignment is needed, nor possible, and the free energy barrier is thus lowered. This constitutes the effect 
of protein’s electrostatic preorganization. 

Since enzymes can catalyze reactions with incredible efficiency and stereo/enantio-

selectivity under physiological conditions, it is of interest to be able to design artificial enzymes 

that can catalyze any reaction of human interest with the same prowess. The most successful 

computational efforts produced the HG3 Kemp Eliminase [25], featuring  𝑘!"#/𝐾$ on the order of 

430 M-1 s-1. This performance, while top for computational design, falls several orders of 

magnitude short relative to that of natural enzymes (𝑘!"#/𝐾$ on the order of 105 M-1 s-1 [26]). In 

2017, the Nobel prize in chemistry was awarded to Arnold and her pioneering work on laboratory 

directed evolution, which has been extremely successful in improving catalytic efficiency of 

designed enzymes and altering the functionality of natural enzymes. For example, the HG3 protein 

underwent 17 rounds of directed evolution to reach HG317 [27] with many orders of magnitude 

gain in efficiency (a final 𝑘!"#/𝐾$ of about 230,000 M-1 s-1). Further, the family of natural 
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cytochrome P450 enzymes have been evolved to catalyze a wide number of reactions, from C-H 

insertion [28,29] to lactam synthesis [30]. Clearly, the objective function that computational 

enzyme design is currently optimizing is missing some key factors, and directed evolution is 

picking up the task. One of the factors which is missing from current design protocols is the 

incorporation of the favorable protein’s electrostatic preorganization (or the electric field created 

by distant residues). In this review, we discuss the current work in trying to understand optimal 

electric fields for enzymatic catalysis, properly model proteins with respect to their electric fields, 

as well as methods developed to tackle the inverse design problem (how to create an active site 

that produces the best electrostatic preorganization). Being able to properly account for the 

protein’s electric field, and to design enzymes with optimal electrostatic preorganization should 

augment computational design efforts. 

Modeling Electrostatics in Proteins 

Proteins often comprise several hundred to thousands of atoms, and that is too expensive to be 

modeled using quantum mechanics, especially in view of the sampling needed for converged free 

energies. Instead, classical or QM/MM molecular dynamics (MD) is used, based on solving 

Newton equation of motions on the approximate potential energy surfaces. In determining the 

forces on atoms, long-range electrostatic interactions are included via the classical Coulomb’s law 

(though are routinely approximated using the particle mesh Ewald summation with an appropriate 

cutoff to increase the speed of calculations [31]), and using partial charges assigned to each atom 

type within the force field. Thus, the accurate representation of electrostatics depends on the 

quality of the force field. Recently, Essex et al. showed that both  Amber ff14SB [32] and Charmm 

C36m [33] fall short in reproducing the electric field within the active site of the CypA bound to 

HIV capsid protein [34]. Instead, the AMOEBA polarizable force field [35], which adds correcting 

terms to the partial charges to account for the asymmetric electronic distribution around the nuclei, 
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was shown to accurately reproduce the quantum mechanical picture of the electric field within the 

active site along an MD trajectory.  

Another critical yet non-trivial aspect is the protonation states of residues within the 

protein, which can be non-standard (fortunately rarely). They can be important structurally, and, 

both through structure, and directly, impact the electric field within the protein. In turn, fields and 

local dielectrics influence the protonation states, and the resultant protein fold. Many current 

implementations of MD have protonation states fixed during the course of the simulations. 

However, recent efforts have been made towards implementing titration within MD allowing the 

protonation states of residues to change [36–40]. Because equilibrating protonation states requires 

particularly lengthy simulations (especially with explicit solvent, as is usually the case), our group 

has recently developed a titratable feature within the pi-DMD software [41,42] which takes 

advantage of implicit solvation and simplified discrete potential energy surfaces, to simulate 

proteins at much longer time scales [43].  

Finally, ions in solution, and posttranslational protein modifications may impact the 

electric fields within active sites. These effects are rarely modeled, but it is also likely that they 

are too remote to exert a great influence on the catalysis.  

In summary, in order to evaluate and understanding electric fields in proteins, and to 

eventually enable their incorporation into computational enzyme design protocols, accurate 

modeling is essential. The key aspects of such accurate modeling include proper force fields 

(polarizable, if possible), treatment of protonation states concurrent with the dynamics, and 

possibly accounting for co-present ions. 

Understanding the Optimal Electric Field 

Our understanding of how an electric field couples to a reaction of choice to modulate the 

reactivity is incomplete. Recent works by Shaik have emphasized that the electric field parallel 
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with the reaction axis (direction of electron reorganization) controls the forward rate of reaction 

for single-step reactions [17,44]. For example, for the Diels-Alder reactions, it has been shown 

that the electric field parallel to the bond-forming axis controls the rate of reaction [19,20,24]. 

Additionally, we showed that in the family of natural heme-iron oxidoreducatases, the direction of 

the field at the Fe is highly conserved and parallel to the Fe-O bond. The strength of this field is 

characteristic of the protein function, i.e. oxygenases, catalases, and peroxidases all have distinct 

fields (Figure 2) [45].  However, for certain reactions, it is impossible to choose a simple external 

field to align with a single dipole change during the reaction, because more than one dipole changes 

and/or more than one bond forms/breaks. In such cases, the reaction might still benefit from a field, 

but the field might need to be heterogeneous and more intricate. 

 

 
Figure 2. Electric fields generated from the protein scaffold in Heme-iron oxidoreducatases are indicative 
of their function. Top left: Thermodynamic cycle for calculating the BDFE(O-H) between Compound I 
(CpdI) and II (CpdII). Bottom left: direction of the local electric field (LEF) generated by the protein 
scaffold (along the Fe-O bond). Positive direction of this field goes from iron to oxygen. Right: Illustrative 
graph of the BDFE(O-H) as a function of the LEF. Shaded regions illustrate field strengths where canonical 
function of a protein occurs. For more-negative LEF, there is not enough oxidative power for CpdI, whereas 
for more positive LEF, there is off-pathway oxidation. Hence, the proteins have tuned their electric fields 
to fall within the canonical function regions. 
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Indeed, complexity arises in analyzing the electric field within enzyme active sites, since 

it in general is a 3D vector field, and it is far from uniform in any chemical system (Figure 3). 

Thus, the relationships between topological changes of the field in chemically relevant regions and 

the reactivity of a protein can be non-trivial and call for a more global view on the field than its 

assessment at a single point or projected on a single dipole. We have proposed two metrics by 

which to quantify the electrostatic preorganization within a protein. The first is through the changes 

in the topological parameters of the full, 3-D reactant state electron density. We showed a subset 

of these features (e.g., the electrostatic potential and electron density at bond and ring critical 

points) to correlate linearly with the applied electric field, and also correlate with the reaction 

barrier, thus establishing a rigorous quantum mechanical link between electrostatic 

preorganization and reactivity. This was shown for Histone Deacetylase 8 (HDAC8) [46], KSI 

[18], and the Diels-Alder reactions in solution and catalyzed by artificial enzymes [19]. As such, 

the topology of the electron density contains a signature of the electric field which is applied to 

the system.  

More recently, we have proposed a way to directly compare the electric field topologies 

through the global distribution of field lines, as a metric of the differences in reactivity of 

chemically related systems (e.g. in several variants of an enzyme). In both the KSI and Diels-Alder 

reactions, we have shown that topologically similar electric fields correspond to similar barriers of 

the corresponding reaction [19,47]. Furthermore, we showed how fields only at discrete points 

(which is what is often computed/measured) do not fully capture a relationship to the reaction 

barrier [47]. Instead, a more global, 3-D geometry of the electric field around relevant bonds are 

predictive of the reactivity. The charge density and field topologies computed at the reactant states 

are rigorous and straightforward enough and allow for an accurate and quick estimation of 

electrostatic preorganization and resultant reactivity in enzyme. For example, the impact of point-
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mutations on the electric field that the scaffold generates, and on the reaction barrier, could be 

quickly screened via ground state MD. Note that these descriptors, based on charge density and 

fields in the reactant (1) permit avoiding explicit (and tedious) barrier calculations, and (2) are 

continuous and information-rich, which makes them suitable for machine learning approaches (S. 

Vargas et al., unpublished). 

 
Figure 3. One of the most studied proteins for electrostatic preorganization, KSI (PDB Code 1OH0 [48]): 
it has been shown that the electric field around the substrate carbonyl (outlined in top right) gives the protein 
the large catalytic efficiency. Our recent work has shown that topological considerations of both the 
internally defined electric field (bottom left) through the global distribution of streamlines [49] and the 
electron density (bottom right) through the Quantum Theory of Atoms in Molecules formalism [50] can be 
used as rigorous and accurate metrics of protein’s electrostatic preorganization. 

Inverse Design Problem 

Since proteins produce heterogeneous fields in active sites, and the optimal field benefitting a 

reaction is also often heterogeneous, the design of a novel, optimal field, or a protein that would 

produce it for a given reaction is in general a complicated problem. A field may be organized by 
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specifically placed charged groups around the active site. Hence, first, the entire space around the 

active site needs to be sampled with various distributions of charge embeddings, and the desired 

distribution would have to be mapped on a chemical space obtainable in a protein (Figure 4). Very 

recently, advances have been made on the inverse design problem that greatly reduced the 

dimensionality of the space needed to investigate, as well as utilize machine learning algorithms 

to speed up the search.  

 
Figure 4. Electrostatic inverse design problem consists of finding the optimal placement of charged residues 
or point charges around the reaction that decreases the reaction barrier. Considering a partitioned spherical 
surface around, e.g., a Diels-Alder reaction, with each patch of the partition assigned a charge density (blue 
- negatively charged; red - positively charged), the total number of possible environments is theoretically 
infinite, since the charge at any point can be any real-valued number, and the partitioning can be infinitely 
fine. This yields an enormous search space. In addition, solutions will not be unique with various 
configurations of the electrostatic environment yielding similar reaction barriers, as well as possible 
solutions completely altering the reaction pathway, which is no longer feasible within a protein. Efforts by 
Hartke and Sokalski have attempted to reduce this search space by using machine learning or by minimizing 
the 𝐸!"## for the given reaction to determine an optimal catalytic environment. 

 

Head-Gordon et al. implemented an iterative procedure, similar to directed evolution, with 

the objective being that each mutation brings an increase in the electric field along the reaction 
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coordinate or substrate positioning in the active site [51]. The four mutations introduced in this 

way improved the 𝑘!"#/𝐾$ by ca. 20-fold for the KE15 Kemp Eliminase. Specifically, they 

considered the electric field along each bond that is either formed or broken during the course of 

the reaction. While this method shows promise, they only consider the electric field change from 

mutating a residue from a positive to negative or negative to positive charge, whereas in reality, 

upon mutation, there is a change in the electric field due to slight (or large) geometrical changes 

in the entire protein fold. Improvement of the method could also take into account these 

geometrical impacts on the electric field in the active site. 

Sokalski et al. recently introduced a bottom-up approach for optimizing the placements of 

charged amino acids around a reaction toward speeding it up. The idea stems from differential 

transition state stabilization (DTSS) energy [52–54], which is a measure of the change in reaction 

barriers between the WT and “mutated” system by placing point charges around the system 

(𝑞%(𝐫%)). They observed that the long-range multipolar electrostatic component reflects the charge-

redistribution along the reaction pathway. Hence, they define the DTSS energy as a function of 

the catalytic field (Δ&), which is the difference in electrostatic potentials between the transition 

state and reactant state. 

𝐸'()) ≈+𝑞%(𝐫%),𝑉()(𝐫%) − 𝑉)(𝐫%)/ = −+𝑞%(𝐫%)Δ&(𝐫%)
%%

	 

This catalytic field, when mapped on a surface surrounding the reaction, defines regions where 

positively and negatively charged residues should be placed in order to decrease the reaction 

barrier. Using this catalytic field in conjunction with a rotamer library for sampling amino acid 

conformations, Sokalski was able to reproduce directed evolution mutations in the second-

coordination sphere of the KE07 Kemp Eliminase protein, indicating that these mutations represent 

an optimization of the protein’s electrostatic preorganization [55].  
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In a similar vein, Dittner and Hartke, have utilized a genetic algorithm to discover the 

optimal placement of ‘globally optimized catalysts’ (GOCATs) (in the particular case of their 

studies, point charges) around a reaction, by minimizing the reaction barrier through a series of 

nudged elastic band (NEB) calculations [56,57]. Several constrains are imposed on the system to 

ensure that the reactant and product remain stationary states. The first iteration of the algorithm 

was applied to a simple SN2 Menshutkin reaction and a second to a Diels-Alder reaction. 

Interestingly, their method was able to reproduce the results of experimental and theoretical work 

on these system, by regenerating the optimal field that was determined by Shaik and Coote [20,24]. 

However, the approach has only worked with optimizing partial charge distributions. The 

realization of these charge distributions within a larger catalyst such as an enzyme would require 

proper placement of the charged residues attached to the protein scaffold, or placement of charged 

ions near the reactive site [58]. The generalization of the method to GOCATs allows them to 

change point charges for charged amino acid residues or charged ions, though the placement of 

these entities within a protein still poses a difficult task, since the protein sequence and fold are 

interdependent. Additionally, for each point charge distribution, a costly NEB calculation is 

performed, which might become prohibitively expensive especially within a full protein. However, 

these are important steps forward in designing for optimal intramolecular fields in enzymes. 

Conclusions 

Being able to utilize enzymes to catalyze any reaction of human interest has been a long-

standing goal within the catalysis community. Current enzyme design protocols omit long-range 

electrostatic interactions (or the protein’s electrostatic preorganization) due to the difficulty in 

quantifying and understanding the optimal environment for a given reaction. Advances in proper 

modeling of these long-range interactions firstly rely on obtaining accurate thermodynamic 

structural ensembles of the protein scaffold, which, within classical MD simulations, depends on 
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the accuracy of the force field, and in some cases the treatment of protonation states of amino acids 

and placement of ions. Further, recent work has analyzed how electric fields in general can be 

utilized as catalysts, and more specifically, how protein electric fields influence their function. To 

this end, our group has shown that the enzyme active site electron density topology as well as the 

electric field topology report on the reactivity of the system. These findings equip researchers with 

tools to rigorously assess the protein’s electrostatic preorganization, based on the properties of the 

reactant state. New methods are being developed for the design of enzyme active site environments 

that improve electrostatic preorganization. Several foci of this sort can be highlighted: mimicking 

directed evolution by hand, utilizing machine learning, and optimizing for the DTSS energy to 

reduce the effective search space. While these works have focused on the primary and secondary 

coordination spheres for the reaction, ultimately, the entire protein scaffold will have to be 

considered when designing an artificial enzyme with the long-range electrostatics in mind. Even 

though remote parts of the protein are unlikely to exert strong enough fields on the active site, they 

impact the overall protein structure and the placement of the more proximal residues and affect the 

fields in this indirect way. We also note that much of the work on optimizing electric fields is 

within the context of a static protein, whereas in reality protein dynamics can alter the field, and 

ideally for catalysis one would wish for a narrow field distribution around the optimum for the 

reaction. Thus, future work should be motivated in reducing electric field fluctuations as well as 

optimizing the average field. 
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* Hennefarth MR, Alexandrova AN: Direct Look at the Electric Field in Ketosteroid Isomerase 
and Its Variants. ACS Catal 2020, 10:9915–9924. 

The electric field within the wildtype Ketosteroid Isomerase protein with and 
without external electric fields along with several mutants is probed at several 
locations. It is shown that evaluating the electric field at discrete points, such as at 
the geometrical center of bond, does not correlate with the changes in reaction 
barrier. Instead, full consideration of the electric field topology in a region around 
chemical bonds of interest yields correlations with the changing reaction barrier 
due to the external fields as well as point mutations. 

 
*Bradshaw RT, Dziedzic J, Skylaris CK, Essex JW: The Role of Electrostatics in Enzymes: Do 
Biomolecular Force Fields Reflect Protein Electric Fields? J Chem Inf Model 2020, 60:3131–
3144. 

Using the peptidyl-prolyl isomerase cyclophilin A, it is shown that the AMOEBA 
polarizable force field is more accurate than the Amber ff14SB and Charmm C36m 
force fields for calculation the electric field within the protein’s active site. Thus, 
the choice of force fields is important when computationally evaluating the electric 
field generated by the protein scaffold. 

 
*Vaissier V, Sharma SC, Schaettle K, Zhang T, Head-Gordon T: Computational Optimization 
of Electric Fields for Improving Catalysis of a Designed Kemp Eliminase. ACS Catal 2018, 
8:219–227. 

Residues within the KE15 Kemp Eliminase protein are screened for their electric 
field contributions within bond breaking/forming locations of the active site. Those 
which contribute electric fields that hinder the reaction are mutated such that they 
instead improve the electric field, similar to how laboratory directed evolution is 
performed. Subsequently, the resulting protein showed a 20-fold increase in 
catalytic efficiency by tuning the active site electric field.  

 
**Beker W, Sokalski WA: Bottom-Up Nonempirical Approach to Reducing Search Space in 
Enzyme Design Guided by Catalytic Fields. J Chem Theory Comput 2020, 16:3420–3429. 

Using the KE07 Kemp Eliminase, protein mutations are guided using a library of 
atomic multipoles for side-chain rotamers in conjunction with the catalytic field 
(which optimizes the differential transition state stabilization energy). Mutations 
were in qualitative agreement with laboratory directed evolution for the same 
protein, indicating that directed evolution optimized the protein’s electrostatic 
preorganization. 

 
**Dittner M, Hartke B: Globally optimal catalytic fields for a Diels-Alder reaction. J Chem 
Phys 2020, 152. 

Globally optimal catalysts (point charges in this case) are optimally placed around 
a simple Diels-Alder reaction using a genetic algorithm without any a priori 
information. The resulting charge distributions regenerates the optimal electric field 
for the reaction from prior computational research. Future extensions include 
optimizing placement of protein residues, rather than point charges, around the 
reaction. 
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