
Proceedings of the 2020 Winter Simulation Conference
K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, eds.

SMART LINEAR ALGEBRAIC OPERATIONS FOR EFFICIENT GAUSSIAN MARKOV
IMPROVEMENT ALGORITHM

Xinru Li
Eunhye Song

Department of Industrial and Manufacturing Engineering
Pennsylvania State University

Leonhard Building
University Park, PA 16802, USA

ABSTRACT

This paper studies computational improvement of the Gaussian Markov improvement algorithm (GMIA)
whose underlying response surface model is a Gaussian Markov random field (GMRF). GMIA’s computa-
tional bottleneck lies in the sampling decision, which requires factorizing and inverting a sparse, but large
precision matrix of the GMRF at every iteration. We propose smart GMIA (sGMIA) that performs expensive
linear algebraic operations intermittently, while recursively updating the vectors and matrices necessary to
make sampling decisions for several iterations in between. The latter iterations are much cheaper than the
former at the beginning, but their costs increase as the recursion continues and ultimately surpass the cost
of the former. sGMIA adaptively decides how long to continue the recursion by minimizing the average
per-iteration cost. We perform a floating-point operation analysis to demonstrate the computational benefit
of sGMIA. Experiment results show that sGMIA enjoys computational efficiency while achieving the same
search effectiveness as GMIA.

1 INTRODUCTION

Bayesian optimization (BO) has become a popular tool for global optimization of a black-box function
whose analytical properties are seldom known. BO can be viewed as a simulation optimization methodology
when the function can only be evaluated via simulation with stochastic error. BO draws inference from a
stochastic process that models the response surface of the black-box function defined on the feasible solution
space. Gaussian process (GP) has been adopted as the workhorse model for BO because of its convenience
in updating the conditional distribution as well as its inferential power on the remaining uncertainty about
the response surface.

Many BO algorithms are designed to solve an optimization problem defined on a continuous solution
space. Thus, it is sensible to adopt a GP defined on a continuous input domain as its underlying model.
In the simulation literature, continuous GP models have been adopted to design discrete optimization via
simulation (DOvS) algorithms: see, for instance, Sun et al. (2014) and Xie et al. (2016). However, Salemi
et al. (2019) point out that a typical choice of the covariance function for a continuous GP model may
result in overconfidence about the response surface when applied to a DOvS problem.

As an alternative to the continuous GP-based algorithms, Salemi et al. (2019) design the Gaussian
Markov Improvement Algorithm (GMIA) to solve a large-scale DOvS problem whose feasible solution
space lies in the d-dimensional integer lattice. GMIA models the response surface as a realization of a
Gaussian Markov random field (GMRF), a GP defined on a graph of nodes, where connectivity of nodes
on the graph determines the correlation structure of the GMRF; a node’s response is independent from the
rest of the random field conditional on the neighboring nodes’ (hence, Markovian). Salemi et al. (2019)

2887978-1-7281-9499-8/20/$31.00 ©2020 IEEE

Li and Song

argue that this property is suitable for DOvS since each solution’s performance can be inferred from its
neighboring solutions’ and less information is drawn from others.

Unlike a continuous GP whose conditional distribution update is made with respect to the covariance
matrix, updating a GMRF involves its precision matrix, the inverse of the covariance matrix. Although
updating a precision matrix of a GMRF is much cheaper than updating the covariance matrix of a
continuous GP, elements of the covariance matrix are required to make a sampling decision for GMIA.
Inverting a precision matrix can be costly when the feasible solution space is large. We show that such
a naı̈ve implementation can result in a higher per-iteration computational cost than a continuous GP.
When simulation replications are cheap, high computational overhead may make GMIA less attractive than
continuous GP-based algorithms. Motivated by this observation, the focus of this paper is to develop a
procedure that significantly reduces the computational cost of GMIA.

Semelhago et al. (2017) recognize that only the diagonal and a single column of the covariance matrix
are needed for the sampling decision of GMIA and dramatically reduce the cost by computing only the
necessary elements of the covariance matrix. Semelhago et al. (2020) trade off search effectiveness to
achieve further speed-up by restricting the sampling decisions within a promising subset of solutions for
several rapid-search iterations. However, performance of their approach is quite sensitive to user-specified
parameters such as the length of rapid-search iterations, which are difficult to optimize prior to running
simulations.

We propose smart GMIA (sGMIA) that applies the Sherman-Morrison-Woodbury (SMW) formula to
update only necessary elements of the inverse precision matrix. These elements are updated recursively at
each iteration until it is no longer cheaper than factorizing and inverting the precision matrix. The length
of the recursion is determined adaptively to minimize the per-iteration computational cost, which does not
require any user inputs. sGMIA provides exact global inference at all feasible solutions at each iteration,
thus it shows the same search effectiveness as the original GMIA with much improved computational
efficiency.

The remainder of the paper is organized as follows. Section 2 provides a background on GP-based DOvS.
Section 3 compares computational costs of updating continuous GP and GMRF models. In section 4, we
propose two variations of sGMIA and analyze their computational efficiency. Section 5 introduces adaptive
parameter selection for sGMIA. Section 6 evaluates empirical performance of sGMIA with benchmark
algorithms, and conclusions are in Section 7.

2 GP-BASED DOVS

The DOvS problem of our interest can be written as

min
x∈X

y(x), E[Y(x)],

where X is a subset of d-dimensional integer lattice Zd and n , |X | is the number of feasible solutions.
We assume that X is a hyperbox and the distribution of Y(x) is unknown, but its expectation can be
estimated via simulations. For any feasible solution x, Y j(x) = y(x)+ξ j(x) can be observed for replications
j = 1,2, . . . , where simulation error ξ j(x) is independent, identically distributed (i.i.d.) with zero mean and
unknown variance σ2(x). To facilitate GP modeling, we further assume ξ j(x) is normally distributed.

For both continuous GP and GMRF, the unknown objective function values at all feasible solutions
in X are modeled as multivariate Gaussian vector Y. We define X2 ⊂X to be the simulated solutions
and X1 , X \X2. These two sets are updated at every iteration as more solutions are simulated. Let the
sub-vector of Y corresponding to X2 be Y2 and Y1 = Y\Y2. Furthermore, let n1 = |X1| and n2 = |X2|.
For both continuous GP and GMRF, the prior joint distribution is

Y=

[
Y1
Y2

]
∼N

([
µ1
µ2

]
,Σ =

[
Σ11 Σ12

Σ
>
12 Σ22

])
, (1)

2888

Li and Song

where µ1 and µ2 are mean vectors corresponding to Y1 and Y2, and Σ is the covariance matrix divided
into block matrices Σi j for 1≤ i, j≤ 2 corresponding to X1 and X2. We define Ȳ2 as the vector of sample
means at the solutions in X2. Since our problem has simulation error, Ȳ2 can be modeled as a realization
of another GP, Yε

2 = Y2 + ε , where ε ∼N (0n2×1,Σε). Here Σε is a diagonal matrix if all solutions are
simulated independently. We use the sample variance of the sample mean at each design point as a plug-in
estimate of the corresponding diagonal element of Σε . Conditional on Y2 = Ȳ2, (1) is updated. The
computation required for the conditional distribution update is different for a continuous GP and a GMRF,
which we discuss in detail in Section 3.

Frazier (2018) reviews that there are three major sampling criteria for BO: expected improvement (EI),
knowledge-gradient (KG) and entropy search (ES). First proposed by Jones et al. (1998), EI measures the
expected improvement in the response with respect to the current best if a solution other than the current
best is selected. Because EI is defined for a deterministic computer experiment code, it does not reflect
the uncertainty in the response at the current best. Accounting for such uncertainty, Salemi et al. (2019)
modify EI to define the complete expected improvement (CEI). In this paper, we focus on computational
cost comparison when CEI is adopted as the sampling criterion.

We define the current best, x̃, as the solution with the smallest sample mean. For x ∈ X , let
M(x), V(x) and C(x̃,x) be conditional mean of x, conditional variance of x, and conditional covariance
between x and x̃, respectively. Then, the conditional variance of the difference Y(x̃)−Y(x) is V(x̃,x) =
V(x̃)+V(x)−2C(x̃,x). Salemi et al. (2019) derive the CEI of x is

CEI(x) = E[max(Y(x̃)−Y(x),0)]

= (M(x̃)−M(x))Φ

(
M(x̃)−M(x)√

V(x̃,x)

)
+
√

V(x̃,x)φ

(
M(x̃)−M(x)√

V(x̃,x)

)
,

(2)

where φ and Φ are the probability density and cumulative distribution function, respectively, of a standard
normal random variable. Equation (2) shows that it is sufficient to update the conditional mean and the
diagonal and the column corresponding to x̃ of the covariance matrix to compute CEIs at all solutions in
X . GMIA simulates x̃ as well as the CEI-maximizing solution, xCEI, at each iteration.

3 COMPUTATIONAL COMPARISON OF CONTINUOUS GP AND GMRF INFERENCE

When the cost of simulation replication is mild to moderate, the cost of linear algebraic operations involved
in inference can dominate the overall computational cost of the algorithm. In the following sections, we
review continuous GP and GMRF models and analyze their computational costs for CEI computation.

3.1 CONTINUOUS GP UPDATE AND INFERENCE

The prior covariance matrix, Σ, of a continuous GP is characterized by its covariance kernel k(x,x′) ,
E[(Y(x)−µ(x))(Y(x′)−µ(x′))], where Σ is the Gram matrix whose (i, j)th element is k(xi,x j) (Rasmussen
and Williams 2006). Typically, k(x,x′)> 0, which makes Σ a dense matrix with positive entries. Let K(A ,B)
be the Gram matrix whose entries are Ki j = k(xi,x j) for xi ∈A and x j ∈B. Thus, Σ11 in (1) is K(X1,X1).
Similarly, Σ12 = K(X1,X2) and Σ22 = K(X2,X2).

The conditional distribution of Y given Yε
2 = Ȳ2 is N (µ̄, Σ̄), where

µ̄ =

[
µ1
µ2

]
+

[
Σ12
Σ22

]
(Σ22 +Σε)

−1(Ȳ2−µ2),

Σ̄ =

[
Σ11 Σ12

Σ
>
12 Σ22

]
−
[

Σ12
Σ22

]
(Σ22 +Σε)

−1
[

Σ12 Σ22
]
.

(3)

Notice that both conditional mean and covariance matrix require computing (Σ22 +Σε)
−1 [Σ12 Σ22]. An

efficient way to compute C = A−1B, where A is a symmetric positive definite m1×m1 matrix, and B and

2889

Li and Song

C are m1×m2 matrices, is using backsolve. The steps for backsolve consist of 1) computing the Cholesky
factorization A = LL> where L is a lower triangular matrix, which costs 1

3 m3
1 floating point operations

(flops) for dense A; 2) solving LC1 = B using forward substitution, which costs m2m2
1 flops; 3) solving

L>C = C1 using backward substitution, which again costs m2m2
1 flops. Therefore, the overall cost of

backsolve is 1
3 m3

1 + 2m2m2
1. Back to our problem, (Σ22 +Σε) is a dense positive definite n2× n2 matrix,

and [Σ12 Σ22] is an n2×n matrix, so the computational cost of (Σ22 +Σε)
−1 [Σ12 Σ22] is 2nn2

2 +
1
3 n3

2. Then,[
Σ12
Σ22

]
(Σ22 +Σε)

−1(Ȳ2−µ2) is a product of an n×n2 matrix and an n2×1 vector, which costs 2nn2−n

flops. Thus, the overall cost of computing the conditional mean is 2nn2
2 +2nn2 +

1
3 n3

2 flops.
For CEI computation, recall that only the diagonal and a single column of Σ̄ are needed. From (3),

note that updating the (i, j)th element of Σ̄ requires the inner product of the ith row of
[

Σ12
Σ22

]
and the

jth column of (Σ22 +Σε)
−1 [Σ12 Σ22]. Given the latter matrix, this costs 2n2−1 flops. Thus, the cost of

computing conditional variance and covariance is 4nn2 flops. Combined with the computational cost of
the conditional mean, the total cost of updating a continuous GP is O(nn2

2), which increases as the number
of simulated solutions, n2, increases.

Frazier et al. (2011) propose computing the conditional mean µ i and covariance matrix Σi recursively
by implementing the SMW formula. Suppose at the (i−1)th iteration, we find optimal solution xi−1

1 and
max CEI solution xi−1

2 to simulate and Ȳi−1 is a vector of the outputs for them. Let Ui−1 = [exi−1
1

exi−1
2
]

where ex is the standard basis vector consisting of 0s and a 1 at the row corresponding to x. Then,

Σi = Σi−1−Σi−1U>i−1(Ui−1Σi−1U>i−1 +Σ
i
ε)
−1Ui−1Σi−1,

µ i =
[
In×n−Σi−1U>i−1(Ui−1Σi−1U>i−1 +Σ

i
ε)
−1Ui−1

]
µ i−1 +ΣiU>i−1(Σ

i
ε)
−1Ȳi−1,

(4)

where In×n is the n× n identity matrix. Note that Ui−1Σi−1U>i−1 +Σ
i
ε is a 2× 2 matrix, so the cost of

computing its inverse is negligible. From a similar analysis as above, one can show that the total computation
costs of updating Σi and µ i are 4n2+6n and 2n2+3n flops, respectively. Notice that the total computation
cost is O(n2). Therefore, as iterations continue and more solutions are simulated, SMW update scheme
in (4) eventually becomes cheaper than (3), which costs O(nn2

2). Updating only the diagonal and a single
column of Σi is less straightforward for (4) because in the (i+1)th iteration, computing ΣiU>i requires the
columns of Σi corresponding to xi

1 and xi
2 and these solutions may change every iteration.

3.2 GMRF UPDATE AND INFERENCE

A GMRF is a special case of GP, defined on an undirected labelled graph G = (V ,E), where V is the
set of nodes and E is the set of edges connecting the nodes (Rue and Held 2005). The covariance matrix
of the GMRF is Σ = Q−1, where Q is the precision matrix. The entries of precision matrix reflects the
neighborhood structure of G . Let YV \S be the sub-vector of Y except for the nodes in set S. The diagonals
of the precision matrix are conditional precision Qii = Prec(Yi|YV \{i}) =

1
V(Yi|YV \{i})

. The off-diagonals
are proportional to the conditional correlation

Qi j =−Corr(Yi,Y j|YV \{i, j})
√

QiiQ j j, i 6= j. (5)

The Markov property of GMRF gives Yi⊥YV \{N(i),i}|YN(i) for every i ∈ V , where N(i) are the neighbors
of Node i. In words, this means given the responses at all neighboring nodes of Node i, the response at
Node i is independent from the rest of the field’s. Combining this property with (5), Qi j = 0, if j /∈ N(i).
We adopt the neighborhood structure chosen by Salemi et al. (2019): N(x) = {x′ ∈X :‖ x−x′ ‖2= 1}.
This choice of N(·) makes Q very sparse with fill-in rate no more than 2d+1

n . With this neighborhood

2890

Li and Song

structure, we parameterize Q so that its (i, j)th entry is

Qi j ,


θ0, if i = j,
−θ0θk, if |xi−x j|= ek,

0, otherwise,

for xi,x j ∈X , where ek is the kth standard basis vector and | · | is the element-wise absolute value operation.
The conditional precision of any solution must be positive by definition, so θ0 = Qii > 0. We typically
assume the prior correlation among two solutions to be positive, which gives θ j > 0 for all j. Moreover,
∑

d
j=1 θ j < 0.5 makes Q positive definite. Although Q is sparse, its inverse Σ is dense.

The GMIA models the response surface of X as a GMRF[
Y1
Y2

]
= N

([
µ1
µ2

]
,

[
Q11 Q12
Q>12 Q22

]−1
)
,

where Qi j,1 ≤ i, j ≤ 2, are block matrices corresponding to X1 and X2. Similar to the continuous GP
model, Yε

2 =Y2+ε , where ε ∼N (0n2×1,Q−1
ε) and Qε is the precision matrix of ε . We choose to simulate

all solutions independently, so Qε is diagonal. The element of Qε corresponding to x∈X2 is approximated
by 1/V(Ȳ2(x)), where V(Ȳ2(x)) is the sample variance of the average simulation output at x as a plug-in
estimate. Salemi et al. (2019) prove that the conditional distribution of Y given Yε

2 = Ȳ2 is

N

([
µ1
µ2

]
+ Q̄−1

[
0n1×1

Qε(Ȳ2−µ2)

]
,Q̄−1

)
, (6)

where

Q̄ ,

[
Q11 Q12
Q>12 Q22 +Qε

]
(7)

is the conditional precision matrix.

To update the conditional mean, Q̄−1
[

0n1×1
Qε(Ȳ2−µ2)

]
is needed. Because the sparsity pattern of Q̄

is exactly the same as that of Q from (7), the Cholesky factorization of Q̄ is much cheaper than 1
3 n3.

Computation software such as Matlab first permutes a sparse matrix to make the Cholesky factorization the
most efficient, therefore, analytically obtaining the exact flop counts is difficult. From a Matlab time study,
we observed that Cholesky factorization costs approximately O(n1.6) for a two-dimensional problem, where
the order is obtained from a log-log plot of the computation time vs. n. For higher dimensions, the cost
is higher as Q̄ is denser. From the same time study, a single backsolve cost was estimated to be O(n1.4).
Consequently, computing the full inverse, Q̄−1, using n backsolves costs O(n2.4), which dominates all
other costs.

This analysis shows that a naı̈ve update of the GMRF conditional distribution results in higher per-
iteration computational cost than the conitnuous-GP. Computing only the diagonal and a single column of
Q̄−1 significantly reduces the computational cost as shown in the following section.

4 SMART LINEAR ALGEBRAIC OPERATIONS FOR GMIA

Semelhago et al. (2017) propose an efficient way to compute the diagonal of Q̄−1 without computing its
full inverse. They first perform the LDL factorization, Q̄ = LDL>, where L is a sparse lower triangular
matrix with ones on its diagonal, and D is a diagonal matrix. They exploit the following elementwise
identity (Takahashi et al. 1973); Σii = D−1

ii −∑k>i LkiΣki and Σi j = ∑k>i LkiΣk j, ∀i < j. Thus, only a few
elements of Σ need to be computed to obtain the diagonal of Q̄−1 when L is sparse such that most of Lki

2891

Li and Song

is 0. A linear solver, PARDISO, implements this method; for algorithmic details of PARDISO see Petra
et al. (2014a) and Petra et al. (2014b). Using PARDISO significantly reduces the cost of computing the
diagonal of Q̄−1, however, it still requires LDL factorization of Q̄ at every iteration.

Semelhago et al. (2020) propose rapid Gaussian Markov Improvement Algorithm (rGMIA), which
factorizes Q̄ and extracts the diagonal of Q̄−1 periodically. rGMIA separates all feasible solutions into
two disjoint sets, S and F , where S contains more promising solutions and is much smaller than F .
There are two search stages in rGMIA: global search computes the CEIs of solutions in both S and F ;
rapid search only computes the CEIs for solutions in S . One global-search iteration is followed by p−1
rapid-search iterations. Because |S |� |F |, the per-iteration computation cost is greatly reduced compared
to Semelhago et al. (2017). One drawback of rGMIA is that the size of S is difficult to optimize; if too
small, it hinders search effectiveness and if too large, the computational benefit may not be fully exploited.
They recommend |S | = p based on experiment results, but this is heuristic. The optimal choice of p is
another open question. rGMIA also utilizes PARDISO, although it can be implemented without PARDISO.

We propose sGMIA that avoids factorizing Q̄ at every iteration while computing the CEI at all solutions at
each iteration. Moreover, unlike rGMIA, sGMIA does not require user-specified parameters and adaptively
selects the algorithm parameter to achieve maximal computational efficiency. Although PARDISO provides
free license for academic users, it requires compiling source files with C++ and Fortran compilers, which
may be a hurdle for less computationally-savvy users. Thus, we present two variations of sGMIA, with
and without PARDISO.

Similar to rGMIA, there are two types of sGMIA iterations: full and SMW iterations. Table 1 summarizes
the linear algebraic operations performed at each full iteration of sGMIA with PARDISO. Let x̃t , Q̄t ,Qt

ε and
µ̄ t be the current best solution at the tth iteration, the GMRF precision matrix, the simulation error precision
matrix of the solutions in X2, and the conditional mean at the tth iteration, respectively. Using PARDISO,
LDL factorization of Q̄t is first performed, then the diagonal of (Q̄t)−1 is computed. Two backsolve
operations using LDL factors are performed to compute the conditional covariance vector corresponding to
x̃t , and the conditional mean. Table 1 presents the computational cost of each step. We use C f ,Cd , and Cb to
denote the costs of LDL factorization, computing the diagonal of the inverse, and a single-vector backsolve
operation, respectively, by PARDISO. As mentioned earlier, exact flops of these operations are difficult to
analyze. From time studies in Semelhago et al. (2020), C f ,Cd and Cb are estimated to be O(n1.4),O(n1.3)
and O(n1), respectively, for a two-dimensional problem. The full iteration ends with computing the CEI
at all solutions and simulating the maximum CEI solution, xt

CEI, as well as x̃t .
In between two full iterations, sGMIA performs several SMW iterations while tracking the cumulative

changes to Q̄ since the last full iteration. Suppose sGMIA performs a full iteration at the tth iteration. In
the next iteration, Q̄t is updated to Q̄t+1 = Q̄t +∆xt

CEI
ext

CEI
e>xt

CEI
+∆x̃t ex̃t e>x̃t , where ∆x = 1/V(Ȳ t+1

2 (x))−
1/V(Ȳ t

2 (x)), if x is simulated in the first t iterations and ∆x = 1/V(Ȳ t+1
2 (x)), otherwise. Note that ∆xt

CEI

and ∆x̃t reflect the changes in the diagonal elements of Qε corresponding to xt
CEI and x̃t , respectively.

Therefore, Q̄t+1 has exactly two elements different from Q̄t , which motivates the use of the SMW formula.

Table 1: The flop analysis for a full iteration of sGMIA with PARDISO

I. LDL factorization Q̄t = LDL> C f

II. Conditional variance diag((Q̄t)−1) Cd

III. Conditional covariance Q̄t\ex̃ Cb

IV. Conditional mean µ̄ t =

 µ1

µ2

+ Q̄t\

 0

Qt
ε (Ȳ 2−µ2)

 Cb +n

Total computation cost: C f +Cd +2Cb +n flops

2892

Li and Song

Let U1 = [ext
CEI

ex̃t] and V1 = [∆xt
CEI

ext
CEI

∆x̃t ex̃t]. Then, Q̄t+1 = Q̄t +U1V>1 and

(Q̄t+1)−1 = (Q̄t)−1− (Q̄t)−1U1

(
I2×2 +V>1 (Q̄

t)−1U1

)−1
V>1 (Q̄

t)−1. (8)

Recall that our goal is to maximize efficiency by computing only necessary elements. To compute the
diagonal of (Q̄t+1)−1, it suffices to compute diag(Q̄t+1)−1 = diag(Q̄t)−1− diag

(
(Q̄t)−1U1A1

)
, where

A1 ,
(
I2×2 +V>1 (Q̄t)−1U1

)−1 V>1 (Q̄t)−1 and diag(Q̄t)−1 is already computed in the tth iteration. Note that
(Q̄t)−1U1 are two columns of (Q̄t)−1, which can be computed from backsolve operations by PARDISO.
Exploiting that (Q̄t)−1U1A1 is a product of n×2 matrix (Q̄t)−1U1 and 2×n matrix A1, the ith diagonal
element of (Q̄t)−1U1A1 can be computed from the inner product of the ith row of (Q̄t)−1U1 and the
ith column of A1. For the conditional covariance vector, (Q̄t+1)−1ex̃t+1 = (Q̄t)−1ex̃t+1− (Q̄t)−1U1A1ex̃t+1 ,
where both terms can be computed from the backsolve operations with PARDISO.

Next, we discuss the conditional mean update. With a slight abuse of notation, let Ȳ t be an n× 1
vector whose elements corresponding to the simulated solutions are equal to their sample means, and the
rest are equal to the corresponding elements of µ . Let δx be δx = Ȳ t+1(x)− Ȳ t(x), where Ȳ t(x) is the
element of Ȳ t corresponding to x. Then, the conditional mean update in (6) can be written as

µ̄
t+1 = µ +(Q̄t+1)−1

(
Qt

ε +∆xt
CEI

ext
CEI

e>xt
CEI

+∆x̃t ex̃t e>x̃t

)(
Ȳ t −µ +δxt

CEI
ext

CEI
+δx̃t ex̃t

)
. (9)

Let b1 satisfy
(

Qt
ε +∆xt

CEI
ext

CEI
e>xt

CEI
+∆x̃t ex̃t e>x̃t

)(
Ȳ t −µ +δxt

CEI
ext

CEI
+δx̃t ex̃t

)
= Qt

ε(Ȳ
t − µ)+b1. From

simple algebra, one can show

b1 =
(

∆xt
CEI

ext
CEI

e>xt
CEI

+∆x̃t ex̃t e>x̃t

)(
Ȳ t −µ

)
+Qt

ε

(
δxt

CEI
ext

CEI
+δx̃t ex̃t

)
+
(

∆xt
CEI

ext
CEI

e>xt
CEI

+∆x̃t ex̃t e>x̃t

)(
δxt

CEI
ext

CEI
+δx̃t ex̃t

)
. (10)

Because b1 is a vector with only two nonzero entries corresponding to xt
CEI and x̃t , it costs only a few

flops to compute. Thus, the computational bottleneck of (9) is (Q̄t+1)−1
(
Qt

ε(Ȳ
t −µ)+b1

)
. Substituting

(Q̄t+1)−1 with (Q̄t)−1− (Q̄t)−1U1A1,(
(Q̄t)−1− (Q̄t)−1U1A1

)(
Qt

ε(Ȳ
t −µ)+b1

)
= (Q̄t)−1Qt

ε(Ȳ
t −µ)+(Q̄t)−1b1− (Q̄t)−1U1A1

(
Qt

ε(Ȳ
t −µ)+b1

)
,

where the first term is already computed in the last iteration (See Part IV in Table 1) and the second term
is a linear combination of two columns of (Q̄t)−1 corresponding to x̃t and xt

CEI. The last term is a product
of n×2 matrix (Q̄t)−1U1 and 2×1 vector A1

(
Qt

ε(Ȳ
t −µ)+b1

)
, where the former is already computed

for the conditional variance update.
We extend the same idea to the (t + i)th iteration for i > 1. Suppose there are m distinct solutions,

x1, . . . ,xm, simulated between the tth and the (t + i)th iterations. Note that m ≤ 2i because sGMIA
samples the current best and the maximum CEI solution at each iteration. Define Ui = [ex1 . . . exm] and
Vi = [∆x1ex1 . . . ∆xmexm], where ∆s record the changes in Qε from tth iteration. Then UiV>i = Q̄t+i− Q̄t

is a matrix with m nonzero diagonal elements and 0s elsewhere. Similar to (8), we have

(Q̄t+i)−1 = (Q̄t)−1− (Q̄t)−1Ui

(
Im×m +V>i (Q̄

t)−1Ui

)−1
V>i (Q̄

t)−1,

which is then used to compute the diagonal of (Q̄t+i)−1 and (Q̄t+i)−1ex̃t+1 . The conditional mean is updated
as

µ̄
t+i = µ +(Q̄t+i)−1

(
Qt

ε +
m

∑
j=1

∆x j ex j e
>
x j

)(
Ȳ t −µ +

m

∑
j=1

δx j ex j

)
,

2893

Li and Song

Table 2: The flop analysis for the ith SMW iteration of sGMIA with PARDISO

SMW formula: (Q̄t+i)−1 = (Q̄t)−1(Q̄t)−1Ui
(
Im×m +V>i (Q̄t)−1Ui

)−1 V>i (Q̄t)−1

I. Preparation Ai ,
(
Im×m +V>i (Q̄t)−1Ui

)−1 V>i (Q̄t)−1 Total: ≤ 8i2n+2in+2Cb +
20
3 i2 +2i

1. (Q̄t)−1Ui = Q̄t\Ui ≤ 2Cb

2. V>i (Q̄t)−1 =


∆1

. . .

∆m

((Q̄t)−1Ui
)> ≤ 2in

3. V>i (Q̄t)−1Ui ≤ 4i2

4. Im×m +V>i (Q̄t)−1Ui ≤ 2i

5. LU decomposition: Im×m +V>i (Q̄t)−1Ui = LU ≤ 8
3 i2

6. L>\
(
V>i (Q̄t)−1) ≤ (2i)2n

7. U>\
(
L>\

(
V>i (Q̄t)−1)) ≤ (2i)2n

II. Conditional variance diag(Q̄t+i)−1 Total: ≤ 4in

1. Compute the diagonal of (Q̄t)−1UiAi ≤ 4in−n

2. diag(Q̄t+i)−1 = diag(Q̄t)−1−diag
(
(Q̄t)−1UiAi

)
n

III. Conditional covariance (Q̄t+i)−1ex̃ Total: ≤ 4in

1. Aiex̃ 0

2. (Q̄t)−1Ui(Aiex̃) ≤ 4in−n

3. (Q̄t+i)−1ex̃ = (Q̄t)−1ex̃− (Q̄t)−1Ui(Aiex̃) n

IV. Conditional mean Total: ≤ 4in+n+4in2 +Cb +10i

1. bi ,


∆1

. . .

∆m

(ȳ−µ)+Qt
ε


δ1

...

δm

+


∆1

. . .

∆m




δ1

...

δm

 ≤ 10i

2. Qt
ε (Ȳ −µ)+bi ≤ 2i

3. Ai
(
Qt

ε (Ȳ −µ)+bi
)

≤ 4in2−2i

4. (Q̄t)−1Ui
(
Ai
(
Qt

ε (Ȳ −µ)+bi
))

≤ 4in−n

5. (Q̄t)−1bi = Q̄t\bi Cb

6. µ̄ t+i = µ̄ t +(Q̄t)−1bi− (Q̄t)−1Ui
(
Ai
(
Qt

ε (Ȳ −µ)+bi
))

2n

Total computation cost: ≤ 8i2n+14in+n+4in2 +3Cb +
20
3 i2 +12i flops

where δ s track the changes in Ȳ from tth iteration. Similar to (10), we define bi to satisfy(
Qt

ε +∑
m
j=1 ∆x j ex j e>x j

)(
Ȳ t −µ +∑

m
j=1 δx j ex j

)
= Qt

ε(Ȳ
t −µ)+bi. Note that bi is a vector of m nonzero

entries corresponding to x1, . . . ,xm and all other entries are 0, which again simplifies the conditional mean
update as in the (t +1)th iteration.

The computation details and the corresponding costs at the ith SMW iteration after the last full iteration
are summarized in Table 2. Note that the total computation cost is increasing in i, which implies the benefit
of the SMW formula diminishes as SMW iterations continue after the last full iteration. The computation
order in Table 2 is a result of careful flop analyses. For instance, there are several ways to compute Ai
in Step I and we present the most efficient order of linear algebraic operations to compute Ai in I.1–I.7.
Therefore, it is important to follow the order of computation outlined in Table 2 to maximize efficiency.

To summarize, sGMIA repeats one expensive full iteration and several cheaper SMW iterations. Suppose
we perform the full iteration every p iterations, where p is a constant much smaller than n. Then, the

2894

Li and Song

per-iteration computational cost of sGMIA is

1
p

(
C f +Cd +2Cb +n+

p−1

∑
i=1

(8i2n+14in+n+3Cb +4in2 +
20
3

i2 +12i)

)

=
(C f +Cd−Cb)

p
+

(
8
3

n+
20
9

)
p2 +

(
3n+2n2 +

8
3

)
p− 14

3
n+3Cb−2n2−

44
9
.

(11)

Because (C f +Cd −Cb)/p ≈ O(n1.4), this is the leading order of (11). The rest of (11) is linear in n.
Semelhago et al. (2020) show that the per-iteration computational cost of rGMIA is

(C f +Cd +2Cb +6n)
p

+
7
3

p3 +
8
3

p2 +(4n+8)p+7n+Cb +1, (12)

if |S |= p, which is the choice recommended by the authors. Notice that (12) has the same leading order
as (11). However, sGMIA computes CEIs at all feasible solutions every iteration so that its search progress
is not compromised from that of the original GMIA, whereas rGMIA only computes the CEI in S and
restricts its search within S during rapid search.

The version of sGMIA without PARDISO is presented in Tables 3–4. The full iteration (Table 3) now
computes the entire inverse of the sparse matrix Q̄t whose cost is denoted by Ci. From a Matlab time
study, Ci is estimated to be O(n2.2) for a two-dimensional problem. Table 4 only contains the steps of a
SMW iteration different from those in Table 2. The per-iteration computational cost of sGMIA without
PARDISO is

1
p

(
Ci +2n2n+n2 +

p−1

∑
i=1

(8i2n+18in+4in2 +
20
3

i2 +12i)

)

=
Ci +2n2n+n2

p
+

(
8
3

n+
20
9

)
p2 +

(
n+2n2 +

8
3

)
p− 23

3
n−2n2−

44
9
.

Again, the leading order, O(n2.2), is from the full iteration.
Note that with PARDISO, the per-iteration computational costs of both sGMIA and rGMIA are cheaper

than that of a continuous GP update in (4).

Table 3: The flop analysis for a full iteration of sGMIA without PARDISO

I. Computing inverse (Q̄t)−1 = inv(Q̄t) Ci

II. Conditional variance and covariance diag(Q̄t)−1 and (Q̄t)−1ex̃ 0

III. Conditional mean µ̄ t =

 µ1

µ2

+(Q̄t)−1

 0

Qt
ε (Ȳ 2−µ2)

 2n2n+n2

Total computation cost: Ci +2n2n+n2 flops

Table 4: Changes in the ith SMW iteration of sGMIA without PARDISO

I. Preparation Ai ,
(
Im×m +V>i (Q̄t)−1Ui

)−1 V>i (Q̄t)−1 Total: ≤ 8i2n+2in+ 20
3 i2 +2i

1. (Q̄t)−1Ui 0

IV. Conditional mean Total: ≤ 8in+4in2 +10i

5. (Q̄t)−1bi ≤ 4in−n

Total computation cost: ≤ 8i2n+18in+4in2 +
20
3 i2 +12i flops

2895

Li and Song

5 ADAPTIVE PARAMETER SELECTION

A question remains to determine the best value of p to minimize the per-iteration computational cost of
sGMIA. For sGMIA with PARDISO, p minimizing the overall order of (11) is p≈ O(n0.4/3). However,
this does not provide a practical guidance on choosing p. Instead, we implement the following empirical
method to adaptively adjust the length of SMW iterations.

Let t0 be the computation time of a full iteration, and t1, t2, . . . , tp−1 be those of the next p−1 SMW
iterations. Then, the per-iteration computational cost is minimized, if p satisfies

t0 + t1 + · · ·+ tp−1

p
<

t0 + t1 + · · ·+ tp−1 + tp

p+1
⇐⇒ tp >

1
p
(t0 + t1 + · · ·+ tp−1). (13)

That is, the cost of the next SMW iteration is larger than the current per-iteration average.
Although t0, t1 . . . , tp−1 can be measured on the fly, the next-iteration time, tp, is unknown a priori.

Exploiting that the overall cost of the ith SMW iteration is quadratic in i from Tables 2 and 4, we fit a
quadratic regression model in i for ti after running a reasonably large number of SMW iterations, and use
the predicted tp in (13). We quit the SMW iterations when the inequality (13) is satisfied and perform a
full iteration.

6 EXPERIMENT RESULTS

In this section, we use the (s, S) inventory problem from Koenig and Law (1985) to contrast the performances
of sGMIA and rGMIA. We choose the decision variables to be (x1, x2) = (s, S− s), and the objective
function is the expected value of the cost over a 30-day period. The feasible region for (x1,x2) is set to
be X = [1, . . . ,100]× [1, . . . ,100]. All other parameters are identical to those used in Salemi et al. (2019).
Based on 500,000 replications of simulation at each feasible solution, the optimal solutions is estimated
to be (x1,x2) = (17,36) with expected cost $106.14.

To estimate the initial parameteres of the GMRF, we apply the generalized method of moments (GMM)
approach by Song and Dong (2018). For all experiments below, we choose 10 initial central design points
by Latin hypercube sampling and 80 additional design points are selected by the slim-GMM algorithm in
Song and Dong (2018). At all design points, 10 replications were run to estimate the parameters. Song
and Dong (2018) show that the computation time for GMM does not depend on n, which makes it much
faster than maximum likelihood estimation when n is large. Moreover, the GMM estimators tend to be
more stable than maximum likelihood estimators when the initial sample size is small to moderate.

In the following sections, we compare sGMIA and rGMIA in terms of their computational time as
well as search progress. For rGMIA, we test two choices of p, p = 100 and 200, and set |S | = p. For
sGMIA, to determine the length of SMW iterations in each period, we fit a quadratic regression model in
i for ti. For sGMIA with PARDISO, we first fit a model after 20 SMW iterations. For the version without
PARDISO, p tends to be larger as a full iteration is more expensive. Therefore, the regression model is fitted
after 100 SMW iterations. We do not refit the regression within the period unless the relative difference
between predicted time and the actual time exceeds 0.2. Both sGMIA and rGMIA are run with and without
PARDISO. All experiments are run on a single thread of Intel® Core™i5-9600K CPU (3.70GHz) with
16.0 GB RAM.

6.1 COMPUTATIONAL TIME COMPARISON OF sGMIA AND rGMIA

Table 5 shows the average time of full/global-search and SMW/rapid-search iterations, and the per-iteration
computational cost for both sGMIA and rGMIA with or without PARDISO. Notice that per-iteration time
of sGMIA is longer than that of rGMIA across all settings. However, considering that sGMIA computes
CEIs at all solutions every iteration, we argue that the computation time of sGMIA is quite comparable to
that of rGMIA, especially without PARDISO. Also, notice that efficiency of rGMIA depends heavily on
the choice of p, however, it is difficult to choose the optimal p prior to running simulations.

2896

Li and Song

Table 5: Average computation time obtained from 50 macro runs of 2,000 iterations of sGMIA and rGMIA
applied to the (s,S) inventory problem. Standard errors are provided in parentheses.

With PARDISO Without PARDISO
Algorithm sGMIA rGMIA sGMIA rGMIA

p value Adaptive p = 100 p = 200 Adaptive p = 100 p = 200
Full (Global-search) Iteration 0.431 0.186 0.327 6.754 6.889 7.037

Time (s) (0.005) (0.004) (0.009) (0.047) (0.063) (0.131)
SMW (Rapid-search) Iteration 0.010 0.004 0.008 0.037 0.004 0.011

Time (s) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)
Per-iteration 0.012 0.006 0.009 0.079 0.076 0.050

Time (s) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001)

(a) With PARDISO (b) Without PARDISO

Figure 1: The trajectory of the objective function value at the current best plotted against run time averaged
across 50 macro runs.

For sGMIA with PARDISO, the mode of p values chosen adaptively throughout 50 macro runs is 43.
We noticed p is more variable with PARDISO than without PARDISO. In the latter case, the average p is
170.5 with standard deviation 2.6.

6.2 SEARCH PROGRESS COMPARISON OF sGMIA AND rGMIA

Figure 1 presents the trajectory of the objective function at the current best solution found by each algorithm
against its run time. Each curve is a time average of 50 macro runs of each algorithm. Figure 1(a) displays
the case with PARDISO. Both sGMIA and rGMIA with p = 100 exhibit similar search progresses, whereas
rGMIA with p = 200 is the slowest among three algorithms, which again shows that the performance of
rGMIA is quite sensitive to the choice of p. Figure 1(b) shows performances of the algorithms without
PARDISO. Notice that the search progress of sGMIA is much faster than both settings of rGMIA.

7 CONCLUSIONS

In this paper, we propose sGMIA that achieves the same search progress as GMIA with significantly
reduced computational cost. Rigorous flop analyses show that the per-iteration computational cost of
sGMIA with PARDISO is smaller than that of a continuous GP-based algorithm and of the same order
as rGMIA. We also provide a version of sGMIA without PARDISO. Another salient feature of sGMIA is
that it monitors computational cost of each iteration and adaptively chooses its parameter to achieve the

2897

Li and Song

smallest per-iteration computational cost. The empirical results demonstrate competitiveness of sGMIA in
both computation time and search progress.

ACKNOWLEDGMENTS

This research is supported by NSF DMS-1854659 and the Institute of Cyberscience seed grant program at
the Pennsylvania State University.

REFERENCES
Frazier, P. I. 2018. “A Tutorial on Bayesian Optimization”. https://arXiv:1807.02811, accessed 10th February 2020.
Frazier, P. I., J. Xie, and S. E. Chick. 2011. “Value of Information Methods for Pairwise Sampling with Correlations”. In

Proceedings of the 2011 Winter Simulation Conference, edited by S. Jain, R. R. Creasey, J. Himmelspach, K. P. White,
and M. Fu, 3974–3986. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Jones, D. R., M. Schonlau, and W. J. Welch. 1998. “Efficient Global Optimization of Expensive Black-Box Functions”. Journal
of Global Optimization 13(4):455–492.

Koenig, L. W., and A. M. Law. 1985. “A Procedure for Selecting a Subset of Size m Containing the l Best of k Independent
Normal Populations. with Applications to Simulation”. Communications in Statistics B14(3):719–734.

Petra, C. G., O. Schenk, and M. Anitescu. 2014. “Real-Time Stochastic Optimization of Complex Energy Systems on
High-Performance Computers”. Computing in Science Engineering 16(5):32–42.

Petra, C. G., O. Schenk, M. Lubin, and K. Gäertner. 2014. “An Augmented Incomplete Factorization Approach for Computing
the Schur Complement in Stochastic Optimization”. SIAM Journal on Scientific Computing 36(2):C139–C162.

Rasmussen, C., and C. Williams. 2006. Gaussian Processes for Machine Learning (Adaptive Computation and Machine
Learning). MA: The MIT Press.

Rue, H., and L. Held. 2005. Gaussian Markov Random Fields: Theory and Applications. Chapman & Hall/CRC Monographs
on Statistics & Applied Probability. New York: Chapman and Hall/CRC.

Salemi, P., E. Song, B. L. Nelson, and J. Staum. 2019. “Gaussian Markov Random Fields for Discrete Optimization via
Simulation: Framework and Algorithms”. Operations Research 67(1):250–266.

Semelhago, M., B. L. Nelson, E. Song, and A. Wächter. 2020. “Rapid Discrete Optimization via Simulation with Gaussian
Markov Random Fields”. To appear in INFORMS Journal on Computing.

Semelhago, M., B. L. Nelson, A. Wächter, and E. Song. 2017. “Computational Methods for Optimization via Simulation Using
Gaussian Markov Random Fields”. In Proceedings of 2017 Winter Simulation Conference, edited by W. K. V. Chan,
A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, 2080–2091. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers, Inc.

Song, E., and Y. Dong. 2018. “Generalized Method of Moments Approach to Hyperparameter Estimation for Gaussian Markov
Random Fields”. In Proceedings of 2018 Winter Simulation Conference, edited by M. Rabe, A. A. Juan, N. Mustafee,
A. Skoogh, S. Jain, and B. Johansson, 1790–1801. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers,
Inc.

Sun, L., L. J. Hong, and Z. Hu. 2014. “Balancing Exploitation and Exploration in Discrete Optimization via Simulation Through
a Gaussian Process-Based Search”. Operations Research 62(6):1416–1438.

Takahashi, K., J. Fagan, and C. M. S.. 1973. “Formation of a Sparse Bus Impedance Matrix and its Application to Short
Circuit Study”. In PICA Conference Proceedings, 63–69: New York : Institute of Electrical and Electronics Engineers.

Xie, J., P. I. Frazier, and S. E. Chick. 2016. “Bayesian Optimization via Simulation with Pairwise Sampling and Correlated
Prior Beliefs”. Operations Research 64(2):542–559.

AUTHOR BIOGRAPHIES
XINRU LI is a PhD student in the Department of Industrial and Manufacturing Engineering at the Penn State University.
Her research interests include simulation optimization, and computer experiments. Her email address is xul277@psu.edu and
her website can be found at https://sites.google.com/view/xinruli.

EUNHYE SONG is the Harold and Inge Marcus Early Career Assistant Professor in the Department of Industrial and
Manufacturing Engineering at the Penn State University. Her research interests include simulation design of experiments,
simulation uncertainty and risk quantification, optimization via simulation under input model risk and large-scale discrete
optimization via simulation. She has been serving on the INFORMS-Simulation Diversity committee since 2018. Her email
address is eus358@psu.edu and her website can be found at http://eunhyesong.info.

2898

https://arXiv:1807.02811
mailto://xul277@psu.edu
https://sites.google.com/view/xinruli
mailto://eus358@psu.edu
http://eunhyesong.info

	INTRODUCTION
	GP-BASED DOVS
	COMPUTATIONAL COMPARISON OF CONTINUOUS GP AND GMRF INFERENCE
	CONTINUOUS GP UPDATE AND INFERENCE
	GMRF UPDATE AND INFERENCE

	SMART LINEAR ALGEBRAIC OPERATIONS FOR GMIA
	ADAPTIVE PARAMETER SELECTION
	EXPERIMENT RESULTS
	COMPUTATIONAL TIME COMPARISON OF sGMIA AND rGMIA
	SEARCH PROGRESS COMPARISON OF sGMIA AND rGMIA

	CONCLUSIONS

