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Abstract

Sampling from a log-concave distribution function is one core problem that has
wide applications in Bayesian statistics and machine learning. While most gradient
free methods have slow convergence rate, the Langevin Monte Carlo (LMC) that
provides fast convergence requires the computation of gradients. In practice one
uses finite-differencing approximations as surrogates, and the method is expensive
in high-dimensions.

A natural strategy to reduce computational cost in each iteration is to utilize
random gradient approximations, such as random coordinate descent (RCD) or
simultaneous perturbation stochastic approximation (SPSA). We show by a counter-
example that blindly applying RCD does not achieve the goal in the most general
setting. The high variance induced by the randomness means a larger number of
iterations are needed, and this balances out the saving in each iteration.

We then introduce a new variance reduction approach, termed Randomized Coordi-
nates Averaging Descent (RCAD), and incorporate it with both overdamped and
underdamped LMC. The methods are termed RCAD-O-LMC and RCAD-U-LMC
respectively. The methods still sit in the random gradient approximation framework,
and thus the computational cost in each iteration is low. However, by employing
RCAD, the variance is reduced, so the methods converge within the same number
of iterations as the classical overdamped and underdamped LMC [14, 12, 15]. This
leads to a computational saving overall.

1 Introduction

Monte Carlo Sampling is one of the core problems in Bayesian statistics, data assimilation [59],
and machine learning [1], with wide applications in atmospheric science [28], petroleum engineer-
ing [54], remote sensing [42] and epidemiology [43] in the form of inverse problems [49], volume
computation [70], and bandit optimization [66].

Let f(z) be a convex function that is L-gradient Lipschitz and y-strongly convex in R?. Define the
target probability density function p(x) o e~/, then p(x) is a log-concave function. To sample from
the probability distribution induced by p(x) amounts to finding an 2 € R? (or a list of {z? € R?})
that can be regarded as i.i.d. (independent and identically distributed) drawn from the distribution.

There is vast literature on sampling, and proposed methods fall into a few different categories. Markov
chain Monte Carlo (MCMC) [61] composes a big class of methods, including Metropolis-Hasting
based MCMC (MH-MCMC) [52, 35], Gibbs samplers [32, 9], Hamiltonian Monte Carlo [55, 24],
Langevin dynamics based methods [65] (including both the overdamped Langevin [58, 63, 13] and
underdamped Langevin [11, 47] Monte Carlo), and some kind of combination (such as MALA) [63,
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62, 25, 8]. Importance sampling and sequential Monte Carlo [34, 56, 17] framework and ensemble
type methods [59, 31, 38, 18, 19, 20] are also popular.

Different MCMC methods are implemented differently, but they share the essence, that is to develop
a Markovian transition kernel whose invariant measure is the target distribution, so that after many
rounds of iteration, the invariant measure is achieved. If the design of the transition kernel does not
involve V f or sense the local behavior of f, the convergence is slow [37, 36, 64, 51].

The Langevin Monte Carlo methods, both the overdamped or underdamped, can be viewed as special
kinds of MCMC that involve the computation of V f. The idea is to find stochastic differential
equations (SDEs) whose equilibrium-in-time is the target distribution. These SDEs are typically
driven by V f, and the Overdamped or Underdamped Langevin Monte Carlo (O/U-LMC) can be
viewed as the discrete-in-time (such as Euler-Maruyama discretization) version of the Langevin
dynamics (SDEs). Since V f leads the dynamics, fast converge is expected [14, 12, 15].

However, Vf is typically not available. In particular, if f is obtained from inverse problems
with an underlying governing differential equation describing the dynamics, as seen in the remote
sensing and epidemiology examples above, the explicit formula for V f is unknown. When this
happens, one usually needs to compute all partial derivatives, one by one, either by employing
automatic differentiation [3], or by surrogating with the finite-difference approximations 0; f ~
[f(z + ne') — f(z — ne)]/2n for every direction e’. This leads to a cost that is roughly d times
the number of required iterations. In high dimension, d >> 1, the numerical cost is high. Therefore,
how to sample with a small number of finite differencing approximations with a cost relaxed on d,
becomes rather crucial.

There are methods proposed to achieve gradient-free property, such as Importance Sampling (IS),
Ensemble Kalman methods, random walks methods, and various finite difference approximations
to surrogate the gradient. However, IS [34, 22, 23] has high variance of the weight terms and it
leads to wasteful sampling; ensemble Kalman methods [27, 5, 59, 31] usually require Gaussianity
assumption [18, 19]; random walk methods such that Metropolized random walk (MRW) [51,
63, 64], Ball Walk [44, 26, 45] and the Hit-and-run algorithm [4, 40, 46] cannot guarantee fast
convergence [69]; and to our best knowledge, modification of LMC with derivatives replaced by its
finite difference approximation [50] or Kernel Hilbert space [68] are not yet equipped with theoretical
non-asymptotic analysis.

1.1 Contribution

We work under the O/U-LMC framework, and we look for methods that produce i.i.d. samples with
only a small number of gradient computation. To this end, the contribution of the paper is twofolded.

We first examine a natural strategy to reduce the cost by adopting randomized coordinate descent
(RCD) [57, 72], arandom directional gradient approximation. This method replaces d finite difference
approximations in d directions, by 1 in a randomly selected direction. Presumably this reduces the
cost in each iteration by d folds, and hopefully the total cost. However, in this article we will show
that this is not the case in the general setting. We will provide a counter-example: the high variance
induced by the random direction selection process brings up the numerical error, and thus more
iterations are needed to achieve the preset error tolerance. This in the end leads to no improvement in
terms of the computational cost.

We then propose a variance reduction method to improve the application of RCD to LMC. We
call the method Randomized Coordinates Averaging Descent Overdamped/Underdamped LMC (or
RCAD-O/U-LMC). The methods start with a fully accurate gradient (up to a discretization error) in
the first round of iteration, and in the subsequent iterations they only update the gradient evaluation
in one randomly selected direction. Since the methods preserve some information about the gradient
along the evolution, the variance is reduced. We prove the new methods converge as fast as the
classical O/U-LMC [14, 12, 15], meaning the preset error tolerance is achieved in the same number
of iterations. But since they require only 1 directional derivative per iteration instead of d, the overall
cost is reduced. We summarize the advantage over the classical O-LMC and U-LMC in Table 1
(assuming computing the full gradient costs d times of one partial derivative). The dependence on the
conditioning of f is omitted in the table, but will be discussed in detail in Section 5.



In some sense, the new methods share some similarity with SAGA [16], a modification of SAG
(stochastic average gradient) [67]. These are two methods designed for reducing variance in the
stochastic gradient descent (SGD) framework where the cost function f has the form of ), f;.
Similar approaches are also found in SG-MCMC (stochastic-gradient Markov chain Monte Carlo
(SG-MCMOQ)) [47, 11, 30, 6, 7, 73, 10]. In their cases, variance reduction is introduced in the
selection of V f;. In our case, the cost function f is a simple convex function, but the gradient V f
can be viewed as Vf = >~ 9; fe’ and the variance reduction is introduced in the selection of ; fe'.

There are other variance reduction methods, such as SVRG [39] and CV-ULD [2, 10]. We leave the
discussion to future research.

Algorithm Number of iterations Number of 0f evaluations
O-LMC[14] O (d/e) O (d?/e)
U-LMC[12, 15] O (d'/?/e) O (d*/?/e)
RCAD-O-LMC O (d*?/e) O (d*%/e)
RCAD-U-LMC | O (max{d"/?/e*/3 d*/?/e}) | O (max{d*/?/e*/?,d'/?/})

Table 1: Number of iterations and directional derivative evaluations of f(z) to achieve e-accuracy. d

is the dimension. 6(f) =O(flog f). Ifg=O(flog f), then g < Cflog(f), where C is a constant
independent of f. For the overdamped cases, we assume the Lipschitz continuity for the hessian term.
Without this assumption, RCAD-O-LMC still outperforms O-LMC, as will be discussed in Section 5.

1.2 Organization

In Section 2, we discuss the essential ingredients of our methods: the random coordinate descent
(RCD) method, the overdamped and underdamped Langevin dynamics and the associated Monte
Carlo methods (O-LMC and U-LMC). In Section 3, we unify the notations and assumptions used in
our methods. In Section 4, we discuss the vanilla RCD applied to LMC and present a counter-example
to show it is not effective if used blindly. In Section 5, we introduce our new methods RCAD-O/U-
LMC and present the results on convergence and numerical cost. We demonstrate numerical evidence
in Section 6. Proofs are rather technical and are all left to appendices.

2 Essential ingredients

2.1 Random coordinate descent (RCD)

When explicit formula for V f is not available, one needs to compute the partial derivatives for all

r f(atne’) —f(z—ne')
2n

is the 4-th unit direction. Given enough smoothness, the introduced error is O(n?). For approximating

the entire V f, d such finite differencing evaluations are required, and it is expensive in the high

dimensional setting when d > 1. The cost is similarly bad if one uses automatic differentiation.

directions. One straightforward way is to use finite difference: 0, f () where e’

Ideally one can take one random direction and computes the derivative in that direction only, and
hopefully this random directional derivative reveals some information of the entire gradient V f. This
approach is used in both RCD [72, 60, 57] and SPSA [33, 41]. Both methods, instead of calculating
the full gradient, randomly pick one direction and use the directional derivative as a surrogate of V f.
More specifically, RCD computes the derivative in one random unit direction e” and approximates:

flx+ne") — flx—mne")
o e, ()

where r is randomly drawn from 1,2, - - - , d (see the distribution of drawing in [60]). This approxi-
mations is consistent in the expectation sense because

E, (d(Vf(z)-e")e")=Vf(x).

Vizxd(Vf(z)-e)e ~d

Here E is to take expectation.



2.2 Overdamped Langevin dynamics and O-LMC

The O-LMC method is derived from the following Langevin dynamics:
dX; = —Vf(X,) dt + V2dB;. 2)

The SDE characterizes the trajectory of X;. The forcing term V f(X}) and the Brownian motion term
dB; compete: the former drives X; to the minimum of f and the latter provides small oscillations.
The initial data X is a random variable drawn from a given distribution induced by ¢o(z). Denote
q(z,t) the probability density function of X, it is a well-known result that ¢(z, ¢) satisfies the
following Fokker-Planck equation:

Oiq=V-(Vfqg+Vq), with ¢(z,0)=qo, (3)

and furthermore, q(x,t) converges to the target density function p(z) = e~/ exponentially fast in
time [48].

The overdamped Langevin Monte Carlo (O-LMC), as a sampling method, can be viewed as a
discrete-in-time version of the SDE (2). A standard Euler-Maruyama method applied on the equation
gives:

o™ = 2™ — Vf(z™)h + V2hE™, 4)
where £™ is i.i.d. drawn from A(0, I;) with I; being the identity matrix of size d. Since (4)
approximates (2), the density of ™, denoted as p,,(x), converges to p(z) as m — oo, up to

a discretization error. It was proved in [14] that the convergence to € is achieved within O(d/¢)
iterations if hessian of f is Lipschitz. If hessian of f is not Lipschitz, the number of iterations increases

to 5(d /€2). In many real applications, the gradient of f is not available and some approximation is
used, introducing another layer of numerical error. In [14], the authors did discuss the effect of such
error, but they assumed the error has bounded variance.

2.3 Underdamped Langevin dynamics and U-LMC

The underdamped Langevin dynamics [11] is characterized by the following SDE:

{dXt:tht

, 5
dV; = —2Vidt — vV f(Xy) dt + /4y dB; ®

where v > 0 is a parameter to be tuned. Denote ¢(z, v, t) the probability density function of (X, V;),
then ¢ satisfies the Fokker-Planck equation

—v 0 O
0q=V- ({2v+’ny} ¢+ {O Q'y] Vq) ’
and under mild conditions, it converges to pz(z,v) = exp(—(f(z) +|v|?/2v)), making the marginal
density function for x the target p(x) [71, 21].

The underdamped Langevin Monte Carlo algorithm, U-LMC, can be viewed as a numerical solver
to (5). In each step, we sample new particles (z™*! v™m*l) ~ (Zm+l Zm+l) ¢ R24 where
(zm+1 Zzm+l) € R is a Gaussian random vector determined by (z™,v™) with the following
expectation and covariance:

2 2
EZMH = gme2h — % (1 — 672h) V™),
— % — 16_4]1 + B_Qh:| -1, Cov (Z;"H) = [1 — e_4h] Iq,

EZ',T+1 =™+ 1 (1 - 672h) ™ — 1 <h - % (1 - 62h)> vf(xm)7

(6)

Cov (Z""') =~ |h
ov ( ) =~ 1

Cov (zZ*h, Zh) = % [1+e M —2e72"] 1.

We here used the notation E to denote the expectation, and Cov(a, b) to denote the covariance of a

and b. If b = a, we abbreviate it to Cov(a). The scheme can be interpreted as sampling from the



following dynamics in each time interval:

t
thl‘m—F/ V,ds
0

. .

Vy=ovme 2 — %(1 —e )V f(z™) + \/4"/6_%/ e dB,
0

U-LMC does demonstrate faster convergence rate [12, 15] than O-LMC. Without the assumption

on the hessian of f being Lipschitz, the number of iteration is O(v/d/¢) to achieve ¢ accuracy. The
faster convergence on the discrete level could be explained by the better discretization solver instead
of faster convergence of the underlying SDEs. Indeed, without the Lipschitz continuity on the hessian
term, the discretizing of (5) produces O(h?) numerical error. In contrast, the discretization error

of (4)is O(h3/ 2). A third-order discretization was discussed for (5) in [53], further enhancing the
numerical accuracy. Similar to O-LMC, the method needs to numerically approximate V f (™). This
induces another layer of error, and also requires d times of evaluation of 3 f.

3 Notations

3.1 Assumption

We make some standard assumptions on f(z):
Assumption 3.1. The function f is p-strongly convex and has an L-Lipschitz gradient:

— Convex, meaning for any x,z' € R%:
fla) = f@) = V) (@ —a') > (u/2)|z — 2" Q)

— Gradient is Lipschitz, meaning for any x,z' € R9:
IVf(z) = V@) < Lz —a'|. ®)

If f is second-order differentiable, these assumptions together mean Iy < H(f) = LI; where H(f)
is the hessian of f. We also define condition number of f(z) as

k=L/p>1. )
We will express our results in terms of x and . Furthermore, for some results we assume Lipschitz
condition of the hessian too:
Assumption 3.2. The function f is second-order differentiable and the hessian of f is H-Lipschitz,
meaning for any x,z' € R%:

[H(f) (@) = H(f)(" )2 < Hlz — 2] (10)

3.2 Wasserstein distance

The Wasserstein distance is a classical quantity that evaluates the distance between two probability
measures:
1/p
Wy(p,v) = inf EX -Y|P ,
) = (L int, | BIX =)

where C (1, v) is the set of distribution of (X,Y) € R?? whose marginal distributions, for X and Y’
respectively, are ; and v. These distributions are called the couplings of i+ and v. Here y and v can
be either probability measures themselves or the measures induced by probability density functions p
and v. In this paper we mainly study Ws.

4 Direct application of RCD in LMC, a negative result

We study if RCD can be blindly applied to U-LMC for reducing numerical complexity. This is to
replace V f in the updating formula (4) for U-LMC by the random directional derivative surrogates (1).
The resulting algorithms are presented as Algorithm 1 in Appendix A.1.



RCD was introduced in optimization. In [60], the authors show that despite RCD computes only 1,
instead of d directional derivatives in each iteration, the number of iteration needed for achieving
e-accuracy is O(d/e), as compared to O(1/e) when the full-gradient is used (suppose Lipschitz
coefficient in each direction is at the same order with the total Lipschitz constant). The gain on the
cost is mostly reflected by the conditioning of the objective function f. This means there are counter-
examples for which RCD cannot save compared with ordinary gradient descent. We emphasize
that there are of course also plenty examples for which RCD significantly outperforms when f is
special conditioning structures [60, 57, 72]. In this article we would like to investigate the general
lower-bound situations.

The story is the same for sampling. There are examples that show directly applying the vanilla RCD
to U-LMC fails to outperform the classical U-LMC. One example is the following: We assume

0(2.0) = 7 @bl — /2= /2) pal) = o exp(—lal? /2~ bl 2).

where u € R? satisfies u; = 1/8 for all i. Denote {(z™,v™)} the sample computed through
Algorithm 1 (underdamped) with stepsize h. Let i) be extremely small and the finite differencing
error is negligible, and denote g,,, the probability density function of (z™,v™), then we can show
Wa(qm, p2) cannot converge too fast.

Theorem 4.1. For the example above, choose vy = 1, there exists uniform nonzero constant Cy such
that if d, h satisfy

1 1
d>2, h
s { 100(1+ C1)’ 1440%1} ’

d ¥
d | &R (1n
1024~ 2304

where W, = Wa(qY,p2), and q¥ (z,v) is the probability density function of m-th iteration of
RCD-U-LMC.

then
W, > exp (—2mh)

The proof is found in Section A.2. We note the second term in (11) is rather big. The smallness
comes from h, the stepsize, and it needs be small enough to balance out the influence from d*/2 > 1.
This puts strong restriction on h. Indeed, to have e-accuracy, W (g, p2) < €, we need both terms

smaller than ¢, and this term suggests that h < 25’3%6 at least. And when combined with restriction

from the first term, we arrive at the conclusion that at least O (d®/? /€) iterations are needed, and thus
O(d?/? /e) finite differencing approximation are required. The d dependence is d/2, and is exactly
the same as that in U-LMC, meaning RCD-U-LMC brings no computational advantage over U-LMC
in terms of the dependence on the dimension of the problem.

We emphasize that that large second term, as shown in the proof, especially in Section A.2 equation
(A.11), is induced exactly due to the high variance in the gradient approximation. This triggers our
investigation into variance reduction techniques.

5 Random direction approximation with variance reduction on O/U-LMC,
two positive results

The direct application of RCD induces high variance and thus high error. It leads to many more
rounds of iterations for convergence, gaining no numerical saving in the end. In this section we
propose RCAD-O/U-LMC with RCAD reducing variance in the framework of RCD. We will prove
that while the numerical cost per iteration is reduced by d-folds, the number of required iteration is
mostly unchanged, and thus the total cost is reduced.

5.1 Algorithm

The key idea is to compute one accurate gradient at the very beginning in iteration No. 1, and to
preserve this information along the iteration to prevent possible high variance. The algorithms for
RCAD-O-LMC and RCAD-U-LMC are both presented in Algorithm 1, based on overdamped and
underdamped Langevin dynamics respectively. Potentially the same strategy can be combined with
SPSA, which we leave to future investigation.



In the methods, an accurate gradient (up to a finite-differencing error) is used in the first step, denoted
by g = V f, and in the subsequent iterations, only one directional derivative of f gets computed and
updated in g.

Algorithm 1 Randomized Coordinate Averaging Decent O/U-LMC (RCAD-O/U-LMC)

Preparation:

1. Input: n (space stepsize); h (time stepsize); v (parameter); d (dimension); M (stopping index)

and f(x).

2. Initial: (overdamped): z°i.i.d. sampled from a initial distribution induced by qo () and calculate
0 d.

g° € R%:

f(2° + ne’) — f(2° — ne’)
2n
(underdamped): (z°,v°) i.i.d. sampled from a initial distribution induced by go(x, v) and calculate
¢° € R?% as in (12).
Run: Form =0,1,--- M
1. Draw a random number »™ uniformly from 1,2, --- ,d.
2. Calculate g™*' and flux F™ € R? by letting /"™ = g/ for i # r™ and
m f ™+ ’r]eTm B f ™ — nerm m m m m
gr"j_lz ( )277 ( )7 F =g +d(g +1_g ) : (13)

3. (overdamped): Draw £™ from N(0, I):

q? = 1<i<d. (12)

b

™ =™ — Fh 4 V2he™ . (14)

(underdamped): Sample (z™ 1 vm*1) ~ ZmHL = (Zm+L Zm+l) where Z™ ! is a Gaussian
random variable with expectation and covariance defined in (6), replacing V f (z™) by F™.

end

Output: {z™}.

5.2 Convergence and numerical cost analysis

We now discuss the convergence of RCAD-O-LMC and RCAD-U-LMC, and compare the results
with the classical O-LMC and U-LMC methods [14, 12]. We emphasize that these two papers indeed
discuss the numerical error in approximating the gradients, but they both require the variance of error
being bounded, which is not the case here. One related work is [10], where the authors construct
the Lyapunov function to study the convergence of SG-MCMC. Our proof for the convergence of
RCAD-O-LMC is inspired by its technicalities. In [12, 10], a contraction map is used for U-LMC,
but such map cannot be directly applied to our situation because the variance depends on the entire
trajectory of samples. Furthermore, the history of the trajectory is reflected in each iteration, deeming
the process to be non-Markovian. We need to re-engineer the iteration formula accordingly for tracing
the error propagation.

5.2.1 Convergence for RCAD-O-LMC

For RCAD-O-LMC, we have the following theorem:
Theorem 5.1. Suppose f satisfies Assumption 3.1-3.2 and h,n satisfy

1
h
<3

—_— h. 1
(1+9d)K?u’ m< (15)

Then Wg(q,On , D), the Wasserstein distance between q,On, the probability density function of the sample
x™ derived from Algorithm I (overdamped), and p, the target density function, satisfies

Waa,p) < exp(—phm/4)\/1+1/k2Wa(q§ ,p) + 2h/d*Cy + d2Cs . (16)
Here Cy = 7Tk, Co = H?/u? + 20K% + k3 u/d.



See proof in Appendix B. The theorem gives us the strategy of designing stopping criterion: to
achieve e-accuracy, meaning to have Ws (q,on7 p) < €, we can choose to set both terms in (16) less
than ¢/2, and it leads to:

1 €
h < min ,
- {3(1+9d)f€2u 4d3/2 Cl+CQ/d}
24/1+1/k2
M2;10g< V1+1/k Wz(QoJJ)) .
" €

and

This means the cost, also the number of df evaluations, is O(d®/2 /).

Note that the theorem here requires both Assumptions 3.1 and 3.2. We can relax the second
assumption. If so, the numerical cost of degrades to O(max{d®/?/e,d/e*}), whereas the cost of
O-LMC is O(d?/€?). Our strategy still outperforms. The proof is the same, and we omit it from the
paper.

5.2.2 Convergence for RCAD-U-LMC

For RCAD-U-LMC, we have the following theorem.

Theorem 5.2. Assume f(x) satisfies Assumption 3.1, and set v = 1/ L, then there exists a uniformly
constant D > 0 such that if h, n satisfy

1 1
100(1 + D)r’ 1648kd

hgmin{ } n<h?, (17)

then Wy (qY, , p2), the Wasserstein distance between the distribution of the sample (x™,v™), derived
from Algorithm I (underdamped), and distribution induced by p> (whose marginal density in x is p)
decays as:

Wa(dp, p2) <4vV2exp(—hm/(8k))Wa(gg , p2)

. (18)
+ 600+/h3d* /1 + 200+/kh2d/ i + 350V khd2

See proof in Appendix C. To achieve e-accuracy, meaning to have Wo(qY , p2) < €, we can choose
all terms in (18) less than €/4. This gives:

2/31/3 ept/? 2/5 1 1
(2400)2/344/3" 800k1/2d1/2" (1400)2/5K1/5d2/5" (14 D)r’ 1648kd

h < min {

and thus the stopping index needs to be:

U
M Z %log (16\/§W2(q0 7p2)> .

€

This means O (max {d*/3 /*/3,d'/? /¢}) evaluations of D f.

6 Numerical result

We demonstrate numerical evidence in this section. We first note that it is extremely difficult to
compute the Wasserstein distance between two probability measures in high dimensional problems,
especially when they are represented by a number of samples. The numerical result below evaluates a
weaker measure:

1 & :
Error = N ; Pz —Ey(9)| (19)

where ¢ is the test function. {1}V are N different samples iterate till M-th step, and p is the
target distribution.



In the first example, our target distribution is N'(0, ;) with d = 1000, and in the second example we

use
d d
|z; — 2/ |z + 2|
p(x) o< exp (— Zl — +exp | — E_l — |-

The initial distributions, for the overdamped and underdamped situations respectively, are A(0.5, 1)
and N(0.5, I54) in both exampes. We run both RCD-O/U-LMC and RCAD-O/U-LMC using
N = 5 x 10° particles and test MSE error with ¢(x) = |z1|? in both examples. In Figure 1 and
Figure 2 respectively we show the error with respect to different stepsizes. In all the computation, M
is big enough. The improvement of adding variance reduction technique is obvious in both examples.

2 :
\ <RCD-U-LMC
25 o5l \ RCAD-U-LMC
\
-3+ 3k \ -
5 5
o £
585 585 Slope=-1.1 -
g g
4t s \\ Slope = -2.8 -
\
45 a5l \ -
5 N 5 X
) 8.5 9 9.5 10 10.5 7 7.5 8 8.5 9 95 10
log(1/h) log(1/h)

Figure 1: Example 1. Decay of Error of O-LMC (left) and U-LMC (right) with and without RCAD.

2 ‘ ‘ ‘ ‘ "~RCD-O-LMC a ‘ ‘ ‘ ~RCD-U-LMC
M RCAD-O-LMC sl RCAD-U-LMC

Slope=-1

Slope=-1

log of Error
log of Error

. h 35 \
1.8
at ope \
4 N\
N\
a5 . . . RN . . s . . : . .
9.8 10 102 104 106 108 11 112 114 6.5 7 75 8 8.5 9 95

log(1/h) log(1/h)

Figure 2: Example 2. Decay of Error of O-LMC (left) and U-LMC (right) with and without RCAD.

7 Conclusion and future work

To our best knowledge, this is the first work that discusses both the negative and positive aspects
of applying random gradient approximation, mainly RCD type, to LMC, in both overdamped and
underdamped situations without and with variance reduction. Without variance reduction we show
the RCD-LMC has the same numerical cost as the classical LMC, and with variance reduction, the
numerical cost is reduced in both overdamped and underdamped cases.

There are a few future directions that we would like to pursue. 1. Our method, in its current version, is
blind to the structure of f. The only assumptions are reflected on the Lipschitz bounds. In [60, 57, 29]
the authors, in studying optimization problems, propose to choose random directions according to the
Lipschitz constant in each direction. The idea could potentially be incorporated in our framework to
enhance the sampling strategy. 2. Our algorithms are designed based on reducing variance in the
RCD framework. Potentially one can also apply variance reduction methods to improve SPSA-LMC.
There are also other variance reduction methods that one could explore.

8 Broader Impact

The result provides theoretical guarantee to the application of random coordinate descent to Langevin
Monte Carlo, when variance reduction technique is used to reduce the cost. It has potential application



to inverse problems emerging from atmospheric science, remote sensing, and epidemiology. This
work does not present any foreseeable societal consequence.
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