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Abstract  

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provide an excellent 

platform for potential clinical and research applications. Identifying abnormal Ca2+ transients is 

crucial for evaluating cardiomyocyte function that requires labor-intensive manual effort. 

Therefore, we develop an analytical pipeline for automatic assessment of Ca2+ transient 

abnormality, by employing advanced machine learning methods together with an Analytical 

Algorithm. First, we adapt an existing Analytical Algorithm to identify Ca2+ transient peaks and 

determine peak abnormality based on quantified peak characteristics. Second, we train a peak-

level Support Vector Machine (SVM) classifier by using human-expert assessment of peak 

abnormality as outcome and profiled peak variables as predictive features. Third, we train another 

cell-level SVM classifier by using human-expert assessment of cell abnormality as outcome and 

quantified cell-level variables as predictive features. This cell-level SVM classifier can be used to 

assess additional Ca2+ transient signals. By applying this pipeline to our Ca2+ transient data, we 

trained a cell-level SVM classifier using 200 cells as training data, then tested its accuracy in an 

independent dataset of 54 cells. As a result, we obtained 88% training accuracy and 87% test 

accuracy. Further, we provide a free R package to implement our pipeline for high-throughput CM 

Ca2+ analysis. 
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Introduction  

Cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) are highly 

desired for drug discovery and modeling human development and disease, as alternative models 

such as human primary CMs are hard to obtain1. Although current hiPSC-CMs display fetal-like 

phenotypes in terms of their structural and electrophysiological properties2, they have increasingly 

been used to study normal cardiac functionality3-5 and human cardiovascular diseases such as long 

QT syndrome, catecholaminergic polymorphic ventricular tachycardia and viral myocarditis as 

well as for high-throughput cardiotoxicity screening5-9. Furthermore, hiPSC-CMs are under active 

investigation for use as a cell source for possible clinical usage10,11. For these applications, 

extensive functional characterization of hiPSC-CMs is required. 

Ca2+ transients are a fundamental characteristic of cardiomyocyte functionality, although cardiac 

action potentials and contractility are also commonly used to study cardiomyocyte functionality 

by methods such as patch clamp, multielectrode array, microscopic video analysis, and 

fluorescence imaging12. Coordinated movement of Ca2+ at single cell level plays a key role to 

control contraction of the heart by the conversion of electric excitation into mechanical contraction. 

Specifically, each action potential induces Ca2+ influx, which triggers a much greater Ca2+ release 

from the sarcoplasmic reticulum (SR). The increased cytosolic Ca2+ binds to and activates the 

Ca2+-sensing protein of the contractile apparatus and initiates CM contraction. Then Ca2+ is 

removed from the cytosol through reuptake into the SR or extrusion into the extracellular space, 

which leads to CM relaxation. Thus, the rapid release and reuptake of Ca2+ between the SR and 

the cytosol create a Ca2+ transient inside the CM13. Abnormal Ca2+ signals are indicative of various 

cardiac pathologies, such as arrhythmia5,6,8.  

An accurate Ca2+ transient analysis is an important component of hiPSC-CM phenotype analysis. 

Ca2+ transient characteristics are commonly captured with Ca2+-specific fluorescent dye, and 

fluorescence imaging is the most optimal for high-throughput application. Human experts’ 

assessment of Ca2+ transient signals is often based on Ca2+ transient morphology characterized by 

rapid upstroke and decay kinetics. Although manual identification of abnormal Ca2+ transients by 

human experts is often taken as gold standards, such visual assessment is labor-intensive, time-

consuming, and subjective to the assessor’s expertise. Moreover, manual identification of 

abnormal Ca2+ transients by human experts becomes a bottleneck hindering its application to high-
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throughput analysis. Thus, a user-friendly computational tool is in pressing need to mitigate the 

bottleneck of manual analysis and to enable automatic assessment of Ca2+ transient abnormality.  

Previously, Juhola et al. proposed an Analytical Algorithm to detect cycling Ca2+ transient peaks, 

quantify peak variables, and assess the abnormality of transient peaks and signals14. This analytical 

algorithm identifies signal abnormality based on whether the assessed cell signal contains at least 

one abnormal transient peak based solely on characteristics of a single peak. The assessment did 

not leverage shared characteristics of normal and abnormal Ca2+ transient peaks and signals across 

all samples, which are expected to provide valuable input to improve the accuracy of signal 

abnormality assessment. Further, the analytical algorithm fails to account for the valuable manual 

assessment results about existing data.  

To overcome these limitations, we develop an improved automatic pipeline that is composed of 

peak detection, peak variable quantification, peak abnormality assessment, signal variable 

extraction, and signal abnormality assessment. We adapt the existing Analytical Algorithm for 

peak detection, peak variable quantification, and peak abnormality assessment. Additionally, the 

advanced machine learning method of Support Vector Machine (SVM)15 is used for abnormality 

assessments of peaks and signals, which leverages shared data characteristics and experts’ manual 

analysis results of training data.  

Further, we provide an R library to implement this pipeline, which includes SVM classifiers 

trained using our Ca2+ transient data as well as functions for peak detection, peak variable 

quantification, training peak-level SVM classifier, cell variable quantification, training signal-

level SVM classifier, and predicting signal abnormality. Our R library is freely available through 

GitHub and is expected to serve as a convenient tool for people in need of a Ca2+ transient analysis 

software with high speed and accuracy.  

 

Results  

Study overview. A flowchart is provided in Fig. 1A and Fig. 1B for this pipeline. In this pipeline, 

we improve the existing Analytical Algorithm14 to better characterize signal abnormality by 

including additional peak variables such as nearby peak distance, varying peak amplitude, and 

peak asymmetry, as well as considering irregular peak phases for peak abnormality assessment.  
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In particular, with a set of Ca2+ signals as the training data, our pipeline first trains a peak-level 

SVM classifier by taking peak assessments by human experts as responses (normal or abnormal) 

and 14 peak variables (the names of the peak variables are listed in Table 1) as predicting features. 

Second, assessments of peak abnormality by both our improved analytical algorithm and trained 

peak-level SVM classifiers are obtained and used as additional peak variables. Third, cell 

abnormality assessment based on those two types of peak assessments along with other cell 

variables (the names of the cell variables are listed in Table 2) are taken as predictors to train a 

signal-level SVM classifier for predicting signal abnormality. The trained peak-level and cell-level 

SVM classifiers can be applied to detect the abnormality of additional Ca2+ transient peaks and 

signals. Additionally, we validated our pipeline using Ca2+ transient data generated by our lab.  

Data preprocessing. Ca2+ transient signal data were generated using MetaXPress software. While 

the sampling frequency for the transient was 5 Hz across the board, lengths varied between 12 

seconds and 32 seconds. Signals with single peaks were eliminated, as they were insufficient to 

count as  signal data. In particular, we first generated 213 signals: 78 signals from the 12-second 

dataset and 135 signals from the 32-second dataset. After single-peak signal elimination, 66 from 

the 12-second dataset and 134 signals from the 32-second dataset were taken as our training dataset. 

The data were tidied and plotted for assessment by human experts. Human experts labeled peaks 

and signals as either normal or abnormal. These 200 signals were taken as our training data to 

validate our proposed pipeline. Following the same procedure, an independent test dataset of 54 

cells were generated.  

Abnormality assessment by human experts. Upon inspection of Ca2+ transient signals such as 

the one shown in Fig. 2A and Fig. 2B, a human expert in assessing Ca2+ transient signals made 

abnormality assessment about the Ca2+ transient peaks and signals. For our training dataset, the 

expert made abnormality assessments for a total of 200 signals and 1,893 peaks within those 

signals. A peak was labeled as normal if the transient had typical cardiac Ca2+ transient 

morphology (i.e. rapid upstroke and decay kinetics), no oscillations of the diastolic Ca2+ signal, 

and no obvious spontaneous Ca2+ release between transients (Fig. 2C-i, ii). A peak was labeled as 

abnormal if any of above criteria was not met (Fig. 2C-iii-vi). A cell was labeled as normal if all 

of the peaks within the cell were normal and of consistent amplitudes and rhythmicity (Fig. 2C-i). 

A cell was labeled as abnormal if any of above criteria was not met (Fig. 2C-ii-vi).   
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Peak detection. To detect the peaks of Ca2+ transient signals, we improved the analytical method 

proposed by Juhola et al.14. Specifically, for each Ca2+ transient signal, the first derivative values 

of signal intensities at the observed timeframe points are first calculated by using the Trapezium 

rule16. Second, a sequential screening strategy is taken to identify the starting, maximum, and 

ending timeframe points for all peaks presented in the signal. That is, starting from the initial 

timeframe point or the timeframe point right after the ending of the previous peak, the next 

timeframe point with first derivative value greater than a pre-defined threshold tup (default 30) is 

considered as the beginning (i.e., peak left) timeframe point of the current peak. Starting from the 

peak left, first derivative values should be positive before peak maximum point while negative 

after peak maximum. Thus, the first timeframe point after the peak left point with a negative 

derivative value is taken as the maximum timeframe point of the current peak (i.e., peak maximum). 

The first timeframe point after peak maximum with a positive derivative value whose absolute 

value is greater than a pre-defined threshold rtup (default 2; to get around possible noisy signal 

fluctuations) is taken as the end of the current peak (i.e., peak right). The default value for tup is set 

as used by Juhola et al.14, and the default value for rtup is determined based on our experiments. In 

particular, taking rtup=0 is equivalent as taking the first timeframe point after peak maximum with 

a positive first derivative value as peak end.  

To avoid the identification of a partial or noisy first peak within a signal, we exclude the first peak 

that is asymmetric with left amplitude less than 50% of the right amplitude and intensity value < 

5. We also exclude noisy peaks with peak amplitudes less than 15% of the maximum amplitude 

within the signal. To ensure that our detected peaks are valid with minimal noise or partial peaks, 

signals with no peak or a single peak are excluded from our analyses.  

Peak variable quantification. Fourteen peak variables are quantified after peak detection (Fig. 3) 

and then used for peak abnormality assessment by both analytical and SVM methods. 

The fourteen peak variables are as follows: peak left amplitude (A_l), peak right amplitude (A_r), 

amplitude difference between A_l and A_r (A_d), duration from peak left to peak max (D_l), 

duration from peak max to peak right (D_r), maximum first derivative value from peak left to peak 

max (Dy_max), absolute minimum first derivative value from peak max to peak right (Dy_min) 

maximum second derivative value from peak left to peak max (D2y_max), absolute minimum 

second derivative value from peak max to peak right (D2y_min), peak area under the intensity 
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curve from peak left to peak right (R), duration from the previous peak max to current peak max 

(delta, i.e., peak distance), duration from peak left to Dy_max (delta_l2Dymax), duration from 

peak max to Dy_min (delta_m2Dymin), and median of delta values within a signal 

(Peak_distance_median). These quantified peak variables are used for training peak-level SVM 

classifier and subsequent cell-level SVM classifier.  

Peak abnormality assessment by improved analytical algorithm. Here, peak max amplitude 

and min amplitude respectively refer to the maximum and minimum of A_l and A_r. In addition 

to peak amplitudes and asymmetry as considered by previous method14, our improved Analytical 

Algorithm also considers irregular phase to assess peak normality based on peak distances (delta) 

within one signal.  

We first assess peak normality with respect to peak amplitudes. That is, the first peak will be 

labeled as abnormal if the peak max amplitude is less than 50% of the average peak max amplitude 

within the same signal. Peaks other than the first one will be labeled as abnormal if the preceding 

peak is abnormal and the peak max amplitude is less than 50% of the average peak max amplitude 

within the same signal, or if the peak amplitude is less than 50% of the preceding normal peak. 

Second, a peak with normal amplitude characteristics will be labeled as abnormal when the peak 

min amplitude is less than 85% of the peak max amplitude (i.e., asymmetric). Last, irregular phase 

assessment will be considered. A symmetric peak with normal amplitude but distance from 

previous peak to current peak (delta; except for the first peak) greater than 90% of the median delta 

within the same signal (i.e., irregular phase) will be labeled as abnormal. All thresholds are chosen 

based on our experimental training data and can be adjusted according to new data characteristics.  

Train peak-level SVM classifier. To employ expert peak assessments and peak characteristics of 

training data, we train a peak-level SVM classifier to predict peak normality status, taking expert 

peak assessments as outcome and these fourteen peak variables as described in previous subsection 

as predictive features. To avoid the issue of overfitting for accuracy assessment with training data, 

we take the LOOCV approach17 to fit peak-level SVM classifiers and make predictions for all 

samples in the training dataset. In particular, peaks within a signal are taken as test data and a 

corresponding peak-level SVM classifier is trained using peaks from all other samples, which is 

iterated for all signals to obtain predictions of all peaks. The peak normality predictions by the 

LOOCV approach will then be used to train the follow-up cell-level SVM classifier. 
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Train cell-level SVM classifier. The cell normality labels based on peak normality assessments 

obtained by our improved Analytical Algorithm and SVM-LOOCV approach are considered as 

cell variables. We consider additional cell variables as follows: proportion of abnormal peaks per 

signal (prop_abnormal), variance of peak amplitude per signal (var_A), variance of peak distances 

per signal (var_delta), and variance of peak areas per signal (var_R). These cell variables are 

centered and standardized and then used as predictive features to train a cell-level SVM classifier 

to predict cell abnormality, where outcomes are taken as human-expert assessments about cell 

normality. This trained cell-level SVM classifier can then be used to predict cell normality for 

additional independent signals. 

Application studies. To validate the above described pipeline (Fig. 1) for analyzing Ca2+ transient 

data, we applied the pipeline to study the Ca2+ transient data of 254 cells generated in our lab. In 

particular, we took 200 cell signals (containing 1,893 peaks) as our training data and 54 cell signals 

(454 peaks) as our test data. We first manually assessed the normality of all of these signals and 

peaks that were considered as gold standards and taken as outcome variables for training SVM 

classifiers. Second, by applying our improved Analytical Methods to assess peak normality, we 

obtained 93.3% accuracy, 91.1% sensitivity, and 95.8% specificity (Table 3). Third, by the SVM-

LOOCV approach to assess peak normality, we obtained 92.2% accuracy, 91.8% sensitivity, and 

95.3% specificity (Table 3). Cell abnormality assessments based on these two peak assessments 

were then taken together with other cell variables to train a cell-level classifier. By using the 

LOOCV approach with our training data, our cell-level SVM classifier obtained 89.9% accuracy, 

94.7% sensitivity, and 83.3% specificity for cell assessments (Table 4).  

With the cell-level SVM classifier trained by using our training data, we then validated the 

accuracy of cell abnormality assessment with 54 additional test cells. To begin with, by using our 

pipeline, the Ca2+ transient peaks in the test dataset were identified, and peak-level variables were 

quantified, followed by analytical algorithm peak status assessment. Then, the peak-level SVM 

classifier trained using our training data produced peak status prediction for each identified peak 

in the test data. Cell status assessments based on these two peak assessments were used together 

with other cell variables to predict the final cell normality status by using the trained cell-level 

SVM model from our training data. As a result, we obtained 87.0% accuracy, 88.9% sensitivity, 

and 83.3% specificity (Table 4). Compared to the cell abnormality assessments by existing 
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Analytical Algorithm (83.3% accuracy, 83.3% sensitivity, and 83.3% specificity), our SVM 

approach obtained higher sensitivity and accuracy for borrowing strength across all peaks and 

signals by SVM method.  

In addition, we constructed a receiver-operating curve (ROC)18 for both training data and test data 

based on the classification outcomes of each cell signal by using our trained SVM classifier. As 

shown in Fig. 4, our trained SVM classifier showed excellent results, with area under the curve 

(AUC)18 of 0.97 and 0.95 for the training and test dataset, respectively. The AUC is the probability 

that a classifier will rank a randomly chosen abnormal cell higher than a randomly chosen normal 

cell (assuming 'abnormal' ranks higher than 'normal')18.  

 

Discussion 

In this study, we develop an automatic pipeline for assessing the normality of hiPSC-CM Ca2+ 

transient signals, an otherwise labor-intensive and time-consuming phenotypic analysis for CMs. 

Specifically, we improve the existing Analytical Algorithm14 by accounting for irregular phases 

within signals and employ the advanced machine learning SVM method for peak and cell 

abnormality prediction. We also validate our approach of using advanced machine learning SVM 

method in this pipeline by using training and test hiPSC-CM Ca2+ transient signals generated by 

our lab. With independent test data, we demonstrate that our SVM approach obtained 87.0% 

accuracy (versus 83.3% accuracy obtained by Analytical Algorithm). 

Our results show the advantages of learning normal and abnormal characteristics across multiple 

peaks and cells as well as employing the valuable human-expert assessments of training data.  

Although our improved Analytical Algorithm yielded excellent peak assessment accuracy of 93.3% 

with our training data, its cell-level assessment accuracy was 87.5% with our training data and 

83.3% with our test data. The decent peak abnormality assessment accuracy by Analytical 

Algorithm is probably because the Analytical Algorithm is developed to mimic human-expert 

assessment. In contrast, our cell-level SVM classifier obtained accuracy 89.9% with our training 

data by the LOOCV approach and accuracy 87.0% with our test data. The relatively lower accuracy 

for signal abnormality assessment is likely because the Analytical Algorithm fails to account for 
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abnormality due to abnormal characteristics of multiple peaks and signals such as signals with 

irregular phases.  

Automatic identification of Ca2+ transients can overcome limitation of traditional manual 

assessment. Manual signal abnormality assessment is difficult since recordings are often short, 

contain small number of peaks, with varying morphologies of signals and peaks within them. 

Abnormal cell signals are often difficult to be identified consistently by multiple human-experts. 

This may be due to the fact that 1) there are peaks of small amplitude that are borderline noise, 2) 

the nature of the cell signal morphology renders it difficult to exactly characterize, for instance 

due to continuously decreasing fluorescence intensity, among other reasons.  

Our signal classification results are already applicable for current use. Its potential is even larger 

as more data can be fed into the training set with ease. By incorporating more data collected and 

analyzed by different Ca2+ transient experts, we expect our model to be better modified for more 

nuanced prediction of novel Ca2+ transient data. Various other types of Ca2+ transient signals can 

be assessed by a human expert to further modify the prediction model based on any potential need 

of any user.  

Currently, our machine learning SVM classifiers have been trained using hiPSC-CMs derived from 

two different strains of stem cells – SCVI-273 and IMR-90 – which produce very similar Ca2+ 

transient signals. This could render the machine learning model biased toward certain signal 

patterns. As we accumulate more data, we expect to see further improvements in the overall 

accuracy and efficiency of our proposed machine learning method. In addition, training the model 

with various other hiPSC-CMs derived from different cell lines including disease cell lines (see, 

for example, Juhola et al.19) at multiple differentiation stages will significantly improve the 

generalizability of our machine learning method in such a way that will allow us to capture the 

underlying essence of seemingly different patterns of Ca2+ transient signals among CMs of 

different sources. This will, in turn, enhance its ability to be used as a scalable tool for analyzing 

high-throughput CM data for various purposes, such as drug screening. As our machine learning 

model incorporates more diverse sets of data, we anticipate its usage to evolve as well: from an 

aide for a busy human-expert to eventually fully replicating the decision-making of a human-expert 

on all patterns of Ca2+ transient signal, regardless of its origin and experimental procedures 

employed.   
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Our Ca2+ transient analysis software that implements our automatic pipeline with machine learning 

SVM method is available in the form of R package for everyone in need of Ca2+ transient analysis 

tool. 

 

Methods 

Culture of hiPSCs and cardiomyocyte differentiation. Undifferentiated SCVI-273 hiPSCs 

(Stanford Cardiovascular Institute)9 and IMR90 hiPSCs (WiCell Research Institute)20 were fed 

daily on Matrigel-coated plates with mTeSR1 defined medium (Stem Cell Technologies, 85850) 

and passaged using Versene (Thermo Fisher Scientific, 15040066) when compact colonies reached 

90%-100% confluence. For CM differentiation, hiPSCs were induced using a growth factor-guided 

differentiation protocol21,22. At the day of induction (day 0), medium was replaced with RPMI 

1640 medium supplemented with 2% B27 minus insulin (Thermo Fisher Scientific, A1895601) 

and 100 ng/ml activin A (R&D Systems, 338-AC-050/CF). After 24 h (day 1), RPMI 

supplemented with 2% B27 minus insulin was used for 24 h. After 24 h (day 1), activin A was 

replaced with 10 ng/ml BMP4 (R&D Systems, 314-BP-050/CF), and cells were cultured without 

any medium change for the next 3 days. From day 4, the growth factor-containing medium was 

replaced with RPMI supplemented with 2% regular B27 (Thermo Fisher Scientific, 17504044) 

and the medium was changed every other day. hiPSC-CMs were further enriched by the metabolic 

selection method using RPMI without glucose (Thermo Fisher Scientific, 11879020) 

supplemented with 2% B27 and 5 mM lactate from day 11 to 1423. Alternatively, enriched hiPSC-

CMs were generated by microscale generation of cardiospheres at day 624. Cells were observed 

under a microscope daily for beating cells, which typically appeared by day 8-10. At day 14, a 

parallel culture of cells were harvested to determine CM purity before subsequent assessments.   

Ca2+ transient assay. Live cell imaging of intracellular Ca2+ transient was performed using Fluo-

4 AM (Thermo Fisher Scientific, F14202). At differentiation day 18, cells were seeded in a 96-

well plate at a low density to acquire single-cell Ca2+ transients. At differentiation days 20 to 22, 

cells were treated with or without arrhythmogenic drugs including TNF-α, ethanol, and melphalan 

for 3 to 5 days. At differentiation days 23 to 25, cells were acquired for Ca2+ transient signals. 

Beating hiPSC-CMs were incubated with 10µM Fluo-4 AM for 25 min at 37℃ followed by a 5 

min wash with warm 1× Normal Tyrode solution (148 mM NaCl, 4 mM KCl, 0.5 mM 
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MgCl2·6H2O, 0.3 mM NaPH2O4·H2O, 5 mM HEPES, 10 mM D-Glucose, 1.8 mM CaCl2·H2O, pH 

adjusted to 7.4 with NaOH). Fluorescence images were acquired in 1× Normal Tyrode’s solution 

immediately after the wash using ImageXpress Micro XLS System (Molecular Devices) with 

excitation at 488 nm and emission at 515-600 nm at a frequency of 5 frames/sec and 20x 

magnification for 12 or 32 seconds. Fluorescence intensity plots from spontaneously beating cells 

were obtained using MetaXpress software (Molecular Devices) by region of interest measurements. 

Ca2+ transients from SCVI-273-derived CMs with and without TNF-a treatment and IMR90-

derived CMs with and without ethanol treatment were used as training datasets for machine 

learning algorithm. Ca2+ transients from SCVI-273-derived CMs with or without melphalan 

treatment were used as test datasets for machine learning algorithm. 

We note that treatment conditions we tested (TNF-α, ethanol, and melphalan) caused abnormal 

Ca2+ transients (Figure 2C and Rampoldi et al.25) with patterns similar to those observed in patient-

derived hiPSC-CMs (e.g., catecholaminergic polymorphic ventricular tachycardia8). We also note 

that the patterns of Ca2+ transients at days 23-25 observed in this study were similar to those from 

cells of 30±2 days old8. 

R-Package. An R-package for the Ca2+ transient analysis described in this study, called SVMCaT, 

is available on the Github website (link to be provided in publication).  
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Table 1. Peak variable averages and their standard deviations of the test data  

  Expert Normal 
Expert 

Abnormal 
SVM Normal 

SVM 

Abnormal 

Number of Peaks 372 82 325 129 

Peak-

level 

Variables 

A_l 0.04 ± (0.95) -0.17 ± (1.18) 0.05 ± (0.98) -0.13 ± (1.04) 

A_r 0.24 ± (0.90) -1.08 ± (0.68) 0.36 ± (0.08) -0.91 ± (0.87) 

A_d 0.26 ± (0.50) -1.19 ± (1.64) 0.40 ± (0.19) -1.01 ± (1.42) 

D_l 0.09 ± (1.01) -0.39 ± (0.83) 0.14 ± (0.99) -0.35 ± (0.94) 

D_r 0.23 ± (0.94) -1.05 ± (0.44) 0.33 ± (0.82) -0.84 ± (0.92) 

Dy_max 0.03 ± (0.97) -0.14 ± (1.14) 0.02 ± (1.02) -0.04 ± (0.94) 

Dy_min 0.00 ± (0.93) -0.01 ± (1.28) -0.10 ± (0.88) 0.26 ± (1.22) 

D2y_max -0.06 ± (0.95) 0.26 ± (1.18) -0.05 ± (0.88) 0.12 ± (1.25) 

D2y_min -0.23 ± (0.68) 1.04 ± (1.46) -0.36 ± (0.39) 0.90 ± (1.42) 

R 0.20 ± (0.98) -0.90 ± (0.40) 0.27 ± (0.94) -0.68 ± (0.79) 

delta 0.11 ± (1.02) -0.50 ± (0.73) 0.10 ± (0.74) -0.25 ± (1.44) 

delta_l2Dymax 0.06 ± (0.98) -0.26 ± (1.05) 0.14 ± (0.99) -0.34 ± (0.96) 

delta_m2Dymin 0.08 ± (1.04) -0.37 ± (0.68) 0.08 ± (1.04) -0.20 ± (0.86) 

Peak_distance_median 0.12 ± (0.94) -0.54 ± (1.09) 0.15 ± (0.71) -0.39 ± (1.43) 

Note: A 2x2 comparison of the peak classification by expert and SVM is shown in 

Supplementary Table S1 online.  
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Table 2. Cell variable averages and their standard deviations of the test data 

Assessment Number of Cells 
Cell-level Variables 

prop_abnormal var_A var_delta var_R 

Expert Normal 18 -0.71 ± (0.24) -0.48 ± (0.08) -0.33 ± (0.01) -0.38 ± (0.11) 

Expert Abnormal 36 0.35 ± (1.05) 0.24 ± (1.15) 0.16 ± (1.20) 0.19 ± (1.18) 

SVM Normal 19 -0.81 ± (0.00) -0.51 ± (0.04) -0.26 ± (0.16) -0.43 ± (0.02) 

SVM Abnormal 35 0.44 ± (1.00) 0.28 ± (1.15) 0.14 ± (1.22) 0.23 ± (1.18) 

Note: A 2x2 comparison of the cell classification by expert and SVM is shown in Supplementary 

Table S1 online.  
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Table 3. Peak abnormality assessment accuracy  

Method Accuracy Sensitivity Specificity 

Analytical Algorithm 93.3% 91.1% 95.8% 

SVM-LOOCV 92.2% 91.8% 95.3% 

Note: All accuracy metrics were generated by taking expert cell assessments as the truth and 

considered for 1,893 peaks in the training dataset.   
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Table 4. Cell abnormality assessment accuracy 

Dataset Method Accuracy Sensitivity Specificity 

Training Data 
Analytical Algorithm 87.5% 90.4% 83.5% 

SVM-LOOCV 89.9% 94.7% 83.3% 

Test Data 
Analytical Algorithm 83.3% 83.3% 83.3% 

SVM 87.0% 88.9% 83.3% 

Note: All accuracy metrics were generated by taking expert cell assessments as the truth and 

considered for 200 cells in the training data and 54 cells in the test dataset. 
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Figure Legends 

 

Fig. 1. Overall workflow of machine learning method in this study. A. Ca2+ transient data of 

200 cells and 1,893 peaks were collected and analyzed to train the peak- and cell-level SVM 

models, which were validated via LOOCV. B. Test data of 54 cells and 454 peaks were used to 

implement the machine learning tool to yield final cell status prediction. 

 

Fig. 2. Cells under fluorescence and their peak signals. A. An example of hiPSC-CMs stained 

with Fluo-4 fluorescing under 488nm light. B. An example of Ca2+ transient signal visualized 

with detected peaks marked. Number of frames on the x-axis and fluorescence intensity on the y-

axis. C. Examples of Ca2+ transient signal visualized by human expert. Red arrows denote 

abnormal peaks and green arrows denote inconsistent periods. 

 

Fig. 3. An example of Ca2+ transient signal, peak, its first derivative, second derivative, and 

peak-level variables. Out of 14 peak-level variables, 10 are indicated: A. delta, B. peak left 

amplitude (A_l), peak right amplitude (A_r), left peak duration (D_l), right peak duration (D_r), 

C. maximum value of left side first derivative (Dy_max), absolute minimum of right side first 

derivative (Dy_min), D. maximum of right side second derivative (D2y_max), and absolute 

minimum of right side second derivative (D2y_min). The peak variables extracted were used for 

peak status prediction via SVM modeling. 

 

Fig. 4. ROC curve plot. A. Training data ROC curve plot. B. Test data ROC curve plot. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 


