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Guts, volume and skein modules of 3-manifolds

by

Brandon Bavier and Efstratia Kalfagianni (East Lansing, MI)

Abstract. We consider hyperbolic links that admit alternating projections on sur-
faces in compact, irreducible 3-manifolds. We show that, under some mild hypotheses, the
volume of the complement of such a link is bounded below in terms of a Kauffman bracket
function defined on link diagrams on the surface.

In the case that the 3-manifold is a thickened surface, this Kauffman bracket function
leads to a Jones-type polynomial that is an isotopy invariant of links. We show that
coefficients of this polynomial provide 2-sided linear bounds on the volume of hyperbolic
alternating links in the thickened surface. As a corollary of the proof of this result, we
deduce that the twist number of a reduced, twist-reduced, alternating link projection with
checkerboard disk regions is an invariant of the link.

1. Introduction. The goal of the paper is to show that, under mild hy-
potheses, the volume of a hyperbolic link in a compact, irreducible 3-mani-
fold M that admits an alternating projection on a closed surface F ⊂M
is bounded below in terms of a Kauffman bracket function defined on link
diagrams on F . For M = F × [−1, 1], this function leads to a Jones poly-
nomial link invariant, and coefficients of it provide 2-sided linear bounds on
the volume of hyperbolic alternating links. As a corollary, we deduce that
the twist number of a reduced, twist-reduced, alternating link projection
with checkerboard disk regions is an invariant of the link in F × [−1, 1]. Our
results generalize work of Dasbach and Lin [9] and Futer, Kalfagianni and
Purcell [13, 14] who obtained similar results for families of links in S3.

Let M be an irreducible compact 3-manifold with or without boundary.
A link L admits a projection on an orientable embedded surface F in M
if L ⊂ F × [−1, 1] ⊂ M , and it is projected via the obvious projection
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π : F × [−1, 1]→ F = F ×{0}. Given a connected surface F inM, we define
a Kauffman bracket function and from this we construct a polynomial

J0(π(L)) = 〈π(L)〉0 = amt
m + am−1t

m−1 + · · ·+ bn+1t
n+1 + bnt

n

in Z[t1/4, t−1/4]. See Section 2 for the precise definition.
The polynomial J0(π(L)) depends on the topology of F , the projection

π(L) and a priori on the topology of the complementM\N(F ). In the special
case thatM = F× [−1, 1], it is an isotopy invariant of L inM , but we do not
expect that it is an isotopy invariant of L in a generalM . Nevertheless, as our
results below show, if π(L) is alternating on F , and under mild additional
hypotheses, J0(π(L)) encodes intrinsic geometric information on the link
complement M \ L.

Our first result is the following theorem, where the terms reduced and
twist-reduced are defined in Section 3.

Theorem 1.1. Let M be an irreducible, compact 3-manifold with empty
or incompressible boundary. Let F ⊂ M be an incompressible, closed, ori-
entable surface such that M \ N(F ) is atoroidal and ∂-anannular. Suppose
that a link L admits a reduced alternating projection π(L) ⊂ F that is
checkerboard colorable, twist-reduced and with all the regions of F \ π(L)
disks. Then L is hyperbolic and

vol(M \ L) ≥ v8 max{|am−1| − |am|, |bn+1| − |bn|} − 1
2χ(∂M),

where am−1, am, bn+1, bn are the first two and the last two coefficients of the
polynomial J0(π(L)), and v8 = 3.66386 . . . is the volume of a regular ideal
octahedron.

Given an alternating link projection π(L) as in the statement of The-
orem 1.1, let SA, SB denote the two checkerboard surfaces corresponding
to π(L). Also let MA and MB denote the manifolds obtained by cutting
M \L along SA and SB, respectively. By [20], SA, SB are essential in M \L,
and by Jaco–Shalen–Johannson theory MA and MB contain hyperbolic sub-
manifolds called the guts of SA and SB, respectively. We show that the Euler
characteristics of these guts and the twist number tF (π(L)) can be calculated
from J0(π(L)).

Theorem 1.2. LetM , F and π(L) be as in the statement of Theorem 1.1
and let tF (π(L)) denote the twist number of π(L). Also let guts(MA) and
guts(MB) denote the guts of SA and SB, respectively. Then

(1) χ(guts(MA)) = |am| − |am−1|+ 1
2χ(∂M),

(2) χ(guts(MB)) = |bn| − |bn+1|+ 1
2χ(∂M),

(3) tF (π(L)) = |am−1|+ |bn+1| − |am| − |bm|+ χ(F ).

Theorem 1.1 follows by combining Theorem 1.2 with a result of Agol,
Storm and Thurston [2] asserting that the negative Euler characteristic of
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the guts of an essential surface in a hyperbolic 3-manifoldM linearly bounds
the volume of M from below.

ForM = S3 and F = S2, the polynomial J0 is the classical Jones polyno-
mial. In the case thatM = F ×I, one can use the structure of the Kauffman
skein module of M to see that J0(π(L)) is also an isotopy invariant of the
link L. In fact, for every link inM one obtains a finite collection of Jones-type
polynomial invariants that have been used to settle open questions about the
topology of alternating links in thickened surfaces [1, 4]. As a corollary of
Theorem 1.2 we obtain the following.

Corollary 1.3. Let L be a link in F×[−1, 1] that admits a checkerboard
colorable, reduced alternating projection π(L) ⊂ F that is twist-reduced and
has all its regions disks. Then any two such projections of L have the same
twist number. That is, tF (π(L)) is an isotopy invariant of L.

Note that Theorem 1.2 also implies that the quantities χ(guts(MB)) and
χ(guts(MB)) are invariants of L in M = F × [−1, 1]. For reduced, twist-
reduced alternating diagrams on a 2-sphere in S3, invariance of the twist
number is a consequence of the Tait flyping conjecture [28]. The correspond-
ing conjecture for links in thickened surfaces is currently open. A second
proof of the twist number invariance for alternating links in S3 follows from
the work of Dasbach and Lin [9, 10] that relates this twist number to the
Jones polynomial. Our approach generalizes their approach.

Several families of hyperbolic links in S3, including alternating ones, sat-
isfy a “coarse volume conjecture”: coefficients of the Jones and colored Jones
polynomials provide two-sided linear bounds of the volume of the link com-
plement [9, 13–17, 25]. The next theorem provides a similar result for alter-
nating links in thickened surfaces and there is a similar result for links with
alternating projections on Heegaard tori in lens spaces (see Corollary 4.2).

Theorem 1.4. Suppose that π(L) is a reduced alternating projection on
F = F×{0} inM = F×[−1, 1], that is twist-reduced, checkerboard colorable,
and with all the regions of F \π(L) disks. Then the interior of M \L admits
a hyperbolic structure. If F = T 2, then

v8
2
· βL ≤ vol(M \ L) < 10v4 · βL,

and if F has genus at least two, then
v8
2
· (βL − 2χ(F )) ≤ vol(M \ L) < 6v8 · (βL + χ(F )).

Here βL := |am−1|+|bn+1|−|am|−|bn| is obtained from the Jones polynomial
invariant J0 of L, and v4 = 1.01494 . . . is the volume of a regular ideal
tetrahedron.

A key idea in the proof of Theorem 1.2 is to relate the coefficients
of J0(π(L)) to the topology of the checkerboard graphs of any projection
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π(L) ⊂ F . This idea is reminiscent of techniques that were used to study
the Jones polynomial of adequate and alternating links in S3 [8, 13, 26, 27].
Under a graph-theoretic condition, which we call geometric adequacy, we
show that the first two and the last two coefficients of J0(π(L) can be cal-
culated from the checkerboard graphs. The checkerboard graphs of reduced,
alternating projections turn out to satisfy these graph-theoretic conditions.
On the other hand, these graphs form spines of the checkerboard surfaces.
We use the work of Howie and Purcell [20] in a crucial way to show that
the graph-theoretic combinatorics that determines the coefficients am−1 and
bn+1 is exactly the one dictating the calculation of the Euler characteristics
of the guts of the checkerboard surfaces.

There exist open conjectures predicting that the volume of hyperbolic
3-manifolds is determined by certain asymptotics of quantum invariants
[5, 7, 11, 22]. For links in S3 these invariants include the Jones polyno-
mial and its generalizations. The relations of skein-theoretic invariants and
volume via guts of surfaces established in [13, 14] and in Theorems 1.4 and
1.2 are robust and seem independent of these conjectures.

The paper is organized as follows: In Section 2, we consider projections
of links on a surface and we define the polynomial J0(π(L)). Then, we ex-
plain how known results on the structure of Kauffman skein modules imply
that J0(π(L)) is an invariant of isotopy for links in F × [−1, 1]. Finally, we
restrict ourselves to projections π(L) ⊂ F that have disk regions. For such
projections we define the notion to geometric adequacy, under which we ob-
tain formulae for the coefficients |am−1|, |bn+1|, |am|, |bn| (Theorem 2.6). We
also compare geometric adequacy with other notions of adequacy that have
recently appeared in the literature [4].

In Section 3 we consider alternating projections π(L) ⊂ F ⊂M that are
checkerboard colorable and have disk regions. We define a notion of diagram
reducibility that generalizes the corresponding notion for link diagrams on a
2-sphere in S3, and interplays nicely with the complexity of “edge representa-
tivity” considered in [20] and with geometric adequacy (Proposition 3.5 and
Lemma 3.8). This interplay allows us to relate our work in Section 2 to work
of Howie and Purcell on weakly generalized alternating links. The main result
in this section is Theorem 3.13 that is a generalized version of Theorem 1.2.
The more general version replaces the hypothesis that F is incompressible in
M with a hypothesis of “high representativity”. We also prove Corollary 1.3.

In Section 4 we prove Theorem 1.1 and we derive Theorem 1.4.

2. Skein polynomials and geometric adequacy

2.1. Bracket polynomials for link diagrams on surfaces. Let M
be a 3-manifold with or without boundary and let F be an orientable surface



Guts, volume and skein modules of 3-manifolds 5

in M . Given a link L ⊂ F × [−1, 1] ⊂ M we can consider its image under
the projection π : F × [−1, 1]→ F = F ×{0}. Throughout the paper we will
refer to π(L) ⊂ F as a link projection or a link diagram.

Given a crossing of a link diagram D = π(L), we define the A and B
resolutions of the crossing as indicated in Figure 1.

Fig. 1. The A resolution (left) and the B resolution (right) of a crossing.

Let D(F ) denote the set of all (unoriented) link diagrams on F , taken up
to isotopy on F. Also let XF denote the set of all collections of disjoint simple
closed curves (a.k.a. multi-curves) on F . We define a Kauffman bracket

〈 〉 : D(F )→ Z[A,A−1, (A2 −A−2)−1]XF

by the following skein relations:

(1)
〈 〉

= A
〈 〉

+A−1
〈 〉

,

(2)
〈
L t

〉
= (−A2 −A−2)〈L〉,

(3)
〈 〉

= 1.

As we are working on a surface that may have essential curves, we also
require that the unknots in the above relations bound disks on F .

To describe 〈D〉 as a function in Z[A,A−1, (A2 − A−2)−1]XF in more
detail, we need some preparation.

Definition 2.1. A Kauffman state for a link diagram D ⊂ F is an
assignment of the A or the B resolution for each crossing of D. The result of
applying any state to D is a collection of disjoint simple closed curves on F
called state circles.

Given a state s we use |s| = |s(D)| to denote the number of state circles
resulting from D by applying s, and we let a(s) be the number of A resolu-
tions in s, and b(s) the number of B resolutions. Also, we will use st and snt
to denote the set of contractible and non-contractible state circles resulting
from s, and we will write |st| and |snt| for the cardinalities of these sets.

Finally, we will use sA to denote the state where all the resolutions are A,
and sB for the state where all the resolutions are B.

Given a link projection D = π(L) in D(F ) we define

(2.1) 〈D〉0 =
∑

{s | snt=∅}

Aa(s)−b(s)(−A2 −A−2)|st|−1,
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that is, we sum over all states that when applied to D produce only con-
tractible state circles. Similarly, given a collection X of simple closed disjoint
curves on F , none of which is contractible, we define

(2.2) 〈D〉X =
∑

{s | snt=X}

Aa(s)−b(s)(−A2 −A−2)|st|−1,

where |st| is the number of contractible curves in s = s(D). Clearly, for a
given D, the value of 〈D〉X will be non-zero for only finitely many collec-
tions X.

Using the defining skein relations, for any D ∈ D(F ) we can write in
Z[A,A−1]:

(2.3) 〈D〉 = 〈D〉0 +
∑

X∈XF

〈D〉XX.

Note that by definition, 〈D〉0 is always a polynomial in Z[A,A−1], and
〈D〉X are not in Z[A,A−1] if there exist states for which st = 0, in which case
we get the factor (−A2 − A−2)−1. Thus, in particular, (−A2 − A−2)〈D〉X
always lies in Z[A,A−1].

The argument used for S2 in the 3-sphere works to show that 〈D〉 is
invariant under Reidemeister moves II and III on F and that it changes by
a power of A under Reidemeister move I. Then, 〈D〉 = 〈D〉0 is an invariant
of framed links and a normalization of it gives the Jones polynomial (see
e.g. [26]). We do not expect that 〈π(L)〉 an isotopy invariant of the framed
link L in a general 3-manifold M .

A way to generalize the Jones polynomial to links in arbitrary 3-manifolds
is to consider skein modules: given a 3-manifold M , let L(M) denote the set
of isotopy classes of framed links in M . The Kauffman skein module of a 3-
manifold M , denoted by S(M), is the quotient of the free Z[A,A−1] module
generated by L(M) by the submodule generated by all relations of the form

• −A −A−1 ,

• L t − (−A2 −A−2)L,

• − 1.

Here the crossing modifications take place in a small 3-ball in M that inter-
sects the link to be modified at a single crossing, and the notation is
used to define the isotopy class of the knot that bounds a smooth disk inM .
Given a link L ⊂ M, let L̄ denote the class of L in M . Now the image of L̄
under the map

L(M)→ S(M)

is an isotopy invariant of the framed link L.
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Let us now discuss the special case where M = F × [−1, 1], a thickened
surface. It is known that S(F × [−1, 1]) is free over Z[A,A−1] with basis
XF ∪{∅}, where ∅ is the empty knot [29]. Now any framed link in F × [−1, 1]
can be projected on F = F ×{0}, and any two link diagrams of F represent
the same element in L(M) if and only if they are related by Reidemeister
moves II and III on F . Thus D = π(L), and the expression in (2.2) can
immediately be viewed as the image of L in S(F × [−1, 1]). It follows that
〈D〉0, 〈D〉X are invariants of L in F × [−1, 1]. These invariants were recently
considered by Boden, Karimi and Sikora [4] and were used to prove versions
of two of the Tait conjectures for alternating links in F × [−1, 1].

We will be concerned with 〈D〉0, the sum of elements that appear when,
after using the skein relations, we are left with just the empty knot. As
pointed out in [4], one can make 〈D〉0 an isotopy invariant of oriented non-
framed links by considering (−1)w(D)A−3w(D)〈D〉0, where w(D) is the writhe
number of D. Setting

J0(t) = ((−1)w(D)A−3w(D)〈D〉0)|t=A4 ,

we obtain an isotopy invariant of L. Note that our convention differs from [4],
as they set t = A−4. Let

J0 = amt
m + am−1t

m−1 + · · ·+ bn+1t
n+1 + bnt

n,

where m and n denote the highest and lowest degrees of J0, respectively.

Proposition 2.2. For any link L ⊂ M = F × [−1, 1], the polynomial
J0 = J0(L) is an isotopy invariant of L.

Remark 2.3. We are interested in the absolute values of the coefficients
of J0 which are the same as those of 〈D〉0, since as mentioned earlier, they
remain unchanged under Reidemeister move I on F . By slightly abusing our
setting, when talking about these coefficients, we will feel free to use J0(D)
or 〈D〉0 interchangeably.

In general let us start with a 3-manifold M and a connected, closed,
orientable surface F embedded in M and a projection of π(L) ⊂ F of a
link L ⊂ F × [−1, 1] ⊂ M . We can define 〈π(L)〉0 and J0(D) as above, but
in general it is hard to decide when they descend to isotopy link invariants
in M : Firstly, understanding the structure of S(M) is known to be a very
hard problem. There is no algorithm for computing S(M) in general, and
these modules have only been explicitly computed for some simple families
of 3-manifolds. See [12] and references therein. For our purposes here, we
will consider F × [−1, 1] embedded in a 3-manifold M that is closed or has
incompressible boundary. The inclusion induces a map

(2.4) S(F × [−1, 1])→ S(M),
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and the image of L in S(F × [−1, 1]) is easy to calculate as we said above.
However, in general very little is known about the structure of the map (2.4).
For instance, for closed M , if one works over the field Q(A), then the skein
module of M is finitely generated while the skein module of F × [−1, 1] is
infinitely generated [18]. Thus, in this case, the map (2.4) has a substantial
kernel and it is expected that this is the case over Z[A,A−1] as well. Given
a link L ⊂ F × [−1, 1] ⊂ M , with D = π(L) on F , in general we do not
expect that J0(π(L)) is an invariant of isotopy of L in M . In the remaining
part of the paper, unless working with M = F × [−1, 1], we will consider
J0 as a function on the set of link projections π(L) on F. In this setting,
it is rather striking that, as Theorems 1.1 and 4.1 show, J0(π(L)) captures
intrinsic geometric information of the complement M \ L.

2.2. Geometrically adequate links. Recall that M is a 3-manifold
and F ⊂ M is an embedded orientable surface, and let D = π(L) ⊂ F be
a link projection. Given a Kauffman state s on D we define the state graph
Gs = Gs(D) as follows: the vertices of Gs correspond to the state circles of s,
and the edges correspond to the crossings of π(L). Each edge connects the
subarcs of the state circles that remain from the splitting of that crossing
in s. We will use GA to denote the graph corresponding to sA, and GB to
denote the graph corresponding to sB. From now on we will restrict ourselves
to projections D where all the state circles in sA and in sB are contractible
on F . See Figure 3 below for an example of a link diagram D with this
property, where we also show the graphs GA, GB.

Definition 2.4. We say that the diagramD = π(L) ⊂ F is geometrically
A-adequate ifGA(D) has no 1-edge loops and all circles of sA are contractible.
Likewise, we say D is geometrically B-adequate if GB(D) has no 1-edge loops
and all circles of sB are contractible. If D is both geometrically A-adequate
and B-adequate, we say it is geometrically adequate.

Definition 2.5. With the notation as above, suppose that the diagram
D = π(L) ⊂ F is geometrically adequate. Define the reduced graph of GA,
written G′A, to be the graph where, if two edges e1 and e2 are adjacent to
the same pair of vertices, we remove one of them if e1 ∪ e2 bounds a disk
on F . Let e′A denote the number of edges of G′A. Similarly define the reduced
graph G′B and denote its number of edges by e′B.

In S3 a link diagram D = D(L) on a projection 2-sphere is called A-ade-
quate if GA(D) has no 1-edge loops, and B-adequate if GB(D) has no 1-edge
loops. For such diagrams, Futer, Kalfagianni and Purcell [13] have established
relations between coefficients of the Kauffman bracket of D and geometric
properties and invariants of the link complement S3 \ L. In particular, they
show that when D represents a hyperbolic link, coefficients of the Kauffman
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bracket of D provide linear bounds for the volume of the complement of the
link.

In this paper, we will generalize these geometric relations to links that
admit alternating projections on surfaces in 3-manifolds. A key step for this
generalization is Theorem 2.6 below that also holds for projections on a
sphere in S3.

Theorem 2.6. Suppose that D=π(L)⊂F ⊂M and let am, am−1, bn+1, bn
denote the first two and last two coefficients of J0(D).

(1) If D is geometrically A-adequate, then |am|=1 and |am−1|=e′A−|sA|+1.
(2) If D is geometrically B-adequate, then |bn| = 1 and |bn+1| = e′B−|sB|+1.

Theorem 2.6 and its proof should be compared with [9, Proposition 2.1]
and the usual calculation of the degree of the Jones polynomial for ordinary
alternating links in [26]. We will split the proof into two lemmas. The first
one concerns the determination of |am| and |bn|.

Lemma 2.7. Suppose that D = π(L) ⊂ F ⊂M is a link diagram and let
am, bn denote the first and the last coefficients of J0(D).

(1) If D is geometrically A-adequate, then |am| = 1.
(2) If D is geometrically B-adequate, then |bn| = 1.

Proof. Let c = c(D) denote the number of crossings of D and consider
the all-A state, sA. Then a(sA) = c and b(sA) = 0. By the definition of 〈D〉0
(see (2.1)), the contribution of sA is

Ac(−A2 −A−2)|sA|−1.

The highest degree here, then, is c+ 2|sA| − 2, and the coefficient belonging
to it is (−1)|sA|−1 = ±1.

Now we will show that all the other states have degrees less than c +
2|sA|− 2. We can view any state as being obtained from sA by a finite series
of changing an A resolution to a B resolution. We can write this series out
as sA → s1 → s2 → · · · → sk. We will show that si+1 has degree at most si.
First, note that a(si) = a(si−1)−1 and b(si) = b(si−1)+1. Next, by changing
a single resolution, we are doing one of the following:

• Wemerge two contractible circles to a contractible one (so |si| = |si−1|−1).
• We split a contractible circle into two contractible ones (so |si| = |si−1|+1).
• We split a contractible circle into two non-contractible ones (so |si| =
|si−1| − 1).

• We merge two non-contractible circles into a contractible one (so |si| =
|si−1|+ 1).
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• We merge a contractible and non-contractible circle into a non-contractible
one (so |si| = |si−1| − 1).

• We rearrange a non-contractible circle of si−1 to a non-contractible one
of si (so |si| = |si−1|).

In particular, each resolution change will either increase the number of state
circles by 1, leave it the same, or decrease it by 1. As a result, the highest
degree in the contribution of si to 〈D〉0 will be less than or equal to that
of si−1.

As the highest degree contribution to 〈D〉0 coming from sA is c+ 2|sA|,
while the highest degree contribution coming from sk 6= sA is c−2k+2|sk|−2,
in order for sk to contribute to the highest degree of 〈D〉0, we would need to
have

c+ 2|sA| − 2 ≤ c− 2k + 2|sk| − 2, i.e. |sA| ≤ |sk| − k.

This would mean that each state change si−1 → si must increase the number
of state circles by 1, limiting what sort of changes we can make from the
five possibilities discussed above. However, since all the state circles in sA
are contractible and GA has no 1-edge loops, the first change sA → s1 will
merge two contractible circles to one, so |s1| = |sA|−1 and the highest degree
of s1 is strictly less than that of sA. Since this degree cannot increase during
the change from sA to sk, the contribution of sk has degree less than the
contribution of sA. So it does not contribute to the highest degree of 〈D〉0,
and we are done with part (1).

To see part (2), let D∗ ⊂ F ⊂M denote the link diagram obtained from
D by switching all the crossings of D simultaneously. By the definition we
can see that 〈D∗〉0 is obtained from 〈D〉0 by changing A to A−1. Thus, we
have |bn(D)| = |am(D∗)| and the conclusion follows from part (1).

Now we turn to the second lemma, which treats the second and the
penultimate coefficients of J0(D).

Lemma 2.8. Suppose that D = π(L) ⊂ F ⊂M is a link diagram and let
am−1, bn+1 denote the second and the penultimate coefficients of J0(D).

(1) If D is geometrically A-adequate, then |am|=1 and |am−1|=e′A−|sA|+1.
(2) If D is geometrically B-adequate, then |bn| = 1 and |bn+1| = e′B−|sB|+1.

Proof. Let c = c(D) denote the number of crossings of D. We know that
the highest degree of 〈D〉0 is c+ 2|sA|. Then the second highest degree has
exponent c + 2|sA| − 4. A contribution to this degree can come either from
the second highest degree of sA, or from the highest degree of a state sk in
which k 6= 1 crossings of D are assigned the B resolution.
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First,wewilldealwithsA.RecallthatthepartofD0comingfromsA is

Ac(−A2−A−2)|sA|−1=(−1)|sA|−1Ac(A2+A−2)|sA|−1

=(−1)|sA|Ac

|sA|

i=0

|sA|−1

i
A2|sA|−2i−2A−2i

=(−1)|sA|−1

|sA|−1

i=0

|sA|−1

i
Ac+2|sA|−4i−2.

Inparticular,thesecondhighestdegreeisc+2|sA|−6(wheni=1),and
thecoefficientis(−1)|sA|−1(|sA|−1).Next,wedealwithstatessk=sA.As
intheproofofLemma2.7,wecanwritesk asafiniteseriesofresolution
changes,sA → s1 →··· → sk. Weclaimthatsk canonlycontributeto
thedegreec+2|sA|−6ifallresolutionchangeshappentoparalleledges
inGA (i.e.edgesthatareadjacenttothesamepairofverticesandanytwo
ofwhichencircleadiskonF).

Recallthatthehighestdegreethatskcontributesisc−2k+2|sk|.For
thistocontributetothesecondhighestdegreeofD 0,we musthave

c+2|sA|−6=c−2k+2|sk|−2, i.e. |sA|=|sk|−k+2.

This meansthat,inourseriesfromsA tosk,eitherwe mustincreasethe
numberofstatecirclesinallbutexactlytworesolutionchanges,wherewe
donotchangethenumberatall,orwe mustdecreasethenumberofstate
circlesexactlyonce,andtheotherresolutionchanges mustincreaseit.As
inLemma2.7,weknowthatsA → s1mustdecreasethenumberofstate
circles.Hence,forsktocontributetothesecondhighestdegreetheremaining
resolutionchanges mustincreasethenumberofstatecircles.

AssA hasnonon-contractiblecircles,anyfollowingstatewillonlyhave
themif weintroducethemfromaresolutionchange. Notethat weneed
tochangeatleasttworesolutionsfromsA tocreatenon-contractiblestate
circles.However,turningthesecirclesintocontractibleonesagainwillrequire
mergingandthisstepwilldecreasethenumberofstatecircles.Hencesucha
sequencecannotcontributetoam−1.Thus,toincreasethenumberofstate
circles,we must,aftersA → s1,alwayssplitasinglecontractiblecircleinto
twocontractiblecircles. Thiscanonlyhappeninthechangesi−1 → si,
however,ifthereisa1-edgeloopinthestategraphGsi 1.Such1-edgeloops
arecreated when we mergetwostatecircles.Inourseries,thiscanonly
happeninthefirststatechange,sA → s1,andsoallotherchanges mustbe
adjacenttothesametwostatecircles.Therearenowtwocasestoconsider.
Lete1betheedgeofGA affectedduringthechangesA → s1.Theneither

•si−1→ siaffectsanedgeeiwithe1∪eiboundingadiskonF,or
•si−1→ siaffectsanedgeeiwithe1∪einotboundingadiskonF.
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The two cases are illustrated in Figure 2. If we are in the second case, we
will create two non-contractible circles, each parallel to the curve ei ∪ e2. If
we are in the first case, we create two contractible circles, and so are fine.
As such, sk only contributes to the second highest degree if all resolution
changes happen to parallel edges that bound a disk on F . We can view this
as a single edge of G′A.

Fig. 2. The two cases of changing two edges of GA adjacent to the same pair of vertices
to edges of GB .

Each family of parallel edges has several states associated to it: if the
family has k parallel edges (and thus k crossings), and we want a state to
have 1 ≤ j ≤ k differences from sA, then there are

(
k
j

)
such states. While

the highest degree remains the same, other values do change. If a state s
has j changes in resolutions from sA, then a(s) = c − j, b(s) = j, and
|s| = |sA|−2+j. Then the highest degree coefficient such a state contributes
is

(−1)|s|Aa(s)−b(s)A2|s|−2 = (−1)|sA|+j−3Ac−2j+2|s|−2

= (−1)|sA|−3(−1)jAc+2|sA|−6.

Summing over all possible states for this family shows that the family con-
tributes the coefficient

(−1)|sA|−3
k∑

j=1

(
k

j

)
(−1)j .

Using the binomial theorem, we obtain

0 = (1 + (−1))k =

k∑
j=0

(
k

j

)
(−1)j = 1 +

k∑
j=1

(
k

j

)
(−1)j = 1 + (−1)

so the coefficient contributed by a single family is just (−1)|sA|−1.
Now, adding the coefficient we get from sA to all the coefficients we get

from edges of G′A, we deduce that the coefficient is

|am−1| = |(−1)|sA|−2e′A + (−1)|sA|−1(|sA| − 1)| = |(−1)|sA|−2(e′A − |sA|+ 1)|
= e′A − |sA|+ 1

and we are done with part (1).
To prove (2) we can apply the argument of (1) to the diagram D∗ as in

the proof of Lemma 2.7. This finishes the proof of the lemma and that of
Theorem 2.6.
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The notion of geometric adequacy is well suited for the connections of
skein invariants with geometry of the link complement that we explore in this
paper. Recently, Boden, Karimi and Sikora have considered link diagrams
on a surface F = F × {0} inside thickened surfaces F × [−1, 1], and they
also defined notions of A-adequacy and B-adequacy. We now compare their
definitions to ours. In the terminology of [4] a link diagram D on F is called
A-adequate if for any state s that differs from sA by a single resolution we
have the following: either |st| ≤ |sA| or the number of non-contractible state
circles in s is different than that in sA. One defines D being B-adequate in
a similar way.

Lemma 2.9. Suppose that D = π(L) ⊂ F ⊂M is a link diagram such that
all the state circles in sA are contractible on F . Then, if D is geometrically
A-adequate, it is also A-adequate.

Proof. To show that D is A-adequate, we must show that, for any state
s adjacent to sA, either |st| ≤ |sA| or s and sA have a different set of non-
contractible loops. There are two ways a state change sA → s can increase
|st|: either we split a contractible state circle into two such circles, or we
merge two essential circles in sA into a contractible circle. By assumption,
as sA has only contractible circles, we must split a single state circle into
two. However, in order to split a state circle, we must have an edge of GA

connecting that state circle to itself. As GA, by assumption, has no 1-edge
loops, this cannot happen, and so we are done.

Fig. 3. A link diagram D = π(L) (left) together with the graphs GA (center) and GB

(right). All the state circles in sA and sB are contractible on the torus. The diagram D is
geometrically B-adequate but not geometrically A-adequate. In fact, all the four edges of
GA are 1-edge loops.

The converse of Lemma 2.9 is not true. The diagram D of Figure 3 is
A-adequate in the sense of [4] but is not geometrically A-adequate: indeed,
while the state circles in sA are contractible, each of the four states that
are obtained from sA by a single resolution change contains non-contractible
circles. Thus D is A-adequate. However, GA contains 1-edge loops, hence D
is not geometrically A-adequate.

3. Guts of surfaces and Kauffman brackets. In this section we focus
on links that admit alternating projections on surfaces in 3-manifolds. We
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find that under suitable diagrammatic conditions such links are geometrically
adequate on the one hand, and on the other hand they fit into the class of
weakly generalized alternating links studied in [20]. This will allow us to
combine our work in the last section with the geometric techniques of [20]
and prove Theorems 1.2 and 1.1.

3.1. Reduced alternating link projections. Suppose M is a com-
pact, orientable, irreducible 3-manifold with empty or incompressible bound-
ary, and F a closed, connected, orientable surface in M . Next we intro-
duce several properties and definitions concerning projections of links L ⊂
F × [−1, 1] ⊂M on F . Some of these properties are directly quoted from [20]
and others are suitably adapted to better fit our purposes.

Definition 3.1. A link diagram π(L) ⊂ F is prime if, whenever a disk
D ⊂ F has ∂D intersecting π(L) transversely exactly twice, then either

• F = S2, and either π(L) ∩D or π(L) ∩ (F \D) is a single arc, or
• F has positive genus, and π(L) ∩D is a single arc.

Definition 3.2. We say that a link diagram π(L) ⊂ F is reduced alter-
nating if

(1) each component of L projects to at least one crossing in π(L),
(2) π(L) is prime and alternating on F, and
(3) for every essential, simple closed curve γ on F that intersects π(L) at

exactly two points near a crossing, one of the two subarcs of π(L) with
endpoints on γ contains no crossings of π(L).

We note that for the notion in Definition 3.1 the authors of [20] use
the term “weakly prime”. We also note that Definition 3.2 is different than
the definition of reduced diagrams given in [20], in that condition (3) is not
required in their definition. For alternating projections of F = S2 inM = S3

the two definitions are equivalent.
Given an alternating link projection π(L) ⊂ F ⊂ M for each crossing

of π(L) we can label the four regions around it by the letters A and B
in an alternating fashion. This is done so that the two opposite regions
of the crossing that are merged during the A splitting are labeled by A.
Similarly, the two opposite regions of the crossing that are merged during
the B splitting are labeled by B. This way the corners of every region of
F \ π(L) receive the label A or B.

Definition 3.3. With the notation and setting as above, we will say
that the link diagram π(L) is checkerboard colorable if for every region R of
F \ π(L) the letters at all corners of R are the same. Thus every region of a
checkerboard colorable diagram is labeled by A or B.
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Next we recall two complexity functions for link diagrams π(L) ⊂ F ⊂M
from [20].

Definition 3.4. The edge representativity e(π(L), F ) is the minimum
number of intersections between π(L) and any essential curve on F . If there
are no essential curves, then we say e(π(L), F ) =∞.

The representativity r(π(L), F ) is the minimum number of intersections
between π(L) and the boundary of any compressing disk for F . If there are
no compressing disks for F , then we say r(π(L), F ) =∞.

As an example to clarify the definitions above we discuss the alternating
link diagram π(L) of Figure 3 viewed on a standard Heegaard torus F = T 2

in S3. We have e(π(L), F ) = r(π(L), F ) = 2 and the diagram is checkerboard
colorable, prime, and all the regions of T 2 \π(L) are disks. However, π(L) is
not reduced in the sense of Definition 3.2. The next proposition shows this
phenomenon does not happen when e(π(L), F ) > 2.

Proposition 3.5. Let π(L) ⊂ F ⊂ M be an alternating link diagram
such that π(L) is checkerboard colorable and all the regions of F \ π(L) are
disks. Then π(L) is reduced if and only if

• π(L) is prime,
• each component of L projects to at least one crossing in π(L), and
• the edge representativity satisfies e(π(L), F ) > 2.

Proof. First, suppose e(π(L), F ) > 2 and π(L) is prime. We only need to
prove that π(L) satisfies part (3) of Definition 3.2. So suppose γ is a simple
closed curve on F intersecting π(L) exactly twice. Because e(π(L), F ) > 2,
we know that γ cannot be essential, and so must bound a disk E on F . If
F = S2, then, as π(L) is prime, either π(L)∩E or π(L)∩ (F \E) is a single
arc without any crossings. If F 6= S2, then π(L)∩E is a single arc. In either
case, we have one of the subarcs of π(L) with endpoints on γ contain no
crossings, and so we are done.

Now suppose π(L) is reduced alternating. Then we already know that
π(L) is prime, and each component of L projects to at least one crossing
in π(L).We need to show e(π(L), F ) > 2. Suppose not. As D is checkerboard
colorable, we must have e(π(L), F ) be an even number. If e(D,F ) = 0, then
there is a region of F \ π(L) that contains an essential curve. This would
mean we have a non-disk region, and so cannot happen.

If e(π(L), F ) = 2, then we can find some essential closed curve γ inter-
secting π(L) exactly twice. As π(L) is reduced, this means that one of the
two subarcs of π(L) with endpoints on γ must contain no crossings. Call this
subarc `. We also have γ split into two subarcs, γ1 and γ2. There are four
cases to consider. First, we could have ` ∪ γi bound a disk on F for some
i = 1, 2. We can use this disk to homotope γ off of D, and so make it an
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essential curve intersecting our knot zero times, a contradiction. Second, we
could have ` form a single component. If it does, L has a component with
no crossing in D, contradicting the assumption that each component of L
projects to at least one crossing on F , included in the definition of reduced.
Third, we could have ` ∪ γi essential and parallel to all of γ for some i, say
i = 1. But then ` ∪ γ2 is homotopically trivial, and so we are in the first
case, and get a contradiction. Finally, we could have `∪ γi essential and not
parallel to γ. As π(L) is checkerboard colorable and ` contains no crossings,
everything to one side of ` must be the same color. But then we have a
region adjacent to itself across a knot arc, contradicting D being checker-
board colorable. In any of the cases where e(π(L), F ) = 2, we contradict
one of our assumptions, and so it cannot happen. So then we are left with
e(π(L), F ) > 2, and we are done.

Definition 3.6. Following [20] we say a link diagram π(L) ⊂ F is weakly
generalized alternating if it is prime, checkerboard colorable, alternating, and
the representativity satisfies r(π(L), F ) ≥ 4.

We have the following:

Corollary 3.7. A reduced alternating diagram π(L) ⊂ F that has disk
regions and is checkerboard colorable is also weakly generalized alternating.

Proof. We only need to check that r(π(L), F ) ≥ 4. By Proposition 3.5,
we have e(π(L), F ) > 2, which, since the diagram is checkerboard colorable
with disk regions, implies e(π(L), F ) ≥ 4. Since any curve on F bounding a
compression disk is also essential, we are done.

Our next lemma together with Corollary 3.7 allows us to relate our work
in Section 2 to the work of [20] on weakly generalized alternating links.

Lemma 3.8. Suppose π(L) is an alternating diagram on a projection sur-
face F of genus at least 1 in a 3-manifold M . Suppose that π(L) is reduced,
checkerboard colorable and all regions of F \ π(L) are disks. Then π(L) is
geometrically adequate.

Proof. First, as π(L) is alternating on F and all regions of F \ D are
disks, we see that sA and sB must have only contractible circles.

We need to show that GA and GB have no 1-edge loops. The proof is
the same for both GA and GB, so we will focus on GA. Suppose π(L) is
as in the statement of the lemma, but GA has at least one 1-edge loop, `.
Then ` connects a state circle to itself, and ` crosses π(L) exactly twice at a
crossing. We may then find some simple arc γ in the state circle connecting
the two endpoints of `. But then γ ∪ ` is a simple closed curve intersecting
π(L) exactly twice. By Proposition 3.5 we have e(π(L), F ) ≥ 4. Thus γ ∪ `
must be contractible on F .
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Fig. 4. A reduced, checkerboard colorable, alternating diagram π(L) with disk regions,
on a torus. In the terminology of [20] it is weakly generalized alternating. Both GA (left)
and GB (right) have no 1-edge loops, which makes π(L) geometrically adequate.

By homotoping γ ∪ ` we can get two such simple closed curves, one with
the crossing to the left of the curve, and the other with the crossing to
the right. One of them would bound a disk such that the existence of the
crossing corresponding to ` violates the primeness of π(L). Thus π(L) must
be geometrically A-adequate. See Figure 4 for an example.

3.2. Twist number relations and invariance. A twist region of an
alternating projection π(L) ⊂ F is either a string of bigons of π(L) arranged
vertex to vertex that is maximal in the sense that no larger string of bigons
contains it, or a single crossing adjacent to no bigon.

Definition 3.9. An alternating diagram π(L) ⊂ F is called twist-reduced
if whenever there is a disk D ⊂ F such that ∂D intersects π(L) exactly four
times adjacent to two crossings, then one of the following holds:

• D contains a (possibly empty) sequence of bigons that is part of a larger
twist region containing the two crossings, or
• F \D contains a disk D′ with ∂D′ intersecting π(L) four times adjacent to

the same two crossings as ∂D, andD′ contains a string of bigons that forms
a larger twist region containing the original two crossings. See Figure 5.

The twist number tF (π(L)) of a diagram is the number of twist regions in a
twist-reduced diagram.

...D ⇒ Dor

D′

Fig. 5. A twist-reduced diagram. Figure modified from [21].

Lemma 3.10. Suppose that π(L) is a twist-reduced, reduced alternating
diagram with twist number tF (π(L)) on a projection surface F ⊂M of genus
at least 1. Suppose that π(L) is checkerboard colorable and all regions of
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F \ π(L) are disks. Then

|am−1|+ |bn+1| − 2 = tF (π(L))− χ(F ),

where am−1 and bn+1 are the second and the penultimate coefficients of the
polynomial J0(π(L)).

Proof. By Lemma 3.8, π(L) is geometrically adequate; the state graphs
GA and GB have no 1-edge loops. Suppose that π(L) has c crossings. First
note that the twist number is

tF (π(L)) = c− (c− e′A)− (c− e′B) = e′A + e′B − c.

By definition, crossings that correspond to twist regions of π(L) corre-
spond to edges ofGA orGB that are parallel; every pair bounds a bigon on F .
Call a twist region of π(L) an A-twist (or B-twist) region if, in GA (or GB),
all crossings of the twist region are represented by edges such that every pair
bounds a bigon on F . Then note that c− e′A is exactly the number of edges
in GA that are not in G′A, and so counts the number of crossings that are
in an A-twist region except for one for each such twist region (that is repre-
sented in G′A). Likewise, c− e′B is the number of crossings in B-twist regions
minus one for each such twist region. Then (c−e′A)+(c−e′B) = c−tF (π(L)).

Next, note that

|sA|+ |sB| = c+ 2− 2g(F ) = c+ χ(F ).

Putting these together, along with Lemmas 2.7 and 2.8, we get

|am−1|+ |bn+1| − 2 = e′A + e′B − |sA| − |sB|
=
(
tF (π(L)) + c

)
− (c+ χ(F ))

= tF (π(L))− χ(F ),

which finishes the proof of the lemma.

It is known that the twist number of a reduced, twist-reduced alternating
projection π(L) on a 2-sphere in S3 is an isotopy invariant of L. This has
been proven in two ways. Firstly, it follows from work of Dasbach and Lin [9]
showing this twist number can be obtained from the Jones polynomial of L.
Secondly, it follows from the Tait flyping conjecture proven in Menasco and
Thistlethwaite [28], which shows that any two reduced, prime, alternating
link diagrams are related by a series of flypes. Following the approach of [9],
we have a generalization of twist number invariance for alternating links in
thickened surfaces.

Corollary 3.11. Let L be a link in F × [−1, 1] admitting a checkerboard
colorable, reduced alternating projection π(L) ⊂ F that is twist-reduced and
has all its regions disks. Then any two such projections of L have the same
twist number. That is, tF (π(L)) is an isotopy invariant of L.
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Proof. By Lemma 3.10,
|am−1|+ |bn+1| − 2 + χ(F ) = tF (π(L)).

Since |am−1|, |bn+1| are isotopy invariants of L in F × [−1, 1] (Proposi-
tion 2.2), the conclusion follows.

The Tait flyping conjecture is unknown for links in thickened surfaces.
Hence the second method of deducing invariance of the twist number is
not currently available. However, Boden, Karimi, and Sikora were able to
show the first two Tait conjectures by proving that, for reduced alternat-
ing diagrams in thickened surfaces, the crossing number and the writhe are
invariants [4].

In general the twist number of weakly generalized alternating knots is
not an invariant. Howie [19] has produced weakly alternating projections of
the same knot on a Heegaard torus in S3 with different twist numbers (the
knot 929 is one example). On the other hand no such examples are known
for weakly alternating projections on incompressible surfaces. In view of this
and Corollary 1.3 we ask the following:

Question 3.12. Let M be a 3-manifold that is closed or has incompress-
ible boundary, and F ⊂ M an incompressible surface. Suppose that π(L) is
a reduced, twist-reduced, checkerboard colorable, alternating diagram on F
where all the regions of F \ π(L) are disks. Is tF (π(L)) an invariant of the
isotopy type of L in M?

As Howie’s examples take place on the compressible Heegaard torus in S3,
these do not give an answer to this question.

3.3. Guts and Kauffman bracket. Here we will prove Theorem 1.2
stated in the Introduction. In fact we prove a more general result (The-
orem 3.13) in which the assumption that F is incompressible (r(π(L), F )
=∞) is relaxed to r(π(L), F ) > 4.

Suppose that D = π(L) is a weakly generalized alternating diagram on a
surface F ⊂M such that the regions of F \π(L) are all disks. The projection
gives rise to two spanning surfaces of L, the checkerboard surfaces that we
will denote by SA = SA(D) and SB = SA(D). Our convention will be that
SA is constructed by attaching half-twisted bands to the disks bounded by
the state circles sA(D), where we attach a half-twisted band for each crossing
of D, so that the band retracts onto the corresponding edge of the graph GA

and the surface SA retracts to GA. Similarly we define SB that retracts onto
GB. See Figure 6.

By [20, Theorem 3.19] the surfaces SA and SB are π1-essential in the
complement of X = M \ L. Let MA = X \\ SA := X \ N(SA) and let
MB = X \\SB := X \N(SB). Recall also that am, am−1, bn+1, bn are the first
two and the last two coefficients, respectively, in the polynomial J0(π(L)).
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Fig. 6. The construction of SA and SB . The red lines (see the pdf file) indicate the edge
of SA and SB that corresponds to the bands shown.

Theorem 3.13. Let M be a 3-manifold that is closed or has incompress-
ible boundary, and F ⊂ M a projection surface such that that M \N(F ) is
atoroidal and ∂-anannular. Let π(L) be a reduced, alternating diagram on
F that is twist-reduced with twist number tF (π(L)). Suppose that π(L) is
checkerboard colorable, all the regions of F \ π(L) are disks, F has genus at
least 1 and r(π(L), F ) > 4. Then:

(1) χ(guts(MA)) = 1− |am−1|+ 1
2χ(∂M),

(2) χ(guts(MB)) = 1− |bn+1|+ 1
2χ(∂M),

(3) tF (π(L)) = |am−1|+ |bn+1| − 2 + χ(F ).

Let us first explain how to deduce Theorem 1.2: As discussed earlier,
if F is incompressible in M we have r(π(L), F ) = ∞. Thus, in particular,
r(π(L), F ) > 4 and Theorem 1.2 is a special case of Theorem 3.13.

Proof of Theorem 3.13. First note that by Lemma 3.8, D = π(L) is
geometrically A-adequate and geometrically B-adequate. We will give the
proof for part (1) and MA. The proof works the same, after swapping SA
and SB, to give part (2). Finally, (3) follows from Lemma 3.10.

The graph GA gives a cellular decomposition of the surface F . The num-
ber of 0-cells is the number of the vertices of GA, denoted by |sA|, and the
number of 1-cells is the number of edges, eA = c(π(L)). The number of
2-cells is the number of complementary regions of GA, which is the same as
the number |sB| of vertices of GB. If we consider π(L) as a 4-valent graph
on F , we can label the components of F \ π(L) by A or B according to
whether they correspond to a vertex of GA or GB. We will refer to these
as A-regions and B-regions, respectively. Now let |s′B| denote the number of
non-bigon B-regions and recall that e′A denotes the number of edges in the
reduced graph G′A. We have

(3.1) χ(F ) = |sA| − eA + |sB| = |sA| − e′A + |s′B|,

where the second equality follows since, by definition and the fact that D
is twist-reduced, the number of edges we remove from GA to obtain G′A is
exactly the number of bigon B-regions. Equation (3.1) gives

(3.2) χ(F )− |s′B| = |sA| − e′A.
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Since, as we mentioned above, D is geometrically A-adequate, by Theo-
rem 2.6 we have

(3.3) |sA| − e′A = 1− |am−1| = |am| − |am−1|.

By Corollary 3.7, D is weakly generalized alternating. Now we can ap-
ply [20, Theorem 6.6] to D to conclude that

(3.4) χ(guts(MA)) = χ(F ) + 1
2χ(∂M)− |s′B|.

Now combining (3.4) with (3.2) and (3.3), we get

χ(guts(MA)) = 1− |am−1|+ 1
2χ(∂M),

which is part (1) of the theorem.
We will now sketch the proof of (3.4), referring the reader to [20] for pre-

cise definitions and details. We do this not only for reasons of completeness,
but because it is interesting to see the correspondence between the combina-
torics in the calculation of |am−1| from the proof of Theorem 2.6 and those
involved in the calculation of χ(guts(MA)). On the one hand, edges that are
parallel on GA (i.e. co-bound a disk on F ) do not contribute due to cance-
lations in the Kauffman state sum expression of |am−1|. On the other hand,
strings of parallel edges on GA correspond to components of I-bundle pieces
of the JSJ-decomposition ofMA and they do not contribute to χ(guts(MA)).

Set S̃A = ∂N(SA). The parabolic locus P is ∂MA ∩ ∂N(L). Considering
π(L) as a 4-valent graph on F , the authors of [20] define a chunk decomposi-
tion of MA into two compact, oriented, irreducible 3-manifolds with bound-
ary, say C1, C2, each containing a copy of F as a boundary component (and
possibly more boundary components coming from ∂M). The component of
∂Ci that corresponds to F comes equipped with a checkerboard coloring with
the regions of F \π(F ) called faces. The chunks are glued together along the
B-labeled faces. The decomposition generalizes previously known polyhedral
decompositions constructed from alternating and adequate link projections
in S3 (see, for example, [13] and references therein). Even though the chunks
are not simply connected, [20] shows that the techniques that were used for
polyhedral decompositions generalize and adapt in the setting of chunks.

Recall that M \N(F ) is atoroidal and ∂-anannular. By the annulus ver-
sion of JSJ-decomposition one can cut MA along a collection of essential
annuli that are disjoint from P into I-bundles, Seifert fibered pieces and hy-
perbolic pieces which are the ones that form the guts. Seifert fibered pieces
turn out to be solid tori and as such they do not contribute to the Euler
characteristic computation.

Let R be an essential annulus in MA, disjoint from P , with ∂R ⊂ S̃A.
Such an annulus R is either parabolically compressible, or not, in which case
it is called parabolically incompressible.
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If R is parabolically incompressible, then [20, Lemma 6.9] argues that F
must be a 2-sphere, contradicting the assumption of F having genus at
least 1.

Suppose now that R is parabolically compressible. This means that there
is a disk D with interior disjoint from R, with ∂D meeting R in an essential
arc α on R, and with ∂D \α lying on S̃A∪P , with α meeting P transversely
exactly once. If we do surgery along such a disk, we obtain an essential prod-
uct disk : these are disks meeting P transversely exactly twice, with boundary
otherwise on S̃A. Such disks are known to correspond to I-bundle compo-
nents of the above-mentioned JSJ-decomposition (see [13, Definition 4.5]
or [20, Definition 6.7]).

Now let us look at an essential product disk E caused by surgering R. If
it meets SB, then SB cuts E into subrectangles E1, . . . , En. By looking how
such rectangles must sit in the diagram and in the chunk decomposition,
one can show that E must be boundary parallel, a contradiction to E being
essential.

However, if E does not run through SB, then ∂E must meet the chunk
in two A-faces and two B-faces, and so ∂E must meet P exactly four times.
Such an E is parallel to F . However, as D is twist-reduced, this implies ∂E
contains a series of B-bigons.

Case 1. First suppose that we do not have B-regions that are bigons.
Then guts(MA) = MA. Recall that MA is obtained via C1 and C2, where we
glue these chunks together along B-labeled faces. Then, as χ(Ci) = 1

2χ(∂Ci),
we must have

χ(C1) = 1
2χ(F ) + 1

2χ(∂M |C1), χ(C2) = 1
2χ(F ) + 1

2χ(∂M |C2).

Gluing the chunks together along white faces will add their Euler character-
istics together, and subtract one for every B-face we glue along. As there are
no white bigons, we glue along |sB| = |s′B| such faces, and so

χ(guts(MA)) = χ(F ) + 1
2χ(∂M)− |s′B|.

Case 2. If F \π(L) has B-regions that are bigons, then each such bigon
will form a quad, with two sides on P and two sides on S̃A. These will give
essential product disks and thus I-bundle parts. The existence of I-bundles
leads to parabolically compressible annuli and, as mentioned above, to essen-
tial product disks. All the essential product disks parabolically compress to
the strings of the ones corresponding to bigons (see [13, Figure 4.2]). Surg-
ering along one of these basic essential product disks increases the Euler
characteristic of the I-bundle submanifold by 1 and it does not change the
guts. After we remove all B-bigons of π(L), we have replaced each B twist
region by a single crossing and we have eliminated all the I-bundle com-
ponents. This has modified SA into a new surface S′A and guts(MA) is the
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same as the guts of S′A. But now we have no B-bigon regions left, and the
B-regions of the new link projection are exactly the non-bigon B-regions of
π(L), which are exactly |s′B|.

4. Relations to hyperbolic geometry invariants. Let D = π(L) be
a reduced, alternating link diagram on a surface F ⊂ M , such that M \ L
is hyperbolic. In this section we show that the skein-theoretic quantities
|am−1(π(L))|, |bn+1(π(L))| provide bounds on the volume of the complement
M \ L. The relations to volume come from two sources: First, by a result
of Agol, Storm and Thurston [2] the negative Euler characteristic of the
guts of an essential surface in a hyperbolic 3-manifold M bounds linearly
the volume of M from below. We will apply this result to the surfaces SA,
SB associated to projections of weakly generalized alternating links. Second,
by work of Kalfagianni and Purcell [21], if F is a Heegaard torus or M
is a thickened surface, the twist number of weakly generalized alternating
projections provides two-sided bounds of their volume.

We prove the following theorem which, in particular, implies Theorem 1.1
stated in the Introduction.

Theorem 4.1. LetM be a 3-manifold that is closed or has incompressible
boundary, and F ⊂ M a projection surface such that that M \ N(F ) is
atoroidal and ∂-anannular. Let D = π(L) be a reduced and twist-reduced
alternating diagram on F that is checkerboard colorable and all the regions
of F \ D are disks. Suppose, moreover, that F has genus at least 1 and
r(D,F ) > 4. Then L is hyperbolic and

vol(M \ L) ≥ v8 max {|am−1|, |bn+1|} − 1− 1
2χ(∂M),

where am−1, bn+1 are the second and the penultimate coefficients of the poly-
nomial J0(π(L)), and v8 = 3.66386 . . . is the volume of a regular ideal octa-
hedron.

Proof. By Corollary 3.7, D is weakly generalized alternating. Let SA, SB
denote the checkerboard surfaces of the projection. By [20, Theorem 1.1],
SA, SB are π1-essential in X = M \ L, and X is hyperbolic. By cutting the
link complement along SA and SB we obtain manifolds MA = X \\ SA and
MB = X \\ SB, respectively. By [2, Theorem 9.1] we have

vol(M \ L) ≥ −v8χ(guts(MA)), vol(M \ L) ≥ −v8χ(guts(MB)).

Since we have assumed that π(L) is reduced, by Lemma 3.8 it is geomet-
rically A-adequate and B-adequate. By Theorem 3.13 we have

χ(guts(MA)) = 1− |am−1|+ 1
2χ(∂M),

χ(guts(MB)) = 1− |bn+1|+ 1
2χ(∂M).
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Thus we obtain

vol(M \ L) ≥ v8
(
|am−1| − 1− 1

2χ(∂M)
)
,

vol(M \ L) ≥ v8
(
|bn+1| − 1− 1

2χ(∂M)
)
,

and the result follows.

To see how Theorem 1.1 follows, note that if F is incompressible the
hypothesis r(D,F ) > 4 is satisfied.

Next we discuss two special cases where the quantity |am−1|+ |bn+1| − 2
of Theorem 4.1 also provides upper bounds of the volume. The first result
concerns weakly generalized alternating knots on a Heegaard torus.

Corollary 4.2. Let F be a Heegaard torus in M = S3, or in a lens
space M = L(p, q). Let D = π(L) be a reduced and twist-reduced alternating
diagram on F that is checkerboard colorable and all the regions of F \D are
disks. Suppose, moreover, that r(D,F ) > 4. Then M \ L is hyperbolic, and

v8
2
· (|am−1|+ |bn+1| − 2) ≤ vol(M \ L) < 10v4 · (|am−1|+ |bn+1| − 2),

where v4 = 1.01494 . . . is the volume of a regular ideal tetrahedron.

Proof. By Corollary 3.7 the projection π(L) is weakly generalized alter-
nating. Hyperbolicity follows from [20, Theorem 1.1]. By [21, Corollary 1.5],
which also relies on [20] for the lower bound, we have

v8
2
· tF (π(L)) ≤ vol(M \ L) < 10v4 · tF (π(L)),

where tF (π(L)) is the twist number of π(L). By Lemma 3.10, tF (π(L)) =
|am−1|+ |bn+1| − |am| − |bn| = |am−1|+ |bn+1| − 2 and the result follows.

Our second result is Theorem 1.4, which we now prove.

Proof of Theorem 1.4. By Corollary 3.7 the projection π(L) is weakly
generalized alternating. Hyperbolicity follows from [20, Theorem 1.1], where
for F 6= T 2 the hyperbolic structure is chosen so that non-torus boundary
components ofM \L are totally geodesic. By [21, Theorem 1.4], which relies
on [20] for the lower bound, we have

(4.1)
v8
2
· tF (π(L)) ≤ vol(Y −K) < 10v4 · tF (π(L))

if F = T 2, and
v8
2
· (tF (π(L))− 3χ(F )) ≤ vol(Y −K) < 6v8 · tF (π(L))

if F has genus greater than one. Thus in both cases the result follows imme-
diately by Lemma 3.10.

Remark 4.3. Theorem 1.4 is the analogue of the “volumish theorem”
of [9] for alternating links in thickened surfaces, where the authors rely on
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the two-sided volume bounds in terms of the twist number of alternating
projections given by Lackenby [24].

Remark 4.4. In [6] Champanerkar and Kofman show that if π(L) is an
alternating projection as in Theorem 1.4, then π(L) admits two-sided linear
bounds in terms of coefficients of a specialization of the Krushkal polyno-
mial [23]. Then they also combine this with (4.1) to conclude that Krushkal’s
polynomial also gives two-sided bounds of the volume of alternating links in
thickened surfaces. Krushkal has informed the present authors that Andrew
Will [30] also obtained a similar result. His approach, however, does not lead
to a proof of invariance of tF (π(L)).

Remark 4.5. In [3] Bavier shows that if M is closed and π(K) is a
weakly generalized alternating knot projection, twist-reduced, on a surface
F ⊂M of genus at least 1, then the twist number tF (π(K) provides two-sided
bounds on the cusp volume of M \K. We close the section by noting that
Lemma 3.10 implies that Theorem 1.1 of [3] and the resulting applications to
Dehn filling given therein can also be stated in terms of the skein-theoretic
quantity J0(π(K)).
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