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Abstract

We consider the security of two of the most commonly used cryptographic primitives—
message authentication codes (MACs) and pseudorandom functions (PRFs)—in a multi-user
setting with adaptive corruption. Whereas is it well known that any secure MAC or PRF is also
multi-user secure under adaptive corruption, the trivial reduction induces a security loss that is
linear in the number of users.

Our main result shows that black-box reductions from “standard” assumptions cannot be
used to provide a tight, or even a linear-preserving, security reduction for adaptive multi-user
secure deterministic stateless MACs and thus also PRFs. In other words, a security loss that
grows with the number of users is necessary for any such black-box reduction.

1 Introduction

Message authentication codes (MACs) are one of the most fundamental cryptographic primitives.
MACs are secret-key primitives that enable a party to produce a “tag” for messages in such a way
that, while anyone possessing the secret key can verify the validity of the tag, an adversary without
access to the key is unable to forge a correct tag for a message. This allows the participating
parties to use the tags to confirm that a tagged message is authentic—that is, that it originated
from a trusted sender and was delivered without modification. A pseudorandom function (PRF) is
a related primitive which can easily be used to construct a MAC; in addition to being unforgeable
by an adversary, the output (“tag”) from a PRF is also pseudorandom (i.e., indistinguishable from
true randomness to the adversary).

Multi-user Security and Adaptive Corruptions MACs and PRFs are also some of the most
commonly used cryptographic primitives in practice; as such, they are often deployed in contexts
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with huge numbers of users. For instance, MACs are used in protocols for secure key exchange (as
first formalized in [DH76]), including the well-known and widely employed TLS protocol [DA99,
DR06,DR08], which is used today by major websites with billions of daily active users. A natural
question, then, is to what extent the multi-user setting in which MACs or PRFs are practically
employed affects the security of these primitives. In particular, in a multi-user setting it is natural
to consider an adaptive adversary who may decide to corrupt a subset of the users (and as a result
of the corruption receive their secret keys); given such an adversary, we would like to guarantee
that uncorrupted users’ instances remain secure. Indeed, various forms of multi-user security have
been considered since the work of Bellare et al. [BCK96] (see also e.g., [BBM00, BPS00, BRT12,
ML15,Tes15]). In recent work, Bader et al. [BHJ+15] explicitly consider a notion of adaptive multi-
user security for signature schemes and MACs. They remark that a simple “guessing” reduction,
originally proposed in [BCK96] for multi-user security of PRFs without corruption, shows that any
single-user secure MAC is adaptively multi-user secure. Specifically, given a multi-user adversary
that runs, say, ` instances of a MAC, one can construct a single-user adversary that, given an
instance of the MAC, simulates the game for the multi-user adversary by embedding its own
instance into a random one of the multi-user instances and generating ` − 1 keys to simulate the
rest of the instances (including returning the respective keys for corruption queries). If the multi-
user adversary picks the correct instance to break by forging a tag, then the single-user adversary
can use the forgery it returns to win its own game.

Security loss and linear-preserving reductions. The above argument shows that any “single-
user” secure MAC also is multi-user secure under adaptive corruption; a similar argument holds also
for PRFs [ACD+19]. However, security is only “polynomially” preserved; in a concrete sense, the
reduction incurs a significant security loss [Lub96], as one might note that the single-user adversary
we describe is far less efficient than the multi-user adversary on which it is based. In particular,
in a setting where we have a large number ` of instances available to the adversary, the single-user
adversary’s probability of success is indeed reduced by a proportionate factor of `. As discussed in
works such as [ML15, Tes15], this has considerable implications on the concrete security of such a
primitive in a setting where a large number of instances might be in use at once. More formally, the
security loss is defined as the “work”, or expected running time, required by the reduction to break
the underlying assumption (in the above example, single-user security) using a particular adversary
against a primitive (adaptive multi-user security) as an oracle, divided by the work required by
the adversary to break the primitive. Intuitively, the “best possible” type of reduction is one with
a constant security loss, or a tight [Lub96] reduction, which guarantees that the primitive will
inherit roughly the same level of concrete security as the underlying assumption. A reduction with
a security loss equal to a fixed polynomial p(n) in the security parameter, also known as a linear-
preserving reduction, is still intuitively desirable. The “guessing” reduction above, however, has a
security loss of `, or the number of instances in the multi-user security game, and so it is neither
tight nor linear-preserving. A natural question, then, is whether we can do better than this trivial
reduction and construct a provably secure MAC with a linear-preserving reduction.

In fact, the work of [BHJ+15] shows how to overcome the security loss of this “trivial” guessing
reduction: as a key building block towards an “almost-tightly secure” authenticated key exchange
protocol, the authors present an elegant construction of an adaptively multi-user secure digital
signature scheme with a linear-preserving reduction. In particular, the security loss of their con-
structions is linear in the security parameter n, and independent of the number of users!
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On the importance of determinstic tagging. However, the signature construction given
in [BHJ+15] requires introducing randomness into the signing algorithm. While this scheme can
indeed be interpreted as a MAC, the fact that the signing algorithm is randomized means that
the resulting MAC also becomes randomized. While some theoretical textbooks (see e.g., [Gol09])
allow the tagging mechanism in the definition of a MAC to be randomized, practical texts (e.g., the
Handbook of Applied Cryptography [MVO96]), as well as NIST standardizations [Bar16], require
the tagging algorithm to be deterministic. As far as we know, all constructions used in practice, as
well as all standardized constructions of MACs, are deterministic; indeed, there are several good
reasons for sticking to deterministic constructions. First, reliable randomness is hard to generate,
and thus randomized constructions are avoided in practice for time-critical primitives that are
used repeatedly and on a large scale, as is the case for MACs. Furthermore, any PRF, when
viewed as a MAC, is by definition deterministic, and additionally is internally stateless ; in fact, we
remark that almost all practical MAC constructions are also stateless, a notable exception being
GMAC [Dwo07].1 Obtaining a tightly secure PRF in a multi-user setting requires, at a minimum,
a tightly secure deterministic and stateless MAC.

As such, the current state of affairs leaves open the important problem of determining the
concrete multi-user security of the MACs and PRFs used in practice today. In particular, focusing
on the case of stateless MACs, we consider the question of whether either deterministic MACs or
PRFs can, in an adaptive multi-user setting, have a security loss that is independent of the number
of users:

Can there exist tight or linear-preserving reductions for proving the adaptive multi-user
security of any deterministic (and stateless) MAC or any PRF based on some “standard
assumption”?

At first glance, it may seem that answering this question is trivial, since any randomized MAC can
be made deterministic. Indeed, as shown in [Gol09] for signature schemes, one may simply fix the
randomness to be the result of applying a PRF to the input message. This construction, however,
only preserves the tightness of the reduction if the underlying PRF itself is tightly secure in the
adaptive multi-user setting—however, since any such PRF is already trivially a (deterministic)
MAC, we end up precisely where we started.

1.1 Our Results

Our main result, in fact, provides a strong negative answer to the above question. We demonstrate
that there exists no linear-preserving (or, hence, tight) black-box reduction for basing adaptive
multi-user security of any deterministic MAC, and thus also any PRF, on any secure “standard”
assumption. By a “standard” assumption, we here refer to any assumption that can be modeled as
a game, or an interaction between a challenger C and a polynomial-time adversary A, that proceeds
in an a priori bounded number of rounds—following [Pas11], we refer to this class of assumptions
as bounded-round assumptions.

Theorem 1 (Informal). If there exists a linear-preserving black-box reduction R for basing adap-
tive multi-user security of a deterministic MAC on some bounded-round assumption C, then C can
be broken in polynomial time.

1GMAC is deterministic but stateful; it keeps an internal counter to use as an additional non-reusable input, or
nonce. Stateful MACs such as GMAC are not subject to the results we prove here.
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In particular, we show that any such black-box reduction (to a secure bounded-round assump-
tion) requires a security loss of Ω(

√
`), where ` is the number of users.

We remark that since any PRF or deterministic digital signature scheme trivially implies a
deterministic MAC (via a tight security reduction), our theorem also directly rules out linear-
preserving black-box reductions for basing adaptive multi-user security of PRFs or deterministic
signatures on standard assumptions.

Related results. A few prior works have in fact dealt with this question for other types of
primitives. Non-adaptive multi-user security was originally introduced by Bellare, Canetti, and
Krawczyk [BCK96] for pseudorandom function families; the authors also introduced the original
version of the classical “guessing” reduction from multi-user to single-user security in that context.
As mentioned above, [BHJ+15] introduced adaptive multi-user security in the context of signatures
and MACs (and presented applications for secure key exchange), and [ACD+19] considered it in
the context of PRFs. Recently, there has been a wealth of positive results demonstrating the
achievability of tight reductions from multi-user to single-user security of authenticated encryption
protocols and block cipher-based schemes (see, e.g., [BHJ+15,HT16,LMP17,BHT18,HTT18]); some
of these results, as we have noted, consider the case of randomized or stateful (nonce-based) MACs
such as GMAC, which are not subject to our security bound.

Concerning negative results, several prior works have ruled out certain restricted classes of
linear-preserving reductions from multi-user security of various primitives. Bellare et al. [BBM00]
first introduced the (non-adaptive) notion of multi-user security for public-key encryption and
demonstrated that there does not exist an efficient generic reduction from multi-user to single-user
security which works for every encryption scheme. But one may still hope to circumvent this by
constructing a specific encryption scheme for which such a reduction exists, or by directly basing
multi-user security on some other (standard) assumption; indeed, [BBM00] does demonstrate cer-
tain schemes for which security loss can be avoided. A later work by Jager et al. [JSSOW17] proves
a negative result for authenticated encryption, showing that certain restricted types of black-box
reductions—in particular, “straight-line” (i.e., non-rewinding) reductions—from adaptive multi-
user security to single-user security of any authenticated encryption scheme possessing a strong
“key uniqueness” property (i.e., that any two keys which produce the same ciphertexts for some
polynomial number of inputs must agree on all inputs) must inherit a similarly large security loss.

Most relevantly to our work, Chatterjee et al. [CMS12] show a negative result for the case
of generic reductions from adaptive multi-user to single-user security of MACs. Specifically, the
authors propose a “collision-finding” attack on multi-user MAC security whose success probability
increases by a factor of roughly ` (the number of instances) in a multi-user setting as compared to its
single-user analogue against an idealized MAC. Similarly to [BBM00], this elegantly demonstrates
that a security loss is inherent in generic reductions from multi-user to single-user security; however,
their results still leave open the question of whether the same holds true for a reduction to a specific
MAC (where, as [BBM00] shows for public-key encryption, there may be more effective single-
user attacks), let alone whether it holds for directly reducing multi-user security to an underlying
assumption without relying on single-user security.

In contrast to the above results, the bound we show here applies to any (i.e., not a restricted
class of) black-box reduction and to any “standard” (bounded-round) assumption; additionally, it
applies to any construction of the primitives we consider (i.e., deterministic MACs and PRFs).

Our work builds on a line of research on using “meta-reductions” [BV98] to prove impossi-
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bility results for black-box reductions, and in particular to study the inherent security loss of
(single-user) secure digital signatures. Most recently, expanding upon earlier results [Cor02,KK12,
HJK12,BJLS16] which dealt with restricted reductions, [MP18] provides a security loss bound rul-
ing out linear-preserving reductions for single-user security of a primitive called unique signature
schemes. While we rely on a significant amount of insight from these prior results (and in particu-
lar from [MP18]), adapting their techniques to our setting is quite non-trivial (as we shall explain
below). Indeed, as far as we are aware, all known black-box separations using the meta-reduction
paradigm only apply to primitives that embody some form of uniqueness or rerandomizability
(which in turn can be viewed as a “distributional uniqueness”) property—we will return to what
this uniqueness property means shortly (and how it is used). In contrast, our impossibility result
does not (explicitly) refer to or require a primitive that embodies such a property.

Summarizing the above discussion, as far as we know, our results not only constitute the first
“complete” black-box lower bound (in the sense that we consider “unrestricted” reductions) on
the security loss of any primitive in the multi-user setting, but also address the security of two
of the most fundamental primitives—MACs and PRFs—used practically in a multi-user setting.
Additionally, we present the first usage of the meta-reduction paradigm to rule out reductions from
a primitive that does not itself embody a uniqueness (or rerandomizability) property.

1.2 Overview

The meta-reduction paradigm. We prove our security loss bound using an adaptation of the
“meta-reduction” paradigm, originally devised in [BV98] (see also [BMV08, HRS09, FS10, Pas11,
GW11,AGO11,BBF13,BFW16] for related work concerning meta-reductions). The paradigm was
originally used to show black-box impossibility results, but Coron in [Cor02] pioneered the usage
of meta-reductions to instead show lower bounds on security loss ; this line of work was continued
in [KK12, BJLS16, MP18]. Meta-reductions were first used in relation to multi-user security in
[JSSOW17], which dealt with multi-user to single-user reductions for authenticated encryption
(satisfying a key-uniqueness property).

At a high level, the meta-reduction paradigm proves the impossibility of any black-box reduction
from a primitive Π to a secure assumption C.2 To illustrate this approach for the case of an
impossibility result, consider attempting to prove the impossibility of such a reduction R that breaks
the assumption C by using black-box access to some “ideal adversary” A (which in turn breaks
security of the constructed primitive). By definition, if A breaks the primitive with probability 1,
then RA should break C with non-negligible probability, even if we construct A to be inefficient
(e.g., win by brute force).

It remains then to show that, if such an R exists, then C can be broken efficiently, contradicting
the assumption of C’s security. While RA itself clearly will not break C efficiently if A uses brute
force, one can instead create an efficient meta-reduction B that efficiently “emulates” A while
running R. If one can show that the meta-reduction B always succeeds in emulating the real
interaction RA, then the meta-reduction breaks C with non-negligible probability.

On the other hand, it might be impossible to create a meta-reduction that emulates RA per-
fectly; instead, it might be the case that we can construct B that emulates RA with probability
at least 1 − p(n) for some inverse polynomial p(·). In this case, if RA breaks C with probability

2Consider C to be the “challenger” for the security game; an efficient adversary “breaks” C by forcing it to output
Accept with probability non-negligibly better than a certain threshold t.
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non-negligibly greater than p(n), then B, being identically distributed to RA except with proba-
bility p(n), will in fact still break C with non-negligible probability, thus ruling out any such R.
By bounding R’s success probability in terms of its running time, this observation can be used to
derive a security loss bound for any reduction R in cases where such reductions may not be fully
impossible.

Rewinding techniques. Of course, a useful meta-reduction requires two important construc-
tions: (1) the ideal and inefficient adversary A, and (2) the meta-reduction B. Most importantly,
while it would be simple to construct an adversary A that breaks C by brute force, B must also be
able to gain enough information by simulating and receiving responses to A’s messages in order to
determine, with high probability, the secret information necessary to break C without brute force.

Coron’s original meta-reduction presents an effective way of accomplishing this in the setting
where A breaks the unforgeability of unique signatures, or, more generally, any “one-more” style
security game where an adversary, after making some number of queries, must then guess the result
of querying a new input. Specifically, if we assume A makes a significant number of queries `(n)
with inputs x1, . . . , x`(n) before brute-forcing its guess (and, importantly, will return ⊥ instead if
the answers to its queries are incorrect), B can make the same set of queries and, rather than
brute-forcing a guess, may instead pick the new input x∗ and rewind the reduction R up to `(n)
different times3, each time replacing a different one of the messages with x∗ in the hopes that R
will provide a valid response that B can use in the main execution.

This rewinding technique in fact can be shown to emulate A except with probability O(1/`(n));
intuitively, this is because, if B is unable to extract a correct response in some rewinding, that
rewinding corresponds to a sequence of randomness where, if it occurs in the non-rewound execution,
A receives an incorrect response to one of its queries and hence does not need to return a forgery.
Hence, at a very high level, for each sequence of messages x1, . . . , x`(n) where B fails to extract a
forgery, B must receive an incorrect response to x∗ in each of the `(n) rewindings, and so there are
`(n) sequences where B can successfully emulate A (as both can return ⊥).

It is important to note where uniqueness of the signature scheme comes in: to ensure that B
is correctly simulating the distribution of A’s messages, we need to make sure that the forgery
extracted by B from R is the same as the forgery that A would have generated. In the case of a
unique signature, we know there can only be a single valid forgery; as such, B indeed generates the
right distribution if it manages to extract a forgery from R.

The case of adaptive multi-user unforgeability. Coron’s meta-reduction was tailored to the
specific case of unique signatures; however, in our case, adaptive multi-user unforgeability—that is,
the security of a MAC—can also be thought of as a type of “one-more” assumption. Specifically, an
adversary against ` instances of a MAC can make `−1 key-opening queries and subsequently guess
the last key in order to break the security of the respective unopened instance (i.e., by guessing
the MAC on an unqueried input); a natural approach to creating a meta-reduction for this case,
then, would be to have B rewind these key-opening queries and try opening the final instance in
the rewindings, similar to Coron’s treatment of queries for unique signatures. However, there are
several complications with this approach that, for various reasons, did not need to be considered

3In fact, in Coron’s theorem, it was sufficient to pick a random one of these rewindings, but this is not sufficient
for our result.
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in [Cor02]; we next present a high-level overview of these issues and how we approach them in this
work.

“Effective” key uniqueness. First, recall that R does not necessarily need to act as an honest
challenger, and so B must have a way to verify that R’s responses to its queries (in this case, key-
opening queries) are correct. As mentioned above, this is why Coron’s results (and those following)
only applied to unique signatures, and why, for the case of adaptive multi-user security, [JSSOW17]
considered only schemes with a key uniqueness property.

We do not want to require any sort of inherent “key uniqueness” for the class of MACs we rule
out; hence, we instead move to considering a more elaborate “ideal” adversary A. In particular,
we let A first make a large number of random tag queries to each instance of the MAC; then,
upon receiving a response to a key-opening query, A will verify that all of the responses to the
tag queries are consistent with the returned key. Towards analyzing this technique, we present an
information-theoretic lemma showing that if the number of queries q(n) is sufficiently larger than
the length of the key n, then, with high probability, any pair of keys that are consistent with one
another on the q(n) tag queries is such that the keys will also agree on another random input (i.e.,
the input for which we produce the forgery to break security of the MAC).

In essence, then, our approach makes keys “effectively” unique in the sense that, with high
probability, they operate indistinguishably on random inputs with respect to our particular ideal
adversary A. As far as we know, this stands in contrast to all prior impossibility results following
the meta-reduction paradigm, which explicitly worked only with primitives where the adversary’s
responses to the queries to be rewound are unique or “distributionally unique” (i.e., rerandomiz-
able).

Reductions with concurrency and rewinding. Furthermore, Coron’s result in [Cor02], as
well as many subsequent security loss bounds proven using meta-reductions (e.g., [KK12,BJLS16,
JSSOW17]) only apply to restricted reductions that are “straight-line” in the sense that R will
never attempt to rewind A and R will always finish executing a single instance of A before starting
another one. In general, reductions may run multiple instances of the adversary concurrently,
which can be highly problematic for rewinding-based meta-reductions, as B may have to rewind a
“nested” instance of its adversary to produce a correctly-distributed output while already in the
middle of rewinding another instance. If many instances need to be rewound concurrently, the
running time of B can potentially be super-polynomial, which fails to uphold the requirement that
B break C efficiently.

Luckily, some recent works have presented meta-reductions that deal with concurrent interac-
tions, primarily by using techniques from concurrent zero-knowledge (see [Pas11,MP18]). We build
on the technique established in the generalization of Coron’s bound given in [MP18], which shows
that B can safely ignore any rewindings which would require any sort of nested rewinding. At a
high level, if R runs few instances of A, then other instances rarely interfere with rewinding during
B, resulting in virtually no change to the failure probability; on the other hand, if R runs many
instances, then the time taken by R compared to A will be the dominant factor in the security
loss, so the increase in failure probability caused by potentially having many ignored rewindings
has very limited relevance in the analysis.

This approach nonetheless requires non-trivial modification to work in our case, due to the
additional caveat that R may attempt to rewind instances of A. While [MP18] relied on a
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“rewinding-proof” construction of A and B where the randomness was determined at the start,
so that the uniqueness property would guarantee only a single possible accepting transcript (thus
making rewinding pointless), recall that we no longer have a guaranteed uniqueness property, but
instead one that holds “most of the time”. Furthermore, we can no longer construct A to be fully
resilient to rewinding, due to the additional complexity of having both tag queries and key-opening
queries; instead, we construct A to be resilient to most rewinding—particularly, all rewinding ex-
cept from the key-opening query phase to the tag query phase—and prove our bound in terms of
how often “meaningful” rewinding (i.e., rewinding that does affect the result) can occur in addition
to the number of instances of A.

This requires some additional care, however: while A can easily be made rewinding-proof (with
the exception of the “meaningful” rewinding), we in fact can only show that B is resilient to
rewinding as long as key uniqueness holds; otherwise, while A can always pick a determinstic one
of the brute-forced keys for a forgery, B cannot necessarily do this efficiently just from the responses
to rewound queries, and so R could theoretically rewind B to try and get multiple different forgeries
to correspond to multiple different keys. We thus require a hybrid argument with an unconditionally
rewinding-proof but inefficient hybrid B′ (which acts identically to B when uniqueness holds and
to A when it does not) for the majority of our analysis, subsequently showing that B′ is identically
distributed to B except in the rare case when uniqueness fails.

Interactive assumptions. Lastly, many of the preceding works were restricted to ruling out
reductions to non-interactive, or two-round, assumptions, since B rewinding the reduction R might
require additional, or different, queries to be made to the challenger C for the underlying assumption,
which cannot be rewound and whose output may be dependent on the number, order, or content of
queries made. However, as demonstrated in earlier rewinding-based meta-reductions such as [Pas11,
MP18], we may once again safely ignore rewindings that contain such external communication as
long as the number of rounds of external communication is bounded by some polynomial r(·) in the
security parameter—that is, as long as the underlying assumption is a bounded-round assumption.

1.3 Outline

We present the definitions necessary for our main theorem in Section 2. Our main theorem state-
ment and a technical overview are given in Section 3, and the detailed proof is given in Section
4. Lastly, Appendices A and B contain a discussion of the adaptation of our proof to the case of
deterministic digital signatures and pseudorandom functions, respectively.

2 Preliminaries and Definitions

We note that the definitions we provide in Sections 2.3 through 2.5 are adapted from [MP18].

2.1 Preliminaries

Let N = {1, 2, 3, . . .} and [n] = {m ∈ N | m ≤ n} = {1, 2, . . . , n}. Take 1n (given as an input to
certain algorithms to represent the security parameter) to be the string of n ones. Let 1P be the
indicator function of some equality or inequality statement P , defined as being 1 when P is true
and 0 otherwise.
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We say a statement is true for “sufficiently large n ∈ N” if there exists N ∈ N such that the
statement holds for all n ≥ N . We shall call a function ε(·) negligible if, for any polynomial p(·),
ε(n) < 1/p(n) for sufficiently large n ∈ N ; conversely, a function is non-negligible or polynomial if
the above is not true.

Interactive Algorithms. We model interaction between algorithms by Turing machine interac-
tion as given in [GMR85]. For oracle-aided algorithms R(·) with deterministic oracles, we assume
that R’s oracle will take as input the current partial transcript of the interaction and return the re-
sult of applying the oracle’s respective “next-message” function to the transcript. Using a stateless
oracle in such a way allows us to consider the case where R can “rewind” its oracle to a previous
point in the interaction by providing an earlier transcript. In fact, we note that even stateful oracles
can be modeled in this way (by “replaying” or reading from the transcript to simulate the state of
the oracle), as can non-deterministic oracles (by sampling a deterministic oracle randomly from a
family of oracles with different fixed randomness); we take advantage of both of these observations
in the proof of our main theorem.

Given oracle-aided algorithm R and interactive algorithms A and C, let RA(x) denote the
distribution over the output of R when interacting with oracle A on common input x, 〈A, C〉(x)
denote the distribution over the output of C after interaction between A and C on common input x
(also provided to oracles if A or C are oracle-aided), and [A ↔ C](x) denote the complete view (all
messages sent, random coins used, and outputs) of the interaction between A and C on common
input x.

If we wish to describe an interaction with certain randomness fixed, we write 〈A, C〉y←a(x) (resp.
[A ↔ C]y←a(x)) to denote that variable y is fixed to value a, or 〈A, C〉y(x) to simply indicate that
y is fixed when the value is clear from context.

2.2 Multi-User Secure MACs under Adaptive Corruption

First, we define the notion of a message authentication code.

Definition 1. We refer to a tuple of efficient (poly(n)-time) algorithms Π = (Gen,Tag,Ver), where:

• Gen(1n)→ k takes as input a security parameter n and outputs a secret key k ∈ {0, 1}n,

• Tagk(m) → σ takes as input a secret key k and a message m from some message space Mn

of size super-polynomial in n, and outputs a tag σ for the message, and

• Verk(m,σ) → {Accept,Reject} takes as input a secret key k, a message m, and a tag σ, and
outputs Accept or Reject denoting whether the tag σ is valid for the message m, specifically in
such a manner that Pr[k ← Gen(1n);Verk(m,Tagk(m)) → Accept] = 1 for any valid message
m ∈Mn,

as a message authentication code (MAC). If, in addition, the following properties hold:

• Tagk(m) is a deterministic function, and

• Verk(m,σ)→ Accept if and only if Tagk(m) = σ,

then we refer to Π as a deterministic MAC.
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Note that we focus here on MACs having both an input (message) and output (tag) space
superpolynomial in the length of a key (the security parameter n), a property which is satisfied by
virtually all standard definitions and constructions.

The traditional notion of security for a MAC states that, given some instance of a MAC (i.e., a
secret key k ← Gen(1n)), an efficient adversary given an oracle for the Tag algorithm is unable to
forge a valid tag for a new message (i.e., return a pair (m,σ) where Verk(m,σ)→ Accept) without
having queried a tag for that message using the oracle. Our definition of multi-user security with
adaptive corruption expands this to a polynomial number `(n) of instances of the MAC, and allows
the adversary to make key-opening queries (i.e., to “corrupt” an instance and recover its key) in
addition to tag queries; the adversary wins if they produce a valid forgery (m,σ) for some instance
without having either queried the tag for m on that instance or corrupted the instance itself.
Formally:

Definition 2. A MAC Π = (Gen,Tag,Ver) is an `(n)-key unforgeable MAC under adaptive
corruption (or adaptively `(n)-key unforgeable) if, for any interactive oracle-aided non-uniform
probabilistic polynomial-time algorithm A, there is a negligible function ε(·) such that, for all n ∈ N,

Pr
[
〈A, C`(n)

Π 〉(1n) = Accept
]
≤ ε(n)

where C`(n)
Π is the interactive challenger that does as follows on input 1n:

• Let (k1, . . . , k`(n))← Gen(1n). Initialize empty transcript τ .
• Upon receiving a tag query (Query, i,m) for i ∈ [`(n)], append ((Query, i,m),Tagki(m)) to τ

and send τ .
• Upon receiving a key-opening query (Open, i) for i ∈ [`(n)], append the tuple ((Open, i), ki)

to τ and send τ .
• Upon receiving a forgery (m∗, σ∗, i∗) from A, output Reject if one of the following three

conditions is true:

– τ contains a key opening query (Open, i∗).
– τ contains an oracle query (Query, i∗,m∗).
– Verki∗ (m

∗, σ∗)→ Reject.

• Otherwise, output Accept.

We call a MAC Π an adaptively multi-key unforgeable MAC if it is adaptively `(n)-key
unforgeable for every polynomial `(·).

For syntactic clarity, we will assume that a machine interacting with a multi-key MAC adversary
will begin interaction with a new instance of the adversary by sending a special message (Init, s),
where s is the “identifier” for the instance, and communicate with the adversary by sending a
partial transcript and receiving a next message as described above for oracle interaction.

2.3 Intractability Assumptions

We define a notion of “game-based security assumptions” as in [Nao03, Pas11]. Informally, an
assumption can be thought of as a pair of a challenger and a threshold function, where an adversary
is able to “break” the assumption by causing the challenger to accept an interaction with probability
non-negligibly greater than the given threshold.
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Definition 3. For polynomial r(·), we call a pair (C, t(·)) an r(·)-round intractability assump-
tion if t(·) ∈ [0, 1] is a function and C is a (possibly randomized) interactive algorithm taking input
1n and outputting either Accept or Reject after at most r(n) rounds of external communication.

Given a probabilistic interactive algorithm A which interacts with C, we say that A breaks
the assumption (C, t(·)) with some non-negligible probability p(·) if, for infinitely many n ∈ N:
Pr [〈A, C〉(1n) = Accept] ≥ t(n) + p(n).

Conversely, we refer to C as secure if there exists no A which breaks C with non-negligible
probability.

Lastly, we call an assumption (C, t(·)) a bounded-round intractability assumption if there
exists some polynomial r(·) such that (C, t(·)) is an r(·)-round intractability assumption.

The general notion of an intractability assumption captures any standard cryptographic as-
sumption, including our earlier definition of adaptive multi-key unforgeability. Specifically, this

would be the unbounded-round assumption (C`(n)
Π , 0) (using the challenger defined in Definition 2).

Clearly, we cannot hope to rule out tight reductions from, say, adaptive multi-key unforgeability to
itself; as such, we focus on ruling out only reductions to bounded-round assumptions, but we note
that virtually all “standard” cryptographic assumptions fall into this category. 4

2.4 Black-Box Reductions

We next formalize what it means to “base the security of one assumption (C1) on another assumption
(C2)”. Intuitively, this requires a proof that, if there exists an adversary breaking C1, then there
likewise must exist an adversary breaking C2, which implies the desired result by contrapositive.

In practice, virtually all reductions are “black-box” reductions, where the adversary breaking
C2 is given by an efficient oracle-aided machine R which interacts in a “black-box” manner with an
adversary which breaks C1 and uses the view of the interaction to break C2. Formally:

Definition 4. Given a probabilistic polynomial-time oracle-aided algorithm R, we say that R is a
black-box reduction for basing the hardness of assumption (C1, t1(·)) on that of (C2, t2(·))
if, given any deterministic algorithm A that breaks (C1, t1(·)) with non-negligible probability p1(·),
RA breaks (C2, t2(·)) with non-negligible probability p2(·).

Furthermore, if on common input 1n RA queries A only on input 1n, we refer to R as fixed-
parameter.

We notably allow reductions to rewind their oracles (by sending a transcript from earlier in the
interaction) and even run multiple, potentially interleaved, instances of their oracle.

The restriction to deterministic oracles A may seem strange at first, but we stress that we can
(and will) in fact simply model a randomized oracle by a family of deterministic oracles (where each
deterministic oracle represents some fixed setting of the randomness). Using deterministic oracles
enables us to reason about cases where the reduction R can rewind or restart the oracle. We
also will restrict to fixed-parameter reductions: this is a restriction inherent to the meta-reduction
paradigm, yet it is a natural one (since, as far as we know, all reductions in practice are indeed
fixed-parameter).

Of course, we can apply the definition of a reduction to adaptive unforgeability as defined above,
using the natural formulation as an intractability assumption:

4An example of a “non-standard” assumption that does not fit this definition would be a non-falsifiable assumption,
e.g., a “knowledge of exponent” assumption (see, e.g., [Dam92]).
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Definition 5. We shall refer to a probabilistic polynomial-time oracle-aided algorithm R as a
fixed-parameter black-box reduction for basing adaptive `(n)-key unforgeability of a
MAC Π on the hardness of an assumption (C, t(·)) if it is a fixed-parameter black-box reduc-

tion for basing the hardness of assumption (C`(n)
Π , 0) on that of (C, t(·)), where C`(n)

Π is as given in
Definition 2.

We refer to a probabilistic polynomial-time oracle-aided algorithm R as a fixed-parameter
black-box reduction for basing adaptively secure unforgeability of a MAC Π on the
hardness of an assumption (C, t(·)) if there exists polynomial `(·) for which R is a fixed-
parameter black-box reduction for basing adaptively secure `(n)-key unforgeability of Π on the
hardness of (C, t(·)).

2.5 Security Loss

Finally, we define a notion of the “inherent efficiency” of a reduction, or the security loss, intuitively
representing a worst-case ratio between the “work” (expected time) needed to break the assump-
tion C2 (i.e., the underlying assumption) and the “primitive” C1 (in our case, adaptive multi-key
unforgeability). If the primitive is significantly easier to break than the underlying assumption, this
indicates that the reduction is intuitively “less powerful” at guaranteeing security for the primitive,
which corresponds to a higher security loss.

Definition 6. Let R be a black-box reduction for basing the hardness of assumption (C1, t1(·)) on
that of (C2, t2(·)). Given any deterministic A, we define the following, where τM(x) denotes the
time taken by an algorithm M in experiment x, rA denotes all random coins used by A and C1 in
the experiment 〈A, C1〉, and rR denotes all random coins used by A, C2, and R in the experiment
〈RA, C2〉:
• SuccessA(n) = PrrA [〈A, C1〉rA(1n) = Accept]− t1(n)

• SuccessRA(n) = PrrR [〈RA, C2〉rR(1n) = Accept]− t2(n)

• TimeA(n) = maxrA(τA([A ↔ C1]rA(1n)))

• TimeRA(n) = maxrR(τRA([RA ↔ C2]rR(1n))).

Then the security loss [Lub96] of R is defined as:

λR(n) = maxA

(
SuccessA(n)

SuccessRA(n)

TimeRA(n)

TimeA(n)

)
If there exists polynomial p(·) for which λR(n) ≤ p(n) given sufficiently large n ∈ N, we call R

linear-preserving. If there exists a constant c for which λR(n) ≤ c given sufficiently large n ∈ N,
we call R tight.

3 Main Theorem

We present our main result, which rules out the possibility of basing the provable security of
a deterministic MAC on any “standard” (bounded-round) assumption with a linear-preserving
reduction:

Theorem 2. Let Π be a deterministic MAC. If there exists a fixed-parameter black-box reduction
R for basing adaptive multi-key unforgeability of Π on some r(·)-round intractability assumption
(C, t(·)) (for polynomial r(·)), then either:
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(1) R is not a linear-preserving reduction, or

(2) there exists a polynomial-time adversary B breaking the assumption (C, t(·)).

As we mentioned in the introduction, Theorem 2 can be generalized fairly directly to apply
as written to several other primitives besides simply deterministic MACs; however, as we focus
on the case of MACs in this paper, we present our result for deterministic MACs in full here and
opt to refer the interested reader to the appendices for detailed discussion of its applications to
other primitives. Specifically, Appendix A shows that we can rule out linear-preserving reductions
from adaptively multi-key unforgeable deterministic digital signature schemes to bounded-round
assumptions, while Appendix B demonstrates that we can rule out linear-preserving reductions from
adaptive multi-key pseudorandomness of a family of functions (i.e., adaptive multi-key PRFs).

To prove Theorem 2, we first present the following crucial lemma, which we prove in full in
Section 4:

Lemma 1. Let Π be a deterministic MAC, and let (C, t(·)) be some r(·)-round intractability
assumption for polynomial r(·). If for some polynomial `(·) there exists a fixed-parameter black-
box reduction R for basing adaptive `(n)-key unforgeability of Π on the hardness of (C, t(·)), then
either R’s security loss is at least

λR(n) ≥
(

1− 1

2`(n)2

)
(
√
`(n)− (r(n) + 2))

for all sufficiently large n ∈ N, or there exists a polynomial-time adversary B that breaks the
assumption (C, t(·)).

Because p(·) in the definition of a linear-preserving reduction is an a priori fixed polynomial,
and in particular cannot depend on `(n), this lemma will prove Theorem 2, as follows:

Proof. Let R be a reduction from adaptive multi-key unforgeability of Π to the hardness of (C, t(·)).
Assume for the sake of contradiction that Lemma 1 is true, yet R is linear-preserving and (C, t(·))
is secure. Because R is linear-preserving, there is some polynomial p(·) such that λR(n) ≤ p(n) for
sufficiently large n. Furthermore, R is by definition a reduction from adaptive `(n)-key unforge-
ability for every polynomial `(n), including, say, `(n) = (2p(n) + r(n) + 3)2, so by Lemma 1 we
have:

λR(n) ≥
(

1− 1

2`(n)2

)
(
√
`(n)− (r(n) + 2)) ≥ 1

2
(2p(n) + 1) > p(n)

which is a clear contradiction.

3.1 Technical Overview

Next, we shall explain the methodology for the proof of Lemma 1 at a high level.
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The ideal adversary. We begin by constructing and investigating an “ideal” adversary A. To
summarize, A will first make q(n) random tag queries (where q(n) is a polynomial to be determined
later) to each of the `(n) instances of the MAC Π, continue by opening all but one of the keys
in a random order (while also verifying that the challenger or R answered its queries consistently
with the opened keys), and lastly, if it received correct responses for the opened instances, use the
information gained from the queries for the remaining instance to attempt to brute-force a forgery
for that instance. (On the other hand, if verification fails, A will “reject”, returning ⊥ instead of
a forgery.)

In virtually all meta-reductions to date, the ideal adversary is able to perfectly brute-force
the challenger’s secret information and break the primitive with probability 1. Here, however,
that is not the case; A is limited to a polynomial number of tag queries (which is necessary for
simulatability) and furthermore has no way to publicly verify whether a certain key or forgery is
correct. The most A can do, in fact, is brute-force the set of all keys consistent with the tag queries
it makes for the unopened instance, pick one of those keys, and use it to generate a forgery in the
hopes that it will match with the key the challenger has selected.

This is where the “key uniqueness” property discussed in the introduction will first factor in.
We show that, since the key picked by the adversary agrees with the key picked by the challenger
on all q(n) tag queries, then it must with overwhelming probability also agree on a large fraction
(1−2n/q(n)) of possible messages. Hence, A will have a 1−2n/q(n) chance of producing a correct
forgery when it evaluates the Tag function using the key it extracts on a random message m∗ (i.e.,
the message it eventually will randomly select for its forgery)—that is, SuccessA(n) ≥ 1− 2n/q(n).

Before proceeding to discuss the meta-reduction, we need to address one final technical issue
with the ideal adversary. Namely, since A works by returning the “next-message” function given
a transcript of the interaction thus far, we need to ensure that R must actually complete the full
interaction with A in order to cause A to accept and return a forgery, rather than potentially guess-
ing a “fake” accepting transcript for a later point in the interaction to “skip” or avoid responding
to certain queries from A. In particular, a reduction R that skips key-opening queries would be
extremely problematic in our analysis of the meta-reduction later on, since the meta-reduction will
rely on R’s responses to these queries to properly emulate the ideal adversary A.

Unfortunately, it turns out that A’s key-opening queries, since they convey no information
besides the instance to open, have low entropy and thus are easy to predict (and skip) by R. To
fix this, we introduce additional “dummy” queries—specifically, random tag queries to instances
whose keys have not yet been opened—made after each of the key-opening queries. These serve
the purpose of increasing the entropy present in the key-opening phase of the transcript—which
guarantees that R must answer all `(n) − 1 of A’s key-opening queries to successfully complete
the interaction (unless it can correctly guess the random input for the dummy query)—but are
otherwise ignored.

The meta-reduction. In our discussion of A, we were able to bound SuccessA(n); thus, we turn
next to investigating SuccessRA(n). To do this, we construct a meta-reduction B which runs R
while attempting to efficiently emulate the interaction between R and A. B will simulate instances
of A by, exactly as before, making q(n) random tag queries to each instance, opening the key for all
but one instance (in a random order and with the interleaved tag queries as above), and checking
R’s responses for consistency.

The key difference, of course, is that B cannot brute-force a forgery; instead, for the unopened
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instance, B will attempt to extract a correct key from R by rewinding the interaction to the key-
opening queries and substituting the unopened instance for each other instance in turn. If R
responds to any of the valid queries with a key that matches with the tag queries for that instance,
then B will apply that key to a random message m∗ to generate a forgery. If B does not receive a
valid key in this fashion, then it will abort, returning Fail.

Notably, B will also have to ignore rewindings where, before returning its response to the
key-opening query, either R attempts to communicate externally with C (which could change the
state of the challenger if forwarded), R requests a forgery from another instance of A (as this
would require additional “nested” rewinding which could grow exponentially), or R would rewind
A (which precludes R returning a key); this will factor into the analysis of the failure probability
later.

The main task in proving our lemma, then, reduces to that of bounding Pr[〈RA, C〉 → Accept]−
Pr[〈B, C〉 → Accept]. Intuitively, if we come up with such a bound (call it p(n)), then, if SuccessRA is
non-negligibly higher than p(n)—that is, 〈RA, C〉 accepts with such a probability—then 〈B, C〉 will
accept with non-negligible probability, hence breaking C. Bounding this probability p(n) is in fact
quite non-trivial, as one cannot, say, näıvely apply earlier techniques for meta-reduction analysis to
the meta-reduction B. Intuitively, this is because we no longer have a strong “uniqueness” property
characteristic of meta-reductions to date—that is, there is no longer a unique possible valid forgery
B can extract from its rewinding. Not only does this make it difficult to guarantee that A and B
produce close distributions of forgeries, but, in conjunction with B’s rewinding strategy, this makes
analyzing the failure probability problematic for more complex reasons. For example, consider a
reduction R which might try to rewind A and change its responses to queries in order to attempt
to change the forgery generated; it is straightforward to see that proof techniques such as that
of [MP18] immediately fail (due to a potentially unbounded number of nested forgery requests) if
R can theoretically expect to receive many different forgeries by repeatedly rewinding the same
instance.

A “hybrid” meta-reduction. We present a way to effectively separate dealing with the issues of
uniqueness and rewinding, namely by defining a “hybrid” meta-reduction B′ which, while inefficient,
is easy to compare to either A or B.

At a high level, we construct B′ so that it behaves identically to B as long as there is only
a single possible forgery to return, and so that it behaves identically to A whenever rewinding
succeeds. More specifically, it acts identically to B until after rewinding finishes, then, if it obtains
a forgery, brute-forces one in the same manner as A.

Clearly, B′ can only diverge from B if the forgery B extracts is different from the one B′ brute-
forces. A straightforward application of our earlier “key uniqueness” lemma shows that this happens
with at most 2n/q(n) probability per forgery returned by B′.

On the other hand, B′ will always return the same forgery as A if it returns a forgery, but we
still need to determine the probability with which B′ fails to return a forgery due to unsuccessful
rewinding. Luckily, since B′ now does have the uniqueness property, we can proceed along the
same lines as in [MP18] and bound the rewinding failure probability by effectively bounding the
probability that a randomly chosen ordering of key-opening queries can result in rewinding failure
(while assuming that the rest of the randomness in the interaction is fixed arbitrarily, as, if the
bound applies to arbitrarily fixed randomness, it must likewise apply when taken over all possible
assignments of the same randomness).
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The intuition behind the argument is that, if we assume a bound of W (n) on the number of
times R will rewind past when B′ generates the ordering π of the key-opening queries (and note
that, due to uniqueness and careful construction, W (n) will also be a bound on the number of
distinct forgery requests R can make, as we show that any others will be internally simulatable and
thus “pointless”), every sequence π that causes B′ to fail must do so because all of its rewindings
fail, and the rewindings specifically correspond to other sequences π that can occur. Furthermore,
if a rewinding fails due to R responding to a query incorrectly (as opposed to, e.g., external
communication or a nested forgery request), then this rewinding corresponds to a “good” sequence
where A and B′ return ⊥ (and emulation is successful). So, if some sequence π contains more
than W (n) + r(n) + 1 queries at which rewindings of other sequences fail, then, since we can have
at most W (n) (unique) forgery requests and r(n) rounds of external communication, at least one
query must fail due to an incorrect response, which shows that π is a “good” sequence. A counting
argument then allows us to achieve a bound of (W (n) + r(n) + 1)/`(n) on the failure probability
of B′ each time it performs rewinding, or W (n)(W (n) + r(n) + 1)/`(n) overall failure probability.

Bounding security loss. Combining all of the facts so far, we know that the above quantity
is equivalent to the probability with which A and B′ diverge, while the probability with which
B′ and B diverge is 2nW (n)/q(n) (i.e., the probability that uniqueness fails for at least one of
the W (n) forgeries). Thus, SuccessRA(n), as we have argued, is bounded above by the sum of
these, which (taking q(n) sufficiently large) is at most W (n)(W (n) + r(n) + 2)/`(n). Furthermore,
TimeRA(n)/TimeA(n) ≥W (n) by our assumption that in the worst case R runs W (n) instances of
A. Lastly, SuccessA(n) ≥ 1− 2n/q(n) as we noted earlier.

Hence, either (C, t(·)) is insecure (and our bound for SuccessRA(n) does not apply), or, by the
above facts and case analysis (to deal with the possibility that W (n) might be arbitrarily large),
we obtain the result:

λR(n) ≥
(

1− 1

2`(n)2

)
(
√
`(n)− (r(n) + 2))

4 Proof of Lemma 1

We continue by formally proving Lemma 1. Assume a deterministic MAC Π, a reduction R, and
an assumption (C, t(·)) as defined in the statement of Lemma 1. Consider an ideal but inefficient
adversary A, which technically is given by a random selection from a family of inefficient adversaries
A ← {AO} (where O is a uniformly chosen random function) defined as in Figures 1 and 2; also
consider an efficient meta-reduction B defined as in Figures 3 and 4.

Before analyzing the properties of A and B, we verify that B runs efficiently through the
following claim:

Claim 1. B(1n) runs in time polynomial in n.

Proof. First consider the execution of B without rewinding. Because R is an efficient reduction
by definition, R can begin at most a polynomial number of instances of the adversary A, which
means at most some polynomial number (henceforth we shall call this bound M(n)) of simulated
instances of A are invoked during the execution of B.

Now, for each instance of A, B sends a total of q(n)(`(n) + 1) tag queries, `(n)− 1 key opening
queries, and a forgery, for a total of (q(n) + 2)`(n) total messages. It is clear that each message
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prior to the forgery takes at most a polynomial amount of time to compute (since no rewinding is
involved until the forgery and all other computations, including the Valid predicate, are efficient).
Furthermore, there are at most r(n) rounds of communication between B and C that must be
forwarded, but each of these is guaranteed to be efficiently computable as well because of R’s
efficiency.

To factor in rewinding, consider that R can rewind A, but only up to a polynomial number of
times; B also rewinds simulated instances of A while attempting to extract a valid forgery key from
R, but once again also only up to a polynomial number (`(n)) of times. Hence, rewinding will at
most multiply the running time of B by a polynomial factor, which results in a polynomial total
running time since B without rewinding is polynomial-time.

4.1 Analyzing the Ideal Adversary

In order to establish a bound to the security loss λR(n), we shall determine bounds for SuccessA(n)
and SuccessRA(n); time analysis will follow naturally.

We begin by analyzing the probability SuccessA(n). This is fairly straightforward, following
from the critical “key uniqueness” lemma which states that two keys agreeing on all of the q(n)
tag queries made by A are overwhelmingly likely to agree on “most” messages m. Hence, the key
chosen by A, even if not the same as that chosen by the challenger, is by definition consistent with
it on all of the tag queries and thus should agree on a large fraction of the possible forgery inputs
m∗. Formally:

Claim 2. There exists a negligible function ν(·) such that:

SuccessA(n) ≥ 1− 2n

q(n)
− ν(n)

Proof. The claim follows readily from the following lemma (and the fact that there is only a
negligible chance that A generates an invalid m∗):

Lemma 2. There exists negligible ν(·) such that, for any family of functions U = {fk : Xn →
Yn}k∈{0,1}n,n∈N, except with probability ν(n) over q(n) uniformly random queries (x1,j∗ , . . . , xq(n),j∗)

← (Xn)q(n), for any k1, k2 ∈ ({0, 1}n)2 such that fk1(xi,j∗) = fk2(xi,j∗) for all i ∈ [q(n)], it is true
that:

Pr [x∗ ← Xn : fk1(x∗) = fk2(x∗)] ≥ 1− 2n

q(n)
(1)

Proof. For any key pair (k1, k2), let

Sk1,k2 , {x∗ ∈ Xn : fk1(x∗) = fk2(x∗)}

be the set of inputs where the two keys’ outputs are identical.

So, if (1) is false for some pair (k1, k2), i.e., |Sk1,k2 | ≤ |Xn|
(

1− 2n
q(n)

)
; then the probability over

{xi,j∗} that both keys agree in all q(n) queries to f made by A, or equivalently the probability that
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• On receiving an initialization message (Init, s), let m1,1 denote a uniformly random message in Mn

generated by random coins resulting from applying the oracle O to the input (s, 1, 1, 1), and send
(Query, 1,m1,1).

• On receiving a transcript of the form

τ = (q1,1, q1,2, . . . , q1,`(n), q2,1, . . . , qi,j)

where either i < q(n) or i = q(n) and j < `(n), such that each qu,v is of the form ((Query, v,mu,v), σu,v),
do the following:

– Let j′ = (j mod `(n)) + 1.

– Let i′ = i+ 1 if j′ = 1 and i′ = i otherwise.

– Let mi′,j′ be a uniformly random message in Mn generated by random coins resulting from
applying the oracle O to the input (s, i′, j′, 1).

– Return (Query, j′,mi′,j′).

• On receiving a transcript of the form τ = τ1||τ2, where

τ1 = (q1,1, q1,2, . . . , q1,`(n), q2,1, . . . , qq(n),`(n))

and where each qu,v is of the form ((Query, v,mu,v), σu,v), do the following:

– Let c be the number of Open queries that have so far appeared in τ2.

– Let π = (π1, . . . , π`(n)) be a uniformly random permutation of [`(n)], generated by random coins
resulting from applying O to the input τ1.

– If τ2 is empty or ends with messages of the form ((Open, j), kj), then:

∗ Generate ωc+1 as a uniformly random message in Mn generated by random coins resulting
from applying the oracle O to the input τ1||(s, q(n) + 1, c + 1,Valid(O, τ∗, s)) and return
(Query, q, ωc+1), where q is the lexicographically first instance for which τ2 does not contain
an Open query.

– Otherwise, if c < `(n)−1 and the last part of τ2 contains messages of the form ((Query, q, ωc+1), ·),
then return (Open, πc+1).

– Lastly, if τ2 ends with ((Query, q, ω`(n)), ·) and c = `(n)− 1, return a forgery as follows:

∗ If Valid(O, τ, s) = 0, return ⊥.

∗ Otherwise, use exhaustive search to find the set K∗ of all keys k∗ such that, given j∗ = π`(n)
as determined above, and for each i ∈ [q(n)], Verk∗(mi,j∗ , σi,j∗) = Accept. If K∗ is empty
then return ⊥.

∗ Lastly, using random coins generated by applying O to a new input τ1||(s, q(n) + 2, 0, 1),
generate a uniformly random message m∗ (which will be distinct from all mi,j∗ with all-
but-negligible probability) and take the lexicographically first element k∗ of K∗. Return the
forgery (m∗,Tagk∗(m

∗), j∗).

Figure 1: Formal description of the “ideal” adversary AO (1).

q(n) uniformly random queries {xi,j∗} lie in Sk1,k2 , is bounded above by:

(
1− 2n

q(n)

)q(n)

=

((
1− 2n

q(n)

)q(n)/2n
)2n

<

(
1

e

)2n

= exp(−2n)

There exist no more than (2n)2 = 22n possible key pairs (k1, k2) ∈ ({0, 1}n)2, each of which by the
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Let the predicate Valid(O, τ, s) be defined as follows:

• Parse τ as τ1||τ2, where
τ1 = (q1,1, q1,2, . . . , q1,`(n), q2,1, . . . , qq(n),`(n))

such that each qu,v is of the form ((Query, v,mu,v), σu,v). If τ cannot be parsed as such, return 0.

• Let π = (π1, . . . , π`(n)) be a permutation of [`(n)] generated in the same manner as in A, using random
coins generated by applying O to the input τ1.

• Parse
τ2 = (q∗1 , q

∗
2 , . . . , q

∗
c [, q∗c+1])

such that each q∗i is of the form ((Query, qi, ωi), ·, (Open, πi), kπi) and q∗c+1, if present, is of the form
((Query, qi, ωc+1), ·). If τ2 cannot be parsed as such, or if c > `(n)− 1, return 0.

• Verify that each qi in τ2 is equal to the lexicographically first instance q ∈ [`(n)] such that q does not
appear in an Open query earlier in τ2. If not true, return 0.

• Verify that, for all i ∈ [q(n)] and all j ∈ {π1, . . . , πc}, Verkj (mi,j , σi,j) = Accept. (Do not verify the
responses to queries ωi in τ2.) If not true, return 0.

• Verify that every mi,j parsed from the transcript is correctly generated by random coins resulting from
applying O to the input (s, i, j, 1) (for i ∈ [q(n)]) and that each ωj is correctly generated by random
coins resulting from applying O to the input τ1||(s, q(n) + 1, j, 1). If not true, return 0.

• Otherwise, return 1.

Figure 2: Formal description of the “ideal” adversary AO (2).

above must either have the property (1) or be such that

Pr
[
(x1,j∗ , . . . , xq(n),j∗)← (Xn)q(n) : fk1(xi,j∗) = fk2(xi,j∗)∀i ∈ [q(n)]

]
= Pr

[
(x1,j∗ , . . . , xq(n),j∗)← (Xn)q(n) : xi,j∗ ∈ Sk1,k2∀i ∈ [q(n)]

]
≤ exp(−2n)

Then the probability over {xi,j∗} that some key pair exists which does not have property (1) yet
does have fk1(xi,j∗) = fk2(xi,j∗) for all xi,j∗ is, by a union bound, at most:

Pr
[
(x1,j∗ , . . . , xq(n),j∗)← (Xn)q(n) : ∃(k1, k2) ∈ ({0, 1}n)2 :

xi,j∗ ∈ Sk1,k2∀i ∈ [q(n)] and |Sk1,k2 | ≤ |Xn|
(

1− 2n

q(n)

)]
≤

∑
(k1,k2)∈({0,1}n)2

1|Sk1,k2
|≤|Xn|(1−2n/q(n))Pr

[
(x1,j∗ , . . . , xq(n),j∗)← (Xn)q(n) :

xi,j∗ ∈ Sk1,k2∀i ∈ [q(n)]]

< 22ne−2n = (2/e)2n

which is clearly negligible in n.

To prove the claim, we consider the above lemma, letting fk be the deterministic function
Tagk. When interacting with an honest challenger, the responses to tag queries for each instance
will always be consistent with the respective keys, and so A will never return ⊥ due to the Valid
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predicate failing or K∗ being empty. Furthermore, for the instance π`(n) for which A outputs a
forgery, it is overwhelmingly likely (with probability 1 − ν(n)), by Lemma 2, that all keys in the
set K∗ recovered by A will agree with the correct (challenger’s) key k′ for that instance on a large
(1 − 2n/q(n)) fraction of random messages m∗. Specifically, this means that, given any choice of
key k∗ from K∗, A will produce a correct forgery (m∗, σ∗) (i.e., such that σ∗ = Tagk′(m

∗), or
equivalently Verk′(m

∗, σ∗) = Accept) given random m∗ with probability at least 1 − 2n/q(n).
Thus, A succeeds in the interaction in the event that Lemma 2 does not fail (i.e., property

(1) holds for every key pair) and that A chooses a “good” m∗ (i.e., one which does not repeat
a previous query and produces the same tag under k∗ as under the challenger’s key k′) given its
choice of k∗ ← K∗; the claim follows from the union bound over these events.

We require one additional claim concerning the adversary, which states that the reduction R
must have actually responded to all `(n) − 1 key-opening queries to have a non-negligible chance
of receiving a forgery. This will be important later, to ensure that R cannot “cheat” by sending a
fake transcript while interacting with B.

Claim 3. There exists a negligible function ν(·) such that, for all n ∈ N, the probability, over

all randomness in the experiment [RAO ↔ C](1n), that some instance of A returns a forgery (i.e.,
something besides ⊥) to R without having received responses to all `(n)−1 (Open, i) (key-opening)
queries from R, is less than ν(n).

Proof. We demonstrate that, if A returns a forgery (i.e., not ⊥) to R after R responds to strictly
fewer than `(n)− 1 distinct key-opening queries from A, then this requires R to guess a uniformly
random message generated using the output of A’s random oracle O on a new input, which can
happen with at most probability p(n)/|Mn| for some polynomial p(·) due to O being uniformly
random.

Assume that R responds to fewer than `(n) − 1 key-opening queries. Then there exists some
i ∈ [`(n)− 1] for which R does not send A a partial transcript ending with ((Open, πi), kπi) (i.e., a
response to A’s ith key-opening query). By the definition of the Valid predicate, in order for R to
receive a final message from A that contains a forgery (and not ⊥), R must send to A a complete
transcript

τ = τ1||(. . . , (Open, πi), kπi , (Query, q, ωi+1), . . .)

where ωi+1 is a uniformly random message generated by random coins resulting from applying O
to τ1||(s, q(n) + 1, i+ 1, 1).

By construction of A and the assumption that R does not send A a partial transcript ending
with ((Open, πi), kπi), however, R can never have received either ωi+1 or any message depending
on the correct input τ1||(s, q(n) + 1, i + 1, 1) to O. Hence, since ωi+1 is uniformly distributed
and independent of any other message, we can conclude that R will send the correct ωi+1 in its
final transcript with at most probability 1/|Mn| (i.e., by guessing a random message correctly).
While R can attempt to retrieve a forgery multiple times, it is restricted to polynomial time, so
the probability with which it can guess ωi+1 (which is necessary to receive a forgery from A) is
bounded above by ν(n) = p(n)/|Mn| for polynomial p(·), which is negligible because we assume
the message space to be super-polynomial (asymptotically greater than any polynomial) in n.
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• Set initial view v ← ⊥ and set J ← 1. Execute R, updating the current view v according to the following
rules.

• When R begins a new instance of A with some message (Init, s), label this instance as instance J .
Generate and store `(n)q(n) uniformly random queries ~m1

J = (m1
J,1,1, . . . ,m

1
J,q(n),`(n)). Also initialize a

variable kJ ← {}. Lastly, respond with τ∗J = (Query, 1,m1
J,1,1) and increment J .

• When R attempts to communicate externally with C, forward the message, return C’s response to R,
and update v accordingly.

• For any i ∈ [q(n)], when R sends to some instance I of A a transcript of the form

τ = (q1,1, q1,2, . . . , q1,`(n), q2,1, . . . , qi,j)

where either i < q(n) or i = q(n) and j < `(n), such that each qu,v is of the form ((Query, v,mu,v), σu,v),
do the following:

– Let j′ = (j mod `(n)) + 1.

– Let i′ = i+ 1 if j′ = 1 and i′ = i otherwise.

– Return the response (Query, j′,m1
I,i′,j′).

• When R sends to some instance I of A a transcript of the form τ = τ1||τ2, where

τ1 = (q1,1, q1,2, . . . , q1,`(n), q2,1, . . . , qq(n),`(n))

and where each qu,v is of the form ((Query, v,mu,v), σu,v), do the following:

– Let c be the number of Open messages appearing in τ2 so far.

– If there is some tuple (τ1, I, π, ~ω,m
∗) stored, let π, ~ω, and m∗ be as stored in the tuple. Oth-

erwise, let π = (π1, . . . , π`(n)) be a uniformly random permutation of [`(n)], generate 2`(n) ad-
ditional messages ~ω = (ω0

1 , . . . , ω
0
`(n), ω

1
1 , . . . , ω

1
`(n)) and a target forgery m∗, and store the tuple

(τ1, I, π, ~ω,m
∗).

– Consider the suffix transcript τ2. If τ2 is empty or ends with messages of the form ((Open, j), kj),

then return (Query, q, ω
Valid(τ,I)
c+1 ), where q is the lexicographically first instance for which τ2 does

not contain an Open query.

– Otherwise, if c < `(n)− 1 and τ2 ends with messages of the form ((Query, q, ωc+1), ·), then return
(Open, πc+1).

– Otherwise, if τ2 ends with ((Query, q, ω`(n)), ·) and c = `(n)− 1, generate a forgery as follows:

∗ If Valid(τ, I) = 0, then return ⊥.

∗ Otherwise, run the procedure Rewind detailed below for the instance I.

∗ If, after running Rewind, there is a stored key kI , then return the forgery
(m∗,TagkI (m∗), π`(n)) and continue executing R as above. Otherwise, abort the entire exe-
cution of B and return Fail.

Let the predicate Valid(τ, I) be defined as follows:

• Parse τ as τ1||τ2, where τ1 = (q1,0, q1,1, . . . , q1,`(n)−1, q2,0, . . . , qq(n),`(n)) such that each qu,v is of the form
((Query, v,mu,v), σu,v). If τ cannot be parsed as such, return 0.

Figure 3: Formal description of the meta-reduction B (1).
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• If there is a stored tuple (τ1, I, π, ~ω,m
∗) then set π = (π1, . . . , π`(n)) equal to the third element of this

tuple and set ~ω = (ω0
1 , . . . , ω

0
`(n), ω

1
1 , . . . , ω

1
`(n)) equal to the fourth element. If there is no such tuple

then return 0.

• Parse τ2 = (q∗1 , q
∗
2 , . . . , q

∗
c [, q∗c+1]) such that each q∗i is of the form ((Query, qi, ωi), ·, (Open, πi), kπi) and

q∗c+1, if present, is of the form ((Query, qi, ωc+1), ·). If τ2 cannot be parsed as such, or if c > `(n) − 1,
return 0.

• Verify that each qi in τ2 is equal to the lexicographically first instance q ∈ [`(n)] such that q does not
appear in an Open query earlier in τ2. If not true, return 0.

• Verify that, for all i ∈ [q(n)] and all j ∈ {π1, . . . , πc}, Verkj (mi,j , σi,j) = Accept. (Do not verify the
responses to queries ωi in τ2.) If not true, return 0.

• Verify that every mi,j parsed from the transcript τ1 is equal to the stored m1
I,i,j , and that every ωj

parsed from τ2 is equal to the respective ω1
j . If not, then return 0. Otherwise, return 1.

Rewind procedure:

• Given instance I, for j ∈ [`(n)] let V j denote the view immediately before the query (ωπj , (Open, πj)) for

instance I (i.e., the query corresponding to the opening of the jth instance after the order of instances
π to open is randomized).

• For j ∈ [`(n)], “rewind” the view to V j as follows: Let J ′ ← J , let π′ be identical to π except with π`(n)
and πj swapped (i.e., π′j = π`(n) and π′`(n) = πj), and begin executing R from the view V ′ ← V j as in
the main routine, with the following exceptions:

– Replace any instances of π with π′ (including in Valid).

– When R begins a new instance of A, label this instance as instance J ′ and increment J ′.

– When R attempts to communicate externally with C or “rewind” the current instance of A by
sending a message corresponding to a point in the interaction before V j , abort the rewinding and
continue to the next repetition.

– When R sends an end message for a valid instance I ′ 6= I of A (i.e., a transcript τ such that A’s
next message would be a forgery (m∗, σ∗) for instance I ′), abort the rewinding and continue to
the next repetition. (If instead A’s next message would be ⊥ because Valid(τ, I) = 0, return ⊥.)

– If v′ ever contains a message whose transcript contains a response kI to any query for (Open, π`(n))
(i.e., (Open, π′k)), then, if it is the case that VerkI (mI,i,π`(n)

, σI,i,π`(n)
) = Accept for every i ∈ [q(n)]

(letting m and σ variables be defined as in the Valid predicate), store kI and end the Rewind
procedure (i.e., return to the outer execution); otherwise, if kI is not a correct key, store nothing
to kI and continue to the next repetition.

Figure 4: Formal description of the meta-reduction B (2).
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4.2 Analyzing the Meta-Reduction

The remaining part of the proof is devoted to analyzing the success probability SuccessRA(n). This,
as previously discussed, involves investigating the probability with which the meta-reduction B and
the ideal adversary RA diverge while interacting with C. We formalize this with the following claim:

Claim 4. If (C, t(·)) is a secure assumption and we can bound

Pr[〈RA, C〉 → Accept]− Pr[〈B, C〉 → Accept] ≤ p(n)

then there is a negligible ε(·) such that SuccessRA(n) ≤ p(n) + ε(n).

Proof. Since B is efficient and (C, t(·)) is secure, there is a negligible ε(·) such that Pr[〈B, C〉 →
Accept] ≤ t(n) + ε(n).

So, given Pr[〈RA, C〉 → Accept]−Pr[〈B, C〉 → Accept] ≤ p(n), then we conclude that Pr[〈RA, C〉
→ Accept] ≤ t(n) + p(n) + ε(n), and thus:

SuccessRA(n) = Pr[〈RA, C〉 → Accept]− t(n) ≤ p(n) + ε(n)

So it suffices to bound Pr[〈RA, C〉 → Accept] − Pr[〈B, C〉 → Accept]. In order to do so, we
begin by defining an inefficient “hybrid” meta-reduction B′ which acts identically to B, with the
sole exception that, during the Rewind procedure, if B′ encounters a response kI to a query for
(Open, π`(n)) (i.e., a key for the instance for which B′ must produce a forgery), and if the recovered
kI is valid (i.e., VerkI (mI,i,π`(n) , σI,i,π`(n)) = Accept for every i ∈ [q(n)]), then B′ will first determine,
using brute force, whether there are any other keys k′ such that Verk′(mI,i,π`(n) , σI,i,π`(n)) = Accept
for every i ∈ [q(n)] but Tagk′(m

∗
I) 6= TagkI (m

∗
I). If not (i.e., either kI is the only such key or there

is a unique correct forgery (m∗I , σ
∗
I )), then B′ stores kI , identically to B; otherwise, B′ stores the

lexicographically first such key k′ and uses that key instead of kI to produce the forgery (identically
to A).

For ease of notation, let us further define some experiments and variables:

• Let Real(1n) denote the experiment [B ↔ C](1n), and Output[Real(1n)] the output distri-
bution 〈B, C〉(1n). Let Hyb(1n) and Output[Hyb(1n)] be defined analogously for the “hybrid”
experiment [B′ ↔ C](1n), and lastly Ideal(1n) and Output[Ideal(1n)] for the “ideal” experiment
[RA ↔ C](1n).

• For any such experiment, let {~mI , πI} define the randomness used to generate, respectively,
all query variables (m(·) or ω(·)) and the permutation π for an instance I (real or simulated)
of A (including the case where a query or permutation might be regenerated after, e.g.,
rewinding). Let Oext denote all other randomness. Furthermore, let M(n) be an upper
bound to the number of instances of A started by R.

• For instance, an experiment Real{~mI ,πI}I∈[M(n)]\J ,Oext(1
n) (which we henceforth abbreviate as

Real{~mI ,πI}−J ,Oext(1
n)) would indicate the interaction between B and C with all randomness

fixed except for the variables m and π for a particular instance J of A (simulated by B).

• Naturally, an experiment denoted by, e.g., Real{~mI ,πI}I∈[M(n)],Oext(1
n), has all randomness

fixed and hence is deterministic.
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Let Unique({~mI , πI}I∈[M(n)],Oext) be the “key-uniqueness” predicate on the randomness of Real
(or Ideal) which is true if, during execution of the experiment Real{~mI ,πI}I∈[M(n)],Oext(1

n), whenever

B returns a forgery (m∗, σ∗), it is the case that σ∗ = Tagk∗(m
∗), where k∗ is the lexicographically

first key k such that Verk(mI,i,πI,j , σI,i,πI,j ) = Accept for all i ∈ [q(n)]. That is, Unique is true
whenever, given the randomness of an experiment, B (if rewinding succeeds) returns the same
forgery as A would in the Ideal experiment. The occurrence of Unique is hence fully determined by
the randomness ({~mI , πI}I∈[M(n)] and Oext) that fully determines the execution of Real or Ideal.

We must also deal with the fact that R may rewind A. Let W (n) be a polynomial upper bound
to the number of times that R causes A to generate a permutation π (including by rewinding) in
the experiment Ideal(1n), and note that, trivially, W (n) ≥M(n).

Now, with setup completed, we can proceed in two major steps. Our goal is to bound

|Pr[Output[Real(1n)] = Accept]− Pr[Output[Ideal(1n)] = Accept]|

which we can do by bounding

|Pr[Output[Real(1n)] = Accept]− Pr[Output[Hyb(1n)] = Accept]|

and
|Pr[Output[Hyb(1n)] = Accept]− Pr[Output[Ideal(1n)] = Accept]|

4.3 Comparing the Real and Hybrid Experiments

We begin with the first of these quantities, which is relatively straightforward to bound. Infor-
mally, whenever Unique holds (the probability of which is dictated by Lemma 2), B and B′ behave
identically by construction.

Claim 5. There exists negligible ν(·) such that, for all n ∈ N:

|Pr[Output[Real(1n)] = Accept]− Pr[Output[Hyb(1n)] = Accept]|

<
2nW (n)

q(n)
+ ν(n)

taken over the randomness of {~mI , πI}I∈[M(n)] and Oext.

Proof. This follows fairly easily from the construction of B′ and definition of Unique. Recall that
Unique({~mI , πI}I∈[M(n)],Oext) is true exactly when B would return the same forgery as A given
successful rewinding; since B′ by construction succeeds at rewinding whenever B does yet always
returns the same forgery as A, we can see that Real{~mI ,πI}I∈[M(n)],Oext(1

n) is identically distributed

to Hyb{~mI ,πI}I∈[M(n)],Oext(1
n) whenever Unique({~mI , πI}I∈[M(n)],Oext) is true.

By Lemma 2, we can see that, whenever B (or B′) generates a permutation π and forgery input
m∗, Unique({~mI , πI}I∈[M(n)],Oext) has at most a 2n/q(n)+ν ′(n) chance (for negligible ν ′(·)) to not
hold for the respective forgery if it is eventually returned, since, by the lemma and the fact that
the key retrieved by B must agree with the lexicographically first key k∗ for every one of the q(n)
tag queries, it must (with probability 1− ν ′(n)) agree with k∗ for at least a 1− 2n/q(n) fraction of
inputs m∗.

Since by assumption π (and m∗) are generated at most W (n) times during the execution of
Real or Hyb, the probability (over {~mI , πI}I∈[M(n)] and Oext) that Unique({~mI , πI}I∈[M(n)],Oext)
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fails, and hence the probability that Real and Hyb diverge, is, by the union bound (and letting
ν(n) = W (n)ν ′(n)), at most

2nW (n)

q(n)
+ ν(n)

as desired.

4.4 Comparing the Hybrid and Ideal Experiments

To relate the hybrid B′ to the “ideal” interaction with RA, we next present the following claim,
which informally holds because, by construction, B′ behaves identically to A as long as rewinding
does not fail (in which case it would return Fail).

Claim 6.
|Pr[Output[Hyb(1n)] = Accept]− Pr[Output[Ideal(1n)] = Accept]|

≤ Pr[Output[Hyb(1n)] = Fail]

taken over the randomness of {~mI , πI}I∈[M(n)] and Oext.

Proof. This follows immediately from the lemma below:

Lemma 3. For any assignment of {~mI , πI}I∈[M(n)] and Oext, either:

• Output[Hyb{~mI ,πI}I∈[M(n)],Oext(1
n)] = Fail, or

• Ideal{~mI ,πI}I∈[M(n)],Oext(1
n) = Hyb{~mI ,πI}I∈[M(n)],Oext(1

n), and thus
Output[Ideal{~mI ,πI}I∈[M(n)],Oext

(1n)] = Output[Hyb{~mI ,πI}I∈[M(n)],Oext
(1n)]

Proof. First, observe that, given the same (fixed) queries m(·) and ω(·) and permutation π for each
instance, and since C is the same in each case, the only points at which the views of Real (and
hence Hyb) and Ideal can possibly diverge is when B (or B′ or A) generates a forgery. This is by
construction; given a particular setting of {~mI , πI}I∈[M(n)] and Oext, an instance I of A and its
simulation in B′ are guaranteed to behave identically up to the point where a forgery is produced
(assuming no other instance diverges before that point), as the queries they make to C are identical
by fixing {~mI , πI} and C’s responses are identical by fixing Oext.

So, consider any point at which B′ generates a forgery in Hyb, and assume that rewinding was
successful (i.e., B′ does not output Fail) and that Ideal and Hyb have not diverged yet. If there is a
unique correct forgery to return at this point, B′ will by construction return it, as will A. Conversely,
if there are multiple possible forgeries, then B′ will in fact also behave identically to A by brute-
forcing the lexicographically first key consistent with all tag queries and using that to generate a
forgery guess. Either way, if B′ does not return Fail (i.e., Output[Hyb{~mI ,πI}I∈[M(n)],Oext(1

n)] 6= Fail),
then Ideal and Hyb will continue to behave identically, and thus, proceeding in this fashion over all
forgeries produced, as long as B′ never returns Fail we can conclude that

Ideal{~mI ,πI}I∈[M(n)],Oext(1
n) = Hyb{~mI ,πI}I∈[M(n)],Oext(1

n)

as desired.
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4.5 Bounding the Hybrid’s Failure Probability

So all that remains is to investigate the probability of Hyb outputting Fail; to do this we can make
a critical observation about rewinding in the context of our construction. Formally, we prove the
following:

Proposition 1. There exists a negligible function ε(·) such that, for all n ∈ N, taken over the
randomness of {~mI , πI}I∈[M(n)] and Oext:

Pr[Output[Hyb(1n)] = Fail] ≤W (n)

(
W (n) + r(n) + 1

`(n)

)
+ ε(n)

Proof. First, we show that without loss of generality R can never rewind except from a point after
π is generated to a point before π is generated; intuitively, this is because all of A’s queries to R
are dependent only on (1) the permutation π and (2) the validity of R’s responses, and as such
any rewinding that does not result in π being regenerated can in fact be internally simulated by
R. Formally, we state the following claim:

Claim 7. Given any R that rewinds any instance of A either (1) from a point before π is generated
or (2) to a point after π is generated, there exists an R′ with identical success probability that does
not perform such rewinding.

Proof. Given any rewinding of type (1), we notice that A’s or B’s tag queries are completely
determined on initialization; hence, we can simply letR′ completely skip the pre-rewinding messages
to effectively “collapse” this rewinding into a single execution thread, as rewinding in this case will
not change any of the queries made by A.

Similarly, given any rewinding of type (2), we can observe that the order π of key-opening
queries made by A (as well as the order of the instances q to which the tag queries are made, since
this solely depends on π) is completely determined at the time that π is generated.

While the inputs ω to the tag queries and the final forgery output depend on the Valid predicate
as well, one can additionally observe that, as long as the Valid predicate holds, these inputs and the
forgery are also fully determined when π is generated, even if Unique does not hold. Specifically,
this is because A and B′ generate the forgery input m∗ when π is generated, and because the key
used to produce the forgery is uniquely determined then as well (by lexicographical ordering and by
the fact that the responses to ωi are never verified and hence cannot change the set of usable keys).
Furthermore, the predicate Valid can be computed entirely by R given a particular transcript, since
all information (f, π, ~ω) required to compute it is either public or given by A during the execution
which produces the transcript.

Hence, R′ can again collapse this latter type of rewinding by restricting to transcripts where
Valid is true (as if Valid is false then it is guaranteed to receive ⊥ instead of a forgery) and again
skipping pre-rewinding messages (as they have no effect on A’s queries and output given that Valid
is true).

Hence, we assume without loss of generality that R sends at most W (n) “end messages” (i.e.,
forgery requests) requiring rewinding, as π is by assumption generated no more than W (n) times
and the responses to any further end messages are effectively simulatable by R. We disregard
end messages sent for instances for which R has not answered all `(n) − 1 key opening queries,
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since, with all-but-negligible probability, A or B′ can directly respond to these with ⊥ (as Valid will
evaluate to 0 unless R guesses a random and unknown ωi correctly).

At this point, we have shown that our hybrid experiment gives us a setting with minimal
rewinding and guaranteed key uniqueness, much like the setting discussed in [MP18] for the case
of unique signatures. Hence, we can leverage this observation to prove the following claim, anal-
ogous to the key “rewinding lemma” therein. Consider the following for any possible execution
Hyb{~mI ,πI}−J , ~mJ ,Oext(1

n) (i.e., for any fixed setting of all randomness aside from πJ), and notice
that, since it applies to arbitrarily fixed randomness, it must thus apply over all possible randomness
of the experiment Hyb(1n):

Claim 8. Given any experiment Hyb{~mI ,πI}−J , ~mJ ,Oext(1
n), the probability, over the uniformly cho-

sen permutation πJ , that the simulated instance J will return Fail when rewinding any end message,
is, for all n ∈ N, at most

W (n) + r(n) + 1

`(n)

The claim is nearly identical to its analogue in [MP18], but for completeness we provide a proof
in Appendix C. We can conclude as desired that the probability of any forgery request causing B′
to return Fail in the experiment Hyb is at most

W (n)

(
W (n) + r(n) + 1

`(n)

)
+ ε(n)

by combining Claim 8 (taken over all possible assignments of the fixed randomness) with the union
bound over our bound of W (n) possible (unique) forgery requests for which R has answered all
key-opening queries. For any requests for which this is not the case, we know by Claim 3 that the
probability of such requests causing B′ to return anything besides ⊥ is negligible, so, since R is
polynomial-time, these requests add at most a negligible ε(n) to the probability of Hyb returning
Fail.

4.6 Bounding the Security Loss

Finally, we must translate this bound on the failure probability of B′ into a bound on the security
loss of the reduction R. This argument is quite similar to that presented in [MP18], albeit with
the minor difference that the success probability of A is no longer 1 but instead very close to 1 for
sufficiently large q(n).

Take sufficiently large q(n)—say, q(n) ≥ 4n`(n)2. Recall that, by Claim 2, we know that, for
sufficiently large n:

SuccessA(n) ≥ 1− 2n

q(n)
− ν(n) ≥ 1− 1

2`(n)2

By combining Claim 4, Claim 5, Claim 6, and Proposition 1, we can derive that, for negligible
ε(·), ν(·) and sufficiently large n:

SuccessRA(n) ≤ Pr[Output[Hyb(1n)] = Fail] +
2nW (n)

q(n)
+ ν(n)
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< W (n)

(
W (n) + r(n) + 1

`(n)

)
+

2nW (n)

q(n)
+ (ε(n) + ν(n))

< W (n)

(
W (n) + r(n) + 2

`(n)

)
To deal with running time, Lemma 5 (Appendix B) of [MP18] shows that we can substitute

the number of times a specific computation is performed (in this case, the number of times π is
generated for some instance of A) for Time and receive a lower bound to the time-based security
loss; effectively, this follows because we can rewrite A so that the computation dominates the
running time (for both A and R). Formally, if we let QueryπA(n) denote the number of times π is
generated during A, and respectively for RA, this lemma gives:

λR(n) ≥ SuccessA′(n)

SuccessRA′ (n)

TimeRA′ (n)

TimeA′(n)
≥ SuccessA(n)

SuccessRA(n)

QueryπRA(n)

QueryπA(n)

By definition QueryπA(n) = 1 and we may take QueryπRA(n) = W (n). We can separate our analysis
into two cases to finish:

Case 1. If W (n) ≥
√
`(n)− (r(n) + 2), then:

λR(n) ≥ SuccessA(n)

SuccessRA(n)

QueryπRA(n)

QueryπA(n)
≥

1− 1
2`(n)2

1

W (n)

1

=

(
1− 1

2`(n)2

)
W (n) ≥

(
1− 1

2`(n)2

)
(
√
`(n)− (r(n) + 2))

Case 2. Otherwise, W (n) <
√
`(n)− (r(n) + 2) then W (n) + r(n) + 2 <

√
`(n), and we have:

λR(n) ≥ SuccessA(n)

SuccessRA(n)

QueryπRA(n)

QueryπA(n)
≥

1− 1
2`(n)2

W (n)
(
W (n)+r(n)+2

`(n)

)W (n)

1

=
`(n)

(
1− 1

2`(n)2

)
W (n) + r(n) + 2

>
`(n)

(
1− 1

2`(n)2

)
√
`(n)

=

(
1− 1

2`(n)2

)√
`(n)

Either way, we conclude that, if (C, t(·)) is secure (and so our bound on the probability SuccessRA(n)
holds), then:

λR(n) ≥
(

1− 1

2`(n)2

)
(
√
`(n)− (r(n) + 2))

which finishes the proof of Lemma 1.
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Appendix

A Digital Signatures

Though we focus on MACs, we note that our main result (Theorem 2) also applies to reductions
from the adaptive multi-user unforgeability of deterministic digital signature schemes. Intuitively,
this holds because digital signature schemes are the public-key analogue of a MAC and, as such,
every deterministic digital signature scheme implies a deterministic MAC by a tight reduction.
Hence, if there were a linear-preserving reduction from a deterministic digital signature to some
standard assumption, this would imply a linear-preserving reduction from a deterministic MAC to
the same assumption, contradicting our main result.

A.1 Definitions

To formalize this, let us first recall the definition of a digital signature scheme; the key difference
from a MAC is that verification is now performed with a public key, rather than a secret key.

Definition 7. We refer to a tuple of efficient (poly(n)-time) algorithms Π = (Gen, Sign,Ver), where:

• Gen(1n)→ (pk, sk) takes as input a security parameter n and outputs a public key and secret
key pk, sk ∈ {0, 1}n,

• Signsk(m)→ σ takes as input a secret key sk and a message m from some message spaceMn

of size super-polynomial in n, and outputs a signature σ for the message, and

• Verpk(m,σ)→ {Accept,Reject} takes as input a public key pk, a message m, and a signature
σ, and outputs Accept or Reject denoting whether the tag σ is valid for the message m,
specifically in such a manner that Pr[(pk, sk)← Gen(1n);Verpk(m, Signsk(m))→ Accept] = 1
for any valid message m ∈Mn,

as a digital signature scheme. If, in addition, Signsk(m) is a deterministic function, then we
refer to Π as a deterministic digital signature scheme.
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As with MACs, we focus on digital signatures with input and output space superpolynomial
in the key size n. Note that, for determinism, we do not require Verpk(m,σ) to accept only if
Signsk(m) = σ—this is an additional property that, together with determinism, comprises unique-
ness. This distinction is not meaningful for MACs; since verification requires the secret key, it is
always possible to check whether Tagsk(m) = σ. Next, multi-user security for digital signatures
can be formulated similarly to the analogous definition for MACs:

Definition 8. A digital signature scheme Π = (Gen, Sign,Ver) is an `(n)-key unforgeable sig-
nature scheme under adaptive corruption (or adaptively `(n)-key unforgeable) if, for any
interactive oracle-aided non-uniform probabilistic polynomial-time algorithm A, there is a negligible
function ε(·) such that, for all n ∈ N,

Pr
[
〈A, C`(n)

Π 〉(1n) = Accept
]
≤ ε(n)

where C`(n)
Π is the interactive challenger that does as follows on input 1n:

• Let ((pk1, sk1), . . . , (pk`(n), sk`(n))) ← Gen(1n). Initialize the transcript τ = (pk1, . . . , pk`(n))
and send it.
• Upon receiving a signing query (Query, i,m) for i ∈ [`(n)], append ((Query, i,m), Signski(m))

to τ and send τ .
• Upon receiving a key-opening query (Open, i) for i ∈ [`(n)], append the tuple ((Open, i), ski)

to τ and send τ .
• Upon receiving a forgery (m∗, σ∗, i∗) from A, output Reject if one of the following three

conditions is true:

– τ contains a key opening query (Open, i∗).
– τ contains an oracle query (Query, i∗,m∗).
– Verpki∗ (m

∗, σ∗)→ Reject.

• Otherwise, output Accept.

We call a digital signature scheme Π adaptively multi-key unforgeable if it is adaptively
`(n)-key unforgeable for every polynomial `(·).

A.2 Results for Digital Signatures

Perhaps unsurprisingly, every adaptively multi-key unforgeable deterministic digital signature im-
plies an adaptively multi-key unforgeable deterministic MAC, as follows:

Claim 9. For any deterministic digital signature scheme Π, there exists a deterministic MAC Π′

for which there exists a tight reduction (with security loss 1) from adaptive multi-key unforgeability
of Π′ to adaptive multi-key unforgeability of Π.

Proof. Given Π = (Gen, Sign,Ver), let Π′ = (Gen′,Tag′,Ver′) be defined on the same message space
and given by:

• Gen′(1n) takes (pk, sk)← Gen(1n) and returns sk.

• Tag′sk(m) returns Signsk(m).
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• Ver′sk(m,σ) returns Accept if Signsk(m) = σ and Reject otherwise.

Correctness and determinism of Π′ follow directly from the definition of Tag′ and Ver′ and
determinism of Π. As for the reduction, assume an adversary A′ that breaks adaptive `(n)-key
unforgeability of the MAC Π′. We can construct an adversary A to break adaptive `(n)-key
unforgeability of the digital signature scheme Π by essentially letting the adversary A′ interact
directly with its challenger. When A′ makes either a tag or a corruption query, A forwards the
respective query to its challenger, and returns the challenger’s response to A′. Finally, A′ returns a
forgery (m∗, σ∗, i∗); if A′ is successful, then, by the properties of the security game for Π′, instance
i∗ will be uncorrupted and Tag′ski∗ (m

∗) will not have been made as a tag query, and the respective
properties (for Sign rather than Tag) will hold in the game for Π as well because communication
is simply forwarded. Furthermore, in this case, it will be true that Signski∗ (m

∗) = σ∗ (i.e., Ver′

will accept), meaning that, by correctness of Π, it must be true that Verski∗ (m
∗, σ∗) = Accept.

Hence, A can forward the forgery to its own challenger, and it will necessarily be correct when A′
is successful.

The above reduction merely forwards communication, so it inherits the same running time as
the adversary it uses (i.e., TimeA′(n) = TimeA(n)); furthermore, since A succeeds whenever A′
does, we have SuccessA(n) ≥ SuccessA′(n), and so the above reduction has security loss at most
1.

From this, we can conclude the following:

Claim 10. Let Π be a deterministic digital signature scheme. If there exists some fixed-parameter
black-box reduction R for basing adaptive multi-key unforgeability of Π on some r(·)-round in-
tractability assumption (C, t(·)) (for polynomial r(·)), then there exists a deterministic MAC Π′

and a fixed-parameter black-box reduction R′ for basing adaptive multi-key unforgeability of Π′ on
(C, t(·)). In addition, R′ has security loss no greater than R.

Proof. Let Π′ be as defined in Claim 9, and let the reduction R∗ be the reduction outlined in the
same claim. Then, for any adversary A breaking adaptive `(n)-key unforgeability of Π′, let R′A
be given by RR∗A , which will break (C, t(·)) since R∗A is an adversary against adaptive `(n)-key
unforgeability of Π and R reduces adaptive `(n)-key unforgeability of Π to (C, t(·)). Furthermore,
because R∗ preserves the running time and success probability of A, we have that, for any A,
TimeR′A(n) ≤ TimeRA(n) and SuccessR′A(n) ≥ SuccessRA(n), which means that λR′(n) ≤ λR(n).

Naturally, since R being linear-preserving will imply that R′ is also linear-preserving, we can
combine this claim with Theorem 2 to immediately obtain the analogous impossibility for digital
signatures:

Theorem 3. Let Π be a deterministic digital signature scheme. If there exists some fixed-parameter
black-box reduction R for basing adaptive multi-key unforgeability of Π on some r(·)-round in-
tractability assumption (C, t(·)) (for polynomial r(·)), then either:

(1) R is not a linear-preserving reduction, or

(2) there exists a polynomial-time adversary B breaking the assumption (C, t(·)).
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B Pseudorandom Functions

Additionally, we can apply our main result directly to rule out linear-preserving reductions from
pseudorandomness of a family of functions. Given the appropriate definition of adaptive multi-user
security, this will follow from the fact that, even in an adaptive multi-user context, every PRF
can be shown to be unpredictable—that is, a deterministic MAC—via a tight reduction. Hence, a
linear-preserving reduction from adaptive multi-user pseudorandomness implies a linear-preserving
reduction from an adaptive multi-user unforgeable deterministic MAC, just as with signatures
above.

B.1 Definitions

First, we provide the definition of adaptive multi-key pseudorandomness, which is in fact quite
similar to “security under selective key-opening” as presented in [ACD+19]5:

Definition 9. A family of functions U = {fk : Xn → Yn}k∈{0,1}n,n∈N (for some input and output
spaces Xn and Yn) is a family of adaptively secure `(n)-key pseudorandom functions if fk
is computable in polynomial time, and, for any interactive oracle-aided non-uniform probabilistic
polynomial-time algorithm A, there is a negligible function ε(·) such that, for all n ∈ N,

Pr
[
〈A, C`(n)

U 〉(1n) = Accept
]
≤ 1/2 + ε(n)

where C`(n)
U is the interactive challenger that does as follows:

• Let (k1, . . . , k`(n))← ({0, 1}n)`(n). Pick b← {0, 1}. Initialize empty transcript τ .
• Upon receiving a function query (Query, i, x) for i ∈ [`(n)] and x ∈ Xn, append the tuple

((Query, i, x), fki(x)) to τ and send τ .
• Upon receiving a key-opening query (Open, i) for i ∈ [`(n)], append the tuple ((Open, i), ki)

to τ and send τ .
• Upon receiving a challenge (x∗, i∗) from A, let y∗ be fki∗ (x

∗) if b = 0, or y∗ ← {0, 1}n if b = 1.
Append ((x∗, i∗), y∗) to τ and send τ .

• On receiving an output b′ from A, output Reject if one of the following three conditions is
true:

– τ contains a key opening query (Open, i∗).
– τ contains an oracle query (Query, i∗, x∗).
– b′ 6= b.

• Otherwise, output Accept.

We call a family of functions U a family of adaptively secure pseudorandom functions if
it is a family of adaptively secure `(n)-key pseudorandom functions for any polynomial `(·).

5In fact, our definition is slightly weaker, as it does not allow the adversary to adaptively create instances of the
PRF; however, as we are proving a lower bound, this makes our result stronger.
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B.2 Results for Pseudorandomness

Now we can formalize the fact that every pseudorandom function family implies a secure determin-
istic MAC—this is true even in our multi-key setting using our definitions of adaptive multi-key
pseudorandomness and unforgeability. We present the following relatively straightforward claim:

Claim 11. For any efficiently computable function family U = {fk : Xn → Yn}k∈{0,1}n,n∈N such
that Xn and Yn have size super-polynomial in n, there exists a deterministic MAC Π′ for which
there is a tight reduction from adaptive `(n)-key unforgeability of Π′ to `(n)-key pseudorandomness
of U , and additionally this tight reduction’s security loss is bounded above by 6 for sufficiently large
n.

Proof. Given U = {fk : Xn → Yn}k∈{0,1}n,n∈N, let Π′ = (Gen′,Tag′,Ver′) be defined over message
space Xn (which, in particular, gives us a sufficiently large message space to apply Theorem 2), and
given by:

• Gen′(1n) takes sk ← {0, 1}n and returns sk.

• Tag′sk(m) returns fsk(m).

• Ver′sk(m,σ) returns Accept if fsk(m) = σ and Reject otherwise.

Consider an adaptive multi-key pseudorandomness adversary A against U that, given a respec-
tive multi-key unforgeability adversary A′ (with the same number of instances `(n)) against Π,
forwards all tag queries and all key-opening queries made by A′ to its own oracle and returns the
responses, receives a forgery (m∗, σ∗, i∗), queries its own oracle with a challenge on (x∗, i∗), and
returns 0 if the result is equal to y∗ and 1 otherwise.

If A′ breaks unforgeability with non-negligible probability p(n), then, if b = 0, A will return 0
with at least probability p(n) (since the forgery from A′ will be valid and match with the output of
the final query in that case); otherwise, if b = 1, then A will return 1 with probability 1− 1/|Yn|—
that is, the probability that the forgery from A′ coincidentally matches the random output of the
challenge.

Thus, if A′ breaks unforgeability with probability p(n), A succeeds with at least probability
1/2(1 + p(n) − 1/|Yn|). Hence (recalling that SuccessA(n) is defined by the probability of success
minus the assumption’s threshold, which in this case is 1/2):

SuccessA(n) = p(n)/2− 1/2|Yn| ≥ p(n)/3 = 1/3(SuccessA′(n))

for sufficiently large n, because of our assumption that Yn has superpolynomial size (and so 1/|Yn|
is negligible). Furthermore, TimeA(n) ≤ 2TimeA′(n) (since A makes only a single additional query),
demonstrating that the reduction is tight and has security loss bounded above by 6.6

Because of the above reduction, we can show that Theorem 2 applies immediately to reductions
from adaptive multi-key pseudorandomness of a function family to bounded-round assumptions:

6In fact, the actual security loss is bounded above by 2 + ε for any constant ε, but, as we only require a constant
bound for the subsequent arguments, we simplify the analysis here.
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Claim 12. For any efficiently computable function family U = {fk : Xn → Yn}k∈{0,1}n,n∈N such
that Xn and Yn have size super-polynomial in n, if there exists some fixed-parameter black-box
reduction R for basing adaptive multi-key pseudorandomness of U on some r(·)-round intractability
assumption (C, t(·)) (for polynomial r(·)), then there exists a deterministic MAC Π′ and a fixed-
parameter black-box reduction R′ for basing adaptive multi-key unforgeability of Π′ on (C, t(·)). In
addition, R′ has security loss no greater than 6 times that of R for sufficiently large n.

Proof. Let Π′ be as defined in Claim 11, and let R∗ be the tight reduction from adaptive `(n)-
key unforgeability of Π′ to adaptive `(n)-key pseudorandomness of U also presented in Claim 11.
Clearly, if A breaks adaptive `(n)-key unpredictability, then R∗A will break adaptive `(n)-key
pseudorandomness with at most a constant-factor loss in time and success probability.

Hence, to define the reduction R′, given an adversary A against adaptive `(n)-key unforgeability

of Π′, we can simply let R′A = RR∗A—since R breaks (C, t(·)) given an adaptive `(n)-key pseu-
dorandomness adversary against U , and R∗A is an adaptive `(n)-key pseudorandomness adversary
against U when A is an adaptive `(n)-key unforgeability adversary against Π′, then R′A will break
(C, t(·)). Also, our observations about the reduction R∗ imply that, for any A and sufficiently large
n, TimeR′A(n) ≤ 2TimeRA(n) and SuccessR′A(n) ≥ 1/3SuccessRA(n), so λR′(n) ≤ 6λR(n).

Notice that, if R is linear-preserving, then R′ must be as well, since its security loss is within
a constant factor of R’s. Hence, combining the above claim with Theorem 2 gives us:

Theorem 4. Let U = {fk : {0, 1}n → {0, 1}n}k∈{0,1}n be a family of efficiently computable
functions. If there exists some fixed-parameter black-box reduction R for basing pseudorandomness
of U on a r(·)-round intractability assumption (C, t(·)) (for polynomial r(·)), then either:

(1) R is not a linear-preserving reduction, or

(2) there exists a polynomial-time adversary B breaking the assumption (C, t(·)).

C Proof of Claim 8

Here we present the central “rewinding argument” used to prove our failure probability bound,
which, aside from minor adaptations and slight reorganization for clarity, is reproduced from
[MP18].

Proof. First, let us assume that other simulated instances (besides J) of A in the experiment
Hyb{~mI ,πI}−J , ~mJ ,Oext(1

n) will never return Fail (i.e., that they will “magically” produce a correct
forgery instead of returning Fail). This can only increase the probability that instance J will return
Fail, as it guarantees that the experiment never aborts early.

Next, consider the permutation πJ = (π1
J , . . . , π

`(n)
J ) in instance J ; note that by the definition of

Hyb{~mI ,πI}−J , ~mJ ,Oext(1
n) the execution is fully determined by πJ . Let us also define for i ∈ [`(n)−1]

the “rewound” sequence

ρ(πJ , i) , (π1
J , . . . , π

i−1
J , π

`(n)
J )

corresponding to the rewound execution where the key-opening query in the ith position is replaced

by π
`(n)
J to attempt to extract a correct key for that instance.

In order for B′ to return Fail, one of the following “bad events” must occur for each i ∈ [`(n)]:
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• E1(ρ(πJ , i)): R fails to return a valid key (i.e., one consistent with all tag queries m(·)) for
instance π`(n) in the respective rewinding, including the case where R attempts to rewind A
before responding.

• E2(ρ(πJ , i)): During the respective rewinding, R asks for a forgery for another instance

I 6= J (for which B′ would be required to rewind) before returning a key for instance π
`(n)
J ,

or R requires external communication with C (which cannot be rewound) before returning a
response.

In addition, for instance J to fail, the non-rewound execution of the instance must succeed (and
finish executing), in that the event E1(πJ,≤i) (where R fails to return a valid tag or rewinds) cannot
occur for any prefix πJ,≤i = (π1

J , . . . , π
i
J), where i ∈ [`(n)− 1].

Since, as we have noted, the behavior of J during the hybrid execution Hyb{~mI ,πI}−J , ~mJ ,Oext(1
n)

is fully determined by πJ for any fixed ~mJ , every sequence πJ will deterministically either result
in instance J returning something (either a forgery or ⊥) or aborting and returning Fail; we shall
refer to the former type of sequence (where J succeeds) as a “good” sequence, and the latter type
as a “bad” sequence. To describe the relationship between these “good” and “bad” sequences, we
first introduce the following lemma, which we note is proven implicitly in [MP18]; however, the
complete proof is provided for the interested reader in Appendix C.1. Notationally, let ≤ applied
to two sequences denote the prefix operator—that is, s ≤ t if si = ti for all i ∈ |s|. Then:

Lemma 4. Let S be a set of permutations of [`]. Let T = {s′||n : s||n ∈ S, s′ < s} be the set
of “rewound” prefixes including, for any permutation p ∈ S and integer i < `, p’s first i elements
concatenated with its last element. For any s ∈ S, let Ps = {p : p ≤ s} be the set of prefixes of
elements in S. If there exists integer B such that, for all s ∈ S, |Ps ∩ T | ≤ B (i.e., no s ∈ S can
share more than B prefixes with T ), then the size of S is bounded by |S| ≤ (B + 1)(`− 1)!

The relevance of this lemma stems intuitively from the fact that, if there exists a “bad” permu-

tation πJ = (π1
J , . . . , π

`(n)
J ), then any sequence aside from πJ itself which begins with an element of

the set {s′||π`(n)
J : s′ ≤ πJ} will, by the fact that πJ is bad, fail to extract a valid key as a response

to (Open, π
`(n)
J ) during the rewinding. Of course, this can occur due to either of the events E1 or

E2 described above; we would like to conclude that these sequences are themselves good, but we
can only conclude that a sequence is good if E1 specifically occurs.

This is where the lemma helps us; letting T be the set of all of the prefixes guaranteed by some
bad sequence in S to fail to extract a key in the rewinding, we know that a sequence containing
strictly more than W (n) + r(n) of these prefixes (namely, W (n) at most which might contain end
messages for other instances because of our earlier assumptions about rewinding, and r(n) which
might contain external communication) must be a good sequence, since at that point one of the
prefixes is guaranteed to fail due to E1 and not E2.

So, applying Lemma 4 with ` = `(n), B = W (n)+r(n), and S being the set of bad permutations,
we deduce that S may have size at most

(W (n) + r(n) + 1) (`(n)− 1)!

and so at most an
(W (n) + r(n) + 1) (`(n)− 1)!

`(n)!
=
W (n) + r(n) + 1

`(n)
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fraction of all permutations of [`(n)] can be bad (for any setting of the randomness outside of the
permutation πJ), and the remainder must be good.

Hence, the chance that a permutation chosen at random is bad, which by definition is equal to
the probability that a randomly chosen permutation πJ = (π1, . . . , π`(n)) will result in instance J
returning Fail, can be at most the fraction of permutations which are bad, or:

W (n) + r(n) + 1

`(n)

As this holds for arbitrary ~mJ , it likewise holds over all ~mJ and thus over all randomness of
the execution Hyb{~mI ,πI}−J , ~mJ ,Oext(1

n).

C.1 Proof of Lemma 4

Proof. The proof, which is aside from notation identical to its counterpart in [MP18], begins with
two crucial claims:

Claim 13. No permutation π of [`] is such that Pπ ∩ T ≥ B + 2.

Proof. Assume for the sake of contradiction that there exists some such π—i.e., that there are B+2
sequences π1, . . . , πB+2 ∈ S and B + 2 distinct integers i1, . . . , iB+2 ∈ [`] such that each partial
sequence (πj1, . . . , π

j
ij−1, π

j
` ) is equivalent to the first ij elements of π.

Assume without loss of generality that the integers ij are in strictly ascending order. Consider
the last sequence πB+2 = (πB+2

1 , . . . , πB+2
` ); we shall show that PπB+2 ∩ T ≥ B + 1 and thus that

πB+2 6∈ S, a contradiction because πB+2 ∈ S by assumption.
We know that, since by assumption the first iB+2 elements of π are equivalent to

(πB+2
1 , . . . , πB+2

iB+2−1, π
B+2
∗ )

then the first iB+2 − 1 elements of πB+2 and π must be identical. However, notice that, for any
j < B + 2, we have that (πj1, . . . , π

j
ij−1, π

j
` ) is identical to π in the first ij elements, which, since by

assumption ij ≤ iB+2 − 1, also indicates that (πj1, . . . , π
j
ij−1, π

j
` ) is identical to πB+2 in the first ij

elements.
This in turn implies that (πj1, . . . , π

j
ij−1, π

j
` ) ∈ PπB+2 for each j ∈ [B+1], and, since the sequences

π1, . . . , πB+1 are also in S (meaning (πj1, . . . , π
j
ij−1, π

j
` ) ∈ T for each j), the claim is proven by

contradiction, as the statement of Lemma 4 contradicts our assumption that πB+2 ∈ S.

So, we know that any member of S must have Pπ ∩ T ≤ B, while any non-member still has
Pπ ∩ T ≤ B + 1. We will combine this fact with the subsequent claim to derive our final bound on
|S|.

Claim 14. For each i ∈ [` − 1], there exist at least |S| distinct permutations π such that there
exists an s ∈ S for which

(s1, . . . , si−1, s`) ∈ Pπ

Proof. Beginning with i = 1, we observe that permutations with at least |S|/(`− 1)! different last
elements s` must occur in S (as there are only (` − 1)! sequences with any given last element).
Furthermore, any permutation in S with a certain last element s` must be such that (s`) ∈ Pπ for
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a total of (`− 1)! different permutations π (i.e., anything beginning with s`), and different s` will
of course correspond to disjoint sets of sequences. Thus, we conclude that the permutations in S
will in total correspond to at least (|S|/(`− 1)!)(`− 1)! = |S| distinct permutations.

For the remaining i > 1, we can apply the same logic to the distinct arrangements of the elements
(s1, ..., si−1) and s` . Among the permutations in S there must be a minimum of |S|/(`− i)! such
arrangements (since, given a fixed (s1, ..., si−1, s`), there are (` − i)! permutations possible), and
sequences with each arrangement will have (s1, ..., si−1, s`) ∈ Pπ for a total of (` − i)! distinct
permutations π (i.e., any permutation beginning with (s1, ..., si−1, s`)). Hence, by the same logic
as before, the permutations in S will once again correspond to at least (|S|/(` − i)!)(` − i)! = |S|
distinct permutations.

In total, we notice that, since at least |S| distinct π have the property that there exists s ∈ S
such that (s1, ..., si−1, s`) ∈ Pπ for any i ∈ [` − 1], there are at least |S|(` − 1) distinct pairs (π, i)
for which there exists s ∈ S such that (s1, ..., si−1, s`) ∈ Pπ ∩ T . Furthermore, we recall that the
permutations in S have Pπ∩T ≤ B, while the remaining `!−|S| permutations have Pπ∩T ≤ B+1.
This provides an upper bound of B|S| + (`! − |S|)(B + 1) on the number of pairs (π, i) with
this property. We lastly combine these lower and upper bounds (noting that, if the lower bound
exceeded the upper bound, there would be a contradiction) to bound |S|:

|S|(`− 1) ≤ B|S|+ (`!− |S|)(B + 1) = B`! + `!− |S|

|S|` ≤ (B + 1)`!

|S| ≤ (B + 1)(`− 1)!
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