
Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-20)

Generating Explorable Narrative Spaces with Answer Set Programming

Chinmaya Dabral, Chris Martens
csdabral@ncsu.edu, martens@csc.ncsu.edu

Computer Science Department
North Carolina State University

Raleigh, North Carolina

Abstract
Previous approaches to narrative generation have required
a new planner implementation for each set of constraints
deemed relevant to the narrative domain, each consisting of
thousands of lines of code and supporting one primary mode
of interaction: fully specifying a domain and problem, and
receiving a plan as output. We present a lightweight, flexible
narrative planner written with Answer Set Programming, de-
signed specifically to support constraint-based narrative gen-
eration, show how it generalizes previous approaches, and
show how it can be easily extended with notions of thematic
plot schema such as “betrayal.” Finally, we demonstrate how
the ASP model can be explored through interactive question
answering, where answers take the form of generated narra-
tives. In the long term, we intend this work to support under-
standing of complex rule systems through interactive explo-
ration.

Introduction
The need to understand complex rulesets pervade people’s
lives, including those governing board games and sports,
end-user software policies, the law defined by government,
product user manuals, and scientific theories. We posit that
explorability has a critical role to play in making sense of
such rule systems. Ideally, rulesets could be understood not
as static documents, but as changing, interactive worlds, in
which questions can be answered with specific examples,
hypotheses tested and refined, and the consequences of per-
tinent scenarios can be explored. Our overarching goal is to
realize this vision of explorable formal models, focusing on
privacy policies and regulations as a timely case study.

Narrative generation plays a key role in realizing this
vision. Humans have been shown time after time to make
better sense of complex information through stories, where
a progression of events over time with clear cause and ef-
fect relationships is depicted, than through unorganized col-
lections of facts (Bruner 1991; Gerrig and Wenzel 2015).
Therefore, narrative generation is a key competency that
such a system must demonstrate. Existing approaches based
on planning offer a promising path forward, due to their ex-
plicit world models that represent granular state change.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, to incorporate the constraints of complex rule
systems and to support the varied modes of interaction envi-
sioned, we need a narrative generation system that is more
flexible and extensible than those available today. Past ap-
proaches have required developing a new planner implemen-
tation for each set of constraints deemed relevant to the nar-
rative domain (such as intention in IPOCL (Riedl and Young
2010) and conflict in Glaive (Ware and Young 2011)). Fur-
ther, they support primarily one mode of interaction: given
a planning domain (set of actions) and problem (initial and
goal scenario), generate a plan to reach the goal from the
initial state. The more general framework we propose sup-
ports multiple interaction modes, including partial domain
specification (to be filled in by the system), querying narra-
tive spaces (e.g. “How many stories are there where a certain
event occurs?”), and other modes of interactive exploration
and iterative refinement of narrative models.

To address these goals, we present a narrative plan-
ning engine implemented with Answer Set Programming
(ASP), and show how to layer narrative constraints and for-
mulate use-specific interactions expressed as ASP clauses.
We use the expressiveness afforded by ASP constraints to
implement notions of intention, conflict, and belief pro-
posed as key aspects of character believability by previ-
ous work (Riedl and Young 2010; Ware and Young 2011;
Wadsley and Ryan 2013; Eger and Martens 2017; Shirvani,
Farrell, and Ware 2018). We then show how global narra-
tive constraints, such as story grammars and plot structures,
can be incorporated. Finally, we present a range of modes
of interaction with the system by showing how to introduce
scenario-specific constraints and ask a wide range of ques-
tions about the encoded narrative possibility space. The par-
ticular mode of interaction determines whether the system
generates narrative, returns an answer to a specific query, or
a combination of both.

Our key claim is that the proposed model generalizes prior
narrative generation models and has the potential to enable
several new, compelling modes of interaction with a narra-
tive space. The contributions detailed in this paper to support
this claim are: 1) our ASP implementation in Clingo (Geb-
ser et al. 2008) of an intentional narrative planner, enabling
the use of expressive narrative constraints; 2) a methodol-

45



ogy to encode arbitrary constraints that interact with the nar-
rative possibility space, using the BRUTUS model of nar-
rative themes like betrayal (Bringsjord and Ferrucci 1999)
as a case study; and 3) example encodings of question-and-
answer interactions, demonstrating the versatility of our ap-
proach. Our long-term aspiration is to use this constraint-
based narrative generation system as the back-end for a user-
facing explorable, interactive system that will deepen user
understanding of complex rule systems.

Related Work
The idea of using theorem proving technology to carry
out narrative generation is not new. The BRUTUS sys-
tem (Bringsjord and Ferrucci 1999) positions itself in this
way: “we approach story generation through logic; in more
specific terms, this means that we conceive of story gener-
ation as theorem proving” (Bringsjord and Ferrucci 1999).
Mueller (2007) present a computational model of narrative
that combines model finding and planning; however, their
goal is story understanding rather than generation. A more
recent line of work maps story domains into propositions in
linear logic (Martens et al. 2013; 2014; Bosser et al. 2011),
which allows for logical proofs to be directly mapped to sto-
ries; however, this approach depends on a specialized logic
that is less readily adapted to meta-analysis and constraint
within a standard logic programming language.

Outisde of the narrative domain, we are motivated by
prior work in what we describe generally as systems that
enable explorable formal models. Semantic modeling tools
such as Rosette (Torlak and Bodik 2013), Alloy (Jackson
2012), PLT Redex (Klein et al. 2012), the K (Roşu and
Şerbănuţă 2010) semantics language, the Spoofax language
workbench (Kats and Visser 2010), Razor (Saghafi and
Dougherty 2014), and miniKanren (Byrd 2009) provide a
basis for authoring formal specifications and programs that
manipulate them, usually centered on applications to pro-
gramming language theory and design. These tools support
interactive execution and model querying with the same ver-
satility that we aim to provide for the narrative domain.

Our work is probably most closely related to the Role-
Model system (Chen et al. 2010), whose efforts to develop
a narrative generator in ASP via the Event Calculus inspire
our own approach. However, RoleModel is explicitly not a
planning-based approach, lacking mechanisms for modeling
character intentions, causality, or alternative timelines. Role-
Model also limits the constraints considered relevant to nar-
rative generation to forbidding and requiring certain roles
and actions.

An Answer Set Programming Approach to
Narrative Planning

The use of planning for narrative generation has a long his-
tory (Young 1999; Porteous, Cavazza, and Charles 2010;
Riedl and Young 2010; Ware and Young 2011). In this ap-
proach, narratives are represented as causally-linked events,
each of which changes the facts that are true in the world
model. Two key attributes are considered important for the
believability of a narrative: the causal progression of plot

and character believability. To ensure believability of char-
acters with cognitive processes, they must be intentional
agents. In other words, each action a character takes should
be in service to a goal (Riedl and Young 2010). A charac-
ter’s intentions are established as part of the narrative itself,
and then drive their actions. This lets us explain a character’s
actions and generate examples which do not seem contrived.

Our software system consists of a general-purpose narra-
tive planner supporting intention and conflict, implemented
using Answer Set Programming (ASP). ASP is a declarative
programming technique where programs are sets of logical
expressions (i.e. logic programs), specified in terms of gen-
erative rules, facts, and constraints. A constraint solver then
attempts to find stable models (answer sets) for the logic
program (Gelfond and Lifschitz 1988). As opposed to other
logic programming languages like Prolog, ASP provides
a means of expressing disjunctive clauses through choice
rules, which allow multiple possible worlds to be consistent
with a given program. Specifically, we used Clingo (Geb-
ser et al. 2008) as our implementation language. Lifschitz
(2002) also present an ASP-based approach to narrative gen-
eration. However, due to a linear representation of the time-
line, their approach cannot be used to support additional
modes of interaction which require representation of causal
connections.

Implementing a planner in ASP opens up the possibility of
using the rich constraints provided by the system for sculpt-
ing the possibility space of generated narratives. The inter-
play between generative rules and constraints, coupled with
relational programming, allows a model, once specified, to
be used in several different ways. An ASP model merely
specifies the relationships between different predicates. Ad-
ditional constraints can be applied later to use some of the
predicates as “inputs” to the program, while the solver finds
consistent values for the rest.

Preliminaries
ASP can be used to generate narrative scenarios from a pos-
sibility space of action sequences, as explored initially in the
RoleModel system by Shen et al. (Chen et al. 2010). Pos-
sibility spaces are represented through choice rules of the
form {φ}, which indicate that the formula φ may, but is not
required to, hold in each model. For example, the following
program expresses the possibility for a user to do any, both,
or neither of two post actions:

{happens(attack(princess, robot)); happens
(attack(robot, princess))}.

A standard answer set solver will report these results as:

Answer: 1

Answer: 2
happens(attack(robot,princess))
Answer: 3
happens(attack(princess,robot))
Answer: 4
happens(attack(robot,princess)) happens(

attack(princess,robot))

46



Logic variables (indicated syntactically as identifiers
starting with a capital letter) and conditions (formulas to the
right of the backwards implication symbol :-) can be used
to quantify over finite sets and generate possible clauses for
each element. For example, the following rule generates a
set of satisfying models in which happens may or may not
hold for each action specified as “possible:”

{ happens(Action) } :- possible(Action).

The resulting generative space has size 2|Action|.

Event Calculus
In narratives, the state of the world changes over time. It
is common to formalize state change with predicates whose
truth depends on a temporal index; these time-varying predi-
cates are called fluents. Event calculus (Kowalski and Sergot
1989) is a particular logical theory of fluents used to repre-
sent and reason about sequences of events. The state evolves
through actions, which describe how fluents may change
from one time step to the next. They may require precon-
ditions to be satisfied before they can be executed. Actions
are assumed to be instantaneous, and occur in discrete time
steps. A common formalization of event calculus axioms is
as follows:

holds(T + 1, F )← initiates(T, F ) (1)

holds(T + 1, F )← holds(T, F ) ∧ ¬terminates(T, F )
(2)

Part (1) states that if an action at time T initiates (makes
true) a fluent, then the fluent holds (is true) at the next time
step. Part (2) states that fluents have inertia, i.e., they con-
tinue to be true until terminated by an action. This assumes
default negation (if predicate P cannot be derived, then ¬P
is assumed to hold). This representation can be readily trans-
lated into ASP.

Event Calculus for Partially Ordered Events

Figure 1: Consistent partial order

In narratology, there are two aspects to a narrative: fab-
ula (the chronological order of events), and syuzhet (the or-
der in which events are narrated). Generating an interesting
syuzhet requires considerations that are beyond the scope of
this paper. We will limit ourselves to generating the fabula,
which suits our goal of making complex rule sets explorable.

Figure 2: An example of an ambiguous partial order. The
arrows represent the partial order relation happens before.
This relation is transitive, but we have omitted the edge be-
tween e1 and e4, since it can be derived through transitivity.
We will omit such edges throughout the paper for clarity.
Nodes are labeled with the effects of each action.

We define a fabula as a sequence of causally linked events
(actions). Actions naturally form a partial order because of
their prerequisites and effects. Some actions must be per-
formed before others, while others may be mutually inde-
pendent. For instance, in the sequence of events buy gro-
ceries→ prepare pasta→ prepare dessert→ serve dinner,
we can see that buy groceries must occur first, serve dinner
must occur last, but the other two events can occur in ei-
ther order in between them. We can depict this as a diamond
graph (Figure 1), where e2 and e3 are unordered. This is a
better representation than a linear graph, since it allows us
to represent causality and to arbitrarily reorder independent
parts of the graph.

The standard event calculus formulation works well for
a totally ordered sequence of events, but breaks down if
we have a partial order. Consider the four events shown
as the nodes of a graph in Figure 2. Here we can be sure
that holds(e4, P1) is true, but we cannot say anything about
holds(e4, P2). In fact, (1) and (2) would incorrectly imply
that holds(e4, P2) is true.

We therefore extend the standard formulation to allow
for partially ordered events by introducing a new predicate,
strong holds, which we define as follows:

strong holdsP(e, F ) ⇐⇒ ∀T ∈ C(P) holdsT (e, F )
(3)

The predicate subscripts indicate the order over events in
which the predicate holds, and C(P) is the set of all total
orders consistent with the partial order P . We say that total
order (A,<T ) is consistent with partial order (A,<P) iff:

∀x, y ∈ A (x <P y =⇒ x <T y)

In other words, strong holds(e, F ) is only true if we can
be sure that the fluent will hold regardless of how we
“linearize” the partial order. Going back to figure 2, we
can conclude that strong holds(e4, P1) is true, but not
strong holds(e4, P2).

This, however, creates the issue that we can no
longer rely on default negation. For instance, while

47



Figure 3: The definition of an intention frame, depicted
schematically.

strong holds(e4, P2) is not true, we also cannot say for
sure that the fluent P2 will not hold at e4. So we introduce
another predicate, strong notholds, which is defined in a
similar manner:

strong notholdsP(e, F ) ⇐⇒
∀T ∈ C(P) ¬holdsT (e, F )

where all other terms are as defined in (3).1 Then we can
force the planner to generate sequences where the partial
order matches causality by maximizing the number of un-
ordered nodes in the graph,2 as shown in Listing 1.

Listing 1: Showing causal links by maximizing the number
of unordered nodes
unordered(Node1, Node2) :-

id(Node1), id(Node2),
not after(Node1, Node2),
not before(Node1, Node2),
Node1!=Node2,
concludes(C, Node1):

terminus(C),
concludes(C, Node2). % Same

timeline
#maximize

{1@1, unordered(Node1, Node2):
unordered(Node1, Node2)}.

Narrative Constraints
Intention
Character intentionality refers to the idea that each action a
character takes in the generated narrative should be in ser-
vice to a goal (Riedl and Young 2010). A character’s in-
tentions are established as part of the narrative itself, and
then drive their actions. We adopted this idea in our planner
because it lets us explain a character’s actions and generate
examples which do not seem contrived.

Figure 3 presents a schematic representation of a key part
of our logical definition of intention. An intention created at
time T1 is satisfied at some later point T2 iff T2 initiates
the intended event, and there is no earlier timepoint T ′ be-
tween T1 and T2 which satisfies it. We then define an in-
tention frame, by saying that any timepoint between when

1For implementation in Clingo, we need to translate this state-
ment to an equivalent formalization expressible in Clingo’s lan-
guage of Horn clauses. We omit the expanded definition for brevity.

2Clingo supports maximization of the cardinality of a given set
through the #maximize directive.

the intention is formed and satisfied, on which the satisfying
event is causally dependent, is within the frame. Our ASP
implementation is shown in Listing 2.

Listing 2: Definition of intention frames and intentionality
of plans.
% N1, N2, N3: graph nodes
% F: intended fluent
% A: actor
%% Defining satisfies(N, I)
satisfies(N2, intention(N1, F, A)) :-

intends(N1, F, A), initiates(N2, _, F)
,

after(N2, N1),
not satisfies(N3, intention(N1, F, A))

:
after(N3, N1), before(N3, N2).

% CONSTRAINT: All intended fluents must
hold

% at some point after they’re intended
:- intends(N1, F, A),

not satisfies(_, intention(N1, F, A)).

%% Defining frame(N, I)
frame(N3, intention(N1, F, A)) :-

satisfies(N2, intention(N1, F, A)),
after(N3, N1), before(N3, N2),
actor(N3, A).

% CONSTRAINT: All events must be part of
% frames of all their actors
:- actor(N, A),

not frame(N, intention(_, _, A)),
not satisfies(N, intention(_, _, A)),
A!=env.

Conflict
Conflict is a central concept of European-originating narra-
tive theory: a story is generally considered interesting only
if different characters (intentional agents, which may in-
clude nonhuman entities such as the environment or soci-
ety) act towards conflicting goals (Ross 1993). The CPOCL
narrative planner models conflict as a character’s plans be-
ing thwarted by another character (Ware and Young 2011).
In other words, a conflict occurs when two or more inten-
tions are mutually incompatible. We incorporate this model
into our planner, allowing us to model real-world scenar-
ios with antagonistic actors in addition to fictional scenarios
with greater narrative interest.

The CPOCL model induces a notion of alternate, or
branching, timelines, in the sense that for a plan to be
thwarted, that plan has to have been intended to take place
by the thwarted agent. A given timestep can thus have multi-
ple conclusions. We define a conclusion of a given timestep
as any terminus that occurs after it. We then define a split
in the timeline, indicating unexecuted actions, as occurring
when a child node does not have all of the conclusions of
its parent. Finally, a node where timeline splits should have
a single parent, in order to avoid scenarios where a timeline
feeds back into another timeline. This is shown in Listing 3.

48



Listing 3: Definition of conflict creating split timelines.
terminus(C) :-

id(C), not after(N, C): id(N).
concludes(C, N) :-

id(N), after(C, N), terminus(C).
concludes(C, C) :- terminus(C).

split(N1, N2) :-
edge(N1, N2),
concludes(C, N1),
not concludes(C, N2),
C!=N2.

:- split(N1, N2),
not { edge(P, N2): id(P) } = 1.

Plot Schema
BRUTUS (Bringsjord and Ferrucci 1999) is a narrative gen-
eration engine that encodes themes such as betrayal and gen-
erates stories that contain these themes. For example, BRU-
TUS uses a Prolog-like language to “mathematize” betrayal
as shown in Listing 4.

Listing 4: BRUTUS plot schema definition for betrayal.
betrayal(Betrayor, Betrayed) :-

goal(Evil, EvilPlan, Betrayor),
includes(EvilPlan, BetrayorsLie),
say(BetrayorsLie),
includes(EvilPlan, Thwarting),
thwart(Thwart),
prevented_goal(Thwarting,

BetrayedsGoal),
supports(BetrayorsLie, BetrayedsGoal),
goal(BetrayedsGoal, BetrayedsPlan,

Betrayed),
belief(Betrayed, BetrayorsLie).

The concept of themes of this nature, which we refer to
as plot schema, dates back to pre-digital notions of narra-
tive grammars, as in Propp’s foundational Morphology of
the Folktale (Propp 1928). Narrative grammars informed
early computational approaches to narrative formalization,
and they have an ongoing legacy in more recent work such
as plot units (Lehnert 1981; Goyal, Riloff, and III 2013) and
story intention graphs (Rishes et al. 2013). While planning-
based approaches afford much richer world models, narra-
tive grammars and plot schema remain useful as a way of
codifying global structure to plots, allowing us to identify
common plot structure between distinct story contexts (e.g.
Disney’s The Lion King as an adaptation of Shakespeare’s
Hamlet). This model is also useful if, say, we want to require
generated narratives to carry particular themes or tropes, fol-
low a particular narrative arc (pattern of rising and falling
action), or subvert genre expectations for any of the above.

We show how our planner can gracefully account for plot
schema like this by encoding the betrayal example into the
notions of intention and conflict supported by our planner
(presented here in natural language for readability):

• The Betrayed has intention I1.
• The Betrayer expresses intention I2, but has intention I3.

Figure 4: A betrayal narrative generated by our system.

• Step S2, which would satisfy the expressed intention I2,
lies inside the intention frame of the Betrayed’s intention
I1.

• Step S2 occurs in an alternate timeline, in which I1 is also
satisfied.

• Step S3 occurs on the actual timeline and satisfies I3.

Figure 4 shows a betrayal narrative generated by our sys-
tem using this encoding, using an example domain inspired
by BRUTUS. The Betrayed (Carol) needs 3 signatures on
her thesis to pass her PhD exam (I1). The Betrayer (George)
promises to sign her thesis (I2), but instead has the inten-
tion to see her fail (I3). The main timeline extends from the
start node to the end node, and satisfies the Betrayer’s in-
tention. The Betrayed’s intention is satisfied in an alternate
timeline (extending from start to node 14), and depends on
the Betrayer’s promise.

Example Interaction
Our central claim is that our ASP formulation unifies and
generalizes prior work on plan-based narrative generation,
supporting several modes of interaction through slight mod-
ifications on input constraints. For instance, instead of just
generating narratives from a domain, a user could use addi-
tional constraints to gain an understanding of the underlying
rule set of the domain. This could be useful in making com-
plex realworld rule sets, e.g. laws, more accessible through
explorable examples. This section validates the final claim
by demonstrating an example domain and interaction.

Consider a domain where a dragon needs to be slayed.
There are various ways to achieve that goal, but the dragon
has a specific weakness. The goal of the user is to find that
weakness.

Our hero may ask one or more of: Ice Wizard, Air Bender,
or Fire Demon to accompany them.
They may take one or more of: Earth Stone, Fire Lantern, or
Ice Diamond with them.

49



They may travel through one or more of: Fire Pit, Air Gar-
dens, or Metal Caves.

To find the weakness, the user first asks the system to
generate a few narratives where the dragon is successfully
slayed.

Listing 5: Generating successful narratives
:- not strong_holds(end, dragon_slayed).

The user sees the following two narratives:
Narrative 1:

• The hero asks the Ice Wizard to accompany them
• The hero travels through the Fire Pit
• The hero acquires the Earth Stone

Narrative 2:
• The hero asks the Fire Demon to accompany them
• The hero travels through the Air Gardens
• The hero acquires the Earth Stone

The user observes two common elements: earth stone, and
fire. The user wants to check whether a successful narrative
can be generated without using either.

Listing 6: Narrowing down
:- not strong_notholds(end, acquired(

earth_stone)).
:- type(N, fire), id(N).

The system then generates the following narrative, which
means indeed, it is possible:
• The hero asks the Air Bender to accompany them
• The hero acquires the Ice diamond
• The hero travels through the Metal Caves

The user notices that the sequence always contains 3 dis-
tinct element types. At this point, the user would like to
know what an unsuccessful narrative looks like.

Listing 7: Unsuccessful narrative
:- not strong_notholds(end, dragon_slayed)

.

Narrative 1:
• The hero asks the Air Bender to accompany them
• The hero acquires the Ice diamond
• The hero travels through the Air Gardens
Narrative 2:
• The hero asks the Air Bender to accompany them
• The hero travels through the Metal Caves
• The hero acquires the Earth Stone
• The hero travels through the Air Gardens

At this point, it seems that the occurrence of the same ele-
ment more than once prevents the dragon from being slayed,
and we require 3 distinct elements. To confirm this, the user
asks the system if an unsuccessful narrative is possible when
these conditions are met:

Listing 8: Unsuccessful narrative
:- 2 { N,T: type(N, T)}, type(T).
:- { T: type(N, T) } 3.
:- not strong_notholds(end, dragon_slayed)

.

The system returns UNSATISFIABLE, which means the
dragon will always be slayed with these conditions.

Discussion
The entire CPOCL planner implementation is about 200
lines of ASP code, a small enough size to support indepen-
dent review and reuse in other systems. The code can be
found at: https://github.com/csdabral-ncsu/asp planner

There are some limitations of our work that need to be
addressed. First, while we have a notion of causality and
ordering of events, the narratives do not specify how this
ordering relates to time in the real world in days and hours.
This can be relevant when encoding constraints that mention
specific time intervals.

Second, we did not focus much on optimization, and state
space explosion can create performance issues. For narra-
tives longer than 20 steps, grounding can result in a 1GB+
file, with a memory usage of 8GB+. We will focus on opti-
mization in the next phase of our work. We are also looking
at recent research in lazy grounding (Taupe, Weinzierl, and
Schenner 2017).

Third, when generating all possible answer sets, many of
the narratives generated are very similar and differ only in
inconsequential details, like graph node identifiers. The user
can usually apply additional constraints to narrow down to
the desired narrative, but this is less than ideal.

While Clingo proved to be a good choice for representing
our system, we did face some hurdles during implementa-
tion. A lack of support for typed predicate arguments means
that typos in predicate names and arguments often went un-
noticed. This issue could be alleviated by an extension to the
language allowing explicit typing and static type checking.

Conclusion and Future Work
This work unifies several previous narrative models within a
relational programming framework that can be adapted to a
number of use cases. We presented a flexible, CPOCL-style
narrative planner written in pure ASP, showing how prior
work on intention and conflict could be represented ele-
gantly. We then demonstrated the versatility of this approach
by incorporating thematic constraints via plot schema and
showing how a rich interaction could be supported with
small changes to the input.

Our long-term vision with this project is to develop ex-
plorable formal models that users can interact with to de-
velop an understanding of complex rule systems through
play. While we have demonstrated that our system can
gracefully represent concepts in preceding narrative gener-
ation systems and support several modes of interaction, we
require development of a user interface for translating be-
tween natural language and computable ASP queries. We
currently have an interface to parse, filter, and visualize the

50



output of our planner, but a more usable interface will need
to be devised for users to be able to add constraints without
requiring an understanding of ASP.

Acknowledgements
We would like to thank Prof. Adam M. Smith (UC Santa
Cruz) for his correspondence about story modeling in ASP.

This work was supported by the National Science Foun-
dation under Grant No. 1846122.

References
Bosser, A.-G.; Courtieu, P.; Forest, J.; and Cavazza, M. 2011.
Structural analysis of narratives with the coq proof assistant. In
International Conference on Interactive Theorem Proving, 55–70.
Springer.
Bringsjord, S., and Ferrucci, D. 1999. Artificial intelligence and
literary creativity: Inside the mind of BRUTUS, a storytelling ma-
chine. Psychology Press.
Bruner, J. 1991. The narrative construction of reality. Critical
inquiry 18(1):1–21.
Byrd, W. E. 2009. Relational Programming in miniKanren: Tech-
niques, Applications, and Implementations. Ph.D. Dissertation, In-
diana University.
Chen, S.; Smith, A. M.; Jhala, A.; Wardrip-Fruin, N.; and Mateas,
M. 2010. Rolemodel: towards a formal model of dramatic roles
for story generation. In Proceedings of the Intelligent Narrative
Technologies III Workshop, 8. ACM.
Eger, M., and Martens, C. 2017. Character beliefs in story gener-
ation. In Thirteenth Artificial Intelligence and Interactive Digital
Entertainment Conference.
Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.; Schaub,
T.; and Thiele, S. 2008. A user’s guide to gringo, clasp, clingo, and
iclingo.
Gelfond, M., and Lifschitz, V. 1988. The stable model semantics
for logic programming. In ICLP/SLP, volume 88, 1070–1080.
Gerrig, R. J., and Wenzel, W. G. 2015. The role of inferences in
narrative experiences. Inferences during reading 362.
Goyal, A.; Riloff, E.; and III, H. D. 2013. A computational model
for plot units. Computational Intelligence 29(3):466–488.
Jackson, D. 2012. Software Abstractions: logic, language, and
analysis. MIT press.
Kats, L. C., and Visser, E. 2010. The spoofax language workbench:
Rules for declarative specification of languages and ides. In Pro-
ceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’10,
444–463. New York, NY, USA: ACM.
Klein, C.; Clements, J.; Dimoulas, C.; Eastlund, C.; Felleisen, M.;
Flatt, M.; McCarthy, J. A.; Rafkind, J.; Tobin-Hochstadt, S.; and
Findler, R. B. 2012. Run your research: on the effectiveness of
lightweight mechanization. ACM SIGPLAN Notices 47(1):285–
296.
Kowalski, R., and Sergot, M. 1989. A logic-based calculus of
events. In Foundations of knowledge base management. Springer.
23–55.
Lehnert, W. G. 1981. Plot units and narrative summarization. Cog-
nitive science 5(4):293–331.
Lifschitz, V. 2002. Answer set programming and plan generation.
Artificial Intelligence 138(1-2):39–54.

Martens, C.; Bosser, A.-G.; Ferreira, J. F.; and Cavazza, M. 2013.
Linear logic programming for narrative generation. In Interna-
tional Conference on Logic Programming and Nonmonotonic Rea-
soning, 427–432. Springer.
Martens, C.; Ferreira, J. F.; Bosser, A.-G.; and Cavazza, M. 2014.
Generative story worlds as linear logic programs. In Seventh Intel-
ligent Narrative Technologies Workshop.
Mueller, E. T. 2007. Understanding goal-based stories through
model finding and planning. In AAAI Fall Symposium: Intelligent
Narrative Technologies, 95–102.
Porteous, J.; Cavazza, M.; and Charles, F. 2010. Applying planning
to interactive storytelling: Narrative control using state constraints.
ACM Transactions on Intelligent Systems and Technology (TIST)
1(2):1–21.
Propp, V. 1928. Morphology of the Folktale, volume 1. University
of Texas Press.
Riedl, M. O., and Young, R. M. 2010. Narrative planning: Balanc-
ing plot and character. Journal of Artificial Intelligence Research
39:217–268.
Rishes, E.; Lukin, S. M.; Elson, D. K.; and Walker, M. A. 2013.
Generating different story tellings from semantic representations
of narrative. In International Conference on Interactive Digital
Storytelling, 192–204. Springer.
Ross, E. I. 1993. Write Now. Barnes & Noble Publishing.
Roşu, G., and Şerbănuţă, T. F. 2010. An overview of the K se-
mantic framework. Journal of Logic and Algebraic Programming
79(6):397–434.
Saghafi, S., and Dougherty, D. J. 2014. Razor: Provenance and
exploration in model-finding. In PAAR@ IJCAR, 76–93. Citeseer.
Shirvani, A.; Farrell, R.; and Ware, S. G. 2018. Combining inten-
tionality and belief: Revisiting believable character plans. In Four-
teenth Artificial Intelligence and Interactive Digital Entertainment
Conference.
Taupe, R.; Weinzierl, A.; and Schenner, G. 2017. Introducing
heuristics for lazy-grounding asp solving. In 1st International
Workshop on Practical Aspects of Answer Set Programming.
Torlak, E., and Bodik, R. 2013. Growing solver-aided languages
with rosette. In Proceedings of the 2013 ACM international sym-
posium on New ideas, new paradigms, and reflections on program-
ming & software, 135–152. ACM.
Wadsley, T., and Ryan, M. 2013. A belief-desire-intention model
for narrative generation. In Ninth Artificial Intelligence and Inter-
active Digital Entertainment Conference.
Ware, S. G., and Young, R. M. 2011. Cpocl: A narrative planner
supporting conflict. In Seventh artificial intelligence and interac-
tive digital entertainment conference.
Young, R. M. 1999. Notes on the use of plan structures in the
creation of interactive plot. In AAAI fall symposium on narrative
intelligence, 164–167.

51


