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Abstract

We initiate the study of numerical linear algebra in the sliding window model, where only
the most recent W updates in a stream form the underlying data set. Although many existing
algorithms in the sliding window model use or borrow elements from the smooth histogram frame-
work (Braverman and Ostrovsky, FOCS 2007), we show that many interesting linear-algebraic
problems, including spectral and vector induced matrix norms, generalized regression, and low-
rank approximation, are not amenable to this approach in the row-arrival model. To overcome
this challenge, we first introduce a unified row-sampling based framework that gives random-
ized algorithms for spectral approximation, low-rank approximation/projection-cost preserva-
tion, and ¢;-subspace embeddings in the sliding window model, which often use nearly optimal
space and achieve nearly input sparsity runtime. Our algorithms are based on “reverse online’
versions of offline sampling distributions such as (ridge) leverage scores, ¢; sensitivities, and
Lewis weights to quantify both the importance and the recency of a row; our structural results
on these distributions may be of independent interest for future algorithmic design.

Although our techniques initially address numerical linear algebra in the sliding window
model, our row-sampling framework rather surprisingly implies connections to the well-studied
online model; our structural results also give the first sample optimal (up to lower order terms)
online algorithm for low-rank approximation/projection-cost preservation. Using this powerful
primitive, we give online algorithms for column/row subset selection and principal component
analysis that resolves the main open question of Bhaskara et al. (FOCS 2019). We also give the
first online algorithm for ¢;-subspace embeddings. We further formalize the connection between
the online model and the sliding window model by introducing an additional unified frame-
work for deterministic algorithms using a merge and reduce paradigm and the concept of online
coresets, which we define as a weighted subset of rows of the input matrix that can be used
to compute a good approximation to some given function on all of its prefixes. Our sampling
based algorithms in the row-arrival online model yield online coresets, giving deterministic al-
gorithms for spectral approximation, low-rank approximation/projection-cost preservation, and
{1-subspace embeddings in the sliding window model that use nearly optimal space.
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1 Introduction

The advent of big data has reinforced efforts to design and analyze algorithms in the streaming
model, where data arrives sequentially, can be observed in a small number of passes (ideally once),
and the proposed algorithms are allowed to use space that is sublinear in the size of the input. For
example in a typical e-commerce setup, the entries of a row represent the number of each item
purchased by a customer in a transaction. As the transaction is completed, the advertiser receives
an entire row of information as an update, which corresponds to the row-arrival model. Then
the underlying covariance matrix summarizes information about which items tend to be purchased
together, while low-rank approximation identifies a representative subset of transactions.

However, the streaming model does not fully address settings where the data is time-sensitive;
the advertiser is not interested in the outdated behavior of customers. Thus one scenario that
is not well-represented by the streaming model is when recent data is considered more accurate
and important than data that arrived prior to a certain time window, as in applications such as
network monitoring [CM05, CGO8, Corl13], event detection in social media [OMM ™ 14], and data
summarization [CNZ16, ELVZ17]. To model such settings, Datar et al. [DGIMO02] introduced the
sliding window model, which is parametrized by the size W of the window that represents the size of
the active data that we want to analyze, in contrast to the so-called “expired data”. The objective
is to compute or approximate statistics only on the active data using memory that is sublinear in
the window size W.

The sliding window model is more appropriate than the unbounded streaming model in a
number of applications [BBD 02, MM12, PGD15, WLL"16]. For example in large scale social
media analysis, each row in a matrix can correspond to some online document, such as the content
of a Twitter post, and given some corresponding time information. Although a streaming algorithm
can analyze the data starting from a certain time, analysis with a recent time frame, e.g., the
most recent week or month, could provide much more attractive information to advertisers or
content providers. Similarly in the task of data summarization, the underlying data set is a matrix
whose rows correspond to a number of subjects, while the columns correspond to a number of
features. Information on each subject arrives sequentially and the task is to select a small number
of representative subjects, which is usually done through some kind of PCA [PY06, QAWZ15].
However, if the behavior of the subjects has recently and indefinitely changed, we would like the
summary to only be representative of the updated behavior, rather than the outdated information.

Another time-sensitive scenario that is not well-represented by the streaming model is when
irreversible decisions must be made upon the arrival of each update in the stream, which enables
further actions downstream, such as in scheduling, facility location, and data structures. The goal
of the online model is to address such settings by requiring immediate and permanent actions on
each element of the stream as it arrives, while still remaining competitive with an optimal offline
solution that has full knowledge of the entire input. We specifically study the case where the online
model must also use space sublinear in the size of the input, though this restriction is not always
enforced across algorithms in the online model for other problems. In the context of online PCA,
an algorithm receives a stream of input vectors and must immediately project each input vector
into a lower dimension space of its choice. The projected vector can then be used as input to
some downstream rotationally invariant algorithm, such as classification, clustering, or regression,
which would run more efficiently due to the lower dimensional input. Moreover, PCA serves as
a popular preprocessing step because it often actually improves the quality of the solution by
removing isotropic noise [BGKL15] from the data, so that in applications such as clustering, the



denoised projection can perform better than the original input. The online model has also been
extensively used in a number of other applications, such as learning [BKRWO03, HK16, BDV18],
(prophet) secretary problems [Rub16, EHLM17, EHKS18], ad allocation [NW18], and a variety of
graph applications [CW18, GKM™19, CPW19].

Generally, the sliding window model and the online model do not seem related, resulting in a
different set of techniques being developed for each problem and each setting. Surprisingly, our
results exhibit a seemingly unexplored and interesting connection between the sliding window model
and the online model. Our observation is that an online algorithm should be correct on all prefixes
of the input, in case the stream terminates at that prefix; on the other hand, a sliding window
algorithm should be correct on all suffixes of the input, in case the previous elements expire leaving
only the suffix (and perhaps a bunch of “dummy” elements). Then can we gain something by
viewing each update to a sliding window algorithm as an update to an online algorithm in reverse?
At first glance, the answer might seem to be no; we cannot simulate an online algorithm with
the stream in reverse order because it would have access to the entire stream whereas a sliding
window algorithm only maintains a sketch of the previous elements upon each update. However,
it turns out that in the row-arrival model, a sketch of the previous elements often suffices to
approximately simulate the entire stream input to the online algorithm. Indeed, we show that
any row-sampling based online algorithm for the problems of spectral approximation, low-rank
approximation/projection-cost preservation, and ¢;-subspace embedding automatically implies a
corresponding deterministic sliding window algorithm for the problem!

Formally, we study the following numerical linear algebraic problems in the row-arrival online
and sliding window models:

Spectral Approximation. Given a matrix A € R™*?% and an approximation parameter € > 0, we
wish to find a matrix M € R™*? with m < n that is a spectral approximation (or interchangeably,
an f9-subspace embedding) of A. That is, with high probability, our output matrix M should satisfy
(1 —e)[|Ax|l, < |[Mx|, < (1 +¢)||Ax]|, for all x € R%. Equivalently, we require (1 — £)ATA <
MM < (14+¢)ATA.

Low-Rank Approximation/Projection-Cost Preservation. In the low-rank approximation
problem, we are given a matrix A € R"*¢, arank parameter k > 0, and an approximation parameter
e > 0, and we wish to find a matrix M € R™*¢ with m < n such that (1 — &) HA - A(k)Hi* <
HM — M(k)Hi < (1+4¢) HA — A(k)wa where A () for a matrix A represents the best rank k
approximation to A. A stronger notion is a projection-cost preservation':

Definition 1.1 (Rank k Projection-Cost Preservation [CMM17]). Form < n, a matriz M € R™*4
of rescaled rows of A € R™ 9 is a (1 4 ¢€) projection-cost preservation if, for all rank k orthogonal
projection matrices P € RdXd,

(1—¢)|A—AP[% < |M ~MPJ|[7 < (1+<) | A~ AP|[7.

Note if M is a projection-cost preservation of A, then its best low-rank approximation can be used
to find a projection matrix that gives an approximation of the best low-rank approximation to A.

'Rank k projection-cost preservation was originally formulated as an additive-multiplicative guarantee
by [CEM™15] but subsequent literature uses the purely additive form as in Definition 1.1.



{1-Subspace Embedding. The ¢i-subspace embedding problem has similar demands to the
spectral approximation problem, but the structural differences between the /; and f5 norms require
vastly different techniques. Given a matrix A € R™*¢ and an approximation parameter ¢ > 0, we
wish to find a matrix M € R™*? with m < n so that, with high probability, we have (1—¢) || Ax||, <
|Mx||, < (1+¢)|Ax]|; for all x € R%

Row/Column Subset Selection. The row/column subset selection problems are symmetric,
depending on whether the arrival model is rows or columns; we address the row subset selection
problem in the row-arrival model. Given a matrix A € R™ ¢ a rank parameter k& > 0, and an
approximation parameter € > 0, the goal is to select k£ rows of A to form a matrix M to minimize
HA — AMTMHF. Since the matrix M has rank at most k, then HA — AMTMHF > HA — A

but we would ideally like to obtain some guarantee for HA — AMTMH  relative to HA — Ay
where A ;) is the best rank &k approximation to A.

)HF’
)HF’

Principal Component Analysis. In the (online) PCA problem, rows of the matrix A € R™*¢
arrive sequentially in a data stream and after each row a; arrives, the goal is to immediately output
a row m; € R™ with m < d such that at the end of the stream, there exists a low-rank matrix
X € R™*4 with )
2
A -MX|% < (1+¢)||A—-Apl,,

where m should be minimal and A ) is the best rank k approximation to A. Here the matrix
M =mj; o...om, is formed by the concatenation of the rows that we output at each time.

1.1 Owur Contributions

We initiate and perform a comprehensive study for both randomized and deterministic algorithms
in the sliding window model. We first present a randomized row sampling framework for spectral
approximation, low-rank approximation/projection-cost preservation, and ¢;-subspace embeddings
in the sliding window model. Most of our results are space or time optimal, up to lower order terms.
Our sliding window structural results imply structural results for the online setting, which we use to
give algorithms for row/column subset selection, PCA, projection-cost preservation, and subspace
embeddings in the online model. Our online algorithms are simple and intuitive, yet they either are
novel for the particular problem or improve upon the state-of-the-art, e.g., Bhaskara et al. (FOCS
2019) [BLVZ19]. Finally, we formalize a surprising connection between online algorithms and sliding
window algorithms by describing a unified framework for deterministic algorithms in the sliding
window model based on the merge-and-reduce paradigm and the concept of online coresets, which
are provably generated by online algorithms. We now describe our results in greater detail.

Row Sampling Framework for the Sliding Window Model. One may ask whether exist-
ing algorithms in the sliding window model can be generalized to problems for numerical linear
algebra. For example, it is known that elementary linear-algebraic problems, such as estimating
the Frobenius norm, can be addressed in the sliding window model using the smooth histogram
framework [BOO7] (we refer to Appendix A.1 for general background on the smooth histogram
framework). We show that it is not the case in general. In Appendix A.2; we give counterexamples
showing that various linear-algebraic functions, including the spectral norm, vector induced matrix



norms, generalized regression, and low-rank approximation, are not smooth according to the defini-
tions of [BO07] and therefore cannot be used in the smooth histogram framework. This motivates
the need for new frameworks for problems of linear algebra in the sliding window model. We first
give a row sampling based framework for space and runtime efficient randomized algorithms for
numerical linear algebra in the sliding window model.

Framework 1.2 (Row Sampling Framework for the Sliding Window Model). There ezists a row
sampling based framework in the sliding window model that upon the arrival of each new row of
the stream with condition number k chooses whether to keep or discard each previously stored row,
according to some predefined probability distribution for each problem. Using the appropriate prob-
ability distribution, we obtain for any approximation parameter ¢ > 0:

(1) A randomized algorithm for spectral approximation in the sliding window model that with
high probability, outputs a matrix M that is a subset of (rescaled) rows of an input matrix
A € RV sych that (1 —e)ATA < M'™M =< (1 +¢)ATA, while storing O (;%lognlog K)
rows at any time and using nearly input sparsity time. (See Theorem 2.6.)

(2) A randomized algorithm for low-rank approximation/projection-cost preservation in the sliding
window model that with high probability, outputs a matriz M that is a subset of (rescaled)
rows of an input matric A € RW>? such that for all rank k orthogonal projection matrices
P € Réxd

2 2 2
(1-¢)|A—-AP|p < [M—-MP[; < (1+¢)[|A—AP|p,

while storing O (5% log n log? /{) rows at any time and using nearly input sparsity time. (See
Theorem 2.12.)

(8) A randomized algorithm for (1-subspace embeddings in the sliding window model that with
high probability, outputs a matrix M that is a subset of (rescaled) rows of an input matrix
A € R"*4 sych that (1 — ¢) |Ax||, < |[Mx||; < (1+¢)||Ax]|, for all x € RY, while storing

o (g; log? nlog /i) rows at any time. (See Theorem 4.9.)

Here we say the stream has condition number x if any matrix formed by consecutive rows of
the stream has condition number at most «.

We further show that for low-rank approximation/projection-cost preservation, we can further
improve the polylogarithmic factors from O (8% log n log? H) rows stored at any time to O (8% log? n),
under the assumption that the entries of the underlying matrix are integers with magnitude at most
poly(n) even though logx can be as large as O (dlogn) with these assumptions. To the best of
our knowledge, not only are our contributions in Framework 1.2 the first such algorithms for these
problems in the sliding window model, but also Theorem 2.6 and Theorem 2.12 are both space and
runtime optimal up to lower order terms, even compared to row sampling algorithms in the offline
setting for most reasonable regime of parameters [ACK 16, DV06].

Numerical Linear Algebra in the Online Model. An important step in the analysis of our
row sampling framework for numerical linear algebra in the sliding window model is bounding the
sum of the sampling probabilities for each row. In particular, we provide a tight bound on the sum
of the online ridge leverage scores that was previously unexplored. We show that our bounds along
with the paradigm of row sampling with respect to online ridge leverage scores offer simple online
algorithms that improve upon the state-of-the-art across broad applications.



Theorem 1.3 (Online Rank k Projection-Cost Preservation). Given parameters e > 0, k > 0,
and a matric A € R™ 9%, whose rows ay,...,a, arrive sequentially in a stream with condition
number k, there exists an online algorithm that with high probability, outputs a matrix M that has
@) (6% log n log? /{) (rescaled) rows of A and for all rank k orthogonal projection matrices P € R¥*?,

(1—¢)|A—AP[|; < |M ~MPJ[; < (1 +¢) | A~ APJ[3.

(See Theorem 3.1.)

Theorem 3.1 immediately yields improvements on the two online algorithms recently developed
by Bhaskara et al. (FOCS 2019) for online row subset selection and online PCA [BLVZ19].

Theorem 1.4 (Online Row Subset Selection). Given parameters € > 0, k > 0, and a matriz
A € R™? whose rows ay,...,a, arrive sequentially in a stream with condition number k, there
exists an online algorithm that with high probability, outputs a matriz M with O (f log n log? /1)
rows that contains a matriz T of k rows such that

HA AT 1THF 1+EHA Ak HF

(See Theorem 3.5.)

By comparison, the online row subset selection algorithm of [BLVZ19] stores O (5% log n log? /{)
rows to succeed with high probability. Moreover, our algorithm provides the guarantee of the
existence of a subset T of k rows that provides a (1 + ¢)-approximation to the best rank k solution,
whereas [BLVZ19] promises the bicriteria result that their matrix with rank O (8% log n log? /1) is a
(1 + e)-approximation to the best rank k solution.

The online PCA algorithm of [BLVZ19] also offers this bicriteria guarantee; for an input
matrix A € R™ 9 they give an algorithm that outputs a matrix M € R™™, where m =
O (e%(logn +log k)*) and a matrix X of rank m, so that ||A — MX|% < (1 +¢) |A - A(k)H;
Our online row subset selection can also be adjoined with the online PCA algorithm of [BLVZ19]
to offer the promise of the existence of a submatrix Y € R¥*? within X such that ||A — BY||% <

(1+e)[|A—Ag;

Theorem 1.5 (Online Principal Component Analysis). Given parameters n,d,k,e > 0 and a
matriz A € R™ whose rows arrive sequentially in a stream with condition number k, let m =
@) (E%(logn + log /{)4). There exists an algorithm for online PCA that immediately outputs a row
m; € R™ after seeing row a; € R and with high probability, outputs a matriz X € R™*? at the
end of the stream such that

1A~ MX|% < (1+2)[|A - A,

where Ay is the best rank k approzimation to A. Moreover, X contains a submatriz 'Y € RFxd
such that there exists a matriz B such that

|A=BY[} < (1+2) A - Awll;

(See Theorem 3.6.)

Our sliding window algorithm for #;-subspace embeddings also uses an online ¢{-subspace em-
bedding algorithm that we develop.



Theorem 1.6 (Ounline ¢;-Subspace Emebedding). Given ¢ > % and a matriz A € R™? whose

rows ai,...,a, arrive sequentially in a stream with condition number k, there exists an online
algorithm that outputs a matriz M with O (g—; log? n log /<;> (rescaled) rows of A such that

(1 —e) [Ax]}; < [[Mx[|; < (1 +¢) [[Ax],

for all x € R with high probability. (See Theorem 4.8.)

We summarize these results in Figure 1.

Online Algorithms Rows Sampled/Output Dimension Notes
Rank k& Approximation (@] (8% log n log? K}) (Theorem 3.1)
O (E% log nlog? k) [BLVZ19] Bicriteria

Row Subset Selection
o (g log n log? K}) (Theorem 3.5)

O (E%(log n+logk)*) [BLVZ19] Bicriteria

Principal Component Analysis
O (fg(log n +logk)?) (Theorem 3.6)

¢1-Subspace Embedding (@] (g—z log? nlog /1) (Theorem 4.9)

Fig. 1: Online algorithms for an input matrix of dimension n x d. & is the condition number of
the stream. Bicriteria denotes that the rank of the matrix within (1+ ¢) approximation of the best
rank k solution need not have rank at most k.

A Coreset Framework for Deterministic Sliding Window Algorithms. To formalize a
connection between online algorithms and sliding window algorithms, we give a framework for
deterministic sliding window algorithms based on the merge-and-reduce paradigm and the concept
of an online coreset, which we define as a weighted subset of rows of A that can be used to compute
a good approximation to some given function on all prefixes of A. On the other hand, observe that
a row-sampling based online algorithm does not know when the input might terminate, so it must
output a good approximation to any prefix of the input, which is exactly the requirement of an
online coreset! Moreover, an online cannot revoke any of its decisions, so the history of its decisions
are fully observable. Indeed, each of our online algorithms imply the existence of an online coreset
for the corresponding problem. Intuition for our framework is presented in Figure 2.

Framework 1.7 (Coreset Framework for Deterministic Sliding Window Algorithms). There exists
a merge-and-reduce framework for numerical linear algebra in the sliding window model using online
coresets. If the input stream has condition number k, then for approximation parameter € > %, the
framework gives:

(1) A deterministic algorithm for spectral approximation in the sliding window model that outputs
a matriz M that is a subset of (rescaled) rows of an input matriz A € RW*? such that
(1—e)ATA<M'™™ =< (14+¢)ATA, while storing O (6% log* nlog K) rows at any time. (See
Theorem 5.5).
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Stream of rows, active rows in sliding window

Fig. 2: Merge and reduce framework for deterministic sliding window algorithms via coresets that
accurately approximate any suffix of the input. The stream of rows proceeds from left to right, with
the active rows of the sliding window in green. The rows sampled by the coresets Bg, B1, ... are in
color above, with the blue rows used to approximate the active rows and red rows approximating
expired portions of the stream, even if the size of the sliding window is given after the stream.

(2) A deterministic algorithm for low-rank approximation/projection-cost preservation in the slid-
ing window model that outputs a matriz M that is a subset of (rescaled) rows of an input matrix
A € RWX4 such that for all rank k orthogonal projection matrices P € R4,

(1—2)||A - AP|% < [[M - MP|[7 < (1 +¢) |A - AP| %,
while storing O (5% log* n log? /1) rows at any time. (See Theorem 5.7.)

(8) A deterministic algorithm for {1-subspace embeddings in the sliding window model that outputs
a matriz M that is a subset of (rescaled) rows of an input matric A € RW*? such that
(1—¢) ||Ax|l; < Mx]||; < (1+¢)||Ax]|, for all x € RY, while storing O (5% log* nlog k) rows
at any time. (See Theorem 5.10).

All of the results presented using Framework 1.7 are space optimal, up to lower order terms [ACK " 16,
DV06, CP15]. Again we have the property for low-rank approximation/projection-cost preservation
that the number of sampled rows can be improved from O (6% log n log? /1) to O (6% log? n), under
the assumption that the entries of the underlying matrix are integers at most poly(n) in magnitude.

We remark that neither our randomized framework Framework 1.2 nor our deterministic frame-
work Framework 1.7 requires the sliding window parameter W as input during the processing of the
stream. Instead, they create oblivious data structures from which approximations for any window
can be computed after processing the stream. Intuitively, this can be visualized by Figure 2. We
summarize our sliding window algorithms in Figure 3.

1.2 Overview of Our Techniques

The design and analysis of many existing algorithms in the sliding window model use either the
exponential histogram framework [DGIMO02] or the smooth histogram framework [BO07]. Unfor-
tunately, we show in Appendix A.2 that these frameworks cannot be applied to many interesting
linear-algebraic functions, such as approximating the spectral norm or vector induced matrix norms,
generalized regression, and low-rank approximation. This motivates the need for new frameworks
for problems of linear algebra in the sliding window model.

Our first observation is that as additional rows arrive in the stream, the singular values of the
underlying matrix cannot decrease. Then we must have the Loewner ordering MlTMl = ... =



Sliding Window Algorithms

Rows Sampled (Randomized)

Rows Sampled (Deterministic)

Spectral Approximation

) (;%) (Theorem 2.6)

E) (E%) (Theorem 5.5)

Rank k Approximation

) (E—kg) (Theorem 2.12)

E) (E—kg) (Theorem 5.7)

{1-Subspace Embedding

O (?—;) (Theorem 4.9)

E) (E%) (Theorem 5.16)

Fig. 3: Sliding window algorithms using Framework 1.2 for randomized algorithms and
Framework 1.7 for deterministic algorithms for a stream of length n of dimension d rows. We
omit dependencies on log n and log x, where k is the condition number of the stream. Furthermore,
Theorem 2.6 and Theorem 2.12 run in nearly input sparsity time.

M,TL M,,, where M; is the matrix formed by the rows that have arrived since time ¢. For spectral
approximation, we can reduce the number of outer products stored, since we only care when some
singular value of a matrix has increased by (1 + €). Thus we can repeatedly delete an index i if
MZT_ 1M1 = (14 e)M;11 M4 and relabel the indices, since there are no significant differences
between the singular values of M;_; and M;;1. We can repeatedly delete matrices until there are
about O (g log /1) matrices remaining, where d is the dimension of each row and « is the condition
number of the stream. Now if A and B are substreams, where B is a suffix of A, corresponding to
matrices A and B and (1 — e)ATA <B'B < ATA, then

(1-¢)(ATA+C'C)=<B'™B+C'C<ATA+C'C

for any matrix C that represents a substream C that arrives right after the substream A. Hence, if
we have a (1+¢) spectral approximation to some suffix of the stream, it will remain a (1+¢) spectral
approximation upon the arrival of new rows. In particular, the matrix represented by the active
rows in the sliding window will be sandwiched between two matrices maintained by the algorithm
and thus be well-approximated. In fact, this approach can easily be seen as a generalization of the
smooth histogram framework to matrix functions and is formalized in Appendix A.3.

Alas, not only is this approach not space optimal, but it does not seem to generalize to other
linear algebraic problems in the sliding window model. Nevertheless, this warm-up algorithm
crucially gives insight into a more space efficient spectral approximation that does generalize to
other algorithms. Observe that the rows of M; are a subset of the rows of M, for any i < j,
SO M;rl\/IZ and MjTMj be storing a lot of redundant information, which suggests a row sampling
approach for more space efficient algorithms.

Spectral Approximation via Row Sampling in the Sliding Window Model. The chal-
lenge for row sampling approaches in the sliding window model results from two conflicting forces.
Suppose we have a good approximation M to the matrix A consisting of the rows that have already
arrived in the stream. When a new row r arrives, we would like to sample r with high probability
if r is “important” based on the rows in M. Namely, if r has high norm or a different direction
than the rows of M, then we would like to capture that information by sampling r. On the other
hand, if r has low importance based on the existing rows of M, then it seems like we should not
sample r.

However, the sliding window model also emphasizes the more recent rows. For example, it may
be possible that the rows that follow r all contain only zeroes and that all rows of before r are



expired at the time of query. Since all rows of M have expired at the time of query, then we would
be left with no information about the underlying matrix if we did not sample r. This implies that
we must always store the most recent row and similarly place greater emphasis on more recent rows.
Although the (ridge) leverage score of a row quantifies the “uniqueness” or “importance” of a row
with respect to all other rows in the matrix, there is no measure that combines both uniqueness
and recency.

We first consider “online” versions of sampling distributions, which quantifies the importance
of a row with respect to the previous rows in the matrix. For example, [CMP16] introduces online
(ridge) leverage scores for a row sampling approach to online spectral approximation. By contrast,
the sliding window model seems to value the importance of a row with respect to the following
rows in the matrix. Thus we introduce the concept of reverse online leverage scores for spectral
approximation in the sliding window model. Given rows ry,...,r;, we say the reverse online leverage
score of row r; is the leverage score of r; with respect to the matrix formed by the concatenation
of the following rows r;;1 o...or;”. Note specifically that the reverse online leverage score of the
most recent row is always 1, which matches the previous observation that we should always sample
the most recent row in the sliding window model.

On the other hand, we cannot compute the reverse online leverage scores of each row without
storing the entire stream. We can compute the reverse online leverage score of a row with respect to
the rows that we have sampled as a (1+ ¢) approximation to the true score, but a possible concern
is that the error at each step compounds and the error at the end could be as large as (1 + ¢)".
To resolve this issue, we use an idea of [CLM™15] that shows if we have a (1 + ¢) approximation
for each score but then oversample each row by a factor C' > (1 + O (¢)), then the error will not
compound and the resulting matrix will still be a (1 4+ ¢) approximation. We also use a matrix
martingale argument similar to [CMP16] to avoid known row sampling dependencies [KL13].

To bound the rows sampled by our algorithm, we note that each row is sampled with probability
proportional to the reverse online leverage score, and [CMP16] bounds the sum of the online leverage
scores by O (dlog k) assuming bounded entries in the underlying matrix, which must also bound
the sum of the reverse online leverage scores. We also note that by batching until a certain
number of rows have arrived before choosing to discard rows, we can amortize the runtime needed
to approximate each of the reverse online leverage scores and obtain nearly input sparsity time
by using standard projection techniques to embed each of the sampled rows into an O (log %)
dimensional subspace.

From Spectral Approximation to a Row Sampling Framework. The spectral approxima-
tion algorithm suggests a simple row sampling framework for sliding window algorithms. Suppose
at each time, we have stored a matrix M that serves as a good approximation for some function,
e.g., a low-rank approximation or an ¢1-subspace embedding, on input matrix A. When a new row
r arrives, we add r to M and then we start from the most recent row in M and iteratively choose
whether to keep and rescale each row of M based on some “reverse online” sampling distribution
that is monotonic — if the sampling probability of a row increases as additional rows arrive, we
can no longer guarantee that we sampled the row with sufficient probability. Then generally our
analysis must first show correctness of the sampling probabilities and then bound the number of
sampled rows.

Low-Rank Approximation/Projection-Cost Preservation. For low-rank approximation, the same

2We define the reverse online leverage score to be 1 when a row is not in the span of the following rows.



matrix martingale argument shows that a reverse online version of ridge leverage scores [AM15,
CEMT15, CMM17] with the proper regularization provides a rank k projection-cost preservation
of the underlying matrix, and thus a low-rank approximation. We then provide a tighter bound on

2
. . . . . A—-A
the sum of the (reverse) online ridge leverage scores with regularization parameter A\ = %,

which shows that the number of sampled rows will be proportional to k& rather than d. However,

2
. . A-A .
this still does not suffice for our purpose; we do not know % in advance and thus we

cannot regularize. Fortunately, the fact that our algorithm is a rank k projection-cost preservation
means that we have an (1 + ¢) approximation to the regularization parameter at all times. Thus
we can again oversample by a factor of say 2 to compensate and avoid compounding errors. Similar
to our spectral approximation algorithm, our low-rank approximation algorithm has input sparsity
runtime, up to lower order factors.

£1-Subspace Embedding. For £i-sampling, we define the reverse online /¢i-sensitivity of a row

T A
a; € R? as max,pa %, where Z; is the matrix that consists of the rows following a;*. The

analysis showing correctness of this probability distribution is straightforward; it follows from a
scalar martingale concentration inequality to show that |[Mx||; ~ |Ax]|; for all points x in an
e-net, where A is the input matrix and M is the sampled matrix. By a simple chaining argument,
it then follows that | Mx||, = ||Ax]||, for all x € R%. It follows that given the correctness of M at all
times, it is straightforward for our algorithm to approximate the reverse online ¢; sensitivity of each
row. We could use a reverse online version of the ¢ leverage scores [DDH T 08], but these quantities
would result in a higher number of sampled rows. We could also try a reverse online version of the
Lewis weights [CP15], but it does seem apparent how to approximate these quantities.

The challenge is bounding the sum of the (reverse) online ¢; sensitivities. A natural approach
would be adapting the approach [CMP16], who relate the sum of the online ¢ leverage scores to
the evolution of the determinant of AT A as additional rows of A arrive in the stream. A similar
geometric argument of relating the sum of the online ¢; sensitivities to the change in volume of
some polytope induced by A does not seem obvious. A primary reason for this is that, unlike for
{5, the unit ball {z| [|Ax]||; < 1} is not an ellipsoid and it is not clear how the John ellipsoid or
the ¢; sensitivities of this polytope change when a new row is added.

Instead, we first show that if the online /5 leverage scores are uniformly bounded by roughly
% given some regularization of the matrix for any constant C' > 1, then the online ¢; sensi-
tivities must also be uniformly bounded by %. Now even under our regularization, the input
matrix A does not have uniformly bounded online ¢ leverage scores. We thus use a reweighting
idea of [CLM™15] to argue that we can remove half of the rows of A, while increasing the online £o
leverage scores of the other half of the rows of A to at most %, given our regularization. Since
sensitivities only increase with the removal of rows, it follows that the sum of the (regularized)
online /1 sensitivities of the half of the rows that remain with respect to A must be O (dlog ). We
then induct on the matrix formed by the removed rows to argue that the total sum of the (regu-
larized) online ¢; sensitivities of A must be O (dlognlogk), which implies a bound on the total
number of sampled rows. This also implies the first online algorithm for an ¢;-subspace embedding.
In fact, our analysis can be used to improve a number of other online algorithms.

$We again define this quantity to be 1 when a row is not in the span of the following rows.
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Rank Constrained Online Algorithms. Our analysis for the sum of the online ridge leverage

2

scores with regularization A = w immediately gives a nearly space optimal algorithm for
low-rank approximation/projection-cost preservation in the online model. As in the sliding window
setting, we do not know the value of A in advance, b2ut since our sketch is a rank k projection-cost
preservation, we can track the evolution of w as additional rows of A arrive in the stream.
Correctness follows from the same matrix martingale argument as [CMP16] and the improved space
bounds follow from our analysis bounding the sum of the online ridge leverage scores. We then show
that an online algorithm providing a rank-k projection-cost preservation is a powerful primitive that
can be used in conjunction with existing techniques to improve previous work.

Online Row Subset Selection. For row subset selection in the online model, our starting point
is an offline algorithm by [CMM17], who observe that given a matrix Z that is a constant factor
low-rank approximation to the underlying matrix A, a theorem by [DRVWO06] shows that adaptive
sampling O (g) additional rows S of A against the rows of Z suffices for ZUS to contain a (1 + ¢)
factor approximation to the online row subset selection problem. Moreover, Z U S contains a
submatrix T of k rows that is a good low-rank approximation to A. Since our online projection-
cost preservation algorithm can output such a matrix Z, we adapt the theorem of [DRVWO06] to
the streaming model, showing that if Z is given, adaptive sampling can also be performed on data
streams to obtain a different but valid S by oversampling each row of A by an O (g) factor.

We do not know Z until the end of the stream, so we cannot immediately perform adaptive
sampling in the online model. Fortunately, if we adaptively sample against the current output of
the online projection-cost preservation algorithm, then we will only oversample with respect to the
true sampling probability. [CMM17] shows that the adaptive sampling probabilities can be upper

bounded by the A-ridge leverage scores, where A = W. Since the A\-ridge leverage scores are
at most the online A-ridge leverage scores, we can again sample rows proportional to their online
A-ridge leverage scores. It then suffices to again use our bound on the sum of the online ridge
leverage scores to bound the number of total rows sampled by this algorithm.

Online Principal Component Analysis. Our starting point is a recent algorithm by [BLVZ19]
that maintains and updates a matrix X throughout the data stream. After the arrival of row a;,
the matrix X is updated using a combination of residual based sampling and a black-box theorem
of Boutsidis et al. [BGKL15]. Row m; is then output as the embedding of a; into X by m; = a; X,
where X is the matrix X after row i has been processed by X. X has the property that no rows
from X are ever removed across the duration of the algorithm, so then m; is only an upper bound
on the best embedding of a;. However, this matrix X does not contain a good rank k& approximation
to A. On the other hand, the output to our online row subset selection algorithm does contain a
submatrix Y of k£ rows that is a good approximation to A. Thus, our online row subset selection
(RSS) algorithm can be combined with the algorithm of [BLVZ19] to output matrices M and W
that is a good approximation to the online PCA problem but also so that W contains a submatrix
Y of k rows that is a good rank k approximation of A. Namely, the algorithm of [BLVZ19] can
be run to produce a matrix X after the arrival of each row a;. Simultaneously, our online RSS
algorithm produces a matrix Z(®) after a; arrives. We then immediately output the embedding
m; = a, W where W appends the new rows of X and Z® to W= Since the dimension
of W is the sum of the dimensions of X and Z but X has smaller dimension than Z, we do not
suffer additional asymptotic space over the algorithm of [BLVZ19].
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Online Coresets for Deterministic Sliding Window Algorithms. Our algorithms have re-
peatedly hinted at a connection between row sampling algorithms for the online model and the
sliding window model; if there exists an “online” probability distribution for a linear algebraic
problem, then there seems to be a corresponding “reverse online” probability distribution. On-
line algorithms demand correctness on prefixes; sliding window algorithms demand correctness on
suffixes. We formalize this intuition by showing a framework for deterministic sliding window al-
gorithms using a merge-and-reduce framework based on online coresets, which we define to be a
weighted subset of rows of an input matrix A that can be used to compute a good approximation to
some given function on all prefixes of A. Observe that any online algorithm in a row-arrival stream
that succeeds with high probability must yield an online coreset. By a simple union bound, it must
output the correct answer at all times. Thus, it must be correct for all prefixes of the stream. Since
an online algorithm cannot revoke any of its sampled rows, it follows that we can just consider the
rows output at the end of the algorithm and consider the subset of rows that were sampled prior
to a certain time to obtain a good approximation to the corresponding prefix of A. Hence, online
algorithms imply the existence of an online coreset for the corresponding problem.

Given an online coreset for a particular problem, we obtain a corresponding deterministic sliding
window algorithm, as in Figure 2. The idea is to store up to the most recent m rows in a block By,

for some parameter m related to the coreset size. When By becomes full, we create a (1 + 3 O§n>
online coreset By for By starting with the most recent row. We then reset By to empty and start
adding rows to By again. At some point By will contain m rows again. We then merge all of the

rows By, B, ... ,B'Z- where B, is the first empty block. It can be shown that the merged rows

(3 .

form a (1 + 10; n) coreset for the most recent 2' - m rows, which we can reduce back down to

m rows to form block B;y;. From a simple induction, it follows that using O (logn) blocks will
logn

give a (1 + 10; n) coreset, starting with the most recent row. Rescaling ¢, this gives a merge-

and-reduce based framework for (1 + ) deterministic sliding window algorithms based on online
coresets.

l1-Subspace Embedding. For this framework, we can actually use a probability distribution for
¢1-subspace embeddings that is more space efficient than ¢; sensitivities. The Lewis weights [Lew 78,
CP15] have been shown to be space optimal in the offline setting, up to lower order terms. However,
their properties are less understood; rather than impossibility results, the challenge in using online
Lewis weights in the row sampling framework is a gap in analysis. It did not seem evident how to
approximate the online Lewis weight of A for a row r, given a matrix M such that | Mx||, ~ ||Ax]|,
for all x € R%. For the merge-and-reduce framework, we have access to each of the rows stored by
an online coreset, so we can compute their online Lewis weights through an iterative process.

It then remains to bound the sum of the online Lewis weights to bound the size of the online
coreset. We first prove elementary properties of the (online) Lewis weights, such as monotonicity
to reweighting and a splitting invariance. We also show that if the online /o leverage scores are
uniformly bounded by roughly % given some regularization of the matrix for any constant
C > 1, then the online Lewis weights must also be uniformly bounded by %. We then
use these properties to bound the online Lewis weights using the same uniformity of reweighting
technique used to bound the online ¢; sensitivities. Namely, we again argue that we can remove
half of the rows of A, while increasing the online Lewis weights of the other half of the rows of A
to at most %, given our regularization. Since Lewis weights only increase with the removal
of rows, the sum of the (regularized) online Lewis weights of the half of the rows that remain
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with respect to A must be O (dlogk). An inductive argument then shows that the total sum of
the (regularized) online Lewis weights of A must be O (dlognlog k), which implies a bound on
the online Lewis weights and thus the coreset size. This gives a more space efficient algorithm
for ¢1-subspace embedding in the sliding window model compared to the previous row sampling
framework.

1.3 Organization and Open Questions

In Section 2, we introduce a general framework for space and time efficient randomized matrix
algorithms in the sliding window model. We use the framework to give algorithms for spectral
approximation and low-rank approximation that are nearly space optimal and input sparsity run-
time, up to lower order terms. We also provide a structural result that bounds the number of rows
sampled by a probability distribution induced by online ridge leverage scores, which were recently
introduced, but not fully explored. Our framework implicitly demonstrates connections between
the sliding window and online models through the probability distribution used to sample each row
and the corresponding analysis and we make this connection explicit in later sections.

In Section 3, we show that the paradigm of row sampling using online ridge leverage scores
along with our structural result achieves simple and intuitive online algorithms for low-rank ap-
proximation, row subset selection, and principal component analysis that nevertheless improve on
the state-of-the-art. In Section 4, we characterize and analyze an intuitive probability distribution
for the ¢i-subspace embedding problem and show that it can be used to obtain both online and
sliding window algorithms.

Finally, in Section 5, we give a general framework for deterministic matrix algorithms in the
sliding window model using a merge-and-reduce paradigm for the concept of online coresets, which
are generated by all of our online algorithms. We define and analyze a space optimal distribution
for the ¢1-subspace embedding problem, so that in all, we obtain nearly space optimal deterministic
algorithms for spectral approximation, low-rank approximation, and ¢;-subspace embeddings.

In Appendix A, we give background on the popular smooth histogram framework for sliding
window algorithms and then give counterexamples showing the approach is not amenable to many
interesting linear algebraic functions.

Our work leads to a number of interesting open questions. First, note that although we give the

first online algorithm for ¢;-subspace embedding, the number of sampled rows is O (g—; log? nlog K})

from using online ¢; sensitivities to determine the sampling probability for each row. This is because
even though we show that the sum of the online ¢; sensitivities is O (dlog n log k), the corresponding
analysis requires an exponentially small probability of failure due to the e-net argument. We show
that the sum of the online Lewis weights is O (dlognlog k) and the analysis of [CP15] that uses
offline Lewis weights does not require the e-net, but the challenge is approximating the online Lewis
weight of a row a; given a sketch M for A. Thus, a natural question is whether the online Lewis
weights can be used to improve the sample complexity for online ¢1-subspace embedding.

Another interesting question is whether assumptions on the bit complexity of the underlying
matrix A can remove the dependency on logx for spectral approximation. We showed this is

possible for low-rank approximation/projection-cost preservation by separately considering the case
lA]l

when A has rank at
Al

when A has rank at most 2k, since we can efficiently upper bound A

least 2k.
Finally, we describe how to construct online coresets in polynomial time for spectral approxi-
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mation by generalizing an online version of [BSS12] by [CMP16]. Do there exist corresponding fast
deterministic constructions of online coresets for low-rank approximation/projection-cost preserva-
tion and ¢;-subspace embeddings?

1.4 Preliminaries

For a positive integer n, we use [n] to represent the set {1,...,n}. We use T(n) to denote
some arbitrary degree polynomial in n, generally some failure event that can be avoided by fixing
sufficiently large constants. When an event has probability 1 — W(n) of occurring, we say the
event occurs with high probability. We use polylog(n) to omit terms that are polynomial in logn
and write exp(n) to denote €.

In the row-arrival model, the stream has length n and the " update in the stream is precisely
a row r;. In the sliding window model, the input matrix A is implicitly defined through the stream
and a parameter W > 0 that represents the window size, so that A is the matrix consisting of the

last W rows of the stream, A =r, w41 0...0r,, where aob denotes the vertical concatenation

s th

of rows: [2] . In the online model, the input matrix A is the matrix that consists of all n rows, so

that A=rjo...or,.

We use [, to denote the n x n identity matrix, but drop the subscript when the dimensions are
clear from context. We use the notation A" to denote the transpose of A and A~! to denote the
Moore-Penrose pseudoinverse of A so that AA™TA = A, A7TAA~ = A1, (AA_l)T =AAL
and (A7'A)T = A7TA. A symmetric matrix A € R"*" is positive semidefinite if x" Ax > 0
for all x € R™, in which case we say 0 < A. Then the Loewner partial ordering of matrices has
A < B if and only if 0 < B — A. If A has rank r, then we write its nonzero singular values as
Omax(A) = 01(A) > ... > 0,(A) = omin(A). We define the condition number of A by %
and the operator norm of A by ||Al|, = omax(A). We use £ to represent the condition number of
the stream; for the online model, the condition number of the stream is the maximum condition
number across any matrix formed by prefixes of the stream, but for the sliding window model, the
condition number of the stream is the maximum condition number across any matrix formed by
up to W consecutive rows in the stream.

For a vector x € R", we have the Euclidean norm [|x||, = y/>~i"; v? and more generally, [|x||, =

1
(32, |z;:[P)¥. For a matrix A € R™*? we denote its Frobenius norm by ||A|, = \/Zi:l ijl

We denote A ) = argmin . xy< A — XH% to be the best rank k approximation to A.

We introduce and use multiple formulations, variants, and generalizations of (ridge) leverage
scores, which we will define in their various sections, but we use the following definition of (ridge)
leverage scores throughout.

Definition 1.8 ((Ridge) Leverage Scores). For a matriz A = ajo...0a, € R"™ and a reg-
ularization parameter X > 0, the ridge leverage score of row a; for each i € [n] is the quantity
a;(ATA + )\]I)_laiT. When A = 0, we refer to the quantity as the leverage score of row a;.

Informally, the (ridge) leverage score of row a; quantifies how “important” or “unique” a row is.

When the regularization parameter is la- (k) ”F , the intuition is that the importance of a row is
only considered with respect to the top dlrectlons Sampling rows with probability proportional to
their leverage scores has been for spectral approximations [MD09, DMMW12] while sampling rows

14



Algorithm 1 Row sampling framework for matrix algorithms in the sliding window model

Input: A stream of rows ri,...,r, € R% window size W, and an accuracy parameter £ > 0
Output: A (1 + ¢) approximation for various matrix functions in the sliding window model.

1: M(] — @

2 6% log n with sufficiently large constant C' > 0

3: for each row r; do >Process stream
4: M;=r; >Keep timestamps of all rows
5: Let M1 =mjo...omy, .

6: for i = my_; down toi =1 do

7: T; <= SCORE(m;, M) >Importance of row i based on matriz function
8: p; < min(1l, ar;)

9: With probability p;, My + \I;lpii o M; >Downsample and rescale row
10: Delete M;_;.

11: M <0 > Return rows relevant to sliding window

12: Let M, =mjo...omy,,.

13: for i =1 to i = m,, do

14: if timestamp of m; is at least n — W + 1 then
15: M+ Mom;

16: return M

with probability proportional to their ridge leverage scores has been used for low-rank approxima-
tions [AM15, CEM*15, CMM17].

2 Row Sampling Framework for the Sliding Window Model

In this section, we give space and time efficient algorithms for matrix functions in the sliding window
model. Our general approach will be to use the following framework. As the stream ry,...,r, € R?
arrives, we shall maintain a weighted subset of these rows at each time. Suppose at some time ¢,
we have a matrix M; =r;10...0r,,, of weighted rows of the stream that can be used to give a
good approximation to the function applied to any suffix of the stream. Upon the arrival of row
t+1, we first set M;y1 = ry11. Then starting with ¢ = m; and moving backwards toward i = 1, we
repeatedly prepend a weighted version of r;; to M;;1 with some probability that depends on ry;,
M1, and the matrix function to be approximated. Once the rows of M; have each been either
added to My or discarded, we proceed to row t + 2.

Note that the matrices M; serve no real purpose other than for presentation; the framework is
just storing a subset of weighted rows at each time and repeatedly performing online row sampling,
starting with the most recent row. Since an online algorithm must be correct on all prefixes of the
input, then our framework must be correct on all suffixes of the input and in particular, on the
sliding window. This observation demonstrates a connection between online algorithms and sliding
window algorithms that we explore in greater detail in future sections. We give our framework in
Algorithm 1.
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Algorithm 2 SCORE(r, A) function for spectral approximation

Input: A row r € R? and a matrix A € R™*9,

Output: Scaled leverage score of r with respect to A.
if rank(A) = rank(A or) then

return 2r(A T A)~'r" >In particular, SCORE(m;, My) in Algorithm 1 is 2m;(M,] M;)m, .
else

return 1

2.1 /5-Subspace Embedding

We first give a randomized algorithm for spectral approximation in the sliding window model that
is both space and time efficient. [CMP16] define the concept of online (ridge) leverage scores and
show that by sampling each row of a matrix A with probability proportional to its online leverage
score, the weighted sample at the end of the stream provides a (1 + ¢) spectral approximation to
A. We recall the definition of online ridge leverage scores of a matrix from [CMP16], as well as
introduce reverse online ridge leverage scores.

Definition 2.1 (Online/Reverse Online (Ridge) Leverage Scores). For a matriz A = ajo...oa, €
R let Aj=ajo...oa; and Z; = a,o...0a;. Let A\ > 0. The online \-ridge leverage score
of row a; is defined to be min(1,a;(A {A;_1 + AI)"ta]), while the reverse online A-ridge leverage
score of row a; is defined to be min(1,a;(Z;, ,Z;11+Al)"'a; ). The (reverse) online leverage scores
are defined respectively by setting A = 0, though we use the convention that if the (reverse) online
leverage score of a; is 1 if rank(A;) > rank(A;_1) (respectively if rank(Z;) > rank(Z;4+1)).

Intuitively, the online leverage score quantifies how important row a; is, with respect to the
previous rows, while the reverse online leverage score quantifies how important row a; is, with re-
spect to the following rows, and the ridge leverage scores are regularized versions of these quantities.
As the name suggests, online (ridge) leverage scores seem appropriate for online algorithms while
reverse online (ridge) leverage scores seem appropriate for sliding window algorithms, where more
recency is an emphasis. Hence, we use reverse online leverage scores in computing the sampling
probability of each particular row in Algorithm 2 that serves as our customized SCORE function in
Algorithm 1 for spectral approximation.

However, these quantities are related; [CMP16] provide an asymptotic bound on the sum of the
online ridge leverage scores of any matrix, which also implies a bound on the sum of the reverse
online ridge leverage scores, by reversing the order of the rows in a matrix.

Lemma 2.2 (Bound on Sum of Online Ridge Leverage Scores). [CMP16] Let the rows of A =

ajo...oa, € R arrive in a stream with condition number k and let £; be the online (ridge)
leverage score of a; with reqularization X. Then Y 1 ; = O (dlog %) for X > omin(A) and
Yol = O (dlog k) for A < omin(A). It follows that if 7; is the reverse online ridge leverage score

of a;, then Y i 11, =0 <d log %) for X > omin(A) and Y7 7 = O (dlog k) for A < omin(A).

From the definition, it is evident that the reverse online (ridge) leverage scores are monotonic;
whenever a new row is added to A, the scores of existing rows cannot increase.

Lemma 2.3 (Monotonicity of Reverse Online (Ridge) Leverage Scores). For a matric A = aj o
...oa, € R X >0, and i € [n], let 7;(A) denote the reverse online \-ridge leverage score of
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row a; with respect to A and let 7;(B) denote the reverse online A-ridge leverage score of row a;
with respect to B := A or for any row r € R?. Then 1;(A) > 7;(B).

The proof follows immediately from Definition 2.1 and the fact that AZT A+ M =< (AZTAZ- +
r'r+ Al for any A; =ajo...o0a; and vector r € R4,
We also require the following version of the matrix Freedman concentration inequality:

Theorem 2.4 (Matrix Freedman Inequality). [Trol1] Let Uy,...,U; € R4 be a matriz mar-
tingale of symmetric matrices with difference sequence Wi, ..., W;, where W; = U; —U;_4. If

W, <R for each j € [i] with high probability and szzl E [W?] H2 < o2, then for all e > 0,

Pr([Uy, > <] < d itk
r ; 3 cexp | ————=——+ | .

2 == P\ 7021 Re /3

We now show that at any time ¢, Algorithm 1 using the SCORE function of Algorithm 2 stores a
matrix M; whose rows with timestamp after a time i € [t] provides a (1+¢) spectral approximation
to any matrix Z; = r; o...or;. This statement shows a good approximation to any suffix of the
stream at all times and in particular for ¢t = n and i = n — W + 1, shows that Algorithm 1 using
the SCORE function of Algorithm 2 outputs a spectral approximation for the matrix induced by
the sliding window model.

Lemma 2.5 (Spectral Approximation Guarantee, Bounds on Sampling Probabilities). Let t € [n],
A>0ande > 0. Fori€ [t], let ¢ = min(1, « - ri(ZiHTZiH)_lriT), where Zijz 1 =T40...0T; 1.
Then with high probability after the arrival of row ry, Algorithm 1 using the SCORE function of
Algorithm 2 will have sampled each row r; with probability at least q; and probability at most 4q;.
Moreover, if Y is the suffix of My consisting of the (scaled) rows whose timestamps are at least i,
then

(1—e)ZZ; + \I) Y'Y + A\ < (1 +¢)(Z] Z; + \D).

Proof. We assume ¢ € (0, %) and give the proof by induction on ¢. For ¢ = 1 and ignoring the

trivial case where ry is the all zeros row, then the input consists of a single nonzero row r; whose
reverse online leverage score is 1, so that Algorithm 1 using the SCORE function of Algorithm 2
will store rq, which completes the base case.

Now we suppose that the conditions hold for t — 1 and prove they must also for ¢ with high
probability. We show the conditions hold for each i € [t] by following the sampling process from ry
down to r;. We also assume that Algorithm 1 has sampled each row r; with probability p; at least
%qi and probability at most 2¢;. Let k =t —i + 1 and Uy,..., U € R¥4 be a matrix martingale
so that Uy is the all zeros matrix. We define W; = U; — U;_; for each j € [k]. For j > 1, we set
W; to be the all zeros matrix if [|[U;_1[|, > € and otherwise if ||[U;_1||, < €, we set the random
matrix variable

p; J

Ts 5 otherwise,

1 To. : :
W, = < B 1) s;s; ifr, ;i is sampled in Y

where s; := r;_;11(Z] Z; + \I)~'/2 for each j € [k].
Thus, the difference sequence Wy, ..., W} defines

U1 = (2] Z; + \)"YA(Y ) Y00 — 2] Z; ) (2] Z; + D)2,
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where Y,;_; are the rows of Y with timestamp at least j — 1. The predictable quadratic variation
process of the martingale {U;} is hence defined by Zgzl E [Wg] for 1 <j<k.

The remainder of the argument proceeds in the same manner as Lemma 3.3 of [CMP16]. Specif-
ically, we first note that since ||U;_1[|, < € then either W} is the all zeros matrix if p; = 1 or
if p; < 1, then [[W;|l, < 2 by the assumption that p; > 1¢; and the definition of ¢;. Thus

E [Wz} —s]Ts] and so we can use the W matrices to bound the spectral norm of the predictable

quadratic variation process Hzgczl E [W?E]

, of the martingale {U;} by

2
<z,
«

2

9 J
_E Z vl 1 (Z] Zi+ M) "'y

J
=1

J
E SSJ

2

where the last inequality follows from the fact that Zi:l r, j1Tt—j+1 = Z!Z;.
By applying the Matrix Freedman inequality (Theorem 2.4), then it follows that ||[Ugl||, < ¢

with probability at least 1 —d - exp (%

|Uk|l, < e with high probability so that

). Since a = E% log n, then for sufficiently large C,

H(zjzi FADTV2(YTY 4 AI)(Z] Z + AD) "2 - 11H2 <e,
which implies that
(1—e)(Z]Zi+N) < Y'Y + A < (14¢)(Z Z; + \I),

which completes a single step of the second part of the claim.
Finally, consider the sampling probability of row r;_;. Conditioned on Y being a (1 + ¢)-
spectral approximation to Z;, then r;_; is in M;_; with some probability v < 1 but has been

rescaled to \/,71‘2 1. Crucially, the online ridge leverage scores are monotonic by Lemma 2.3 so that

v > min(1, a(r;_1(Z; Z; + AXI)~'r] ;). Although we only have a (1 + ¢)-spectral approximation to
Z;, the SCORE function of Algorithm 2 increases the sampling probability by an extra factor of 2
to compensate. Thus conditioned on r;_;1 being in M;_1, then r;_; remains in M; with probability

2
min <1, —a(ri_l(YTY + )\]I)_lr;-r_l)> )
Y

Hence, the overall probability that r, - is retained i 1s at most min(1, 4a(r;_1(Z; Z; + I)"'r] |))
and at least min(1, a(r;—1(Z; Z; + AI)~'r/_)) for € < £, which completes a single step of the first
part of the claim. Thus, both parts of the clalm hold by induction. O

Theorem 2.6 (Randomized Spectral Approximation Sliding Window Algorithm). Letrq,...,r, €
R? be a stream of rows and k be the condition number of the stream. Let W > 0 be a window size
parameter and A = r,_w10...0r, be the matriz consisting of the W most recent rows. Given
a parameter € > 0, there exists an algorithm that outputs a matriz M with a subset of (rescaled)
rows of A such that (1 —e)ATA <MTM < (14 )ATA and stores O (E% log nlog /{) rows at any
time, with high probability.
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Proof. The fact that (1 —¢)ATA < MM = (1 +¢)ATA holds immediately from Lemma 2.5
using t = n and ¢ = n — W 4 1. Moreover, Lemma 2.5 implies that each row r; is sampled with
probability at most 4a7;, where 7; is the reverse online leverage score of row i. By Lemma 2.2, we
have Y 1" | 7; = O (dlog k) and since o = O (5% logn), then the space complexity of the algorithm
follows from a coupling argument and standard Chernoff bounds. O

Nearly Input Sparsity Runtime. We remark that the amortized running time per arriving
row can be improved by batching, i.e. processing 5% log nlog x rows at a time. Since Algorithm 1
using the SCORE function of Algorithm 2 stores O (5% log n log /{) rows, the asymptotic space used
by the algorithm will remain the same. Observe that it suffices to obtain some constant factor of
the reverse online leverage score, since o can just be scaled accordingly.

To compute a constant factor approximation of the reverse online leverage score of any sam-
pled row a;, we use standard projection tricks [SS11, CMP16, CMM17] embedding each of the
(@) (6% log nlog K}) rows into a O (log %) dimension subspace by applying a Johnson-Lindenstrauss
transform. Applying this subspace embedding to each of the rows takes O (log z- m) time, where
mnz is the input sparsity of the batch. Subsequently, all operations are in O (log %) dimension
subspace, so approximating each reverse online leverage score requires polylog 2 time for each of
the O (8% lognlog /1) scores. Hence, the amortized time across each batch of O (8% lognlog K}) rows
is polylog Z -Tnz so the total runtime is polylog = -nnz, where nnz is the input sparsity of the stream.
One might observe that the algorithm does not actually know x in advance, but for algorithmic
purposes it suffices to downsample when the number of newly arrived rows in the batch equals the
number of stored rows after the previous downsampling procedure.

2.2 Low-Rank Approximation

In this section, we give a randomized algorithm for low-rank approximation in the sliding window
model that is both space and time optimal, up to lower order terms. Throughout this section,
we use A to denote the best rank k approximation to a matrix A € R™*? 50 that A =

argmin, i x)<k | A — X||%. Recall the definition of a projection-cost preservation in Definition 1.1,
from which it follows that obtaining a projection-cost preservation of A suffices to produce a low-
rank approximation of A. [CMM17] show that an additive-multiplicative spectral approximation
of a matrix A along with an additional moderate condition that holds for ridge leverage score
sampling gives a projection-cost preservation of A.

2
Lemma 2.7. [CMM17] Let A = ajo...0a, € R™% and \ < M' Let p be the largest
integer such that o,(A)? > X and let X = A — Ay Let S € R™" be a sampling matriz so that
M = AS is a subset of scaled rows of A. If (1 —&)(ATA+ ) <M M+ A =< (1+¢)(ATA + )
and |||SX || — ||X||§;‘ <e HA - A(k)H;, then M is a rank k projection-cost preservation of A with
approximation parameter 24¢.

We focus our discussion on the additive-multiplicatve spectral approximation since the same
argument of [CMM17] with Freedman’s inequality rather than Chernoff bounds shows sampling ma-

trices generated from ridge leverage scores satisfy the condition |[|SX|% — HXH%‘ <el|A—-Agy Hi,
with high probability, even when the entries of S are not independent.
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Algorithm 3 SCORE(r, A) function for rank %k projection-cost preservation

Input: A row r € R? and a matrix A € R™*9,
Output: Scaled ridge leverage score of r with respect to A.

LA |A-Ag HF

2: if A # 0 or rank(A) = rank(A or) then
3: return 2r(ATA + \I)"lr '

4: else

5: return 1

2
Lemma 2.8. [CMMI17] Let A = ajo...0a, € R )\ = M, and T; be the ridge

leverage score of a; with regularization A. Let p be the largest integer such that ap(A)2 > X and let
X=A-Aq. LetS € R™" be a sampling matriz so that row a; is sampled by S, not necessarily
CTI

independently, with probability at least mln(
IS~ I1XI7] < < [|A - A

log n) for sufficiently large constant C'. Then

HF with high probability.

On the other hand, our space analysis in Section 2.1 relied on bounding the sum of the online
leverage scores by O (dlogk) through Lemma 2.2; a better bound is not known if we set A =

2
A—-A
% This gap provides a barrier for algorithmic design not only in the sliding window

model but also in the online model. We show a tighter analysis showing that the sum of the online
A-Ag
ridge leverage scores for A = % is O (klogk).

~Aw | |a-Aw |5
I

A
Now if we knew the value of I a priori, we could set A < and immediately
apply Lemma 2.5 to show that the output of Algorithm 1 with a SCORE function that uses the A
regularization outputs a matrix M that is a rank k£ projection-cost preservation of A.

Initially, even a constant factor approximation to la- (k)HF seems challenging because the

quantity is not smooth. This issue can be circumvented using addltlonal procedures, such as spectral
approximation on rows with reduced dimension [CEM™15]. Even simpler, observe that sampling

with any regularization factor A < L& A(k)HF would still provide the guarantees of Lemma 2.7.
We could set A\ = 0 and still obtaln a rank k projection-cost preservation of A, but larger
values of A correspond to smaller number of sampled rows and the total number of sampled rows
for A = 0 would be proportional to d, as opposed to our goal of k; Instead, observe that if B is any
prefix or suffix of rows of A, then HB B HF HB B HF In other words, we can use the

rows that have already been sampled to give a constant factor approximation to HA Ak H F

it evolves, i.e., as more rows of A arrive. We again pay for the underestimate to HA Ak H F

sampling an addltlonal number of rows, but we show that we cannot sample too many rows before

our approximation to HA Ak H P doubles, which only incurs an additional O (log x) factor in the

number of sampled rows. We glve the SCORE function for low-rank approximation in Algorithm 3.
We first bound the probability that each row is sampled, analogous to Lemma 2.5.

Lemma 2.9 (Projection-Cost Preservation Guarantee, Bounds on Sampling Probabilities). Let

2
t € [n] be fized and for each i € [t], let Z; = ro0...0or;. Let A = ”ZZH_(Z,;H)“C)”F and € > 0.
Let ¢ =min(l,« - v;(Zi41TZip1 + )\H)_lriT). Then with high probability after the arrival of row ry,
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Algorithm 1 using the SCORE function of Algorithm 3 will have sampled row r; with probability at
least q; and probability at most 2q;. Moreover, if Y is the suffix of My consisting of the (scaled)
rows whose timestamps are at least i, then

(1—e)(Z]Z; + M) Y'Y + A < (1 +¢)(Z; Z; + AI).

Proof. Consider Algorithm 1 using the SCORE function of Algorithm 3. We again assume ¢ € (0, %)
and prove the statement by induction. Recall the convention that if A = 0 and ry is nonzero, then
the online leverage score of ry is 1 rather than 0. Thus, the base case holds for t = 1 because any
nonzero will be sampled.

Now suppose the claim holds for ¢ — 1 and all indices ¢ € [t — 1] after the arrival of row r;_;.
We show it holds for i = ¢ down to i = 1 after the arrival of row r;. Consider a fixed i € [t]. By
Lemma 2.7 and Lemma 2.8, the additive-multiplicative spectral guarantee of the claim along with
the arrival of row ry gives a (1 + 24¢) approximation to ||Z;11 — (Zi+1)(k)H§. Note that the error
does not compound since the SCORE function scales the sampling probability by 2 and thus the
SCORE function of Algorithm 3 effectively computes the reverse online ridge leverage score of each

|Ziy1—(Zisa
k

2
row r; with j >t — 4+ 1 using an underestimate of A = ool . The matrix martingale

argument in Lemma 2.5 then shows that
(1—e)Z]Zi+ M) < Y'Y + A < (14¢)(Z Z; + \),

which completes a single step of the second part of the claim. By Lemma 2.7 and Lemma 2.8, it
follows that || Y — Y(k)Hi7 is a (1+ O (g))-approximation to ||Z;11 — (Zi+1)(k)H§;- The bounds on
the sampling probability of row r; then follows from the fact that the reverse online ridge leverage
scores are monotonic by Lemma 2.3. Though we only have a (1+¢) additive-multiplicative spectral
approximation to Z;, which translates to a (1+24¢) approximation of the regularization, the SCORE
function of Algorithm 3 has again compensated by increasing the sampling probability by a factor
of 2. The entire claim then follows by induction. O

We now give a tighter analysis of the sum of the online A-ridge leverage scores [; for A =

A-Au |
%. We require an upper bound from [CMP16] on the sum of the online A-ridge leverage

scores, proven using the matrix determinant lemma.

Lemma 2.10. [CMP16] For a matrict A = ajo...oa, € R"™? let I; denote the online \-ridge
leverage score of a;, for each i € [n]. Then det(AT A 4 AI) > \de2ti/2,

Lemma 2.11 (Bound on Sum of Online Ridge Leverage Scores). Let A € R™*? have condition

2
number k. Let f > 1, k> 1 be constants and A = HA_;%“? Then Y i1 li = O (klog k).

Proof. Since ATA+ X = AL let 07 > 09 > ... > 04 > X be the singular values of ATA + AL
Then det(ATA + AI) = Hle oi. Observe that o1 + ...+ 0q = ||A — A(k)Hé + (d — k)X by the
Eckart-Young-Mirsky theorem. By the AM-GM inequality, we have

d 2 d—k
i e (ARl

i=k+1
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[A-Aw;

Combining with the fact that o; < ||A||3 + A for 1 <i < k, we have for A = T
la-awl;
A
det(ATA + Al < (JAJZ + NF [ m——20E )
2 kya—k Pk =k 2 \kyd—k Bk
< AR+ * (2R a) < 2 Ak

Combining with Lemma 2.10 and taking logarithms, it follows that dlog A+ 3 b < k42klog2 ||A| Pt
(d — k)log A + Bk. Since \ = |4 A(’“HF , then >, 1; < 2(1 + B)k + 4k log 2k. O

The sum of the reverse online A-ridge leverage scores is bounded by the same quantity, since the
rows of the input matrix can simply be considered in reverse order. We now show that Algorithm 1
using the SCORE function of Algorithm 3 gives a relative error low-rank approximation with efficient
space usage.

Theorem 2.12 (Randomized Low-Rank Approximation Sliding Window Algorithm). Letry,...,r, €
R? be a stream of rows and k be the condition number of the matriz rio...or,. Let W > 0 be a
window size parameter and A = rp_w410...0r, be the matrix consisting of the W most recent
rows. Given a parameter € > 0, there exists an algorithm that outputs a matriz M that is a (1 +¢)
rank k projection-cost preservation of A and stores O (6% log n log? /1) rows at any time, with high
probability.
2

Proof. Let A\ = w Then (1 —&)(ATA + AI) < MM + Al < (14 ¢)(ATA + Al) holds
immediately from Lemma 2.9 using t = n and ¢ = n — W + 1. Thus by Lemma 2.7, Lemma 2.8,
and rescaling ¢, it follows that M is a (1 4 ¢) rank k projection-cost preservation of A.

To bound the number of sampled rows, observe that we can sample at most k linearly in-
dependent rows before the regularization becomes nonzero. Then by Lemma 2.9 each row r; is
sampled with probability at most min(1, 2¢ - rZ(ZZ+1Zi+1 + )\i]I)_lriT), where Z; =r;0...0or, and

Ziv1—(Zs . .
A = 12— (kH (k)HF for each i € [n]. For the purposes of analysis, set uyp = n and for each i > 1,

let u; be the largest index j such that A\; > 2\,, ;. This partitions the stream into breakpoints u;
starting from the most recent row, so that for each w; 1 <t < u;, we have A, < Ay < 2A,,. Thus by
Lemma 2.11, the sum of the reverse online ridge leverage scores for the rows ry with u;11 <t < w; is
O (klog k). Algorithm 1 scales the reverse online ridge leverage score by a factor of « = O (6% log n)
to determine the sampling probability, so by a coupling argument and standard Chernoff bounds,
the number of sampled rows ry with u;y; <t < wu; is O (6% log nlog /1). Since there are O (log k)
such breakpoints u;, the total number of sampled rows is O (6% log n log? /{). O

Nearly Input Sparsity Runtime. Nearly input sparsity runtime can be achieved through
similar batching and dimensionality reduction techniques as Section 2.1. Since Algorithm 1 using
the SCORE function of Algorithm 3 stores O (6% log n log? /1) rows, the asymptotic space used by
the algorithm will remain the same if it processes O (6% log n log? /1) rows at a time. To compute
a constant factor approximation of the reverse online ridge leverage score of any sampled row a,,
each of the O (e%lognlog2 /{) rows into a O (log%) dimension subspace by applying a Johnson-
Lindenstrauss transform [SS11, CMP16, CMM17]. Applying this subspace embedding to each of
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the rows takes O (log z m) time, where Tmz is the input sparsity of the batch. Subsequently, all
operations are in O (log %) dimension subspace, so approximating the each regularization parameter
A and each reverse online leverage score requires polylog = time for each of the O (5% log n log? /{)
scores. Hence, the total runtime is polylog % - nnz, where nnz is the input sparsity of the stream.
Again the algorithm need not know k in advance since it suffices to process a batch when the
number of newly arrived rows in the batch equals the number of stored rows after the process.

Bounded Precision and Condition Number. In typical applications, the entries of the under-
lying matrix will have some bounded precision, say O (logn) bits. From invariance through scaling
the entries, we assume that the entries of the matrix are integers whose magnitudes are bounded by
poly(n). Nevertheless, the condition number & of the underlying matrix can be as large as poly(n)?,
which can cause the log k term to incur an additional factor of O (dlogn). We show this is not
necessary by reducing the log k factor down to logn in some cases and removing the log x factor

altogether in other cases. We first relate matrices A with bounded entries and sufficiently large
Alg

rank with a bound on ——F—.
[A-Aw]

Lemma 2.13. [CTW09] If A € R™? has integer entries bounded in magnitude by poly(n) and rank

IAllF

at least 2k, then Ta-a < poly(n,d) as nd — oco.

I

By Lemma 2.13, we have O (logk) = O (logn) if rank(A) > 2k. Moreover, we do not incur
the extra O (logn) factor from Chernoff bounds to achieve high probability over all times in the
stream, so the total number of sampled rows is O (5% log? n) Thus it suffices to maintain a rank k
projection-cost preservation in the case that rank(A) < 2k.

Observe that we can decompose ATA = RTUR, where R € R?*? is the row span of A.
Now the row span of any suffix of A will be contained within R. Thus it suffices to maintain a
sequence of matrices Uy, Us, ... € R?**2F 5o that RTU;R,RTUsR, ... provides a (1 + ¢) spectral
approximation to all suffixes of A. We give the algorithm in Algorithm 4 and the guarantees in
Theorem 2.14, but defer the full proof to Appendix A.3, as it is a special case of a more general data
structure that we introduce for deterministic algorithms for numerical linear algebra in the sliding
window model. The key observation is that a new matrix U; is needed only when some singular
value of A increase by (1 + ). Thus the number of matrices U; that are needed is O (% log H),
where x is the condition number of A. Since the entries of A are bounded integers, then the
characteristic polynomial of AT A has integer coefficients bounded by (poly(n))o(k). Similarly, the
largest eigenvalue of AT A is bounded by its Frobenius norm, which is bounded by poly(n), so then
logk = O (klogn). As each matrix U; has dimension 2k x 2k, the space bound follows.

Theorem 2.14. There exists a deterministic algorithm in the sliding window model that outputs a
rank k projection-cost preservation of an input matriz A whose rank is at most 2k. If the entries
of A are integers that are bounded in magnitude by poly(A), then this algorithm stores O (k) rows

of A and uses O (%4 log n) additional words of space.

Given Theorem 2.14 to handle rank(A) < 2k and Lemma 2.13 to handle rank(A) > 2k along
with Theorem 2.12 and the previous observation that we no longer need to incur an extra O (logn)
factor for Chernoff bounds to achieve high probability over all times in the stream, then we have the
following guarantees for low-rank approximation/projection-cost preservation when the underlying
matrix has integer entries that are bounded in magnitude by poly(n).
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Algorithm 4 Projection-cost preservation for low-rank matrices in the sliding window model

Input: A stream of rows r1,...,r, € R?, window size W, and an accuracy parameter £ > 0
Output: Rank k£ projection-cost preservation in the sliding window model.

1: My « 094

2: for each row r; do

3 Suppose Mg, M1, ..., M; are defined

4 Rei1 1y, Mgyg R;_le_,_l >Keep timestamp and decomposition for Mgy
5 fori=stoi=1do > Update sketches with ry
6: Let M; = RZ-TUZ-RZ- and B; be a basis for R; \ R;11.

7 R; — R;;10B; >FEnsures Ri+1 C Ry
8 Set U; so that RZ-TUZ-RZ- =M, + rtTrt.

9 fori=stoi=2do

10: if M,_ M;_1 < (14¢)M/,;M;;; then

11: Delete M; and relabel indices

12: if M5 has expired then > Timestamp is at most t — W + 1
13: Delete M; and relabel indices

14: return M;

Corollary 2.15. Letry,...,r, € R? be a stream of rows of integers whose magnitudes are at most
poly(n). Let W > 0 be a window size parameter and A = ry,_yw410...0r, be the matriz consisting
of the W most recent rows. Given a parameter ¢ > 0, there exists an algorithm that with high
probability, outputs a matrix M that is a (1 + €) rank k projection-cost preservation of A, stores

@) (E% log? n) rows at any time, and uses O (k—; log n) additional words of space.

3 Simple Rank Constrained Algorithms in the Online Model

In this section, we show that the paradigm of row sampling with respect to online ridge leverage
scores offers simple analysis for a number of online algorithms that improve upon the state-of-the-
art.

3.1 Online Projection-Cost Preservation

As a warm-up, we first demonstrate how our previous analysis bounding the sum of the online ridge
leverage scores can be applied to analyze a natural online algorithm for producing a projection-cost
preservation of a matrix A = ajo...oa, € R Our algorithm samples each row with probability
equal to the online ridge leverage scores, where the regularization parameter \; is computed at each
step. Note that if A; = ajo...o0a;, then HAZ - (Ai)(k)Hiﬂ < HAj — (Aj)(k)H?: for any ¢ < j. Thus if

2
A 1—(Ai— . . . . .
A = 41 —C - Dl , then sampling row a; with online ridge leverage score regularized by \; has a

A-Ag |
higher probability than with ridge leverage score regularized by A = % Although [CMP16]
is only interested in spectral approximation and therefore set A = eomin(A), they nevertheless

shows that online row sampling with any regularization A gives an additive-multiplicative spectral

[A-Aw|;
r

approximation to A. Thus by setting A = £ our algorithm outputs a rank k projection-

24



cost preservation of A by Lemma 2.7 and Lemma 2.8. Moreover, our bounds for the sum of the
online ridge leverage scores in Lemma 2.11 show that our algorithm only samples a small number
of rows, optimal up to lower order factors.

Algorithm 5 ONLINEPCP : Online algorithm for projection-cost preservation

Input: Stream of rows ai,...,a, € R'*? accuracy € > 0, and parameter k.
Output: Rank k projection-cost preservation of A :=ajo...o0a,.

1. M« @

2 E% log n with sufficiently large constant C' > 0

3: for each row a; do

2
~ M-M

o e Mol

5: Tt < 2at(MTM + /\t]I)_la;r

6: pt < min(1l, ary)

7: With probability p;, M <~ Mo \/It)_t

8: return M.

Theorem 3.1 (Online Rank &k Projection-Cost Preservation). Given parameters ¢ > 0, k > 0, and
a matriz A € R"*% whose rows ai,...,a, arrive sequentially in a stream with condition number k,
there exists an online algorithm that outputs a matriz M with O (6% log n log? /1) (rescaled) rows of
A such that , , ,

(1=o)[[A = Awllp <M =My, <0 +e)[|A— A

and thus M is a rank k projection-cost preservation of A, with high probability.

Proof. Consider Algorithm 5. For all i € [n], let M; denote the matrix M at time 7, which is used

A-A?
to compute \;jr1. Let \ = w [CMP16] show that sampling row a; with probability at

least min(1, aa; (M, M;_ 1+ AI)~!a/) suffices to give a matrix M such that (1 —&)(AT A+ Al) <
M'™™ + Al < (1+¢)(ATA + M) with high probability. This argument also follows from the
matrix martingale analysis in Lemma 2.5, which is based on their argument. Since we sample
each row a; with probability min(1, 2aa,-(MZ-T_1M,-_1 + Xi]l)_laiT) instead, it suffices to show that
\; < 2)\. But this must hold since by a union bound, (1—¢)( Z-T_lAi_l + A0 = MiT_lM,-_l + A1 =
(1+e)(A] {A;_1 + \I) for all i € [n]. In particular, this implies by Lemma 2.7 and Lemma 2.8
that M; is a rank k projection-cost preservation for A; and thus,

2 2 2
5o M = M)l 2[4 = Ay 20IA - Awlle
k - k - k
To bound the number of rows sampled by M, we use a similar approach to that in Theorem 2.6.
Let up = 1 and for each ¢ > 1, let u; be the smallest index j such that A\; > 2\, ,, which partitions
the stream into breakpoints u; starting from the beginning of the stream. For each u;11 <t < u;, we
have A\, < A\ < 2),,. Thus by Lemma 2.11, the sum of the online ridge leverage scores for the rows
a; with u; <t < wu;yq1is O (klogk). Algorithm 5 scales the online ridge leverage score by a factor
ofa=0 (ai2 log n) to determine the sampling probability, so by a coupling argument and standard

2\

Chernoff bounds, the number of sampled rows a; in M with u; < ¢t < u;41 is O (8% log n log /1).
Since there are O (log k) such breakpoints u;, the total number of rows in M is O (E% log nlog? /1).
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Note that here we partition the stream from the beginning since we use online ridge leverage scores,
whereas the argument in Theorem 2.6 forms the breakpoints beginning from the end of the stream
since it considers reverse online ridge leverage scores. O

Our algorithm uses space optimal up to lower order terms for low-rank approximation, but
we note that more efficient algorithms exist if the objective is only to approximate HA — A(k)Hi,
rather than determining the entire projection matrix. For example, the Theorem 1.3 in [AN13]
uses space roughly O (k‘2) whereas Algorithm 5 uses space roughly O (kd) to store each of the O (k)
sampled rows.

3.2 Online Row Subset Selection

We next describe how to perform row subset selection in the online model. The algorithm and
analysis are both relatively simple, but the algorithm only stores O (f log n log? /{) rows. By com-
parison, the recent online row subset selection algorithm of [BLVZ19] stores O (6% log n log? /{) rows
to succeed with high probability. Moreover, our algorithm provides the stronger guarantee of the
existence of a subset of k rows that provides a (1 + ¢) factor approximation to the best rank k
solution.

Our starting point is an offline algorithm by [CMM17] and the paradigm of adaptive sam-
pling [DV06, DRVWO06, MRWZ20], which is the procedure of repeatedly sampling rows of A with
probability proportional to their squared distances to the subspace spanned by Z. [CMM17] first
obtains a matrix Z that is a constant factor low-rank approximation to the underlying matrix A
through ridge-leverage score sampling. They observe that a theorem by [DRVWO06] shows that
adaptive sampling O (g) additional rows S of A against the rows of Z suffices for ZU S to contain
a (1 + ¢) factor approximation to the online row subset selection problem.

[CMM17] then adapts this approach to the streaming model by maintaining a reservoir of
@) (g) rows, and replacing rows appropriately as new rows arrive and more information about Z is
obtained. Alternatively, we modify the proof of [DRVWO06] if Z is given, adaptive sampling can also
be performed on data streams to obtain a different but valid S by oversampling each row of A by a
@) (g) factor. Moreover by running a low-rank approximation algorithm in parallel, downsampling
can be performed as rows of Z arrive, so that the above approach can be performed in one stream.

In the online model, we cannot downsample rows of S once they are selected, since Z evolves as
the stream arrives. Fortunately, [CMM17] shows that the adaptive sampling probabilities can be
upper bounded by the A-ridge leverage scores, where A = % HA - A Hi Since the A-ridge leverage
scores are at most the online A-ridge leverage scores, we can again sample rows proportional to their
online A-ridge leverage scores. It then suffices to again use Lemma 2.11 to bound the number of
rows sampled in this manner.

We first show an analog for Theorem 2.1 in [DRVWO06] for adaptive sampling through oversam-
pling each row by a O (g) factor. The proof is almost verbatim, but uses a different estimator since
we do not perform offline sampling with replacement. As before, we use A () to denote the best
rank k approximation to A in the Frobenius norm.

Theorem 3.2. Let A € R Z be a set of vectors in R, k be a non-negative integer, and € > 0
be a given constant. Let S be a matrix formed by selecting each row i of A independently with
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probability at least

‘ < ko |[(A—AZ'Z), )
p; =min | 1, —
e (A — AZ1Z);];

Then there exists a matrix T that contains k rows of Z U S such that
E[||A-ATT|}] < A - Ag} +c]|la - Az 'Z].

Proof. Define matrices U and V to be the left and right singular vectors of A so that A = UXV.
Let u® € R™" denote the transpose of the i column of U and v € R™*4 denote the i* row of
V. Denote the singular values of A by o1 > 09 > .... We show there exist t1,...,t; in the span
of Z UT that are a good approx1mat10n of the span Of top right singular vectors V(l) v,

For i € [n] and j € [K], let xg ) = (A AZ7'Z); with probability p; and the all zeros row

vector otherwise so that x(]) R>d, Let Xj = x(]) so that E[x,] = uV)(A — AZ'Z). For
each j € [k], we define each t; e R by t; = u(])(AZ 1Z) + x; so that E [t;] = o;v19).
We first bound the variance of t;:

E [Htj ~E [tj]lli] =E —Htj - ”ﬂ"’(j)Hz]
- ' 2
-E ij —u(A - AZ_lZ)HQ]

—E [l 3] - 22 ] -u(A - AZ7'2) + [ul)(4 - AZ'Z)

—F ||xj\|}—H (A — AZ" 1Z)H .

To bound the expected squared norm of x;,

E 2] = - [

<> k|« HM (A-Az1z)|

2
2 E [ () x(j)}

i1 22

:| 1<117$zz<n

)

where the last step holds since X(] ) and X(] ) are independent and E [x;] = u(;)(A — AZ™'Z).
Thus by our choice of p;,

)
E [Htj_gjvmm < [ H } ‘ U (A :z 1z) ,
n 5‘ (J)(A AZ- 1ZHF
=L um—Azme

e _ 2
- Z|a-az 'z}
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Define the matrix M = A Zle Jij(v(j ))th, so that the row space of M is spanned by the vectors

t1,...,t;. Let T be the matrix whose rows are ti,...,t;, so that HA - AT_ITH?? < JJA — MH%
We now bound the expected value of the Frobenius norm of the difference. Since the Frobenius
norm is invariant under rotations,

rank(A)
Efla-arTi] <E[jla-M2] = 3 E[jua -]
=1
k ’ rank(A)
3[R MRS SRR P TR P il

Jj=1 j=k+1

O

By considering a matrix Z that is a constant ¢ factor low-rank approximation to A, then we may
choose the accuracy parameter in the statement of Theorem 3.2 to be £ so that £ HA — AZ_IZH; =

2
e[| A= Ag |
bound through log% repetitions and Markov’s inequality.

Moreover as [CMM17] notes, the expectation can be converted to a high probability

Corollary 3.3. Let A € R k be a non-negative integer, and £,6 > 0 be given constants. Let
Z be a constant factor low-rank approrimation to A. Then there exists a constant C such that
sampling each row i of A independently with probability at least

_ 2
_ Cklog(1/6) [|(A - AZ™'Z),,
e Y (A - AZ1Z);

forms a matriz S such that Z U S contains a matriz T of k rows such that

Pr[[|A ~ AT'T[} < (1+2)[|A — Agy[l7] 10
Before describing our algorithm, we need the following relationship between ridge leverage scores
and adaptive sampling, shown by [CMM17].

Lemma 3.4. [CMM17] Let Z be a constant factor approximation to the best rank k approximation
to A. There exists a universal constant v such that if 7;(A) is the i™ ridge leverage score of a

A-Au |
matriz A, with regularization A (k)HF , then WQ(A) > ||(A - AZ_1Z)Z-H§.
We now show the correctness and space bounds for ONLINERSS .

Theorem 3.5 (Online Row Subset Selection). Given parameters 0 < & < %, k > 0, and a matrix
A € R™ whose rows ay,...,a, arrive sequentially in a stream with condition number k, there
exists an online algorithm that outputs a matrix M with O (glognlog2 K}) rows that contains a
matriz T of k rows such that

A~ AT < (o) A - Al

with high probability.
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Algorithm 6 ONLINERSS: Online algorithm for row subset selection

Input: Stream of rows ai,...,a, € R1*? accuracy ¢ < %, and parameter k.
Output: (1 + ¢)-approximate row subset selection of A :=ajo...o0a,.
1: Run a 2-approximation ONLINEPCP for online low-rank approximation of A in parallel.
>Algorithm 5
a % log n for sufficiently large C' > 0
S« 0
for each row a; do
Update ONLINEPCP with a;.
Let Z; be the rows stored by ONLINEPCP .

~ Zi—(Ze) ||’
N o [|Z l e

pr < min(1, 2a - a,(Z] Zy + M) ta))
With probability ps, S <+ So a; >Independently sampled

10: Let Z be the output of ONLINEPCP .
11: return Z U S.

=

Proof. Consider ONLINERSS (Algorithm 6). We set M as the output ZUS from ONLINERSS . Let

7; denote the ridge leverage score of a;, with regularization la- (k)HF By choosing ONLINEPCP

to be a 2-approximation to the best low-rank approximation to A we have that Z contains a rank
k matrix W € R¥*? such that HA — Ay HF HA AW~ 1WHF <2 HA A ) Hé We condition
on ONLINEPCP to return such a matrix Z with high probability.

By Lemma 3.4, it follows that

aklogn ||(A — AW_lW)z‘Hi < oylogn
© A AWSIWE © <

Observe that each row a; of A is sampled with probability p;, which is a 2-approximation to the on-
line A-ridge leverage score. Online ridge leverage scores are at least as large as ridge leverage scores,
aklogn ||(A_AW71W)1'H§

e |A-AWIW[T T
probabilities p; to determine whether a row should be added to S depend only on ONLINEPCP
and not on whether previous rows were added to S. Hence, the sampling probabilities are inde-
pendent and by Cowllcuy 3.3, it follows that W U S contains a matrix T of k rows such that
HA AT~ 1THF 1+e¢ HA A HF, with high probability. Since W is a subset of Z, then T
is also contained in Z UsS.

It remains to bound the number of rows in Z U S. Since Z uses ONLINEPCP with a constant
factor approximation, it stores O (k‘ log nlog? /<;) rows by Theorem 3.1. To bound the number of
_ A n

so p; > 27;. Thus for sufficiently large o, p; > Moreover, the sampling

rows sampled by S, we use the same idea from Theorem 3.1. Define \; , Where
A;,=ajo...o0a for each i € [n]. We set ug = 1 and for each i > 1, let u; be the smallest indeX j
such that A; > 2X,, |, which partitions the stream into breakpoints u; starting from the beginning
of the stream. For each w; 11 <t < u;, we have \,, < A\ < 2\, so the sum of the online ridge
leverage scores for the rows a; with u; <t < u;41 is O (klog k) by Lemma 2.11. ONLINERSS scales
the online ridge leverage score by a factor of a« = O (% log n) to determine the sampling probability
into S, so by a coupling argument and standard Chernoff bounds, the number of sampled rows
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a; in S with u; <t < wiqq is O (glognlog H). Since there are O (log k) such breakpoints u;,
the total number of rows in S is O (§ log n log? H). Hence, the total number of rows in Z U S is
(@) (§ log n log? /<;) with high probability. O

3.3 Online Principal Component Analysis

Recall that in the online PCA problem, rows of the matrix A = a; o...o0a, € R" 9 arrive
sequentially in a data stream and after each row a; arrives, the goal is to immediately output a row
m; € R such that at the end of the stream, there exists a low-rank matrix X € R™*? such that

IA —MX[} < (1+¢)[|A - Al

where M =mj o...om, and A is again the best rank k& approximation to A.

[BLVZ19] gives an algorithm for the online PCA problem that embeds into a matrix X that
has rank m = O (e%(logn + log /1)4) with high probability, where x is the condition number of A.
Their algorithm maintains and updates the matrix X throughout the data stream. After the arrival
of row a;, the matrix X is updated using a combination of residual based sampling and a black-box
theorem of [BGKL15]. Row m,; is then output as the embedding of a; into X by m; = aiX(i), where
X (@ is the matrix X after row 7 has been processed by X. X has the property that no rows from
X are ever removed across the duration of the algorithm, so then m; is only an upper bound on
the best embedding of a;. However, this matrix X does that contain a good rank k approximation
to A. That is, X does not contain a rank k submatrix Y € R¥*? such that there exists a matrix
B such that

|A=BY|} < (1+2) A - Agl;

Recall that our online row subset selection algorithm ONLINERSS (Algorithm 6) returns a
matrix Z € R with O (f log n log? /1) rows of A that contains a submatrix Y of k rows that is a
good rank k approximation of A. Thus, our algorithm for online row subset selection algorithm
can be combined with the algorithm of [BLVZ19] to output matrices M and W that is a good
approximation to the online PCA problem but also so that W contains a submatrix Y of k& rows
that is a good rank k approximation of A. Namely, the algorithm of [BLVZ19] can be run to
produce a matrix X@ after the arrival of each row a;. Moreover, our online row subset selection
algorithm Algorithm 6 can be run to produce a matrix Z(®) after the arrival of each row a;. Let
WO = RO%d and let W@ append the newly added rows of X® and Z® to WE~D . We then
immediately output the embedding m; = a;,W®.

Theorem 3.6 (Online Principal Component Analysis). Given parameters n,d,k,e > 0 and a
matriz A € R™% whose rows arrive sequentially in a stream with condition number k, let m =
(@) (E%(logn + log 5)4). There exists an algorithm for online PCA that immediately outputs a row
m; € R™ after seeing row a; € R and outputs a matriz X € R™*% at the end of the stream such
that

|A - MX|7 < (1+2) A~ A,

where Ay is the best rank k approzimation to A. Moreover, X contains a submatriz 'Y € RFxd

such that there exists a matriz B such that

IA - BY|2 < (1+e) A~ Aw.
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Proof. Since W' contains the matrix X from the algorithm of [BLVZ19], it immediately follows
that |A — MW||% < (1+e¢ HA — A(k)”?:- Moreover, since X contains the matrix Z from our
online row subset selection algorithm, which also never removes any rows of Z once they are added,
then X contains a rank k submatrix Y € R¥*? such that there exists a matrix B such that
A -BY|% < (1+¢) HA A, HF Finally, we note that since X has (9( (logn + log k)*) rows

and Z has O ( log n log? /1) rows, then W has O ( (logn + log k) ) rOWS. O

4 (;-Subspace Embeddings

In this section, we consider #1-subspace embeddings in both the online model and the sliding window
model. For £y-subspace embeddings in Section 2, a central concept used to sample a row a; € R¢
in a matrix A; = aj o...oa; is the online leverage score, a;(A; ;A; 1) 'a]. An equivalent
formulation for the (online) leverage score of a; is the following:

Definition 4.1 (Maximization Characterization of (Online) Leverage Scores). For a matriz A =
la/x?

T ye Ik Similarly, the

ajo...oa, € R"™4 the leverage score of a; can also be written as max,cpa
| T

online leverage score of a; can also be written as max,cga i TAr where A; =ajo...oa;. As by

lAi—1x]
convention in Definition 2.1, the online leverage score is set to 1 when the fraction is undeﬁned.

Thus we define the analogous quantities for £1-subspace embeddings that we shall use to govern
sampling proabilities for each row:

Definition 4.2 ((Online) ¢; Sensitivity). For a matriz A = aj o...o0a, € R"™4 we define the

|a x| a/ x|
{1 sensitivity of a; by max,pa ”A’x” and the online ¢; sensitivity of a; by max,cpa A S where

A;, = ajo...o0a;. We again that use the convention that the online 1 sensitivity of a; is 1 if
rank(A;) > rank(A;_;).

Note that from the definition, the online ¢; sensitivity of a row is at least as large as the {1
sensitivity of the row. Similarly, the (online) ¢; sensitivity of each of the previous rows in A cannot
increase when a new row r is added to A. Thus we can use the online ¢; sensitivities to define an
online algorithm for ¢;-subspace embedding similar to Algorithm 5

Algorithm 7 ONLINEL1: Online algorithm for ¢;-subspace embedding

Input: Stream of rows ai,...,a, € R'*? accuracy ¢ > %, and parameter k.
Output: /;-subspace embedding of A :=ajo...0a,.
: M (Z)
o —g logn with sufficiently large constant C' > 0
. for each row a; do

Ty 4 - max, pd Jalx]

x€R® TMx[[,
pt < min(1, ary)
With probability p;, M <~ Mo %

@ gk @

7: return M.

We require the following concentration inequality on scalar martingales.
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Theorem 4.3 (Freedman’s inequality). [Fre75] Let Yy, Y1,...,Y, be a scalar martingale with dif-
ference sequence X1,...,X,. Suppose |Xi| < R for all t € [n] with high probability and let the
predictable quadratic variation process of the martingale be defined by wy = Zle tEl [Xf], for

k € [n]. Then for alle >0 and 0 > 0, and every k € [n],

2
2 /2
Pr ?é?]g](‘}/;’ > ¢ and Wi SO':| S26Xp <—m> .

We first show ¢ sensitivity sampling gives an /;-subspace embedding.

Lemma 4.4. For e > %, Algorithm 7 returns a matriz M such that for all x € RY,
IVl — [[Ax][y | < elAx]];,
with high probability.

Proof. Let x € R% and suppose without loss of generality that |Ax||; = 1. Let Yo,Y7,...,Y, be a
martingale with difference sequence X1,...,X,,. For j > 1, weset X; = 0if Y;_; > € and otherwise
it Y;_1 < e, we define

1 T . . .
X, = (p—j — 1) laj x| if a; is sampled in M
- |aij| otherwise.
Observe that E[Y;|Y7,...,Y;_1] = Yj_; so the sequence is a valid martingale. Moreover, the
difference sequence defines Y; = | [|[M;x||, — ||A;x[|, |, where M is the rows of M sampled at time

jand Aj =ajo...0a;.

Thus if p; = 1, then X; = 0 and otherwise, E [ij] < pij|a;-|—x|2 = O%Tj|a;|—x|2. Since 7; > |a;»rx|
and we scaled ||[Ax|; = 1, then |ajTX| < 1so that 337 | E (X% < 1. By Freedman’s inequality
(Theorem 4.3) and a = O (g% logn), it follows that

Pr|V,| > ] < 2e 2 N 1
n = X - = )
P\7ar Ra/3 24 poly(n)

for sufficiently large . Since we scaled |Ax||, = 1, then |||Mx]||; — ||Ax|,| < €| Ax||; with
probability at least 1 — Wlly(n)'

Now consider the unit ball B = {Ay € R?| ||Ay|, = 1} and let A" be an e-net of B, constructed
greedily. Observe that N has at most (%)d points, since balls of radius § around each point cannot
overlap, but must all fit into a ball of radius 1 + §. Thus by a union bound for % < n, we have
[ IMyll; — [[Ay|l; | < e||Ay]|l; for all Ay € N, with probability at least 1 — m.

For any vector z € R?% such that |Az||; = 1, we construct a sequence Ay, Ays,... such that
HAZ - Z;:l Ay;
Ay be the point in A closest to Az so that ||[Az — Ay||; <e. Given a sequence Ay, ..., Ay;_1
such that ~; := HAZ - z;;ll ijHl < &1 note that % HAZ — Z;_:ll ijHl = 1, so there exists a

. < &' and there exists a constant v; < £~ such that %Ayi € N for all 7. Let
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point Ay; € N that is within distance € of Az — Z;_:ll Ay, which completes the induction. Hence
we have

o o
Mz, — Az, | <> [IMyill; = lAyill, | <D e |Ayill, = O () || Az, -
i=1 i=1

The claim follows from a rescaling of . ]

To analyze the space complexity, it remains to bound the sum of the online ¢; sensitivities.
Much like the proof of Theorem 2.6, we first bound the sum of regularized online ¢; sensitivities
and then argue relate these quantities. We then require a few structural results relating online
leverage scores and their relationships to regularized online /1 sensitivities.

Lemma 4.5 (Online whack-a-mole). [CLMT15] Let A = ajo...0a, € R"*?, Let A > 0, By = Ay,
B =Bgo...0Bg and T be the sum of the online leverage scores of Bo A. For any v > 1, there
—_——

n times
exists a diagonal matric W with entries in [0,1] that contains at most 2 entries strictly less than
1 so that the online leverage score of any row of WA with respect to C := B o (WA) is at most
%. That is, if TZ-OL(C) denotes the leverage score of the i™ row of WA with respect to C, then

PL(C) < % for all i € [n].

It should be noted that [CLM™15] prove a slightly different version of Lemma 4.5 so that the
reweighted input matrix WA has all of its leverage scores uniformly bounded. However, given the
regularization matrix B, the same proof demonstrates that the reweighted input matrix WA has
all of its online leverage scores uniformly bounded. For completeness, we provide the modified proof
of [CLM™*15] in Appendix B.1.

We now show that if the rows of a matrix has uniformly bounded leverage scores, then the £
sensitivities must also be uniformly bounded.

Lemma 4.6 (Uniform leverage scores imply uniform ¢; sensitivities). Given a matriz A = aj o
..oay, let T;i(A) and (;(A) denote the leverage score and ¢ sensitivity of a;, respectively, for each
i € [n]. Let v > 1 and suppose that (;(A) < %d for alli € [n]. Then 7;(A) < %d for alli € [n].

T AR
Proof. For any given i, let x* = argmax, ”‘ Ax||‘1 If maﬁﬂiﬁﬁ; Ll S %d, where [Ax*]; denotes

coordinate j of vector Ax*, then row a; would have leverage score 7;(A) > %d, which violates the

assumption of the claim. Thus, =4 max; |AXT); ,/

“TAxT, x*Tl,
Now for any vector z € R", we have % ||zH2 < ||z]|;. Therefore,
CZ(A—): |a;|—>:*| ‘ T *‘ma‘X]HAX] ‘ :maXman’éX*‘j . ldéld
[ Ax*l | Ax*||2 |Ax* ]|, n = n
O
We now bound the sum of the online ¢; sensitivities of a matrix.
Lemma 4.7 (Bound on Sum of Online #; Sensitivities). Let A = ajo...0a, € R™  Let
COL(A) be the online ¢y sensitivity of a; with respect to A, for each i € [n]. Then S ¢OH(A) =
O (dlognlog k).
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Proof. Let A >0, Bg = Ay, B=Bgo...0Bg, and T be an upper bound on the sum of the online
n times
leverage scores of any submatrix of X := B o A. For each ¢ € [n], let (;(X) and 7;(X) be the
¢1 sensitivity and leverage score of row a; with respect to X, respectively. Similarly, let CZ-OL(X)
denote the online #; sensitivity of row a; with respect to X. By Lemma 2.2 and Lemma 4.5, there
exist a set S C [n] of size at most d and a diagonal matrix W with § non-unit entries such that
L (B o (WA)) < 2L for all i € [n], where T is the sum of the online ridge leverage scores of A
with regularization A > 0. Let C = B o (WA) and S be the set of all indices i such that W, ; = 1.
For each i € [n], let C;4,q be the matrix formed by the first i + nd rows of C. Since the online
leverage score of each row a; with j <4 in C is at most % and the leverage scores of the first nd
rows of C; g is at most %, then all rows of C; 1,4 have leverage score at most % By Lemma 4.6,
all rows of C;y,q have ¢ sensitivity at most %
Now for any i € S, we have from the definition of online ¢; sensitivity that

O1(X) < ¢PH(C) = (P (Crina) = G(Cirna) <

so that > ,cq (OH(X) < 27T. Let U = {1,...,n} \ S and let Xy be the matrix X restricted to the
rows whose indices are in U. By monotonicity of sensitivities, (°%(X) < ¢°H(Xy). By induction,

D PN X) <> Pt (Xy) < 2T'logn

icU icU

Thus we have Y. (°H(X) = O (T'log n), which is O (dlognlog k) by Lemma 2.2. Now suppose we

set A = ﬁ, where ~ is the minimum of the nonzero singular values across all submatrices of A.

We also have for any x € R? that

d
x|, < Vd|x|, < ——— |Ax], < ——— [|Ax]; .
|| ||1 H H2 Umin(Ai) || ? ||2 Umin(Ai) H ? Hl
Thus for our choice of A\, we have
|a/ x| |2 x| |a/ x|

(B o Aixlly ™ || Asx]|, + AV A, — 2[Axl

so that the online /1 sensitivity of a; with respect to A is within a constant factor of the online £
sensitivity of a; with respect to X = B o A. That is, .1 ; (°“(A) = O (dlog n log k). O

We now give the full guarantees of Algorithm 7.

Theorem 4.8 (Online /;-Subspace Emebedding). Given e > 0 and a matriz A € R™*¢ whose rows
ai,...,a, arrive sequentially in a stream with condition number k, there exists an online algorithm

that outputs a matriz M with O <g—§ log? nlog /{) (rescaled) rows of A such that
(1—e)[Ax|, < [Mx|; < (1 +¢)[|Ax];,

for all x € R with high probability.

34



Algorithm 8 SCORE(r, A) function for ¢;-subspace embedding

Input: A row r € R? and a matrix A € R™*9,

Output: Scaled ¢y sensitivity of r with respect to A.

1: if rank(A) = rank(A or) then
2 return 4d - max, cga ”IRT—x’ﬁll
3: else

4 return 1

Proof. Note that for ¢ < %, a trivial algorithm is just to sample every row. For ¢ > %, consider
Algorithm 7 and recall that the property that M gives an f¢;-subspace embedding follows from
Lemma 4.4 with high probability. Moreover by a union bound, M; is a £;-subspace embedding of
A, with approximation (1 +¢), where M; are the rows of M stored at time t and Ay =ajo...o0a;.
It suffices to consider ¢ < %, for which each row a; is thus sampled with probability at most
4a(io'-, where CZ-OL(A) is the online ¢y sensitivity of a; with respect to A. By Lemma 4.7, we
have > 7", ¢OPL(A) = O (dlognlogk). Since we oversample by a factor of a = O (6% log n), then
the space complexity of the algorithm follows from a coupling argument and standard Chernoff
bounds. O

Finally, note that we can use the reverse online ¢; sensitivities in the framework of Algorithm 1
to obtain an ¢;-subspace embedding in the sliding window model.

Since we are considering a sliding window algorithm, we consider the reverse online ¢; sensitivi-
ties rather than using the online ¢ sensitivities as for the online ¢;-subspace embedding algorithm

in Algorithm 7. For a matrix A =ajo...o0a, € R"™*4_ the reverse online ¢; sensitivity of row a;

Tx

is defined in the natural way, by max,gd HZiW if rank(Z;_1) = rank(Z;) and by 1 otherwise,
where Z; = a,, o...0a;. Note that Algorithm 1 with the SCORE function in Algorithm 8 evaluates
the importance of each row compared to the following rows, so we are approximately sampling by
reverse online ¢ sensitivities, as desired. The proof follows along the same lines as Theorem 2.6
and Theorem 2.12, using a martingale argument to show that the approximations for the reverse
online /7 sensitivities induce sufficiently high sampling probabilities, while still using the sum of the
online /1 sensitivities to bound the total number of sampled rows. We sketch the proof below, as
Section 5 presents an improved algorithm for ¢;-subspace embedding in the sliding window model

that is nearly space optimal, up to lower order factors.

Theorem 4.9 (Randomized ¢;-Subspace Embedding Sliding Window Algorithm). Letry,...,r, €
R? be a stream of rows and k be the condition number of the matriz rio...or,. Let W > 0 be a
window size parameter and A = r,_wi10...01r, be the matriz consisting of the W most recent
rows. Given a parameter € > 0, there exists an algorithm that outputs a matriz M with a subset of
(rescaled) rows of A such that (1 —¢) ||Ax||, < |[Mx|[|;, < (1 +¢)|Ax||, for all x € R? and stores

@) <§ log? n log /1) rows at any time, with high probability.

Proof. Consider Algorithm 1 using the SCORE function of Algorithm 8. Since we have already
established the martingale argument of the online ¢; sensitivities in Lemma 4.4, the same argument
follows for the reverse online ¢; sensitivities. It follows that each row r; that increases the rank of

I
Z; for i > n— W 41 is sampled with probability within a constant factor of ad - max,cga %,
i— 1
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where Z; = r,_wi10...0r; for each i € [n]. There are at most d rows that increase the rank of Z;
from Z;,q. Since o = O (giz log n) and the sum of the reverse online /1 sensitivities is bounded by
O (dlognlog k) by Lemma 4.7, then the space complexity of the algorithm follows from a coupling
argument and standard Chernoff bounds. O

Approximating the Sensitivities. We observe that explicitly computing the (online) ¢; sen-
T
sitivity max, cpa % for a row a; in A = aj o...0a, € R"*% may be infeasible. However, it

suffices to approximate the £; sensitivity to within an additive # in polynomial time using linear

programming. The oversampling parameter « can then be scaled by a factor of two to handle any
row with online ¢, sensitivity at least % and those rows with online ¢; sensitivity less than % will
only incur O (logn) additional samples in total, with high probability.

5 A Coreset Framework for Deterministic Sliding Window Algo-
rithms

In this section, we give a framework for deterministic sliding window algorithms based on the merge
and reduce paradigm and the concept of online coresets. We define an online coreset for a matrix
A as a weighted subset of rows of A that also provides a good approximation to prefixes of A:

Definition 5.1 (Online Coreset). An online coreset for a function f, an approzimation parameter
£>0, and a matric A € R™? = a  o...0a, is a subset of weighted rows of A such that for any
A; =ajo...0a; withi € [n], we have f(M,;) is a (1+ ¢)-approzimation of f(A;), where M, is the
matriz that consists of the weighted rows of A in the coreset that appear at time i or later.

We can use deterministic online coresets for deterministic sliding window algorithms using a
merge and reduce framework. The idea is to store the mgpace most recent rows in a block By, for
some parameter mgpace Telated to the coreset size. Once By is full, we reduce By to a smaller

number of rows by setting By to be a (1 + @) coreset of By, starting with the most recent row,

and then empty By so that it can again store the most recent rows. Subsequently, whenever By is
1

< coreset,

logn

full, we merge successive non-empty blocks By,...,B; and reduce them to a <1 +

indexed as B;;1. Since the entire stream has length n, then by using O (logn) blocks B;, we will
logn

have a (1 + 5 Ogn coreset, starting with the most recent row. Rescaling ¢, this gives a merge

and reduce based framework for (1 + ¢) deterministic sliding window algorithms based on online
coresets. We give the framework in full in Algorithm 9.

i .
Lemma 5.2. B, in Algorithm 9 is a (1 + 10§n> online coreset for 21_1mspace TOWS.

Proof. Note that B; can only be non-empty if at some point By contains mgpace rows and By, ..., B;_;

J .
are all non-empty. By induction, B; is a (1 + @) online coreset for 21_1mSpace rows for each

1<j <1 B;isthena <1 + 1o§n) online coreset for the rows in Bgo...oB;_1. Thus for ¢ = 1, then

i—1
B;is a <1 + logn) online coreset for mgpace rows and for i > 1, B; is a (1 + 1o§n) (1 + 1o§n) =

(2 .
IS : 1—2 oj _ oi—1
<1 + @) online coreset for mgpace + > =0 2/ Mgpace = 2" "Mgpace TOWS. O

36



Algorithm 9 Merge and reduce framework for deterministic sliding window matrix algorithms
using online coresets.

Input: A matrix function f that admits an online coreset, a stream of rows ri,...,r, € R!*?
approximation parameter € > 0, and a parameter W > 0 for the window
Output: An approximation to f(A), where A € RW>*d=r, 1 10...0r,
1: Initialize blocks Bg,B1,...,Biogp < 0
2: for each row r; do

3: if By does not contain mgpace rows then DMspace 1S the coreset size
4: By + r; 0By >Keep timestamps for all stored rows
5: else

6: Let 7 > 0 be the minimal index such that B; = (). >Prepare to merge and reduce
7: B, «+ CORESET (M, @), where M =Bgo...0oB;_1 ©>Online coreset for function f
8: for j=0toj=i—1do

9: Bj ~0

10: By <1y

11: if there exists a row r in a block B; with timestamp before ¢t — W + 1 then

12: Delete r from B;

13: return Bz, 0...0B1 0By

Theorem 5.3. Letrq,...,r, € R be a stream of rows, € >0, and A =r,_wi10...0r, be the
matriz consisting of the W most recent rows. If there exists a deterministic online coreset algorithm
for a matrix function f that stores S(n,d,e) rows, then there exists a deterministic sliding window

algorithm that stores O <S <n,d L) log n) rows and outputs a matriz M such that f(M) is a

> logn

(1 + €)-approximation of f(A).

Proof. Let CORESET be a deterministic online coreset algorithm for a function f that stores

_€
> logn

pose By contains the ¢ rows ry,_t41,...,Inp at any time m. We show the stronger property that

S(n,d,e) rows. Consider Algorithm 9, setting mgpace = S <n,d Let t < mgpace and sup-

(2
at any time m, the rows of Bg o ... o B; can be simultaneously used to provide a (1 + @)
approximation to f(A;) for all integers 1 <1i <t + (2i_1)mspace, where A; =1, j110...01,.

Let B;,,... ?Bix be the nonempty blocks after By, with 0 < i; < ... < i,. By Lemma 5.2, B;,

11 .
is a <1 + @) online coreset for the 2“_1mSpace rows before time m —t + 1. Similarly, B;, is a
i .
<1 + @) * coreset for the 2”/_1mSpace rows before the rows represented by B;, ;. If £ < mgpace,
then no coresets are merged and thus the hypothesis holds by the definition of online coreset.

Let j be the maximal index such that i; = j. If t = mgpace, then B, 1 is formed by using

j+1
CORESET to reduce from the merging of BooB;,. Thus, B;; 11 isa (1 + ) online coreset for

logn
the 2% Mspace TOWS that appear before the rows represented by B;,,, so the hypothesis again holds
by the definition of online coreset. Since A =r,_w10...0r,, then Algorithm 9 outputs a matrix

logn
M such that f(M) is a (1 + == ) approximation of f(A). The correctness then follows by

logn

rescaling e.
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. Ogn) rows. The algorithm stores at most logn blocks and

By stores at most mgpace = S <n d

since the error parameter is 1 — to each call of CORESET in each block B; with ¢ > 1 stores at most

S <n d, log ) rows by the deﬁmtlon of mgpace- Hence, the algorithm stores O <S <n d, ooy g ) log n)

rows at any given time.

The online row sampling algorithm of [CMP16] shows the existence of an online coreset for
spectral approximation. Note that if runtime and space are not issues, this coreset can be explicitly
computed by computing the online leverage scores, enumeration over sufficiently small subsets of
scaled rows, and checking whether a subset is an online coreset for spectral approximation.

Theorem 5.4 (Online Coreset for Spectral Approximation). [CMP16] For a matriz A € R™*4 =
ajo...oay,, there exists a constant C' > 0 and a deterministic algorithm CORESET(A, ¢) that outputs
an online coreset of Zz Y 1og nlog k weighted rows of A. For any i € [n], let M; be the weighted rows
of A in the coreset that appear at time i or later. Then (1 —¢)||A;x|y < [Mix||, < (1+¢) [|Aix],
for all x € R, where A; =ajo...o0a,.

Then Theorem 5.3 and Theorem 5.4 imply:

Theorem 5.5 (Deterministic Sliding Window Algorithm for Spectral Approximation). Letry,...,r, €
R4 be a stream of rows and k be the condition number of the stream. Let ¢ > 0 and A =
W41 ©...0Tr, be the matriz consisting of the W most recent rows. There exists a deterministic
algorithm that stores O (5% log* nlog k) rows and outputs a matriz M such that (1 — ¢) |Ax|, <
|Mx||, < (1+¢€)||Ax]|, for all x € RZ.

Theorem 3.1 shows that the existence of an online coreset for computing a rank k projection-cost
preservation.

Theorem 5.6 (Online Coreset for Rank k Projection-Cost Preservation). For a matriz A € R4 =
ajo...oay,, there erists a constant C' > 0 and a deterministic algorithm CORESET(A, ¢) that outputs
an online coreset of % log nlog k weighted rows of A. For any i € [n], let M; be the weighted rows
of A in the coreset that appear at time i or later. Then M; is a (1+¢€) projection-cost preservation
for A;:=ajo...0a;.

Thus Theorem 5.3 and Theorem 5.6 give:

Theorem 5.7 (Deterministic Sliding Window Algorithm for Rank k Projection-Cost Preservation).
Letry,...,r, € R be a stream of rows and r be the condition number of the stream. Let ¢ > 0
and A = r,_wi10...07r, be the matrix consisting of the W most recent rows. There ezists
a deterministic algorithm that stores O (e%log‘lnlog H) rows and outputs a matriz M such that
1—-¢)|A—-AP|; < [M—-MP|p < (1+¢)||A—AP| for all rank k orthogonal projection
matrices P € R¥*4,

For ¢1-subspace embeddings, we can use our online coreset from Theorem 4.8, but in fact [CP15]
showed the existence of an offline coreset for £;-subspace embeddings that stores a smaller number
of rows. The offline coreset of [CP15] is based on sampling rows proportional to their Lewis weights.
We define a corresponding online version of Lewis weights:
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Definition 5.8 ((Online) Lewis Weights). For a matriz A = ajo...ca, € R™? let A; = ajo...oa;.
Let w;(A) denote the Lewis weight of row a;. Then the Lewis weights of A are the unique weights
such that w;(A) = (ai(ATW_lA)_laiT)l/Q, where W is a diagonal matriz with W;; = w;(A).
Equivalently, wi(A) = 7;(W~Y2A), where 7,(W~/2A) denotes the leverage score of row i of
W-Y2A. We define the online Lewis weight of a; to be the Lewis weight of row a; with respect to
the matriz A;_1 and use the convention that the Lewis weight of a; is 1 if rank(A;) > rank(A;_1).

Their results hold with high probability and they also show that Lewis weights cannot increase
with the addition of new rows, so perhaps it is not surprising that their construction can be easily
modified to form an online coreset based on sampling rows proporitional to their online Lewis
weights.

Lemma 5.9 (Monotonicity of Lewis Weights). [CP15] For a matriz A = ajo...oa, € R"*? and
i € [n], let wi(A) denote the Lewis weight of row a; with respect to A and let 7;(B) denote the
Lewis weight of row a; with respect to B := A or for any row r € R%. Then 7;(A) > 7;(B).

Theorem 5.10 (Online Coreset for ¢1-Subspace Embedding). [CP15] Let A € R™4 = ajo...0a,,
If there exists an upper bound C' on the sum of the online Lewis weights of A, then there exists
a constant C' > 0 and a deterministic algorithm CORESET(A,¢) that outputs an online coreset of
E%logn weighted rows of A. For any i € [n], let M; be the weighted rows of A in the coreset
that appear at time i or later. Then M; is an £1-subspace embedding for A; := aj o... o a; with
approximation (1 +¢€).

It thus suffices to analyze the sum of the online Lewis weights. We first require a few structural
results on Lewis weights. [CP15] gives an iterative algorithm (Figure 4) that converges toward the
Lewis weights.

(1) Given input matrix A € R initialize W <« T,

(2) Repeat: Wl(]l) — (ai(AT(W(jfl))*lA)*laiT)1/2 for all ¢ € [n]

Fig. 4: Iterative algorithm for computing Lewis weights.

The algorithm in Figure 4 has the following property, which shows that it is a contraction
mapping and thus converges to the Lewis weights due to the Banach fixed point theorem.

Lemma 5.11. [CP15] If W is diagonal matrixz representing the Lewis weights and %W(j) =W =
YW for some j >0 and v > 1 in the algorithm in Figure /, then \%WUH) =W = ﬁW(jJrl).
Thus, W ;) converges to the Lewis weights.

We now show that if the rows of a matrix has uniformly bounded leverage scores, then the
Lewis weights must also be uniformly bounded. Although the statement is similar to Lemma 4.6,

the structure of the Lewis weights requires a different strategy of iteratively computing values that
converge to the Lewis weights.

Lemma 5.12 (Uniform leverage scores imply uniform Lewis weights). If the leverage scores of A
are at most %d for some v > 1, then the Lewis weights of A are at most %l.
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Proof. Let C > 0 and suppose ai(ATA)_laiT < C for all i € [n]. Then for iteration j in the above
procedure, we have W) < ¢1-277T, .

For base case j = 1, we have ngl) = (ai(ATA)_laiT)l/2 < CY? 50 that W) < C/21,,. For
iteration j, we have WZ(’]Z) = (ai(AT(W(j_l))_lA)_lal—.r)1/2, where WU-1 < ¢1-27"V by the

inductive hypothesis. Thus (WU-)=1 = —L1___T o

- 01727(3'71) )

AT(WU=D) 1A LIS

— C1_27(j71)
(AT(W(j—l))—lA)—l < 01—2*(7'*1)(ATA)—1
(Wz(ji))2 _ ai(AT(W(j—l))—lA)—la;F < Cl_zf(jfl)ai(ATA)_laiT < 02—2*0*1)

Thus WEJZ) < 017277 50 that W) < C 1_273.]1”. The claim follows from setting C' = %d and the
convergence of the algorithm to the Lewis weights by Lemma 5.11. O

We now show that splitting a row of a matrix into two rows that sum up to the original row
alters the Lewis weights in the natural way.

Lemma 5.13 (Splitting Invariance of Lewis Weights). Given A =ajo...oa, € R™*?, let
B ER(H+1)Xd :a1O...oaj_lObjoaj+10...oan0bn+1

have the same rows but with row j have b; = (1 —~) -a; and row n+ 1 have b, 11 = va; for some
v €1[0,1] and j € [n]. , Then we have w;(A) = w;(B) for any i ¢ {j,n+1}, w;(B) = (1 —y)w;(A)
and wp+1(B) = yw;(A).

Proof. Suppose without loss of generality that j = n. Let W € R™*" be the diagonal Lewis weight
scaling matrix with W, ; = w;(A). Let W € ROHDX(*+1D) match W on the first n — 1 rows. Let
Wn,n = (1 —v)wy(A) and W,H_Lnﬂ = yw,(A). To prove the claim, it suffices by the uniqueness
of Lewis weights to show that 7;(W~/2B) = W, ; for all i € [n + 1]:

Note that the first n — 1 rows of W~1/2B are the same as those of W~/2A. The last two rows
are w, (A)~Y2(1 — )12 . (1 — y)a, = w,(A)~"V2(1 — 7)Y2a, and w,(A)"/2~y/2a,, respectively.
That is, the last two rows are scaled by (1 — 7)1/ 2 and /2, respectively, compared to W—1/2A.
Thus we can see that for any vector y, HW_l/QAsz = HW_1/2ByH§. By the maximization
characterization of leverage scores, the leverage scores of the first n — 1 rows of W~/2A are thus
identical to those of V_V_l/QB, so that W, ; = V_V“ for1 <n-—1.

For the last two rows, we have 7,(W~1/2B) = (1 — ) - 7,(W™2A) = (1 — y)w,(A) = W, .
Similarly, Tn+1(W_1/2B) = Tn(W_l/zA) = ywp(A) = Wn+17n+1. Hence, Ti(W_l/zB) = Wi,i
for all i € [n + 1], which implies the claim by the uniqueness of Lewis weights. O

Corollary 5.14 (Monotonicity of Lewis Weights II). For any A € R™*?, let B € R™? have the
same rows but with row j reweighted by a factor (1 — ) for some v € [0,1]. Then for all i # j,

Proof. Let B € R("D*4 have row j set to (1 — ) - a; and row n + 1 row set to - a;. Then

by Lemma 5.13, for all i # j, w;(B) = w;(A). By the monotonicity of Lewis weights through the

addition of a new row from Lemma 5.9, we thus have w;(B) > w;(B) = w;(A). O
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We now bound the sum of the online Lewis weights by first considering a regularization of the
input matrix, which we show only slightly alters each score.

Lemma 5.15 (Bound on Sum of Online Lewis Weights). Let A = ajo...0a, € R*¥4. [Let
wPL(A) be the online Lewis weight of a; with respect to A, for each i € [n]. Then Y ¢ wOL(A) =
O (dlognlog k).

Proof. For the first part of the proof, we use the same argument as Lemma 4.7. Let A > 0,
By = My, B=Bgo...0Bg, and T be an upper bound on the sum of the online leverage scores
—_——

n times

of any submatrix of X := B o A. For each i € [n], let w;(X) and 7;(X) be the Lewis weight
and leverage score of a; with respect to X, respectively. By Lemma 2.2 and Lemma 4.5, there
exist a set S C [n] of size at most d and a diagonal matrix W with § non-unit entries such that
TOL(B o (WA)) < 2L for all i € [n], where T is the sum of the online ridge leverage scores of A
with regularization A > 0. Let C = B o (WA) and S be the set of all indices i such that W, ; = 1.
For each i € [n], let C;;,q be the matrix formed by the first ¢ + nd rows of C. Since the online
leverage score of each row a; with j < ¢ in C is at most % and the leverage scores of the first nd
rows of C;, 4 is at most %, then all rows of C;, 4 have leverage score at most % By Lemma 5.12,
all rows of C; 1,4 have Lewis weight at most %

Now for any ¢ € S, we have from the monotonicity of Lewis weights from decreasing the weight
of other rows in Corollary 5.14 that

wPH(X) < wPH(C) = wPH(Ciyng) = wi(Cipng) <

2T
o n
so that Y, cqwP(X) < 27T. Let U = {1,...,n} \ S and let Xy be the matrix X restricted to the
rows whose indices are in U. By monotonicity of Lewis weights from the addition of new rows in
Lemma 5.9, wPH(X) < wP(Xy). By induction,

> wPH(X) <> wl(Xy) < 2Tlogn
€U €U

Thus we have >, wPH(X) = O (T'logn), which is O (dlognlog k) by Lemma 2.2.
We now assume without loss of generality that all rows of A have Lewis weight at least %, since
if a,, has Lewis weight less than %, then its online Lewis weight is similarly bounded. Thus, these

logn
=2

rows contribute at most O < > samples with high probability and removing these rows would

only increase the Lewis weights of the other rows by monotonicity Lemma 5.9. Let A = 2, where v
is the minimum of the nonzero singular values across all submatrices of A. Consider approximating
the Lewis weights for A through Figure 4. Since all Lewis weights of A are at least %, then by
Lemma 5.11, at most O (logn) iterations of the algorithm in Figure 4 are necessary to obtain a
constant factor approximation to the true Lewis weights. The intuition is that the approximation

for the Lewis weight of each row a; with respect to A in iteration j of the algorithm is within
<1 + %) of the approximation for the Lewis weight of row a; with respect to X. Hence in O (logn)
iterations, the respective approximations will be within a constant factor approximation.

Formally, let WX) be the weight matrix on iteration j of the algorithm in Figure 4 on input A

and let Ugg) o Wg) be the weight matrix on iteration j of the algorithm on input X, so that Ug)

has nd rows and ng) has n rows. Thus, we have ng) = ng) = I, from the initialization of the
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. 1/2
algorithm in Figure 4. The weight for row a; is then updated by <a2-(AT(WX 1))_1A)_1al;|—)

. - - 1/2
for WX) and by (ai(AT(Wgé 1))_1A + BT(Ugé 1))_1B)_131Z-T> . Since each Lewis weight is at

most 1 and the algorithm is a contraction mapping, then we certainly have Ugg_l) =< 1,4 so that

—1)\ —
ATA) Tmin(AT(WE)=14)

BT(UY ™) 1B < nA2L,, < Tmin
( X ) on d 2 " -

Iq-
(1) 1 (1) : : () i ()
Thus W~ < (1 + n) Wx’ and by induction, W’ < {1+ = ) W',
Hence the Lewis weight of a,, with respect to A is within a constant factor of the Lewis
weight of a, with respect to X, and thus the online Lewis weight of a, with respect to A is

within a constant factor of the online Lewis weight of a, with respect to X. Since we have
3, wPH(X) = O (dlognlog k), then it follows that 3, wPL(A) = O (dlognlog k). O

Then from Theorem 5.3, Theorem 5.10, and Lemma 5.15, we have the following;:

Theorem 5.16 (Deterministic Sliding Window Algorithm for ¢;-Subspace Embedding). Letry,...,r, €
R4 be a stream of rows and k be the condition number of the stream. Let ¢ > 0 and A =
W41 ©...0Tr, be the matriz consisting of the W most recent rows. There exists a deterministic
algorithm that stores O (8% log* nlog k) rows and outputs a matriz M such that (1 — ¢) |Ax|, <
|IMx||, < (1+¢)||Ax]|, for all x € RZ.

Note that Theorem 5.3 also provides an approach for a randomized £1-subspace embedding slid-
ing window algorithm that improves upon the space requirements of Theorem 4.9, by using online
coresets randomly generated sampling rows with respect to their online Lewis weights. Moreover,
recall that in some settings, the online model does not require algorithms to use space sublin-
ear in the size of the input. In these settings, Lemma 5.15 could also potentially be useful in a
row-sampling based algorithm for online ¢;-subspace embedding that improves upon the sample
complexity of Theorem 4.8.

Fast Online Coreset Construction. To quickly obtain an online coreset for spectral approxi-
mation, we derandomize the ONLINEBSS algorithm of [CMP16] with a O (logn) overhead. Their
algorithm requires an input A > 0 and the rows of A =a; o...0a, € R"*? in a stream and uses
upper barrier and lower barrier method of [BSS12] to design a probability distribution for each
row that depends on the previously sampled rows but will always output a matrix M such that
(1—e)(ATA+ M) < MM + Al < (1 +¢)(ATA + AI). Instead, [CMP16] bounds the expected
number of rows sampled by ONLINEBSS based on the sampling probabilities of each row.

First, we observe that the sampling probability for each row in ONLINEBSS can be rounded up
to a power of 2 between % and 1. As before, the rows with sampling probability less than % incur
only O (1) additional rows sampled in expectation. Although the sampling probability p; of row a;
is a random variable that depends on the previous rows sampled, [CMP16] bounds the expectation
of p; by the online (ridge) leverage score TZ-O L so that the expected number of sampled rows is at
most ;- ; 7;. Now consider a process in which we pick a random threshold ¢ € [0,1] and then
sample row a; if p; > t. It can be shown that the expectation of p; is still at most the online (ridge)
leverage score TiO L. Since there are only logn distinct sampling probabilities, we can derandomize
this process by trying all logn values of t. For completeness, we describe ONLINEBSS and our
derandomization in full detail in Appendix B.2.
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A Smooth Histograms and RandNLA Functions

In this section, we define the popular smooth histogram framework for sliding window algorithms
and then give counterexamples showing the approach is not amenable to many interesting linear
algebraic functions.

A.1 Background on Smooth Histograms

An initial framework for approaching problems in the sliding window model is the exponential
histogram data structure, introduced by Datar et al. [DGIMO02]. Given a function f to approximate
in the sliding window model, the exponential histogram partitions the data stream into “buckets”,
time intervals for which the evaluation of f on the data in each partition is exponentially increasing.
For example, suppose we are given a data stream of integers and we want to approximate the number
of ones in the sliding window within a factor of 2. In the exponential histogram data structure,
the smallest bucket consists of all elements in the data stream from the most recent element to the
most recent element whose value is one. The next bucket would consist of all previous elements
until two elements whose values are one are seen. Similarly, the i™ bucket consists of the previous
elements until 2 instances of ones are seen. The key observation is that because the buckets are
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exponentially increasing by powers of two, the starting point of the sliding window falls inside some
bucket, and it will provide a 2-approximation to the number of ones seen in the sliding window
even though it does not know exactly where the starting point is. Datar and Motwani [DM07] show
that the exponential histogram framework is applicable to the class of “weakly additive” functions.
Namely, if we let A and B be adjacent buckets and assume that 0 < f(A) < poly(N), where N is
the length of the data stream, then a function is weakly additive if there exists some fixed constant
Cy > 1 such that f(A)+ f(B) < f(AUB) < Cf(f(A) + f(B)) holds for arbitrary A and B, where
we recall that A U B represents the concatenation of A and B. Moreover, if there exists a sketch
of f, as well as a “composition” function that computes the sketch of f(A U B) from the sketches
of f(A) and f(B), then the exponential histogram framework provides a sliding window algorithm
to approximate f.

Since the buckets in the exponential histogram data structure consist of disjoint elements, a
crucial underlying requirement is that an approximation of f must be deducible from the merger
of the information from these buckets. For example, it is not clear how to maintain buckets for
the goal of approximating the geometric mean of a sliding window. To that effect, Braverman
and Ostrovsky [BO07] define the notion of a smooth function, and provide the smooth histogram
data structure as a framework for approximating smooth functions of sliding windows. They also
show that the class of smooth functions contains the class of weakly additive functions, as well as
a number of other functions, such as the geometric mean.

Smooth Histogram. Given adjacent buckets A, B, and C, a smooth function demands that if
(1-8)f(AUB) < f(B), then (1 —a)f(AUBUC) < f(BUC) for some constants 0 < f < a < 1.
Informally, a smooth function has the property that once a suffix of a data stream becomes a good
approximation, then it always remains a good approximation, even with the arrival of new elements
in the stream. With this definition of smooth function in mind, the smooth histogram data structure
maintains a number of “checkpoints” throughout the data stream. Each checkpoint corresponds
to a sketch of all the elements seen from the checkpoint until the most recently arrived element.
Unlike the exponential histogram, the most recently arrived element impacts all sketches in the
smooth histogram. A checkpoint is created with the arrival of each new element and checkpoints
are discarded when their corresponding sketches get “too close” to the next checkpoint. That
is, when the corresponding sketches of two checkpoints produce values that are within (1 — 3) of
each other, the later checkpoint is discarded, since by the property of smooth functions, the two
checkpoints would thereafter always produce values that are within (1 — «) of each other. This
implies that, if the function is polynomially bounded, then the smooth histogram data structure
only needs a logarithmic number of checkpoints. Moreover, Braverman and Ostrovsky [BO07]
extend their results to the case where the sketch only provides an approximation to the evaluation
of the function.

Smooth Functions. We use the notation B C; A if the stream of elements indexed by B are a
suffix of stream of elements indexed by A (see Figure 5 for an example).

Definition A.1 (Smooth function). [BO07] A function f > 1 is («, )-smooth if it has the following
properties:

Monotonicity f(A) > f(B) for B Cs A (B is a suffiz of A)

Polynomial boundedness There exists ¢ > 0 such that f(A) < n°.
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B C

Fig. 5: A, B and C are substreams, where B is a suffix of A and C' is adjacent to A and B. Smooth-
ness says that if B is a “good” approximation of A, then B U C will be a “good” approximation of
AUC for any C.

Smoothness There exists o € (0,1), 5 € (0,a] so that if B Cs A and (1 — B)f(A) < f(B), then
(1-a)f(AUC) < f(BUC) for any adjacent C.

The smooth histogram data structure estimates smooth functions in the sliding window model.

Definition A.2 (Smooth Histogram [BOO07]). Let g be a function that maintains a (1 + ¢€)-
approximation of an (o, B)-smooth function f that takes as input a starting index and ending index
in the data stream. The approximate smooth histogram is a structure that consists of an increasing
set of indices Xy = {x1,...,x5 = N} and s instances of an algorithm A, namely Ay,..., As with
the following properties:

(1) x1 corresponds to either the beginning of the data stream, or an expired point.
(2) xo corresponds to an active point.

(8) For alli < s, one of the following holds:

(a) i1 =2+ 1 and g(wi41, N) < (1 - §) g(wi, N).

(b) (1= a)geai, N) < glwiga, N) and if i+2 < s then g(wisa, N) < (1-5) glwi, N).
(4) Ni = A(z;, N) maintains g(x;, N).

Unfortunately, despite being quite general, the smooth histogram frameworks cannot be applied
to many interesting problems that have been extensively studied in the streaming model, such as
clustering [BLLM15, BLLM16, BLUZ19], submodular maximization [CNZ16, ELVZ17], or heavy-
hitter detection [LT06, BGO14, BGL"18, Upal9]. We now show that smooth histogram cannot be
applied to many interesting numerical linear algebraic functions.

A.2 Lack of (a, f)-smoothness of RandNLA Functions

In this section, we show that the spectral norm, vector induced matrix norms, linear and generalized
regression, and low-rank approximation are not amenable for the smooth histogram framework.

We first prove that low-rank approximation is not smooth for any meaningful parameters («, /3)
in Definition A.1, even when the best low-rank approximations are nonzero.

Lemma A.3. Low-rank approzimation is not smooth for any meaningful parameters (c, 8) in Definition A.1
that gives us a constant factor approrimation.
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Proof. Our proof constructs a matrix and a vector explicitly. Let e; be the elementary row vector
with entry one in the ¢ position and zero elsewhere. Given 0 < o < 1, let d = % Let S4 be the
data stream whose first element is 2de;, second element is es, followed by data stream Sp, which is
a suffix of Sy4, i.e., Sp C5 Sa. Then suppose B consists of the elements 2des, followed by e;13 for
1 <1 < d. Finally, let Sc be the data stream consisting of the single element 2de;, where j = 4 +d.
Then the corresponding matrices appear as below:

2d

2d

2d

where we have the following matrices

[2d

2d 1 2d
A= 1 B = ! , and C = 0

1

Then for k = 2, the best rank k approximation of A consists of two rows containing 2d so that
min ||A - X||p =Vd+ 1.
XeRNXn
rank(X)=2

The best rank k& approximation of matrix formed by Sp consists of the row containing 2d and any
other elementary row in B so that
min |B-Y|y=vd—-1.

YeRYVxn
rank(Y)=2

Hence, the ratio of the best low-rank approximation of B to the best low-rank approximation of A
is

d—1>d—1_ 2 1w
Vd+1_ d+1 d+1 '

Now, let C represent the matrix corresponding to stream S4,c and let D represent the matrix
corresponding to stream Spyc. Then the best rank k approximation of Sauc consists of two rows

containing 2d so that
min ||C—X]||p=V4d?+d+1,
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while the best rank k approximation of Spyc consists of two rows containing 2d so that

min ||D - Y|, = Vd.
YeRNXn
rank(Y)=2
Thus, the ratio of the best low-rank approximation of Spyc to the best low-rank approximation of
Sauc is at least 2, i.e., 8 < —1. Therefore, low-rank approximation is not smooth. O

We now show that £, regression is not smooth as per the smooth histogram framework. Recall
that for A € RY*" and B € RV*? the generalized ¢, regression problem is the minimization
problem

in [|AX =B, .

1/p
where |||, denotes the entrywise £, norm, that is, [|X[|, = (z” X 5 ]7’> .
In our setting, each update to the data stream consists of a row vector a; € R? and an element
b;, i.e., the underlying matrix A represented by a sliding window of size W consists of the rows
T
A=lawi awyr - ay

b=[b-wq1 b—wiz - bt]T.

We next show that /¢, regression is not smooth as per Definition A.1 for any reasonable param-
eters (a, B) (see Lemma A.4).

Lemma A.4. {, regression is not smooth as per Definition A.1 for any reasonable parameters
(c, B) that gives us a constant factor approzimation.

Proof. Let 0 < a < 1. Let A be the data stream whose first element is the row {a; = {100,0,0,0,0},b; =
100}, second element is the row {as = {0,a,0,0,0},bo = 0}, followed by data stream B, which

is a suffix of A. Then suppose B consists of the elements {ag = {0,0,1,0,0},b3 = 1}, followed

by {as = {0,0,0,1,0},by = 0}. Finally, let C' be the data stream consisting of the single element

{a5 ={0,0,0,0,1000}, b5 = 2000} Then the corresponding matrices appear as below:

100 0 0 O 0 100 T
0 a 00 0 0

A=(0 010 0 |, b= 1 ,
0O 0 01 0 0
| 0O 0 0 0 1000] 12000 |

where
100 0 0 0 O 001 00
A= 0 a 0 0 O}’ Ag.—|:0 00 1 O}’ and Ag.—[O 0 00 1000]

and by, bs, and bg are the corresponding rows of the vector b. Let the matrix A; and vector by
represent data stream S4, Ao and by represent data stream Sp, A3 and bg represent A U C, and
A4 and by represent Sp U Sc. Finally, let Z; = argminycpn [[Aix — by[[, for 1 <4 < 4. Then one
can verify that Z; = 14+ o and Z; = 1. On the other hand, Z3 > 100 but Z4 = ¢/27 + 1. Thus, ¢,
regression is not smooth as per Definition A.1 for any reasonable parameters (o, 3) that gives us a
constant factor approximation. O
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Recall that the vector induced /£, matrix norm is defined as

Al = max, || Ax], .
ax

and for p = 2, it is the same as the spectral norm (Schatten-co norm). We now show that vector
induced norms are not smooth for all values of p.

Theorem A.5. The vector induced matriz norm ||-||,, is not a smooth function as per Definition A.1
for a meaningful parameters (o, B) for constant factor approximation.

Proof. We give explicit construction of streams to show that there exists a stream for which the
vector induced matrix norm is not smooth as per Definition A.1. Let eq,--- ,e4 be the standard
basis of R™. Let A be the data stream consisting of {e;}, followed by the suffix B, the data
stream consisting of {ex2}. Let C be the data stream consisting of {e;}. Define A to be the matrix
representing A and B to be the matrix representing B. Let R be the matrix representing A U C
and S be the matrix representing B U C'. Thus,

A Ta _ (10 5T (0 0
wiaras ()0 xenm (00

T (40 o eTe (10
vormo (D) zesso (! 0)

= max |[|[Wx]|
lIx[l,=1 P

Observe that

=
Thus, [[W][, = 1. Similarly, [ X||, = 1 so that (1 — «) [[W]|, < [|X]|, for any 0 < o < 1. On the

other hand, ||[Y[|, =4 and ||Z|, = 1. Hence, the vector induced matrix norm ||-||,, is not a smooth
function as per Definition A.1. O

A.3 A Generalization of Smooth Histograms for Spectral Approximation

In this section, we give a deterministic sliding window algorithm for spectral approximation that
is neither space nor time optimal, but provides a natural generalization of the smooth histogram
framework of [BOO07] to spectral approximation in the sliding window model.

Theorem A.6. Let rq,...,r, € R? be a stream of rows and r be the condition number of the
stream. Let W > 0 be a window size parameter and A =r,_ w410 ...0r, be the matrix consisting
of the W most recent rows. Given a parameter € > 0, there exists an algorithm that outputs a

matriz M such that ATA <M < (14 ¢)ATA and uses O <§ log /1) words of space.

Proof. Consider Algorithm 10. Note that either t1 = n — W 4+ 1 or ;1 < n — W + 1, since if
t1 > n — W + 1, then there would be another matrix with an earlier timestamp. In the first case,
we have M; = AT A since the outer product of each row r; with i > n — W + 1 is added to M, at
time 1.

In the second case, we have that to > n — W + 1 or else M; would have been deleted. That
means at some point ¢ we must have had Mgt) =1 +E)Mg) to delete all matrices with timestamps
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Algorithm 10 Projection-cost preservation for low-rank matrices in the sliding window model

Input: A stream of rows ri,...,r, € R, window size W, and an accuracy parameter £ > 0
Output: Projection-cost preservation for low-rank matrices in the sliding window model.
1: My « 09
2: for each row r; do
3 Suppose Mg, M1, ..., M; are defined
4 M,y r;rrt, tsy1 =1 >Keep timestamp for Mgy
5 fori=stoi=1do > Update sketches with ry
6: M, « M, + I';r r;
7 fori=stoi=2do
8 if MiT_lMi_l < (1+ E)MiTJrlMiH then
9: Delete M; and ¢; and relabel indices
10: if t9 <t—W +1 then >Msy has expired
11: Delete My and t; and relabel indices
12: return M;

between t1 and to, where Mg»t) = Z';f:tj 1['2-T r; is the value at time ¢ of the sketch that is M; at the
end of the stream. Hence,

M =M+ 3 1 < (oMY + Y e < (14 e)Ma.
i=t

i=t

Since M; = ATA = Mo, it follows that ATA <M =< (1 +¢)ATA.

Each matrix has dimension d x d. Moreover, M; > (1 + £)M; 9 for each index i, so that some
singular value has increased by a factor of (1 + ¢). Since there are at most d singular values and
they can increase by a factor of at most k, then there are at most glog Kk such matrices, and the
space complexity follows. O

We now give the proof of Theorem 2.14.
Reminder of Theorem 2.14.

There exists a deterministic algorithm in the sliding window model that outputs a rank k projection-
cost preservation of an input matriz A whose rank is at most 2k. If the entries of A are integers
that are bounded in magnitude by poly(A), then this algorithm stores O (k) rows of A and uses

@) <%4 log n) additional words of space.

Proof. Consider Algorithm 4. Similar to Algorithm 10, r;'r; is added to each sketch and sketch i
is deleted if M;_; < (1 + &)M;4;. Hence we have ATA < M; < (1 +¢)ATA for the output M;
of Algorithm 4. Moreover, ome singular value has increased by a factor of (1 + &) between M,;_;
and M, by similar reasoning to Theorem A.6. Since there are at most 2k singular values and
they can increase by a factor of at most k, then there are at most % log k such matrices. Thus Ry
contains exactly the row span of A and since R; O Ry D ..., it suffices to store 2k rows of A to
track all the matrices R;. On the other hand, U; € R%*2¢ but there are O (g log /1) such matrices,

so the total additional working space to maintain the matrices is O <k€—3 log /ﬁl).
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Finally, note that since A has integer entries bounded in magnitude by n®®), then the char-
acteristic polynomial has coefficients that are bounded in magnitude by n®®*). Moreover, n®® >
|Allp > omax(A) so then omin(A) > nol(k). Thus, logk = O (klogn) and the space complexity

follows. O

B Extended Proofs

B.1 Online Whack-a-Mole

For a given matrix A prepended by a regularization matrix B, which is some copies of the identity
matrix, the goal is to give weights to the rows of A so that the online leverage score of each row of
A is uniformly bounded by some %, where v > 1 and T is some upper bound on the sum of the
online leverage scores of a matrix. We give the online whack-a-mole algorithm in Algorithm 11. The

Algorithm 11 Online Whack-a-Mole algorithm for uniformly bounded online leverage scores

Input: Matrix A = a; o...o0a, € R"™? regularization parameter A > 0, parameter v > 1
Output: Reweighting matrix W
1: Bg+ A, B=Bgo...0By
n times
Let T be the sum of the online leverage scores of B o A.
W 1,
forz’—ltoi—ndo

Let 70! (B o (WA)) denote the online leverage score of row nd + i of B o (WA).
if 701 +Z(B o (WA)) > 2L then
Decrease W, ; so that T d+Z(B o (WA)) = %

return W

intuition by the online whack-a-mole algorithm is simple. We start with a weight matrix W = I,
and iterate through the rows of A. If there exists a row a; of A whose online leverage score with
respect to B o (WA) is larger than %, then W; ; is decreased until a; has online leverage score
%. Because (online) leverage scores are lower semi-continuous [CLM " 15], such a weight W ; must
exist. Moreover, lowering the weight of a row a; does not affect the online leverage score of a row
a; for i < j. Thus, it remains to show that the number of rows whose weights are lowered is at
most 2. We now prove Lemma 4.5.

Reminder of Lemma 4.5.

[CLM*15] Let A =ajo...oa, € R Let A\ >0, Bg = My, B=Bgo...oBgy and T be the
N —

n times
sum of the online leverage scores of Bo A. For any ~v > 1, there exists a diagonal matriz W with

entries in [0, 1] that contains at most % entries strictly less than 1 so that the online leverage score
of any row of WA with respect to C := B o (WA) is at most % That is, if T°%(C) denotes the
leverage score of the i™ row of WA with respect to C, then TOM(C) < % for all i € [n].

Proof. By the above argument, it suffices to show that the number of entries 7 such that W, ; # 1
is at most 2. Let X = Bo A and for each i € [n], let ¢OL(X) denote the online leverage score of
row a; with respect to matrix X. Note that decreasing the weight of a row a; increases the online
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leverage score of any subsequent rows a; with j > 4. Thus we have ). ¢ % <D ies CZ-OL(X) <T,
so that the number of indices in S is at most % O

B.2 Derandomization of OnlineBSS

In this section, we formally derandomize the ONLINEBSS algorithm of [CMP16] with a O (logn)
overhead. The ONLINEBSS algorithm, described in Algorithm 12, takes parameters € € (0,1) and
A > 0, as well as the rows of A = aj; o...0a, € R" in a stream. The algorithm uses the
upper barrier and lower barrier method of [BSS12] to design a probability distribution for each
row that depends on the previously sampled rows but will always output a matrix M such that
(1—e)(ATA+A) <M M+ A < (1+¢)(ATA + AI). Rather than show the correctness over the
randomness of the algorithm, [CMP16] must instead bound the expected number of rows sampled
by ONLINEBSS over the randomness of the algorithm.

Algorithm 12 ONLINEBSS

Input: Stream of rows ay,...,a, € R™? accuracy ¢ € (0,1), regularization A > 0.
Output: Additive-multiplicative spectral approximation to A :=ajo...0a,.
CU%§+1,CL:<—%—1

: M« 0, BY < \I, BY « —)I

: for each row a; do

XV BV —-M™M, X'« M'M - B

pe + min (1, cpa;(XY)'a] + cpa;(XE)~ta))

BY « BY + (1 +¢)a/ a;, B <+ BY + (1 —¢)a/ a

With probability p;, M <~ Mo %

N gk @

return M.

®

[CMP16] start with the upper and lower barrier matrices BY = Ml and BY = —)I, in the
Loewner order sense. Upon the arrival of each row a;, BV and B’ are incremented by (1+¢)a, a;
and (1 — E)aiTai respectively, as to remain upper and lower barriers for MM + Al as long as
it remains a good approximation to ATA + Al as rows of A arrive. These upper and lower
barrier matrices are then used in conjunction with M to compute the sampling probability p; of
row a;. Namely, p; = min (1,cUai(XU)_la;r —I—CLaZ-(XL)_laZT), where XU = BV — MM and
XL = M™™ — B describe how far MM + Al is from the barriers XY and X, respectively.
As MM + Al approaches one of the barriers, XU or X% approaches zero, so that the following
rows have high sampling probability, which forces M "M + Al to remain a good approximation to
ATA + L

To analyze the expected number of rows sampled, [CMP16] defines
CYi= I+ ATA; + (1+2) AT A,
2, 9 i 1 2 7 J
L _ EAT EN AT
Clj= M- SATA + (1 - 5) A]A;,

where A; = aj o...0a; for each i € [n]. Then by definition, CZUZ = BY and CZLZ = BF, where BY

and BZ-L are the matrices BY and B at time i. Finally, denoting M at time i by M;, the matrices
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YZU] and YiLJ- are defined by:
Yij=Cij - MM,

L T L
Y;;=M;M; - C;

27.]7
so that YZUZ = XY and YZLZ = X% are the matrices that represent the “distance” of M "M+ Al from
the upper and lower barriers, to determine the sampling probability p;. It suffices for [CMP16] to
bound E [az—'r(qu—l,j-‘rl)_lai} <E [az’T(qu—l,j)_lai} and £ |:az—'r(YiL—l,j+1)_lai} <E [az’T(YiL—l,j)_lai )
since a; (YY. 170)_1ai and a (YiL_LO)_lai are proportional to the online ridge leverage score 7O of
a;. Specifically, they show that
2
TyvU -1 T(vL -1 oL
a; (Yi—l,o) a; = (Yi—l,O) a; < gTz‘ .

Thus by Lemma 2.2, the expected number of rows sampled is at most

ZH:CUE [aiT(XzU_l)_lai] +cE [aiT(XiL_l)—lai} = cyE [aZT(YiU_M_l)—lai} +¢E [az’T(YiL—l,i—l)_laz}
i=1
< En cvE [aZT(YE_LO)—laZ} +¢,E [aiT(YiL_LO)_lai}

2 d
< (cU—I—cL)ZTZ-OL =0 <€—2logm> .

We make the following modifications to ONLINEBSS. We first round the sampling probability
for each row up to a power of 2 between % and 1, which only incurs O (1) additional rows sampled
in expectation with those with sampling probability less than % and multiplicative O (1) for those
with samping probability at least % We then pick a random threshold ¢ € [0, 1] and then sample
row a; if p; > t. Since there are only logn distinct sampling probabilities, we can derandomize this
process by trying all logn values of t. It remains to be shown that the expectation of p; is still at

most the online (ridge) leverage score 7Ob.

However, the bounds E {aiT(YZU_LjH)—laZ-] <E [a;'—(YU

i—1,j5
T(~vL
E |:ai (Yi—l,j

)_lai] and E {az‘T(YiL—LjH)_lai] =

)_laz} hold even when conditioned on the first j steps of the algorithm. The analysis

of [CMP16] only requires that row a; is sampled with probability p; at step j+1 for whatever value
of p; results from the randomness of the algorithm. Thus by the same reasoning, it still follows
that the expected number of rows sampled is at most

n
ZCUE {az—'r(X?—l)_lai] +cLE |:az—'r(XiL—1)_lai} = cyE {az—'r(YiU—l,i—l)_lai} +cLE [aI(Yf/—l,i—l)_lai}
i=1

<> ek [aiT(YiU—l,o)_laz} + cLE [az—(YiL—l,O)_lai}

which is at most O (E% log H) by Lemma 2.2.
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