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Abstract

NLP is currently dominated by language mod-
els like RoBERTa which are pretrained on
billions of words. But what exact knowl-
edge or skills do Transformer LMs learn from
large-scale pretraining that they cannot learn
from less data? To explore this question,
we adopt five styles of evaluation: classifier
probing, information-theoretic probing, unsu-
pervised relative acceptability judgments, un-
supervised language model knowledge prob-
ing, and fine-tuning on NLU tasks. We then
draw learning curves that track the growth of
these different measures of model ability with
respect to pretraining data volume using the
MiniBERTas, a group of RoBERTa models
pretrained on 1M, 10M, 100M and 1B words.
We find that these LMs require only about
10M to 100M words to learn to reliably encode
most syntactic and semantic features we test.
They need a much larger quantity of data in
order to acquire enough commonsense knowl-
edge and other skills required to master typi-
cal downstream NLU tasks. The results sug-
gest that, while the ability to encode linguis-
tic features is almost certainly necessary for
language understanding, it is likely that other,
unidentified, forms of knowledge are the ma-
jor drivers of recent improvements in language
understanding among large pretrained models.

1 Introduction

Pretrained language models (LMs) like BERT and
RoBERTa have become ubiquitous in NLP. New
models require massive datasets of tens or even
hundreds of billions of words (Brown et al., 2020)
to improve on existing models on language un-
derstanding benchmarks like GLUE (Wang et al.,
2018). Much recent work has used probing meth-
ods to evaluate what these models do and do not
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Figure 1: Overall learning curves for the five evaluation
methods. For each method, we compute overall perfor-
mance for each RoBERTa model tested as the macro av-
erage over sub-task’s performance after normalization.
We fit an exponential curve which we scale to have
an initial value of 0 and an asymptote at 1. Classifier
and MDL probing mainly test models’ encoding of lin-
guistic features; BLiMP tests model’s understanding of
linguistic phenomena; LAMA tests factual knowledge;
SuperGLUE is a suite of conventional NLU tasks.

learn (Belinkov and Glass, 2019; Tenney et al.,
2019b; Rogers et al., 2020; Ettinger, 2020). Since
most of these works only focus on models pre-
trained on a fixed data volume (usually billions
of words), many interesting questions regarding
the effect of the amount of pretraining data remain
unanswered: What have data-rich models learned
that makes them so effective on downstream tasks?
How much pretraining data is required for LMs to
learn different grammatical features and linguistic
phenomena? Which of these skills do we expect to
improve when we scale pretraining past 30 billion
words? Which aspects of grammar can be learned
from data volumes on par with the input to human
learners, around 10M to 100M words (Hart and
Risley)?



With these questions in mind, we evaluate and
probe the MiniBERTas (Warstadt et al., 2020b), a
group of RoBERTa models pretrained on 1M, 10M,
100M, and 1B words, and RoBERTaBASE (Liu et al.,
2019) pretrained on about 30B words, using five
methods: First we use standard classifier probing
on the edge probing suite of NLP tasks (Tenney
et al., 2019b) to measure the quality of the syn-
tactic and semantic features that can be extracted
by a downstream classifier with each level of pre-
training. Second, we apply minimum description
length (MDL) probing (Voita and Titov, 2020) to
the edge probing suite, with the goal of quantify-
ing the accessibility of these features. Third, we
test the models’ knowledge of various syntactic
phenomena using unsupervised acceptability judg-
ments on the BLiMP suite (Warstadt et al., 2020a).
Fourth, we probe the models’ world knowledge and
commonsense knowledge using unsupervised lan-
guage model knowledge probing with the LAMA
suite (Petroni et al., 2019). Finally, we fine-tune the
models on five tasks from SuperGLUE (Wang et al.,
2019) to measure their ability to solve conventional
NLU tasks.

For each evaluation method, we fit an exponen-
tial learning curve to the results as a function of the
amount of pretraining data, shown in Figure 1. We
have two main findings: First, the results of classi-
fier probing, MDL probing, and unsupervised rel-
ative acceptability judgement (BLiMP) show that
the linguistic knowledge of models pretrained on
100M words and 30B words is similar, as is the
description length of linguistic features. Second,
RoBERTa requires billions of words of pretraining
data to effectively acquire factual knowledge and
to make substantial improvements in performance
on dowstream NLU tasks. From these results, we
conclude that there are skills critical to solving
downstream NLU tasks that LMs can only acquire
with billions of words of pretraining data. Future
work will likely need to look beyond core linguis-
tic knowledge if we are to better understand and
advance the abilities of large language models.

2 Methods

We probe the MiniBERTas, a set of 12 RoBERTa
models pretrained from scratch by Warstadt et al.
(2020b) on 1M, 10M, 100M, and 1B words, the
publicly available RoBERTaBASE (Liu et al., 2019),

which is pretrained on about 30B words,1 and 3
RoBERTaBASE models with randomly initialized
parameters.

Descriptions of the five evaluation methods ap-
pear in the subsequent sections.2 In each exper-
iment, we test all 16 models on each task in-
volved. To show the overall trend of improvement,
we use non-linear least squares to fit an exponen-
tial learning curve to the results.3 We upsample
RoBERTaBASE results in regression in order to have
an equal number of results for each data quantity.
We use a four-parameter exponential learning curve
used to capture diminishing improvement in perfor-
mance as a function of the number of practice trials
(Heathcote et al., 2000; Leibowitz et al., 2010):

E(Pn) = P∞ − (P∞ − P0) · e−α·n
β

where E(Pn) is the expected performance after n
trials,4 P0 and P∞ and are the initial and asymp-
totic performance, and α and β are coefficients to
translate and dilate the curve in the log domain.

We plot the results in a figure for each task,
where the y-axis is the score and the x-axis is the
amount of pretraining data.5 For some plots, we
use min-max normalization to adjust the results
into the range of [0, 1], where 0 and 1 are the in-
ferred values of P0 and P∞, respectively.6

3 Classifier Probing

We use the widely-adopted probing approach of
Ettinger et al. (2016), Adi et al. (2017), and others—
which we call classifier probing—to test the extent
to which linguistic features like part-of-speech and
coreference are encoded in the frozen model repre-
sentations. We adopt the ten probing tasks in the

1The miniBERTas’ training data is randomly sampled from
Wikipedia and Smashwords in a ratio of 3:1. These two
datasets are what Devlin et al. (2019) use to pretrain BERT
and represent a subset of the data used to pretrain RoBERTa.
RoBERTaBASE’s training data also includes of news and web
data in addition to Wikipedia and Smashwords. Warstadt et al.
ran pretraining 25 times with varying hyperparameter values
and model sizes for the 1M-, 10M-, and 100M-word settings,
and 10 times for the 1B-word setting. All the models were
pretrained with early stopping on validation set perplexity.
For each dataset size, they released the three models with the
lowest validation set perplexity, yielding 12 models in total.

2Code: https://github.com/nyu-mll/
pretraining-learning-curves

3We use SciPy’s curve fit implementation.
4In our case, a trial is one word of pretraining.
5We plot the no-pretraining random baseline with an x-

value of 1.
6The unnormalized results are included in the appendix.

https://github.com/nyu-mll/pretraining-learning-curves
https://github.com/nyu-mll/pretraining-learning-curves
https://github.com/nyu-mll/pretraining-learning-curves
https://github.com/nyu-mll/pretraining-learning-curves
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Figure 2: Classifier probing results for each task in the edge probing suite. Results are adjusted with min-max
normalization for readability (see the Appendix for a non-normalized version). In each subplot we also plot the
overall edge-probing performance, which we calculate for each MiniBERTa as its average F1 score on the 10 edge-
probing tasks (after normalization). For context, we also plot BERTLARGE performance for each task as reported
by Tenney et al. (2019a).
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Figure 3: Edge Probing results for each group of tasks
adjusted using min-max normalization. Syntactic tasks
are Part-of-Speech, Dependencies, and Constituents.
The commonsense task is Winograd coref. Semantic
tasks are all remaining tasks.

edge probing suite (Tenney et al., 2019b).7

Classifier probing has recently come under
scrutiny. Hewitt and Liang (2019) and Voita and
Titov (2020) caution that the results depend on the
complexity of the probe, and so do not precisely
reveal the quality of the representations. However,

7Task data sources: Part-of-Speech, Constituents, Entities,
SRL, and OntoNotes coref. from Weischedel et al. (2013), De-
pendencies from Silveira et al. (2014), Sem. Proto Role 1 from
Teichert et al. (2017), Sem. Proto Role 2 from Rudinger et al.
(2018), Relations (SemEval) from Hendrickx et al. (2010),
and Winograd coref. from Rahman and Ng (2012); White
et al. (2017).

we see two advantages to this method: First, the
downstream classifier setting and F1 evaluation
metric make these experiments easier to interpret
in the context of earlier results than results from
relatively novel probing metrics like minimum de-
scription length. Second, we focus on relative dif-
ferences between models rather than absolute per-
formance, and include a randomly initialized base-
line model in the comparison. When the model rep-
resentations are random, the probe’s performance
reflects the probe’s own ability to solve the target
task. Therefore, any improvements over this base-
line value are due to the representation rather than
the probe itself.

Task formulation and training Following Ten-
ney et al., we use attention pooling to generate
representation(s) of the token span(s) involved in
the task and train an MLP that predicts whether a
given label correctly describes the input span(s).
We adopt the “mix” representation approach de-
scribed in the paper. To train the probes, we use the
same hyperparameters used in Tenney et al. and
tune the batch size and learning rate.8

Results We plot results in Figure 2. From the
single-task curves we conclude that most of the

8We randomly sample 5 pairs from the range
{8, 16, 32, 64} × {5e−5, 1e−4, 5e−4}.
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Figure 4: MDL results for each edge probing task. We do not plot a exponential curve for the Winograd coref. re-
sults because we could not find an adequate fit.

feature learning occurs with <100M words of pre-
training data. Based on the best-fit curve, we can
estimate that 90% of the attainable improvements
in overall performance are achieved with <20M
words. Most plots show broadly similar learn-
ing curves, which rise sharply with less than 1M
words of pretraining data, reach the point of fastest
growth (in the log domain) around 1M words, and
are nearly saturated with 100M words. The most
notable exception to this pattern is the Winograd
task, which only rises significantly between 1B and
30B words of pretraining data.9 As the Winograd
task is designed to test commonsense knowledge
and reasoning, the results suggest that these fea-
tures require more data to encode than syntactic
and semantic ones, with the caveat that the dataset
is smaller than the other edge probing tasks, and
results on Winograd tasks are highly sensitive to
factors such as task formulation (Liu et al., 2020).

We observe some general differences between
different types of tasks. Figure 3 shows the ag-
gregated learning curves of syntactic, semantic,
and commonsense tasks. The syntactic learning
curve rises slightly earlier than the semantic one
and 90% of the improvements in syntactic learning
can be made with about 10M words, while the se-
mantic curve still rises slightly after 100M. This
is not surprising, as semantic computation is gen-
erally thought to depend on syntactic representa-

9These results are also noisier, similar to what Tenney et al.
(2019b) find.

tions (Heim and Kratzer, 1998). The commonsense
learning curve (for Winograd coref. only) rises far
later, and is projected to continue to rise long after
syntactic and semantic features stop improving.

4 Minimum Description Length Probing

In this experiment, we study the MiniBERTas with
MDL probing (Voita and Titov, 2020), with the
goal of revealing not only the total amount of fea-
ture information extracted by the probe, but also
the effort taken by the probe to extract the fea-
tures. MDL measures the minimum number of bits
needed to transmit the labels for a given task given
that both the sender and the receiver have access to
the pretrained model’s encoding of the data.

A well-trained decoder model can help extract
labels from the representations and thus reduce the
number of bits needed to transmit the labels. Since
the model itself will also need to be transmitted,
the total description length is a sum of two terms:
The data codelength is the number of bits needed
to transmit the labels assuming the receiver has the
trained decoder model, i.e. the cross-entropy loss of
the decoder. The model codelength is the number
of bits needed to transmit the decoder parameters.

We follow Voita and Titov’s online code esti-
mation of MDL, where the decoder is implicitly
transmitted. As in Section 3, we train decoders
using the same hyperparameter settings and task



definitions as Tenney et al. (2019b).10

Results We plot the online code results in Figure
4. The overall codelength shows a similar trend to
edge probing: Most of the reduction in feature code-
length is achieved with fewer than 100M words.
MDL for syntactic features decreases even sooner.
Results for Winograd are idiosyncratic, probably
due to the failure of the probes to learn the task.

The changes in model codelength and data code-
length are shown on the bar plots in Figure 4. We
compute the data codelength following Voita and
Titov (2020) using the training set loss of a clas-
sifier trained on the entire training set, and the
model codelength is the total codelength minus
the data codelength. The monotonically decreas-
ing data codelength simply reflects the fact that the
more data rich RoBERTa models have smaller loss.
When it comes to the model codelength, however,
we generally observe the global minimum for the
randomly initialized models (i.e., at “None”). This
is expected, and intuitively reflects the fact that a
decoder trained on random representations would
provide little information about the labels, and so
it would be optimal to transmit a very simple de-
coder. On many tasks, the model codelength starts
to decrease when the pretraining data volume ex-
ceeds a certain amount. However, this trend is not
consistent across tasks and the effect is relatively
small.

5 Unsupervised Grammaticality
Judgement

We use the BLiMP benchmark (Warstadt et al.,
2020a) to test models’ knowledge of individual
grammatical phenomena in English. BLiMP is a
challenge set of 67 tasks, each containing 1000
minimal pairs of sentences that highlight a particu-
lar morphological, syntactic, or semantic phenom-
ena. Minimal pairs in BLiMP consist of two sen-
tences that differ only by a single edit, but contrast
in grammatical acceptability. A language model
classifies a minimal pair correctly if it assigns a
higher probability to the acceptable sentence. Since
RoBERTa is a masked language model (MLM), we
measure pseudo log-likelihood (Wang and Cho,
2019) to score sentences (Salazar et al., 2020).

Results We plot learning curves for BLiMP in
Figure 5. Warstadt et al. organize the 67 tasks in

10Unlike us, Voita and Titov redefine the edge probing tasks
as standard multi-class classification tasks.

BLiMP into 12 categories based on the phenom-
ena tested and for each category we plot the aver-
age accuracy for the tasks in the category. We do
not normalize results in this plot. For the no-data
baseline, we plot chance accuracy of 50% rather
than making empirical measurements from random
RoBERTa models.

We find the greatest improvement in overall
BLiMP performance between 1M and 100M words
of pretraining data. With 100M words, sensitivity
to contrasts in acceptability overall is within 9 accu-
racy points of humans, and improves only 6 points
with additional data. This shows that substantial
knowledge of many grammatical phenomena can
be acquired from 100M words of raw text.

We also observe significant variation in how
much data is needed to learn different phenomena.
We see the steepest learning curves on agreement
phenomena, with nearly all improvements occur-
ring between 1M and 10M words. For phenom-
ena involving wh-dependencies, i.e. filler-gap de-
pendencies and island effects, we observe shallow
and delayed learning curves with 90% of possible
improvements occurring between 1M and 100M
words. The relative difficulty of wh-dependencies
can probably be ascribed to the long-distance na-
ture and lower frequency of those phenomena. We
also observe that the phenomena tested in the quan-
tifiers category are never effectively learned, even
by RoBERTaBASE. These phenomena include sub-
tle semantic contrasts—for example Nobody ate
{more than, *at least} two cookies—which may
involve difficult-to-learn pragmatic knowledge (Co-
hen and Krifka, 2014).

6 Unsupervised Language Model
Knowledge Probe

LAMA is a test suite introduced by Petroni et al.
to test LMs’ factual knowledge. It contains over
50,000 cloze statements converted from subject-
relation-object triples or question-answer pairs ex-
tracted from four datasets: GoogleRE,11 TRE-x (El-
sahar et al., 2018), ConceptNet (Speer and Havasi,
2012), and SQUAD (Rajpurkar et al., 2016). The
Google-RE and T-REx tasks are each divided into
three sub-tasks.

Results We plot the results on LAMA in Figure
6. The fastest growing point of most curves appears
after 100M words. This relatively large quantity of

11source: https://code.google.com/archive/
p/relation-extraction-corpus/.

https://code.google.com/archive/p/ relation-extraction-corpus/
https://code.google.com/archive/p/relation-extraction-corpus/
https://code.google.com/archive/p/ relation-extraction-corpus/
https://code.google.com/archive/p/relation-extraction-corpus/
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Figure 5: BLiMP results by category. BLiMP has 67 constituent datasets covering 12 linguistic phenomena. For
each task the objective is to predict the more grammatically acceptable sentence of a minimal pair in an unsuper-
vised setting. For context, we also plot human accuracy numbers from Warstadt et al. (2020a) and RoBERTaLARGE
performance from Salazar et al. (2020).

data may be needed for the model to be exposed to
relevant factual knowledge. The learning curves for
many LAMA tasks do not show clear signs of satu-
ration in the range of 0 to 30B words, suggesting
further improvements are likely with much larger
data quantities. Among LAMA tasks, Concept-
Net most directly tests commonsense knowledge.
The steep slope of the ConceptNet curve between
100M and 30B words of pretraining data and the
large precision jump (> 0.05) from 1B to 30B
show that increasing the pretraining data to over
1B words significantly improve the LM’s common-
sense knowledge, which explains the shape of the
Winograd coref. learning curve in Section 3.

7 Fine-tuning on NLU Tasks

SuperGLUE is a benchmark suite of eight
classification-based language-understanding tasks
(Wang et al., 2019). We test each MiniBERTa on
five SuperGLUE tasks on which we expect to see
significant variation at these scales.12 The hyperpa-

12Task data sources: CB from De Marneffe et al. (2019),
BoolQ from Clark et al. (2019), COPA from Roemmele et al.
(2011), WiC from Pilehvar and Camacho-Collados (2019);
Miller (1995); Schuler (2005), and RTE from Dagan et al.

rameter search range used for each task is described
in the appendix.

Results We plot the results on the selected Su-
perGLUE tasks in Figure 7. Improvements in Su-
perGLUE performance require a relatively large
volume of pretraining data. For most tasks, the
point of fastest improvement in our interpolated
curve occurs with more than 1B words. None of the
tasks (with the possible exception of Commitment-
Bank) show any significant sign of saturation at
30B words. This suggests that some key NLU skills
are not learnt with fewer than billions of words, and
that models are likely to continue improving sub-
stantially on these tasks given 10 to 100 times more
pretraining data.

8 Discussion

Figure 1 plots the overall learning curves for these
five methods together. The most striking result
is that good NLU task performance requires far
more data than achieving good representations
for linguistic features. Classifier probing, MDL

(2006); Bar Haim et al. (2006); Giampiccolo et al. (2007);
Bentivogli et al. (2009).
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Figure 6: LAMA results. The metric for all tasks is mean precision at 1, i.e. the proportion of examples where the
model assigns the highest probability to the ground truth token. For context, we also plot RoBERTaLARGE results.
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Figure 7: SuperGLUE results. The metric for BoolQ, COPA, WiC, RTE is accuracy, and for CB it is the average
of accuracy and F1 score. Results are adjusted with min-max normalization for readability (see the Appendix for a
non-normalized version). For context, we plot RoBERTaLARGE performance reported at https://github.com/
pytorch/fairseq/tree/master/examples/roberta.

probing, and acceptability judgment performance
all improve rapidly between 1M and 10M words
and show little improvement beyond 100M words,
while performance on the NLU tasks in Super-
GLUE appears to improve most rapidly with over
1B words and will likely continue improving at
larger data scales. While the linguistic features we
test are undoubtedly needed to robustly solve most
NLU tasks, a model that can extract and encode a
large proportion of these features may still perform
poorly on SuperGLUE. What drives improvements
in NLU task performance at larger data scales re-
mains an open question.

Factual knowledge may play a large role in ex-
plaining SuperGLUE performance. This hypoth-
esis is backed up by results from the Winograd
edge-probing task (Figure 2) and the LAMA tasks
(Figure 6), which suggest that most of the im-

provements in the model’s world and commonsense
knowledge are made with over 100M words. How-
ever, the LAMA learning curve shows signs of
slowing between 1B and 30B words, the Super-
GLUE curve does not.

Another possible explanation is that linguistic
features encoded by a model may not be easily ac-
cessible during fine-turning. Warstadt et al. (2020b)
found that RoBERTa can learn to reliably extract
many linguistic features with little pretraining data,
but requires billions of words of pretraining data
before it uses those features preferentially when
generalizing.

In light of Warstadt et al.’s findings, we had
initially hypothesized that feature accessibility as
measured by MDL might show a shallower or later
learning curve than standard classifier probing.13

13Warstadt et al.’s experiments are quite different to ours.

https://github.com/pytorch/fairseq/tree/master/examples/roberta
https://github.com/pytorch/fairseq/tree/master/examples/roberta
https://github.com/pytorch/fairseq/tree/master/examples/roberta
https://github.com/pytorch/fairseq/tree/master/examples/roberta


Our findings do not support this hypothesis: Fig-
ure 1 shows no substantial difference between the
classifier probing MDL probing curves.

However, we do not totally rule out the possi-
bility that linguistic feature accessibility continues
to improve with massive pretraining sets. There
are potential modifications to Voita and Titov’s
approach that could more faithfully estimate fea-
ture accessibility. First, although RoBERTa is actu-
ally fine-tuned in most applications, we and Voita
and Titov measure MDL taking the outputs of the
frozen RoBERTa model as input to a trainable MLP
decoder. It may be more relevant to measure MDL
by fine-tuning the entire model (Lovering et al.,
2021). Second, MDL actually estimates the infor-
mation content of a particular dataset, rather than
the feature itself. Whitney et al. (2020) propose an
alternative to MDL that measures feature complex-
ity in a way that does not depend on the size of the
dataset.

9 Related Work

Probing neural network representations has been
an active area of research in recent years (Belinkov
and Glass, 2019; Rogers et al., 2020). With the
advent of large pretrained Transformers like BERT
(Devlin et al., 2019), numerous papers have used
classifier probing methods to attempt to locate
linguistic features in learned representations with
striking positive results (Tenney et al., 2019b; He-
witt and Manning, 2019). However, another thread
has found problems with many probing methods:
Classifier probes can learn too much from train-
ing data (Hewitt and Liang, 2019) and can fail to
distinguish features that are extractable from fea-
tures that are actually used when generalizing on
downstream tasks (Voita and Titov, 2020; Pimentel
et al., 2020; Elazar et al., 2020). Moreover, dif-
ferent probing methods often yield contradictory
results (Warstadt et al., 2019).

There have also been a few earlier studies inves-
tigating the relationship between pretraining data
volume and linguistic knowledge in language mod-
els. Studies of unsupervised acceptability judg-
ments find fairly consistent evidence of rapid im-
provements in linguistic knowledge up to about
10M words of pretraining data, after which im-
provements slow down for most phenomena. van

They measure RoBERTa’s preference for linguistic features
over surface features during fine-tuning on ambiguous classifi-
cation tasks.

Schijndel et al. (2019) find large improvements in
knowledge of subject-verb agreement and reflexive
binding up to 10M words, and little improvement
between 10M and 80M words. Hu et al. (2020)
find that GPT-2 trained on 42M words performs
roughly as well on a syntax benchmark as a similar
model trained on 100 times that amount. Other
studies have investigated how one model’s linguis-
tic knowledge changes during the training process,
as a function of the number of updates (Saphra and
Lopez, 2019; Chiang et al., 2020).

Raffel et al. (2020) also investigate how per-
formance on SuperGLUE (and other downstream
tasks) improves with pretraining dataset size be-
tween about 8M and 34B tokens. In contrast to our
findings, they find that models with around 500M
tokens of pretraining data can perform similarly
on downstream tasks to models with 34B words.
However, there are many differences in our set-
tings that may lead to this divergence. For example,
they pretrain for a fixed number of iterations (total-
ing 34B token updates), whereas the MiniBERTas
we use were pretrained with early stopping. They
also use prefix prompts in their task formulations,
and adopt an encoder-decoder architecture and thus
their model has roughly twice the number of pa-
rameters of the largest model we evaluate.

There is also some recent work that investigates
the effect of pretraining data size of other lan-
guages. Micheli et al. (2020) pretrain BERT-based
language models on 10MB, 100MB, 500MB, 1GB,
2GB, and 4GB of French text and test them on a
question answering task. They find that the French
MLM pretrained on 100MB of raw text has sim-
ilar performance to the ones pretrained on larger
datasets on the task, and that corpus-specific self-
supervised learning does not make a significant dif-
ference. Martin et al. (2020) also show that French
MLMs can already learn a lot from small-scale
pretraining.

Concurrent work (Liu et al., 2021) probes
RoBERTa models pretrained on different numbers
of iterations using a set of probing tasks similar to
ours. They find that linguistic abilities are acquired
fastest, world and commonsense knowledge learn-
ing takes more iterations, and reasoning abilities
are never stably acquired. Both studies show that
linguistic knowledge is easier to learn than factual
knowledge.



10 Conclusion

We track several aspects of RoBERTa’s ability as
pretraining data increases. We find that ability in
syntax and semantics largely saturates after only
10M to 100M words of pretraining data—on par
with the data available to human learners—while
learning factual knowledge requires much more
data. We also find that scaling pretraining data size
past billions of words significantly improves the
NLU performance, though we cannot fully explain
what abilities drive this improvement. Answering
this question could be a stepping stone to more
data-efficient models.
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Ethical Considerations

There are several ethical reasons to study LMs with
limited pretraining data. Training massive LMs
like RoBERTa from scratch comes with non-trivial
environmental costs (Strubell et al., 2019), and they
are expensive to train, limiting contributions to pre-
training research from scientists in lower-resource
contexts. By evaluating LMs with limited pretrain-
ing, we demonstrate that smaller LMs match mas-
sive ones in performance in many respects. We also
identify a clear gap in our knowledge regarding
why extensive pretraining is effective. Answering
this question could lead to more efficient pretrain-
ing and ultimately reduce environmental costs and
make NLP more accessible. On the other hand,
there is a danger that our work, by projecting sub-
stantial gains in model performance by increasing
pretraining size, could legitimize and encourage
the trend of ever growing datasets.

Massive LMs also replicate social biases present
in training data (Nangia et al., 2020). By establish-

ing benchmarks for smaller LMs and highlighting
their efficacy for certain purposes, we hope to spur
future work that takes advantage of smaller pretrain-
ing datasets to carefully curate the data distribution,
as advocated by Bender et al. (2021), in order to
build LMs that do less to reproduce harmful biases
and are more inclusive of minority dialects.
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A Appendices

Task Batch Size Learning Rate validation interval Max Epochs

BoolQ {2,4,8} {1e-6, 5e-6, 1e-5} 2400 10

CB {2,4,8} {1e-5, 5e-5, 1e-4} 60 40

COPA {16,32,64} {1e-6, 5e-6, 1e-5} 100 40

RTE {2,4,8} {5e-6, 1e-5, 5e-5} 1000 40

WiC {16,32,64} {1e-5, 5e-5, 1e-4} 1000 10

Table 1: Hyperparameter search ranges for the SuperGLUE tasks. Our search ranges are largely based on those
used in Pruksachatkun et al. (2020).
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Human 88.6 97.5 90.0 87.3 83.9 92.2 85.0 86.9 97.0 84.9 88.1 86.6 90.9

5-gram 60.5 47.9 71.9 64.4 68.5 70.0 36.9 58.1 79.5 53.7 45.5 53.5 60.3
LSTM 68.9 91.7 73.2 73.5 67.0 85.4 67.6 72.5 89.1 42.9 51.7 64.5 80.1
TXL 68.7 94.1 69.5 74.7 71.5 83.0 77.2 64.9 78.2 45.8 55.2 69.3 76.0
GPT-2 80.1 99.6 78.3 80.1 80.5 93.3 86.6 79.0 84.1 63.1 78.9 71.3 89.0
BERTBASE 84.2 97.0 80.0 82.3 79.6 97.6 89.4 83.1 96.5 73.6 84.7 71.2 92.4
RoBERTaBASE 85.4 97.3 83.5 77.8 81.9 97.0 91.4 90.1 96.2 80.7 81.0 69.8 91.9
1B-1 82.3 97.7 80.7 77.3 80.7 95.8 91.6 83.1 92.5 69.7 79.9 68.7 89.4
1B-2 81.0 97.5 79.1 78.3 79.4 96.0 92.2 82.1 94.8 63.4 81.2 61.7 89.6
1B-3 82.0 98.6 79.3 78.5 77.2 95.3 91.2 83.1 94.8 66.5 82.6 70.5 89.5
100M-1 76.3 93.9 74.6 72.7 77.0 93.2 89.9 74.3 89.9 60.6 76.6 61.6 78.1
100M-2 79.7 97.2 79.1 75.4 79.6 94.5 91.6 78.8 92.7 63.0 77.2 64.7 87.5
100M-3 79.1 95.8 76.9 76.0 75.4 95.6 93.7 76.8 93.9 62.5 80.2 60.9 86.9
10M-1 72.0 88.0 70.3 74.0 70.3 90.0 83.7 66.8 89.6 51.5 71.3 62.9 74.5
10M-2 72.6 91.1 70.1 71.6 70.7 91.6 86.0 67.3 84.3 53.6 75.6 58.6 77.0
10M-3 71.4 91.4 71.1 71.4 66.4 90.5 85.3 65.8 91.3 46.8 69.1 62.3 81.1
1M-1 58.5 67.9 60.4 58.5 59.4 59.5 54.6 61.6 78.1 50.8 54.2 64.8 52.5
1M-2 58.5 66.0 60.0 57.8 58.8 61.1 55.7 61.5 78.6 48.7 55.0 65.5 54.2
1M-3 58.7 68.4 60.3 57.5 59.1 61.3 55.1 61.2 77.7 48.5 56.6 67.2 52.9

Table 2: BLiMP results. 5-gram, LSTM, TXL, GPT-2 scores come from Warstadt et al. (2020a). BERTBASE scores
come from Salazar et al. (2020).
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Figure 8: Our absolute edge probing dev set results (not normalized) compared to BERTLARGE test set results from
Tenney et al. (2019b).
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Figure 9: Our absolute SuperGLUE results (not normalized) compared to RoBERTaLARGE results from Liu et al.
(2019).


