
A Structure Which Cannot Be Effectively Recovered
from Its Back-And-Forth Tree

July 27, 2020

1 Introduction

Two structures A and B are back-and-forth equivalent if there is a relation ∼ on finite tuples
from A and B such that ∅ ∼ ∅ and for every ā ∼ b̄:

� ā and b̄ have the same atomic type,

� for all a′, there is b′ such that āa′ ∼ b̄b′,

� for all ab′, there is a′ such that āa′ ∼ b̄b′,

For simplicity, assume for now that the language is finite. It is well-known that two countable
structures which are back-and-forth equivalent are actually isomorphic.

One can construct from a structure A a labeled tree which represents the back-and-forth
type of that structure.

Definition 1.1. Fix an infinite set L of labels which we put in an effective bijection with
atomic types. Define the back-and-forth tree T (A) of a structure A as follows: the nodes
of T (A) are the finite tuples from A; the extension relation is the extension of tuples; each
tuple is labeled with (a code for) its atomic type.

One can view this labeled tree as a structure in the language of trees (with a parent-of
function) together with a unary relation for each label. Two structures have isomorphic
back-and-forth trees if and only if they are back-and-forth equivalent. So the back-and-forth
tree of a countable structure encodes the isomorphism type of the structure:

A ∼= B ⇐⇒ T (A) ∼= T (B).

Thus T witnesses that labeled trees are Borel complete. In fact, this is essentially the same
argument that Friedman and Stanley [FS89] used to show that trees (without labels) are
Borel complete; the only remaining step is to turn a labeled tree into a tree. In Section 4
we will show in general that every labeled tree is uniformly effectively bi-interpretable with
a tree without labels.

From a copy of A, one can compute T (A), and we know that T (A) determines the
isomorphism type of A. The main question of this paper is whether it is possible to compute
a copy of A given a copy of T (A). That is, given knowledge about the back-and-forth type
of a structure, can we compute a copy of the structure? We will show that the answer is no:

1

Theorem 1.2. For any computable ordinal α, there is a structure A such that T (A) has a
computable copy but A itself has no ∆0

α copy.

So in fact, one cannot recover a copy of A from T (A) even with any number of jumps. We
will prove this theorem for α = 1 in Section 6 and then obtain the full theorem as a corollary
in Section 8. The construction is quite difficult and uses new techniques that have promise
for further applications.

While answering a question that is interesting in its own right, this theorem also casts
light on a number of other interesting questions in computable structure theory. As we will
argue below, most constructions in computable structure theory of a structure with some
property are of such a flavour that they transfer to the back-and-forth tree, and so the back-
and-forth tree has that property as well. Theorem 1.2 says that computable structure theory
is much deeper; there can be a complexity in the structure as a whole that cannot be seen
from its back-and-forth type.

1.1 Coding information

We say that a structure A codes a set X ⊆ ω if every copy of A enumerates X. If A codes
X, then in fact there is a tuple ā ∈ A such that the existential type of ā can enumerate X
[Kni86, Theorem 1.4] (see also [AK00, Theorem 10.17]). This information is also contained
in the back-and-forth tree of A: there is a node in T (A) representing the tuple ā, and the
existential type of ā can be enumerated by searching through extensions of that node. So A
codes X if and only if T (A) codes X, that is, a structure and its back-and-forth tree code
the same sets.

More generally, let F be a family of subsets of ω. We say that A codes F if every
copy of A enumerates F though possibly in a different order. An enormous number of
results in computable structure theory have been proved by coding a family of sets into the
existential types realized by a structure. For example, Slaman [Sla98] and Wehner [Weh98]
independently showed that there is a structure with no computable copy, but with a copy
computable in all non-computable degrees; Wehner’s construction explicitly builds a family
of subsets of ω which can be enumerated exactly by the non-computable degrees and then
codes these into the existential types of the structure, while in Slaman’s construction such a
family can easily be extracted from the existential types.

But once again, the back-and-forth tree can see the existential types realized in the
structure, and so if the structure codes a family in such a way, then the back-and-forth tree
does as well. As a corollary of Theorem 1.2, we see that there are structures which code
families of sets without coding them into the existential types.

Corollary 1.3. Let {Θe : e ∈ ω} be the standard computable enumeration of all enumeration-
operators. There is a computable structure A and a family F of subsets of ω which is
enumerated by all copies of A for which there do not exist a tuple ā ∈ A<ω and a uniformly
computable list of Σ1 formulas ϕ`(x̄, ȳ) such that

F = {Θ`(Σ1-tpA(ā, b̄)) : l ∈ ω, b̄ ∈ A<ω, A |= ϕ`(ā, b̄)}.

More generally, one could code information into the Σα types of a structure for any α.
But the back-and-forth tree has access to all of this as well, and so one can view Theorem

2

1.2 as saying that it is possible to code information into a structure without coding it via
types. Instead, the information is coded into the difficulty of amalgamating types, which is
a much less straightforward way of coding information.

See Section 7 for more discussion of enumerating familities, and for the proof of the above
corollary.

1.2 Universality and degree spectra of trees

Informally, we say that a class C of structures is universal if for any structure of any sig-
nature, there is a structure is C that has the same computability-theoretic properties such
as the same degree spectrum, the same computable dimension, etc. More formally, we can
ask that the two structures be effectively bi-interpretable, which implies that they have the
same computability-theoretic properties. Many classes of structures—graphs, groups, rings,
and fields—have been shown to be universal. Other classes of structures—linear orders,
boolean algebras, torsion-free abelian groups, real closed fields—are known not to be uni-
versal. Usually in these cases, there is some specific computability-theoretic property that
cannot be realized in the class. For example, if a boolean algebra has a low copy, then it has a
computable copy, and so there is no boolean algebra with Slaman-Wehner degree spectrum.

The case of trees is different however. Trees are not universal in the sense that there
are structures which are not bi-interpretable with any tree, but the issue is with the auto-
morphism groups and not with any computability-theoretic property. We will discuss this
in more detail in Section 2. In fact, we do not know of any purely computability-theoretic
property that can be realized in some structure, but not in a tree. This is because trees can
code sets, families, families of families, and so on, into their existential types, and so any
example that is constructed in such a way—which, after looking through the literature and
many conversations with other experts in the field, seems all of the known examples—can be
replicated by a tree. So for example there is a tree with each possible computable dimension,
there is a tree with Slaman-Wehner degree spectrum, and there is a tree which is computably
categorical but not relatively computably categorical. We will discuss such examples in more
detail in Section 3.

This is an undesirable situation, because what we really care about is the informal notion
of universality: is it true that for every structure of any signature, there is a tree with the
same computability-theoretic properties? The formal notion involving bi-interpretability is
just an attempt to capture this informal notion. So when we show that a class of structures
is not universal, we really want to exhibit some particular computability-theoretic property
that cannot be realized in that class.

For trees, the best approach seems to be by looking at degree spectra.

Question 1.4. Is every degree spectrum the degree spectrum of a tree?

What we are looking for is a way of transforming a structure into a tree, and the back-
and-forth tree construction is the obvious thing to try. In Section 4, we show that given
a structure A, there is a tree without labels that has the same degree spectrum (in fact is
effectively bi-interpretable with) the back-and-forth tree T (A). So if A and T (A) had the
same degree spectrum, then this question would have a positive answer.

3

But Theorem 1.2 says exactly the opposite, and so this attempt to answer the question
fails. And as the back-and-forth tree seems like the best transformation of a structure into
a tree that one could hope for, we conjecture that the answer is negative: there is a degree
spectrum which is not the degree spectrum of a tree. Answering this question would tell use
something new and very interesting about degree spectra.

1.3 Linear orders

Frideman and Stanley [FS89] also proved that linear orders are Borel complete. Recall that
this means that for each fixed language, there is a Borel operator Φ that takes a structure
A to a linear order Φ(A) such that

A ∼= B ⇐⇒ Φ(A) ∼= Φ(B).

Their operator Φ is in fact computable and can be defined as the composition of the back-
and-forth tree operator T and the following operator L.

Definition 1.5. Let T be a labeled tree. Define L(T) recursively as follows: L(T) is the
shuffle sum of Q+ `(σ) + 2 +Q+ L(Tσ) for all children σ of the root node, where Tσ is the
subtree of T below σ and `(σ) is the (integer code for) the label of σ.

So the Friedman-Stanley operator is Φ = L ◦ T . We conjecture that:

Conjecture 1.6. For each computable ordinal α, there is a structure A such that Φ(A) is
computable but A has no ∆0

α copy.

2 Trees and Universality Under Bi-Interpretability

In this section we will show that trees are not universal under effective bi-interpretability. Ef-
fective interpretations were first introduced by Montalbán [Mon13a] but they are essentially
the same as the parameterless version of the well-studied notion of Σ-reducibility which was
introduced by Ershov [Ers96]. The elementary first-order definitions of a model-theoretic
interpretation are now replaced by effective ∆c

1 definitions, and the interpretation is allowed
to use tuples of arbitrary sizes.

Definition 2.1. An effective interpretation of A = (A,PA0 , P
A
1 , . . .) in B consists of:

� a ∆c
1-definable subset DomBA ⊆ B<ω,

� a ∆c
1-definable equivalence relation ∼ on DomBA,

� a sequence of uniformly ∆c
1-definable sets Ri ⊆ (DomBA)k, where k is the arity of Pi,

which respect ∼,

� a surjective map fBA : DomBA → A which induces an isomorphism

fBA : (DomBA/ ∼;R0/ ∼, R1/ ∼, . . .)→ A.

4

Two structures A and B are effectively bi-interpretable if they are each effectively in-
terpretable in the other, and moreover, the composition of the interpretations—i.e., the
isomorphisms which map A to the copy of A inside the copy of B inside A, and B to the
copy of B inside the copy of A inside B—are definable.

Definition 2.2. Two structures A and B are effectively bi-interpretable if there are effective
interpretations of A in B and of B in A such that the compositions

fAB ◦ f̃BA : Dom
(DomB

A)
B → B and fBA ◦ f̃AB : Dom

(DomA
B)

A → A

are ∆c
1-definable in B and A respectively.

Two structures which are effective bi-interpretable share essentially all the same computability-
theoretic properties (see [Mon14, Lemma 5.3]). Moreover, two structures which are bi-
interpretable have the same automorphism group. We can use this fact to show that there
are structures which are not bi-interpretable with any tree, and so trees are not universal.

Proposition 2.3. The linear order (Z, <) is not bi-interpretable with any tree.

Proof. The automorphism group of (Z, <) is the additive group Z. We will argue that Z
is not the automorphism group of any tree; since structures which are bi-interpretable have
the same automorphism groups, this shows that (Z, <) is not automorphic to any tree.

Suppose to the contrary that T is a tree with automorphism group Z. Fix an automor-
phism f which generates this automorphism group. Let σ ∈ T be such that f(σ) 6= σ, but
such that f fixes the parent τ of σ. Let σ′ = f(σ). The subtree Tσ below σ must be isomor-
phic to the subtree Tσ′ below σ′. Then T has an automorphism g which maps σ to σ′ and σ′

to σ (and mapping Tσ to Tσ′ and vice versa using the isomorphism between these subtrees),
but which fixes every other node. This map g has order 2, contradicting the assumption
that T has automorphism group Z.

3 Trees and Enumerating Families

Even though there structures that are not bi-interpretable with any tree, in this section we
will show how to construct trees realizing many different computability-theoretic properties
by coding families of sets into trees.

We begin with a couple of standard definitions about enumerating families.

Definition 3.1. Let F be a countable family of subsets of ω. A set W is an enumeration of
a family F if F = {W [i] : i ∈ ω}, where W [i] = {j | 〈i, j〉 ∈ W} is the ith column of W .

We say that X enumerates F if there is an enumeration W of F which is c.e. in X. For
α a computable ordinal, we say that X Σ0

α-enumerates F if there is an enumeration of F
which is Σ0

α in X.

Definition 3.2. Two enumerations U and W of a family F are computably equivalent if
there is a computable permutation f of ω such that W [f(i)] = U [i].

It is not hard to code a family F into a tree T (F) so that every enumeration of F
computes a copy of T (F), and a copy of T (F) can enumerate F .

5

Definition 3.3. For a set W ⊆ ω, let T (W) be isomorphic to the following subtree of ω<ω:

{∅} ∪ {n0m : m ≤ n ∈ W} ∪ {n0n0 : n ∈ W} ∪ {n0n1 : n ∈ W}.

Let T (F) by the tree with a root node, whose children are the roots of subtrees T (W) for
W ∈ F .

For example, for W = {1, 2, 5}, T (W) is the following tree:

We can easily enumerate W from T (W), and compute a copy of T (W) from an enumeration
of W (though the domain might not be an intial segment of ω). Thus an enumeration of F
computes a copy of T (F), and a copy of T (F) can enumerate F .

We will now consider a number of construction which proceed by coding a family into a
structure. Consider for example the result of Slaman [Sla98] and Wehner [Weh98] that there
is a structure whose degree spectrum is exactly the non-computable degrees. The following
theorem is explicit in Wehner’s proof, and Slaman mentions that it follows easily from his
proof:

Theorem 3.4 (Slaman [Sla98] and Wehner [Weh98]). There is a family F which can be
enumerated by exactly the non-computable sets.

Taking this family F and building T (F), we immediately obtain:

Corollary 3.5. There is a tree which has a computably copy in every non-computable degree,
but no computable copy.

So there is a tree with Slaman-Wehner degree spectrum.
We can do the same for a number of other results. We will give two more examples of

a computable tree with finite computable dimension greater than 1, and of a computable
tree which is computably categorical, but not relatively computably categorical. The orig-
inal constructions of structures with both of these properties proceeded explicitly through
construction a family of sets.

6

Theorem 3.6 (Goncharov [Gon80]). For each n, there is a family F that has exactly n
enumerations up to computable equivalence.

Corollary 3.7. For each n, there is a computable tree of computable dimension n.

Theorem 3.8 (Badaev [Bad77], Selivanov [Sel76], Goncharov [Gon77]). There is a family
F that has one enumeration up to computable equivalence, but for some X, multiple non-X-
equivelent X-enumerations.

Corollary 3.9. There is a tree which is computably categorical but not relatively computably
categorical.

We will not give a formal construction, but we can even generalize the ideas of this section
to families of families, and so on. So any such construction can be replicated by a tree, and
this includes constructions using marker extensions etc., and in fact we do not know of a
construction which cannot be emulated by a tree in this way.

4 Back-and-forth Trees

We will now describe the construction of the back-and-forth tree of a structure. Recall that
this was implicit in work of Friedman and Stanley [FS89]. The construction is simpler in the
case of structures which have only finitely many relations of each arity, but a standard trick
allows us to transform any structure into a structure of this type, e.g. by replacing an n-ary
relation R by an m+ n-ary relation S satisfying S(x̄, ȳ)⇐⇒ R(x̄).

Definition 4.1. Let L be a set of infinitely many unary relations ` called labels. A labeled
tree is a tree T such that each node of T has exactly one label.

The Friedman-Stanley construction did not make the labels explicit, but rather coded
them directly into the tree. Any labeled tree can be coded into a tree without labels.

Proposition 4.2. For every labeled tree T , there is a tree S = S(T) such that S and T are
effectively bi-interpretable.

Proof. Let (`s)s∈ω be an enumeration of the labels L. Given σ ∈ T , let Tσ be the subtree of
T with root σ. For each node σ ∈ T with label `s and children (τi)i∈I , we will define a tree
S(Tσ) using in its construction subtrees S(Tτi):

7

... s nodes

S(Tτi1) S(Tτi2) S(Tτi3)

· · ·

Given a copy of T , it is easy to see how to build a copy of S(T). Given a copy S∗ of S(T),
one builds a copy T ∗ of T as follows. The nodes of T ∗ at level n will be the nodes σ of
S∗ which are at level 2n and such that for all k < n, σ�2k has a child which itself has two
children, and this child is not σ�2k+1. The extension relation will be the same in S∗ as it was
in T ∗ (so that σ is the parent of τ in T ∗ if and only if σ is the parent of the parent of τ in
S∗). The labels can be recovered as follows. Given σ ∈ T ∗, find the child τ of σ in S∗ which
itself has two children. One of the children ρ of τ itself has a child. Count the number s of
children of children of ρ until we find some node below ρ which has two children. Then σ is
labeled `s.

The back-and-forth tree is defined as follows:

Definition 4.3 (Friedman-Stanley [FS89]). Let A be a structure. Define the labeled tree
T (A) as follows. The nodes of T (A) are the tuples from A. The extension relation is the
extension of tuples. Label each tuple with (a code for) its atomic type.

The back-and-forth tree is an isomorphism invariant.

Proposition 4.4. Two structures which have isomorphic back-and-forth trees are isomor-
phic.

Proof. The isomorphism between the back-and-forth trees induces a map f : A<ω → B<ω
such that:

� f(∅) = ∅,

� for each tuple ā ∈ A and element a′ ∈ A, f(āa′) = f(ā)b for some b ∈ B,

� for each ā ∈ A, f(ā) is has the same atomic type as ā.

8

We will define an isomorphism g : A → B using a back-and-forth construction. Begin by
picking the first element a0 ∈ A and define g(a0) = b0 = f(a0). Then let b1 be the first
element in B not yet chosen, and let a1 be such that f(a0a1) = b0b1. Define g(a1) = b1. Then
let a2 be the first element of A not yet chosen, and define g(a2) = b2 where b2 is such that
f(a0a1a2) = b0b1b2. Continuing in this way, we define an isomorphism g.

There is a natural map f : T (A) → A<ω which takes a node of T to the corresponding
tuple of A. This map has the property that it takes a node to a tuple whose atomic type
corresponds to the label of the node. Though it is the canonical such map, it is not the
only such map; and moreover, if T is a labeled tree isomorphic to T (A), then there is no
canonical such map T → A<ω. We call such a map a pseudo-isomorphism.

Definition 4.5. Let A be a structure and let T be a tree labeled with atomic types of A.
An embedding f : T → A<ω is a pseudo-embedding if:

� f maps the root node of T to the empty tuple,

� whenever τ is a child of σ, there is a ∈ A such that f(τ) = f(σ)ˆa,

� each σ ∈ T is labeled with the atomic type of f(sigma).

We say that f is a pseudo-isomorphism if it is also surjective.

It is easy to see that if there is a pseudo-isomorphism f : T → A<ω then T is isomorphic
to the back-and-forth tree of A.

Proposition 4.6. If T is a tree, then DgSp(T) = DgSp(T (T)).

Proof. It is clear that DgSp(T) ⊆ DgSp(T (T)) as each copy of T computes a copy of T (T).
We claim that each copy of T (T) computes a copy of T .

Note that T is isomorphic under a natural identification to the subtree of T (T) consisting
of those tuples a1, . . . , an where a1 is a child of the root node, a2 is a child of a1, and so
on. This subtree is Σ1-definable in T (T) because the atomic type of a1, . . . , an determines
whether this is true. It follows that each copy of T (T) computes a copy of T .

Later we will use the fact that if we have a disjoint union of structures, we can compute the
back-and-forth tree of the disjoint union from the back-and-forth trees of each component.

Lemma 4.7. Let A be the disjoint union of Ai. Suppose that T (Ai) has a computable copy
uniformly in i. Then T (A) has a computable copy.

Proof. TODO

5 Marker extensions

5.1 ∆α Marker extensions

We use the Marker extensions described in []. Let α ≥ 1 be a computable successor ordinal.
Fix computable structures B0 and B1 in the same relational language such that:

9

1. the pair {B0,B1} is α-friendly,

2. B0 and B1 satisfy the same Σβ sentences for β < α,

3. each of B0 and B1 satisfies a computable Σα sentence that the other does not.

Such structures exist; see [].
Given a structure A, define the Σα Marker extension AΣα of A as follows. Let {Ri : i ∈ I}

be the language of A, with Ri of arity ai. The domain of AΣα is A ∪
⋃
i∈I Ui where A is the

domain of A and the Ui are disjoint infinite sets. AΣα has unary relation PA and Pi picking
out A and Ui respectively. For each i there is also an ai + 1-ary relation Qi assigning to each
ai-tuple ū an infinite set Ui,ū, with v ∈ Ui,ū if and only if Qi(ū, v). The sets Ui,ū are infinite
and partition Ui. For each i and ū ∈ Aai , Ui,ū is the domain of a structure Ui,ū which is
isomorphic to either B0 or B1, with Ui,ū ∼= B0 if A |= Ri(ū), and Ui,ū ∼= B1 otherwise.

Then we have:

Lemma 5.1 (See Lemma 5.5 of []). Let α be a computable successor ordinal and let A be a
structure. Then A has a ∆0

α copy if and only if A∆α has a computble copy.

We can also prove a similar fact about the back-and-forth trees of a structure.

Lemma 5.2. Let A be a structure and suppose that T (A) has a ∆α copy. Then T (A∆α)
has a computable copy.

Proof. TODO

5.2 Σα Marker extensions

Let α ≥ 1 be a computable successor ordinal, though we will only need the case α = 1. Fix
computable structures B0 and B1 in the same relational language such that:

1. the pair {B0,B1} is α-friendly,

2. B0 ≤α B1 (B0 satisfies every Σα formula satisfied by B1)

3. B0 satisfies some computable Σα sentence that B1 does not.

Such structures exist; for example, for α = 1, we can take B0 and B1 to be infinite structures
in a language with a single unary relation P , and have B0 have a single element satisfying
P , while B1 has no elements satisfying P . Define AΣα in the same way that we defined
A∆α , except using the new B0 and B1. We sometimes write A∃ for AΣ1 . We can prove the
corresponding lemmas.

If A is a structure, a Σα copy of A is one in which the relations are Σ0
α. Note that such

a copy is automatically ∆0
α+1.

Lemma 5.3 (See Lemma 5.5 of []). Let α be a computable successor ordinal and let A be a
structure. Then A has a Σ0

α copy if and only if AΣα has a computble copy.

10

Proof. If AΣα has a computable copy, then it is not hard to make a Σ0
α copy of A; given ū

and Ri, have A |= Ri(ū) if and only if Ui,ū ∼= B0, and this is Σ0
α. (We use here the fact that

B0 satisfies a computable Σα sentence that B1 does not.)
For the other direction, if A has a Σ0

α copy, we can use the uniform version of the following
fact (see ??) to build a computable copy of AΣα : For any Σ0

α set S, there is a uniformly
computable sequence (Cn)n∈ω such that Cn ∼= B0 if n ∈ S, and Cn ∼= B1 otherwise.

Lemma 5.4. Let A be a structure and suppose that T (A) has a Σα copy. Then T (AΣα) has
a computable copy.

Proof. TODO

6 Main Result

In this section, we will prove the main result of this paper.

Theorem 6.1. There is a structure A with no computable copy such that T (A) has a com-
putable copy.

The proof is quite involved and will extend over the rest of this section. We build A as
the disjoint union of structures An, with An satisfying a unary relation Rn. We will make
sure that An is not isomorphic to the structure with domain Rn in the nth computable
structure. Thus A will have no computable copy. T (An) will have a computable copy which
is computable uniformly in n, and so by Lemma 4.7, T (A) will have a computable copy.

Fix n for which we will define A = An which is not isomorphic to B, the structure
with domain Rn in the nth (possibly partial) computable structure. The language of A will
consist of infinitely many unary relations called labels and infinitely many n-ary relations for
each n. The relations R will be relations on unordered tuples. We’ll consider these relations
to all be c.e. relative to a presentation of A. Similarly, we will consider the trees to have
c.e. labels. The actual structure will be an existential Marker extensions of these relations;
Lemmas 5.3 and 5.4 show that this all works out.

We will build A as a limit of a computable sequence of finite structures on increasing
domains. The construction will proceed by stages, each divided into at least three, but
possibly more, steps. At stage s, step t, we will define As,t. At each stage s and step t,
after defining As,t, we wait for an i such that Bi is isomorphic to As,t. If there is no such
stage, then we just put A = As,t and win; in this case, there are only finitely many stages
of the construction. If the construction lasts for infinitely many stages, then there will be
a sequence s0 ≺ s1 ≺ s2 ≺ · · · of true stages, and we will have A =

⋃
si
Asi,0 as a nested

union. When describing the construction we will generally assume that for each stage s and
step t a value i as above exists, and write Bs,t for Bi; note that the Bs,t are nested, with B
being their union. It is this asymmetry—that the opponent must produce nested structures
while we do not—that we will exploint to make A not isomorphic to B; however, we will
still have to show that a copy of T (A) is computable uniformly, whether there are finitely
or infinitely many stages of the construction, and so we are actually quite restricted in what
we can do.

11

To the stage s we associate a number n(s). The true stages are those stages s for which,
for every t ≥ s, n(t) ≥ n(s). If s ≤ t, then t believes s if for all s < s′ < t, n(s′) ≥ n(s). If
t believes s, then if t is a true stage then s must be a true stage. Write s � t if t believes
s. It will always be the case that n(s+ 1) = n(s) + 1 or n(s+ 1) < n(s); the value of n can
never stay the same from one stage to the next, or increase by more than one.

To show that T (A) is computable, we will build a computable sequence of labeled trees
Ts,t, each isomorphic to the corresponding T (As,t), and such that

T0,0 ⊆ T0,1 ⊆ T0,2 ⊆ · · · ⊆ T1,0 ⊆ T1,1 ⊆ · · · ⊆ T2,0 ⊆ · · · .

Since the As,t are not nested, it is not true that

T (A0,0) ⊆ T (A0,1) ⊆ T (A0,2) ⊆ · · · ⊆ T (A1,0) ⊆ T (A1,1) ⊆ · · · ⊆ T (A2,0) ⊆ · · ·

under the natural inclusion of their domains; so the structure A will have to be constructed
carefully to ensure that the Ts,t are nested. The tree T which is the union of the Ts,t is
computable, but we must argue that it is actually isomorphic to T (A). To see this, we will
also keep track of pseudoisomorphisms gs,t : Ts,t → As,t and try to ensure that g = lim gs,0 is
a pseudoisomorphism T → A. To make sure that this happens, during the construction we
will make sure that if s � s′ then gs′,0 does not change too much from gs,0; more precisely:

� if s � s′ and n(s) = n(s′) then gs,0 ⊆ gs′,0; and

� if s � s′ and n = n(s) < n(s′) then gs,0 and gs′,0 agree on all nodes of Ts,0 of height
≤ n.

Then there are three cases to consider:

1. There are only finitely many stages. If s and t are the last stage and step, then A = As,t
and T = Ts,t ∼= T (As,t) so we are done.

2. There is n such that for some s0, for all true stages s ≥ s0, n(s) = n. In this case,
g =

⋃
true s≥s0 gs,0 is a nested union.

3. There is no bound on n(s) for s a true stage. Then the gs,0 come to a limit g defined
as follows. For σ ∈ T , g(σ) = gs,0(σ) where s is any true stage which is sufficiently
large that σ ∈ Ts,0 and n(s) > |σ|. This g is a pseudoisomorphism T → A.

See Lemma 6.8 for the details.

At each stage s and step t, every element of As,t will have a label ` which holds of
that element and no other element. We call this ` the (s, t)-distinguishing label of a (or
the s-distinguishing label is t = 0); as the notation implies, the distinguishing label of a
particular element of A will change over time. At each stage s and step t, we will also have
certain elements which are designated as killed. What this means is that these elements will
never again be given a new label, and they will keep the same distinguishing label. Once
an element is killed it will remain killed from then on, even if it became killed at a non-true
stage.

At stage s, let n = n(s) and let t0 ≺ t1 ≺ t2 ≺ · · · ≺ tn = s be the previous stages
believed by s such that ti is the least stage with n(ti) = i. The elements of As,0 will consist
of:

12

� c,

� a1, . . . , an,

� for each 1 ≤ i < n, a′1,ti , . . . , a
′
i,ti

for each i, and

� killed elements.

These elements are all distinct. Over the course of stage s, we will introduce elements c′s and
a′1,s, . . . , a

′
n,s. If n(s+ 1) = n(s) + 1, so that s is a true stage, then we will have an+1 = c′s.

These values are dependent on the stage. If s � t, then t agrees with all of the values
defined at stage s; but a stage s with n = n(s) which is not a true stage may define an value
for an which is later cancelled (that element becoming killed) when we find out that s is not
a true stage, and a later stage t with n = n(t) may then redefine an as a new element. All
true stages agree on the values of these elements.

Suppose that the construction has infinitely many stages; we must argue that A is not
isomorphic to B. The element c ∈ A will be special: we will ensure that B does not have an
element isomorphic to it. Because Bs,t is isomorphic to As,t, and each element of As,t has
a distinguishing label, there is a unique isomorphism fs,t between As,t and Bs,t. We may
assume that the domain of Bs,t is an initial segment of ω. During the construction we will
make sure that at every stage s, fs,0(a1), . . . , fs,0(an) < fs,0(c) in the standard order on ω; it
is the opponent that decides how to build B, so we will have to construct A in such a way
that the opponent is forced to maintain this. Thus if, along the true stages, lims n(s)→∞,
then lims fs,0(c) → ∞, and so B will have no element isomorphic to c ∈ A. (To make this
true, we also guarantee that if s is a true stage, c will never be given the s-distinguishing
label of any other element of As,0.) The other possibility is that for sufficiently large true
stages s, the value of n(s) stays the same, say n(s) = n. Whenever we have s � s′ and
n(s) = n(s′), we will have fs,0(c) < fs′,0(c); this will be because a new element shows up in
B below the image of c, and then that new element is then killed. So in this case as well, we
will have that B does not contain an element isomorphic to c.

6.1 First few stages of the construction

In an informal way we will go through the first few steps of the construction. In Figures 1
and 2 we show the first two stages of the construction, ending in stage 2 step 0. The two
figures show the two possibilities, depending on how B responds. We always have n(0) = 0
and n(1) = 1 since we cannot have n(1) < n(0) = 0. But then we could either have n(2) = 2
in which case 0, 1, and 2 are all true stages (at least so far), or n(2) = 0, in which case 0
and 2 are true stages so far, but 1 is not. The figures show As,t for each stage, the response
Bs,t by our opponent, and the tree Ts,t. The nodes of the tree are labeled with the images
of the pseudoisomorphism gs,t : Ts,t → As,t. Elements of the structures and the tree are
represented by black dots; two dots which are in the same position from one diagram to
the next represent the same elements of the domain. So, for example, the node on the first
level of the tree at 0, 1 which is labeled c is the same as the node at 0, 2 labeled c′; what
has happened is that the image of this node under the pseudoisomorphism has changed. In

13

the structures A and B, the numbers below an element represent the labels given to that
element. The elements of B are labeled with their preimages under fs,t though we drop the
subscript to save space.

Begin at stage 0 (and step 0) with A0 consisting of a single element c with the label ‘1’.
At step 1, we introduce a new relation R0 and have it hold of c; this is represented in the
diagrams by the line attached to the element. At step 2, we introduce a new element c′0 and
change the structure to have R0 hold of c′0 instead of c. Both c and c′0 have the same label
‘1’ that c had at step 1, but they each get a new label that the other does not have: ‘2’ for
c and ‘3’ for c′0. Note that A0,1 * A0,2. Now B must copy A, except that as it has already
put R0 on the first element of its domain, this element must copy c′0 rather than c. We must
also expand the tree, and adjust the pseudoisomorphism; the node that previously mapped
to c now maps to c′0. Finally, at stage 1 step 0, we put R0 on all of the elements of A and
promise to put it on any new elements that show up from now on. This essentially means
that we can forget about R0 from now on, and we no longer draw it. We also set n(1) = 1
and a1 = c′0. Note that f(a1) < f(c), so that we have made one step towards forcing B to
omit an image of the element c ∈ A.

Now at stage 1 step 1, we put a new binary relation R1 on c and a1; this relation will be on
unordered tuples. B1,1 must copy this. At step 2, we introduce new elements c′1 and a′1,1 which
have the same labels that c and a1 had respectively in A1,1. Each of the four elements gets a
new label so that they are still distinguished. In A1,2, we put R1 on the pairs c, a′1,1 and c′1, a1

but not on c, a1; so A1,1 * A1,2. Before discussing our opponent’s possible responses, let us
talk about the tree T1,2. Once again the pseudoisomorphism T1,1 → A1,1 cannot be extended
to a pseudoisomorphism T1,2 → A1,2. However, we can keep the pseudoisomorphism the
same on the first level of the tree, because the tuple c, a1 satisfies the same atomic formulas
in A1,1 as the tuples c′1, a1 and c, a′1,1; what is going on here is that any existential formula
true in A1,1 with one(= n(1)) parameter is still true of the same parameter in A1,2.

Our opponent must copy A1,2, and they have two choices; they can either turn what
used to be the image of c into the image of c′1, or they can turn what used to be the image
of a1 into the image of a′1,1. In Figure 1 we show the former, and in Figure 2 we show the
latter. We will begin by discussing the latter. Since f(c′1) < f(c), at stage 2 step 0 we can
set a2 = c′1, n(2) = 2, and put the relaton R1 on every pair of elements of A (so that we stop
drawing it). Note that we have f2,0(a1), f2,0(a2) < f2,0(c) as desired. We have also preserved,
from stage 1 to stage 2, the pseudoisomorphism on the first level of the tree.

Let us now consider the other possibility for the opponent’s response B1,1, as shown in
Figure 2. The key is that the opponent has put the image of a1 after the image of c. In A2,0,
we will do the following. First, we put R1 on every pair of elements, and stop drawing it.
Second, we take all of the labels on c′0 = a1 in A1,2 and give them to c, and vice versa. Both
of these elements receives a new distinguishing label. Finally, we set n(2) = 0 and kill all of
the elements that were introduced since stage 0, i.e., all of the elements other than c. In the
diagrams, we use a circle to represent an element that has been killed.

Note that in the tree T2,0, we are able to switch back the swap of c and c′0 that we made
at stage 0 step 2. This is because each of these elements satisfies in A0,2 all of the same
existential formulas the other satisfied in A1,2. Thus the pseudoisomorphism T2,0 → A2,0

extends the pseudoisomorphism T0,0 → A0,0 at the previous 2-true stage. The unlabeled
elements of the tree are mapped to a killed element, and so will never have to change from

14

now on.
The opponent is also allowed to switch, from B1,2 to B2,0, the images of c and c′0 = a1.

However, because the opponent made the image of c′0 = a1 larger than the image of c, this
will not allow them to decrease the image of c. So essentially we have returned to where we
were at stage 0, except that we have some new elements which are all killed (and hence will
not interfere with the construction) and that the image of c in B2,0 has increased compared
to what it was in B0,0, so that we have made some progress towards having A � B.

An additional consideration. At stage s where n(s) > 2, it is possible that we will require
more steps. We illustrate this in Figure 3. Due to space constraints, we will no longer keep
track of the trees Ts,t. We begin at stage 2 step 0 where we left off in the case n(2) = 2 as
in Figure 1. We begin by introducing a ternary relation R2 in step 1, followed by elements
c′2, a′1,2, and a′2,2 in step 2. Suppose that the opponent responds with B2,2 as shown. To take
advantage of the fact that they have put the image of a2 above that of c—and so the image
of the new element a′2,2 is below c—in A2,3 we give c every label that a2 had in A2,2, and vice
versa. We also give a1 every label that a′1,1 had in A2,2. This allows us to undo the injury
to the pseudoisomorphism Ts,t → As,t that was done at stage 1 step 2 (on the second level
of the tree, see Figure 1). Now the opponent, in building B2,3, can swap the images of c and
a2 = c′1, and of a1 and a′1,1. One way that they might do so is shown in Figure 3. The issue
here is that we have allowed our opponent to make f(c) < f(a1), and so we cannot go on to
the next stage. But what we can do a similar move again: give c all of the labels that a1 had
in A2,3 and vice versa. This allows us to undo the injury done to the pseudo-isomorphism
in stage 0 step 2, and we have n(3) = 0.

6.2 Formal Construction of A
The formal construction will look slightly different than the informal picture just given. At
a stage s, we may not know how many steps there will be until B allows us to move on to
the next stage. Because of this, if t is the last step at stage s, we will have As+1,0 = As,t.

We will also keep track, through the steps t at stage s, of a value ms,t. This value will be
the current guess at n(s+1). If t is the last stage of step s, then we will have n(s+1) = ms,t.

Construction.

� Stage s = 0, step 0. Begin with A0 consisting of a single element c labeled with a
single label.

� Stage s+ 1, step 0. Let t be the last step at stage s. Let As+1,0 = As,t. Let n(s+ 1) =
ms,t. If n(s+ 1) > n(s), let an(s+1) = c′s. Otherwise, cancel everything but the values:

– c,

– a1, . . . , an(s+1),

– a′1,s′ , . . . , a
′
i,s′ for each 1 ≤ i < n(s+ 1) and s′ ≺ s+ 1.

� Stage s, step 1. Choose a new n + 1-ary relation Rs. As,1 will be As,0 except that we
have

Rs(c, a1, . . . , an).

15

s,
i

A
s,
i

B s
,i

T
s,
i

0,
0

c
1

f
(c

) 1

c

0,
1

c
1

f
(c

) 1

c

0,
2

c 1,
2
c′ 0 1,

3
f

(c
′ 0
) 1,

3
f

(c
) 1,

2

c′ 0
c

c
c′ 0

1,
0

c 1,
2

a
1 1,

3
f

(a
1
) 1,

3
f

(c
) 1,

2

a
1

c
c

a
1

1,
1

c 1,
2

a
1 1,

3
f

(a
1
) 1,

3
f

(c
) 1,

2

a
1

c
c

a
1

1,
2

c 1,
2,

4

a
1

1,
3,

5
c′ 1 1,

2,
6
a
′ 1
,1 1,

3,
7

f
(a

1
)

1,
3,

5
f

(c
′ 1
)

1,
2,

6
f

(c
) 1,
2,

4
f

(a
′ 1
,1

)
1,

3,
7

a
1

c
a
′ 1
,1

c′ 1

c
a

1
c′ 1

a
′ 1
,1

. .
.

. . .

2,
0

c 1,
2,

4

a
1

1,
3,

5

a
2

1,
2,

6
a
′ 1
,1 1,

3,
7

f
(a

1
)

1,
3,

5
f

(a
2
)

1,
2,

6
f

(c
) 1,
2,

4
f

(a
′ 1
,1

)
1,

3,
7

a
1

c
a
′ 1
,1

a
2

c
a

1
a

2
a
′ 1
,1

. .
.

. . .

F
ig

u
re

1:
T

h
e

ca
se
n

(2
)

=
2.

16

s,
i

A
s,
i

B s
,i

T
s,
i

0,
0

c
1

f
(c

) 1

c

0,
1

c
1

f
(c

) 1

c

0,
2

c 1,
2
c′ 0 1,

3
f

(c
′ 0
) 1,

3
f

(c
) 1,

2

c′
c

c
c′ 0

1,
0

c 1,
2

a
1 1,

3
f

(a
1
) 1,

3
f

(c
) 1,

2

a
1

c
c

a
1

1,
1

c 1,
2

a
1 1,

3
f

(a
1
) 1,

3
f

(c
) 1,

2

a
1

c
c

a
1

1,
2

c 1,
2,

4

a
1

1,
3,

5
c′ 1 1,

2,
6
a
′ 1
,1 1,

3,
7

f
(a
′ 1
,1

)
1,

3,
7

f
(c

) 1,
2,

4
f

(c
′ 1
)

1,
2,

6
f

(a
1
) 1,
3,

5

a
1

c
a
′ 1
,1

c′ 1

c
a

1
c′ 1

a
′ 1
,1

. .
.

. . .

2,
0

c 1
,2
,3
,

4
,5
,8

1
,2
,3
,

4
,5
,9

1,
2,

6
1,

3,
7

1,
3,

7
f

(c
) 1
,2
,3
,

4
,5
,8

1,
2,

6
1
,2
,3
,

4
,5
,9

c
c

. .
.

. . .

F
ig

u
re

2:
T

h
e

ca
se
n

(2
)

=
0.

17

A2,0 c
1, 2, 4

a1

1, 3, 5

a2

1, 2, 6
a′1,1

1, 3, 7

B2,0 f(a1)
1, 3, 5

f(a2)
1, 2, 6

f(c)
1, 2, 4

f(a′1,1)
1, 3, 7

A2,1 c
1, 2, 4

a1

1, 3, 5

a2

1, 2, 6
a′1,1

1, 3, 7

B2,1 f(a1)
1, 3, 7

f(a2)
1, 2, 4

f(c)
1, 2, 6

f(a′1,1)
1, 3, 5

A2,2 c
1, 2, 4, 8

a1

1, 3, 5, 9

a2

1, 2, 6, 10
a′1,1

1, 3, 7
c′2

1, 2, 4, 11
a′1,2
1, 3, 5, 12

a′2,2
1, 2, 6, 13

B2,2 f(a1)
1, 3, 5, 9

f(a′2,2)
1, 2, 6, 13

f(c)
1, 2, 4, 8

f(a′1,1)
1, 3, 7

f(c′2)
1, 2, 4, 11

f(a′1,2)
1, 3, 5, 12

f(a2)
1, 2, 6, 10

A2,3 c
1,2,4,6,
8,10,14

a1
1,3,5,
7,9,15

1,2,4,6,
8,10,16

1,3,5,
7,9,17

1, 2, 4, 11 1, 3, 5, 12 1, 2, 6, 13

B2,3

1,3,5,
7,9,17

1, 2, 6, 13
f(c)

1,2,4,6,
8,10,14

1,3,5,
7,9,15

1, 2, 4, 11
f(a1)

1, 3, 5, 12 1,2,4,6,
8,10,16

A3,0 c
1,2,3,4,
5,6,7,8,

9,10,14,15,
18

1,2,3,4,
5,6,7,8,

9,10,14,15,
19

1,2,4,6,
8,10,16

1,3,5,
7,9,17

1, 2, 4, 11 1, 3, 5, 12 1, 2, 6, 13

B3,0

1,3,5,
7,9,17

1, 2, 6, 13
f(c)

1,2,3,4,
5,6,7,8,

9,10,14,15,
18

1,2,3,4,
5,6,7,8,

9,10,14,15,
19

1, 2, 4, 11 1, 3, 5, 12 1,2,4,6,
8,10,16

Figure 3: One possibility for stage 2.
18

Recall that Rs is a relation on unordered tuples.

� Stage s, step 2. Since we did not add any new elements or labels in As,1, we have that
fs,1 = fs,0. So we have Bs,1 |= Rs(fs,0(c), fs,0(a1), . . . , fs,0(an)). (Recall that Rs is a
relation on unordered tuples.)

The structure As,2 will look like As,0 but with new elements, labels, and relations.
Introduce, in As,2, new elements c′s, a

′
1,s, . . . , a

′
n,s. These elements have the same labels

that the corresponding elements c, a1, . . . , an had in As,0, but we give each element a
new unique label. So, for example, c and c′s have all the same labels that c had in As,0,
but each of them has one more label that the other does not. We have relations

Rs(c
′
s, a1, . . . , an) and, for each i, Rs(c, a1, . . . , a

′
i,s, . . . , an).

We do not have Rs(c, a1, . . . , an). In general, Rs holds of any such tuple where there
is exactly one ′.

� Stage s, step 3. Whether we proceed onto stage s+ 1, or add another step to stage s,
depends on what B does.

Recall that fs,1 = fs,0 was the isomorphism As,1 → Bs,1, and so it gives a map As,2 →
Bs,2, but this map is not neccesarily an isomorphism since As,1 is not a substructure of
As,2 (but Bs,1 is a substructure of Bs,2). There are two possibilities for fs,2(c); either it
is equal to fs,0(c), or it is one of the new elements in Bs,2 −Bs,1. This is because all of
the other elements of Bs,1 have a label which c does not. Similarly, for each ai, either
fs,2(ai) is fs,0(ai) or it is one of the new elements in Bs,2 − Bs,1.

Since Bs,1 is a substructure of Bs,2, we must have that

Bs,2 |= Rs(fs,0(c), fs,0(a1), . . . , fs,0(an))

since this was true of Bs,1. However, it is not true of As,2 that As,2 |= Rs(c, a1, . . . , an).
So the isomorphism fs,2 : As,2 → Bs,2 cannot extend fs,0. There are n + 1 differ-
ent n + 1-tuples which satisfy Rs in As,2, and it must be one of these that maps
to fs,0(c), fs,0(a1), . . . , fs,0(an) in Bs,2. These tuples are c′s, a1, . . . , an and, for each i,
c, a1, . . . , a

′
i,s, . . . , an; moreover, these must map to fs,0(c), fs,0(a1), . . . , fs,0(an) in order.

So we have n+ 1 possibilities divided into two cases:

Case 1. fs,2(c) ∈ Bs,2 − Bs,1. For each 1 ≤ i ≤ n, fs,2(ai) = fs,0(ai) ∈ Bs,1.

Case 2. There is j such that fs,2(aj) ∈ Bs,2 − Bs,1. For each 1 ≤ i ≤ n, i 6= j,
fs,2(ai) = fs,0(ai) ∈ Bs,1; and fs,2(c) = fs,0(c) ∈ Bs,1.

In Case 1: This is the last step of stage s. We define As,3 ⊇ As,2. Put Rs on every
n + 1-tuple of elements, and on every n + 1-tuple of elements which is added to A at
any later stage of the construction. Set ms,3 = n(s) + 1.

In Case 2: We do not yet move onto stage s + 1. We define As,3 ⊇ As,2. Put Rs on
every n+ 1-tuple of elements, and on every n+ 1-tuple of elements which is added to
A at any later stage of the construction.

19

Let s′ < s be the previous stage with n(s′) = j − 1. Give c all of the labels aj = c′s′
had in As,2, and give aj = c′s′ all of the labels c had in As,2. Similarly, for 1 ≤ i < j,
give ai all of the labels a′i,s′ had in As,2, and give a′i,s′ all of the labels ai had in As,2.
Each of these elements gets a new (s, 3)-distinguishing label.

Set ms,3 = j − 1. Continue the stage s with step 4 of stage s.

� Stage s, step t+ 1 > 3. Let m = ms,t. We have two cases.

Case 3. fs,t(a1), . . . , fs,t(am) < fs,t(c).

Case 4. For some j, fs,t(aj) > fs,t(c).

In Case 3: Step t + 1 will be the last step of stage s. We define As,t+1 = As,t. Set
ms,t+1 = ms,t.

In Case 4: Let j be least such that fs,t(aj) > fs,t(c). Let s′ < s be the previous
stage with n(s′) = j − 1. Give c all of the labels aj = c′s′ had in As,t, and give c′s′ all
of the labels c had in As,t. Similarly, for i < j, give ai all of the labels a′i,s′ had in
As,t, and give a′i,s′ all of the labels ai had in As,t. Each of these elements gets a new
(s, t+ 1)-distinguishing label.

Set mt+1 = j − 1. Continue the construction with step t+ 2 of stage s.

End of construction

6.3 Verification

We will begin by proving various lemmas about the construction. First, we show that
elements which are introduced at non-true stages are killed when we find out that that stage
was not a true stage.

Lemma 6.2. Suppose that s � s + 1, and let s′ ≤ s be the previous s + 1-true stage. Then
each element of As −As′ is killed by stage s+ 1.

Proof. At stage s+ 1 step 0, we kill all of the elements other than:

� c,

� a1, . . . , an(s+1),

� a′1,t, . . . , a
′
i,t for each 1 ≤ i < n(s+ 1) and t ≺ s+ 1.

These elements were all introduced at stage s′ or earlier.

Lemma 6.3. Suppose that s ≤ t and x ∈ A is killed at stage s. Then fs(x) = ft(x).

Proof. Looking at the construction, we see that no new labels are added to a killed element,
and so the s-distinguishing label of x is still its t-distinguishing label.

20

Lemma 6.4. Suppose that s ≺ s+ 1 ≺ t. Then, for each 1 ≤ i ≤ n(s):

ft(a
′
i,s) = fs+1(a′i,s) > fs(c).

Proof. Since s ≺ s+1, we must be in Case 1 at stage s step 3. For each i, 1 ≤ i ≤ n(s), there
are only two elements of As,2 satisfying the s-distinguishing label of ai—ai and a′i,s—and of
these only ai was in As,0. So there is only one element of Bs,0 satisfying this label, and this
element is fs,0(ai). Since we are in Case 1, fs,2(ai) = fs,0(ai) and so fs,2(a′i,s) ∈ Bs,2 − Bs,0;
thus fs,2(a′i,s) > fs,0(c) since the latter is in Bs,0. We also have fs+1(a′i,s) = fs,2(a′i,s) since we
make no further changes to A at stage s. So we have shown that fs+1(a′i,s) > fs(c).

Now we claim that a′i,s has no more labels at stage t than it had at stage s + 1. There
are only two times when we give an element a new label at a stage u:

1. When we introduce the elements c′u and a′1,u, . . . , a
′
n(u),u, we give a new label to c and

a1, . . . , an(u).

2. In Cases 2 and 4 when we give c and aj = c′s′ each other’s labels, and ai and a′i,s′ each
other’s labels, for some s′ < u.

No new labels are given to a′i,s for the sake of (1). At each stage u, s + 1 ≤ u < t, since s
is a u-true stage, (2) can only happen for j > n(s). Thus a new label cannot be added to
a′i,s for the sake of (2) before stage t. So a′i,s is still the only element at stage t satisfying its
s+ 1-distinguishing label. This means that ft(a

′
i,s) = fs+1(a′i,s).

Lemma 6.5. If s ≺ t, ft(c) > fs(c).

Proof. We argue inductively. It suffices to show this where s is greatest such that s ≺ t.
It will also be more convenient to adjust the value of t by one: given s ≺ t + 1, show that
ft+1(c) > fs(c).

First, suppose that s = t. Then we must be in Case 1 at stage s step 3, as in Case 2 we
end up with n(s+1) < n(s). Then fs+1(c) ∈ Bs,2−Bs,1 and so fs+1(c) > fs(c) as fs(c) ∈ Bs,1
and this is an initial segment of Bs,2.

Second, suppose that t ⊀ t + 1. We have s ≺ t (since n(s) ≤ n(t + 1) < n(t)) and
so fs(c) < ft(c) by the inductive hypothesis. So if we can show that ft+1(c) ≥ ft(c), then
we are done. Since t ⊀ t + 1, we are in Case 2 at stage t step 3. Note that we then
have ft,2(c) = ft,0(c) = ft(c). We also have ft,2(c′t) ∈ Bs,2 − Bs,1 and so ft,2(c′t) > ft,2(c).
Looking at what we did in the construction in Case 2, we see that either ft,3(c) = ft,2(c) or
ft,3(c) = ft,2(c′t) > ft,2(c) as there is a label that at this point has been given only to c and
c′ in A, and ft,2(c) and ft,2(c′) in B. In either case, ft,3(c) ≥ ft,2(c) = ft(c).

The construction now proceeds to step 4. If, at step 4, we are in Case 3, then we make
no further changes to A, and so ft+1(c) = ft,3(c) ≥ ft(c) as desired. On the other hand,
suppose that at step 4 we are in Case 4. We will argue inductively on steps r ≥ 3 that
ft,r(c) ≥ fs(c), and then if r is the last step of stage t, ft+1(c) = ft,r(c) ≥ fs(c). We already
have the base case r = 3. Suppose that we know that ft,r(c) ≥ fs(c). At step r + 1, if
we are in Case 3, then r + 1 is the last step of stage t and we do nothing to A, so that
ft+1(c) = ft,r+1(c) = ft,r(c) ≥ fs(c). So suppose that we are in Case 4. Let j be as in Case 4,
with mr+1 = j − 1. We have ft,r(aj) > ft,r(c). Looking at the construction, we have either
ft,r+1(c) = ft,r(c) or ft,r+1(c) = ft,r(aj) > ft,r(c), as these are the only elements of At,r+1

with the (t, r)-distinguishing label of c. In either case, ft,r+1(c) ≥ ft,r(c) as desired.

21

Lemma 6.6. Suppose that s is a true stage, x, y ∈ As,0 with x 6= y. Then no element of A
has both the s-distinguishing label of x and the s-distinguishing label of y.

Proof. The elements of As,0 are:

� c,

� a1, . . . , an,

� for each 1 ≤ i < n, a′1,ti , . . . , a
′
i,ti

for each i, and

� killed elements

where n = n(s) and t0 ≺ t1 ≺ t2 ≺ · · · ≺ tn = s are the previous stages believed by s such
that ti is the least stage with n(ti) = i.

Killed elements keep the same distinguishing labels forever, so we may assume that x and
y are not killed. There are two times when we give a label already applied to one element
to another element at a stage t:

1. When we introduce the elements c′t and a′1,t, . . . , a
′
n(t),t which have the distinguishing

labels of c and a1, . . . , an respectively.

2. In Cases 2 and 4 when we give c and aj = c′s′ each other’s labels, and ai and a′i,s′ each
other’s labels, for some s′ < t.

After stage s, since s is a true stage, (2) can only happen for j > n(s) and s′ ≥ s. Thus the
elements a′1,ti , . . . , a

′
i,ti

for 1 ≤ i < n keep the same distinguishing labels from stage s on.
We claim that the only elements which can receive the s-distinguishing label of ai, 1 ≤

i ≤ n(s), are elements of the form a′i,s′ for s′ ≥ s. Indeed we see that in both (1) and (2),
whenever one of these elements (ai or a′i,s′ for s′ ≥ s) receives a label which had already been
given to another element, that other element is also one of these elements. Thus no element
can ever be given the s-distinguishing labels of both ai and aj, i 6= j, or of ai and c. This
proves the lemma.

Lemma 6.7. A is not isomorphic to B.

Proof. Let s0 ≺ s1 ≺ s2 ≺ s3 ≺ · · · be the true stages. Given x ∈ B, we claim that x is not
the isomorphic image of c. Using Lemma 6.5, let i be such that x ∈ Bsi,0 and fsi(c) > x.
Then x = fsi(y) for some y ∈ Asi,0, y 6= c. So in Bsi,0, x has the si-distinguishing label
of y. By Lemma 6.6, no element of A has both the si-distinguishing label of y and the si-
distinguishing label of c. So x cannot be the isomorphic image of c. Thus B is not isomorphic
to A.

Lemma 6.8. T (A) has a computable copy.

Proof. For each stage s, let is be the last step of stage s. We will computably build

T0,0 ⊆ T0,1 ⊆ · · · ⊆ T0,i0 = T1,0 ⊆ · · · ⊆ T1,i1 = T2,0 ⊆ · · ·

22

such that Ts,i is isomorphic to T (As,i). Moreover, for each stage s, we have a pseudo-
isomorphism fs : Ts,0 → As,0. We will argue that T =

⋃
Ts,i is isomorphic to A.

Note that we define Ts,i at every stage s and step i, whereas fs is only defined for every
stage s. It is of course possible that there are only finitely many stages, because B stops
copying A. Then, if s, i is the last stage and step, we have T = Ts,i is isomorphic to
T (As,i) = T (A). So T is isomorphic to T (A) even though we did not necessarily build an
isomorphism between the two.

If there are infinitely many stages of the construction, then T =
⋃
Ts,0 will be an infinite

union, so we must give an argument that T is isomorphic to T (A). We will have that
f = lim fs is a pseudo-isomorphism from T → A. This limit will be a ∆0

2 limit along the
true stages.

We make a new convention: At stage s, an active element of As is one of the elements
c, a1, . . . , an(s). We also write f(σ) for the tuple f(σ�1), . . . , f(σ�|σ|). The other elements
are all inactive. Given stages s � t, the maps fs and ft will satisfy a certain agreement
condition:

(∗) If n(s) = n(t) then fs ⊆ ft. If n(t) > k = n(s) then whenever σ ∈ Ts,0 is such that f s(σ)
contains at most k active elements (but possibly other inactive or killed elements),
then fs(σ) = ft(σ).

A second property that we will use to argue that f = lim fs stabilizes is as follows:

(†) Suppose s � s + 1, so that n(s) = k and n(s + 1) = k + 1. Given σ ∈ Ts,0, f s+1(σ)
contains at most k + 1 active elements.

Using (∗) and (†), we can argue that f = lims fs is a pseudo-isomorphism T → A. Let
s0 � s1 � s2 � · · · be the sequence of true stages. If there are n and I such that for all i ≥ I
n = n(si), then f =

⋃
i≥I fsi and these are nested. So we may assume that limi→∞ n(si) =∞.

� Given σ ∈ T , we must argue that fs(σ) comes to a limit. If σ ∈ Tsi,0, with si greatest
with that value of n(si) = k, then si+1 = si + 1 and n(si+1) = n(si) + 1 = k + 1. By
(†), f si+1

(σ) contains at most k+ 1 active elements. Then we can argue inductively on
j, using (∗), that fsi+j+1

(σ) = fsi+j(σ). So f(σ) comes to a limit.

� Given ā ∈ A<ω, we must argue that there is σ ∈ T such that f(σ) = ā. Let si be a
true stage such that n(si) > |ā|. Then ā can have at most |ā| < n(si) live elements.
There is σ such that fsi(σ) = ā, and by (∗), f(σ) = ā.

We must now give the construction of T and f and then verify that they satisfy (∗) and (†).
We will also build intermediate maps gs,t : Ts,t → As,t, with gs = gs,0.

Construction. Begin with T0,0 = T (A0,0) and f0 the natural pseudo-isomorphism T0,0 → A0,0.
Suppose that we have defined

T0,0 ⊆ T0,1 ⊆ · · · ⊆ T0,i0 = T1,0 ⊆ · · · ⊆ T1,i1 = T2,0 ⊆ · · · ⊆ Ts,0

and f0, . . . , fs. We must define Ts,1, Ts,2, . . . , Ts,is , Ts+1,0 and fs+1. In the process, we will
also define the gs,t.

23

Step 1: As,1 ⊇ As,0, and they have the same domains, so we can define Ts,1 ⊇ Ts,0 with
gs,1 = gs,0 = gs still a pseudo-isomorphism Ts,1 → As,1 .

Step 2: For each σ ∈ Ts,1, define gs,2(σ) as follows. If gs(σ) is inactive or killed, then
gs,2(σ) = gs(σ). If, among gs(τ), for τ ≺ σ, there are less than n active elements,
then also set gs,2(σ) = gs(σ). Finally, if there are n active elements among gs(τ), for
τ ≺ σ, then set gs,2(σ) as follows: if gs(σ) = c, then gs,2(σ) = c′s; if gs(σ) = ai, then
gs,2(σ) = a′i,s.

We can see from the construction of As,2 that this is a pseudoembedding. Now extend
Ts,1 to Ts,2 and extend gs,2 to a pseudoisomorphism Ts,2 → As,2.

Step 3: If s � s+ 1, then this is the last step of stage 3 and As,3 = As,2. So set gs,3 = gs,2.

If s � s+1, let t be maximal with n(t) = ms,3. Then we have ms,3 = n(t) < n(t+1) ≤
n(s) and t � s. We claim that gt : Tt,0 ⊆ Ts,2 → As,3 is still a pseudoembedding.
Consider σ ∈ Tt,0. Then by (†), f t+1(σ) has at most n(t) + 1 = n(t + 1) active
elements. By (∗), fs(σ) = ft+1(σ); also, gs,2(σ) = fs(σ) because f s(σ) has at most
n(t) < n(s) active elements. So ft+1 is a pseudoembedding Tt+1,0 → As,3.

We want to argue that ft is also a pseudoembedding Tt,0 → As,3. Given σ ∈ Tt,0, since
t � t + 1 the only change we made from ft to ft+1 is that sometimes when ft(σ) = c
we set ft+1(σ) = c′t = an(t+1), and sometimes when ft(σ) = ai we set ft(σ) = a′i,t. But
in Case 2 of step 3 at stage s+ 1, we give c all of the labels c′t had and vice versa, and
similarly for ai and a′i,t. So ft is a pseudoembedding Tt,0 → As,3.

Define Ts,3 and gs,3 : Ts,3 → As,3 such that gs,3 ⊇ gt is a pseudoisomorphism.

Step t: This is similar to step 3.

Verification. We must now check (∗) and (†). For (∗), if s � s + 1 = t, then this is clear
from the construction—step 2 above is the only place where fs+1 is made to differ from fs.
Otherwise, if t < s is maximal such that n(t) = n(s), then in step 3 / step t we define fs+1

be having it extend ft. The other cases of (∗) follow from these two cases.
For (†), if s � s+ 1 then we do nothing in step 3. In step 2, it is not hard to see that if

σ ∈ Ts,0 then f s+1(σ) can have at most n(s) + 1 = n(s + 1) active elements, as for τ � σ,
fs+1(τ) can only be active if fs(τ) was, and there are only n(s)+1 active elements of As.

6.4 Conclusion of the proof

We have built An (which, by abuse of notation, we were calling A). By Lemma 6.7 is not
isomorphic to B, the structure with domain Rn in the nth (possible partial) computable
structure. Moreover, by Lemma 6.8, T (An) has a computable copy uniformly in n.

Then let A be the structure which is the disjoint union of the An, each of which satisfies
the unary relation Rn. Then A has no computable presentation. By Lemma 4.7, T (A) has
a computable copy.

24

7 More on Enumerations of Families

The second author showed that whenever a structure codes a family of sets, the family of
sets can be recovered from the existential types of certain tuples, but the set of tuples to
look at is only Σ3-definable.

Let {Θe : e ∈ ω} be the standard computable enumeration of all enumeration-operators.

Lemma 7.1 (Lemma 3.5 of [Mon13b]). Let A be a structure. If F is a family of subsets of
ω which is enumerated by all copies of A, then there is a tuple ā and a uniformly computable
list of Σ3 formulas ϕ`(x̄, ȳ) such that

F = {Θ`(Σ1-tpA(ā, b̄)) : l ∈ ω, b̄ ∈ A<ω, A |= ϕ`(ā, b̄)}.

If the family is simple enough—like the Slaman-Wehner family, where all of the sets
in the family are c.e.—then the Σ3 formulas are already complicated enough to code the
family without having to actually look at the structure at all. The Σ3 formulas can just
say to enumerate the sets given by certain operators Θ` which just enumerate a c.e. set in
the family without looking at the Σ1-type. On the other hand, the Σ3 formulas cannot be
improved to Σ1 formulas.

Corollary 1.3. There is a computable structure A and a family F of subsets of ω which is
enumerated by all copies of A for which there do not exist a tuple ā ∈ A<ω and a uniformly
computable list of Σ1 formulas ϕ`(x̄, ȳ) such that

F = {Θ`(Σ1-tpA(ā, b̄)) : l ∈ ω, b̄ ∈ A<ω, A |= ϕ`(ā, b̄)}.

Proof. Let A be the structure from Theorem 6.1. Let F be the Slaman-Wehner family which
is enumerated by every non-computable degree. Then every copy of A is non-computable,
and hence enumerates F .

Suppose that there were ā ∈ A<ω and a uniformly computable list of Σ1 formulas ϕ`(x̄, ȳ)
such that

F = {Θ`(Σ1-tpA(ā, b̄)) : l ∈ ω, b̄ ∈ A<ω, A |= ϕ`(ā, b̄)}.

Then every copy of T (A) could enumerate F . But T (A) has a computable copy, a contra-
diction.

8 Higher Up

We can use Marker extensions to obtain Theorem 1.2 from Theorem 6.1.

Theorem 1.2. For any computable ordinal α, there is a structure A such that T (A) has a
computable copy but A itself has no ∆0

α copy.

Proof. We may assume that α is a successor ordinal. Relativize Theorem 6.1 to 0(α) to obtain
a structure A be such that T (A) has a 0(α)-computable copy but A has no 0(α)-computable
copy. Let B be the ∆α-Marker extension of A. Then by Lemma 5.2 T (B) has a computable
copy, but by Lemma 5.1 B has no 0(α)-computable copy.

25

References

[AK00] C. J. Ash and J. Knight. Computable structures and the hyperarithmetical hi-
erarchy, volume 144 of Studies in Logic and the Foundations of Mathematics.
North-Holland Publishing Co., Amsterdam, 2000.

[Bad77] S. A. Badaev. Computable enumerations of families of general recursive functions.
Algebra i Logika, 16(2):129–148, 249, 1977.

[Ers96] Y. L. Ershov. Definability and computability. Siberian School of Algebra and
Logic. Consultants Bureau, New York, 1996.

[FS89] Harvey Friedman and Lee Stanley. A Borel reducibility theory for classes of
countable structures. J. Symbolic Logic, 54(3):894–914, 1989.

[Gon77] S. S. Goncharov. The number of nonautoequivalent constructivizations. Algebra
i Logika, 16(3):257–282, 377, 1977.

[Gon80] S. S. Goncharov. Problem of the number of non-self-equivalent constructivizations.
Algebra and Logic, 19(6):401–414, 1980.

[Kni86] Julia F. Knight. Degrees coded in jumps of orderings. J. Symbolic Logic,
51(4):1034–1042, 1986.

[Mon13a] A. Montalbán. A fixed point for the jump operator on structures. Journal of
Symbolic Logic, 78(2):425–438, 2013.

[Mon13b] Antonio Montalbán. A fixed point for the jump operator on structures. J. Symbolic
Logic, 78(2):425–438, 2013.

[Mon14] A. Montalbán. Computability theoretic classifications for classes of structures.
In S. Y. Jang, Y. R. Kim, D.-W. Lee, and I. Yie, editors, Proceedings of the
International Congress of Mathematicians (Seoul 2014). Vol. II, pages 79–101.
Kyung Moon Sa Co., Seoul, 2014.

[Sel76] V. L. Selivanov. The numerations of families of general recursive functions. Algebra
i Logika, 15(2):205–226, 246, 1976.

[Sla98] Theodore A. Slaman. Relative to any nonrecursive set. Proc. Amer. Math. Soc.,
126(7):2117–2122, 1998.

[Weh98] Stephan Wehner. Enumerations, countable structures and Turing degrees. Proc.
Amer. Math. Soc., 126(7):2131–2139, 1998.

26

	Introduction
	Coding information
	Universality and degree spectra of trees
	Linear orders

	Trees and Universality Under Bi-Interpretability
	Trees and Enumerating Families
	Back-and-forth Trees
	Marker extensions
	 Marker extensions
	 Marker extensions

	Main Result
	First few stages of the construction
	Formal Construction of A
	Verification
	Conclusion of the proof

	More on Enumerations of Families
	Higher Up

