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1 Introduction

Two structures A and B are back-and-forth equivalent if there is a relation ~ on finite tuples
from A and B such that @ ~ @ and for every a ~ b:

e @ and b have the same atomic type,
o for all @', there is b’ such that aa’ ~ bb/,

e for all ab/, there is a’ such that aa’ ~ bb/,

For simplicity, assume for now that the language is finite. It is well-known that two countable
structures which are back-and-forth equivalent are actually isomorphic.

One can construct from a structure A a labeled tree which represents the back-and-forth
type of that structure.

Definition 1.1. Fix an infinite set L of labels which we put in an effective bijection with
atomic types. Define the back-and-forth tree 7(A) of a structure A as follows: the nodes
of T(A) are the finite tuples from A; the extension relation is the extension of tuples; each
tuple is labeled with (a code for) its atomic type.

One can view this labeled tree as a structure in the language of trees (with a parent-of
function) together with a unary relation for each label. Two structures have isomorphic
back-and-forth trees if and only if they are back-and-forth equivalent. So the back-and-forth
tree of a countable structure encodes the isomorphism type of the structure:

A= B = T(A)=T(B)

Thus T witnesses that labeled trees are Borel complete. In fact, this is essentially the same
argument that Friedman and Stanley [FS89] used to show that trees (without labels) are
Borel complete; the only remaining step is to turn a labeled tree into a tree. In Section 4
we will show in general that every labeled tree is uniformly effectively bi-interpretable with
a tree without labels.

From a copy of A, one can compute 7 (A), and we know that 7 (A) determines the
isomorphism type of A. The main question of this paper is whether it is possible to compute
a copy of A given a copy of T (A). That is, given knowledge about the back-and-forth type
of a structure, can we compute a copy of the structure? We will show that the answer is no:
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Theorem 1.2. For any computable ordinal «, there is a structure A such that T (A) has a
computable copy but A itself has no AY copy.

So in fact, one cannot recover a copy of A from 7 (A) even with any number of jumps. We
will prove this theorem for o = 1 in Section 6 and then obtain the full theorem as a corollary
in Section 8. The construction is quite difficult and uses new techniques that have promise
for further applications.

While answering a question that is interesting in its own right, this theorem also casts
light on a number of other interesting questions in computable structure theory. As we will
argue below, most constructions in computable structure theory of a structure with some
property are of such a flavour that they transfer to the back-and-forth tree, and so the back-
and-forth tree has that property as well. Theorem 1.2 says that computable structure theory
is much deeper; there can be a complexity in the structure as a whole that cannot be seen
from its back-and-forth type.

1.1 Coding information

We say that a structure A codes a set X C w if every copy of A enumerates X. If A codes
X, then in fact there is a tuple a € A such that the existential type of @ can enumerate X
[Kni86, Theorem 1.4] (see also [AKO00, Theorem 10.17]). This information is also contained
in the back-and-forth tree of A: there is a node in T (A) representing the tuple a, and the
existential type of a can be enumerated by searching through extensions of that node. So A
codes X if and only if 7(A) codes X, that is, a structure and its back-and-forth tree code
the same sets.

More generally, let F be a family of subsets of w. We say that A codes F if every
copy of A enumerates F though possibly in a different order. An enormous number of
results in computable structure theory have been proved by coding a family of sets into the
existential types realized by a structure. For example, Slaman [Sla98] and Wehner [Weh98]
independently showed that there is a structure with no computable copy, but with a copy
computable in all non-computable degrees; Wehner’s construction explicitly builds a family
of subsets of w which can be enumerated exactly by the non-computable degrees and then
codes these into the existential types of the structure, while in Slaman’s construction such a
family can easily be extracted from the existential types.

But once again, the back-and-forth tree can see the existential types realized in the
structure, and so if the structure codes a family in such a way, then the back-and-forth tree
does as well. As a corollary of Theorem 1.2, we see that there are structures which code
families of sets without coding them into the existential types.

Corollary 1.3. Let {O. : e € w} be the standard computable enumeration of all enumeration-
operators. There is a computable structure A and a family F of subsets of w which is
enumerated by all copies of A for which there do not exist a tuple a € A<Y and a uniformly
computable list of X1 formulas w,(Z,y) such that

F = {@z(zl—tpA(C_L,Z_))) e w, be A<w, A ): (pg(d,l_))}.

More generally, one could code information into the X, types of a structure for any a.
But the back-and-forth tree has access to all of this as well, and so one can view Theorem



1.2 as saying that it is possible to code information into a structure without coding it via
types. Instead, the information is coded into the difficulty of amalgamating types, which is
a much less straightforward way of coding information.

See Section 7 for more discussion of enumerating familities, and for the proof of the above
corollary.

1.2 Universality and degree spectra of trees

Informally, we say that a class C of structures is universal if for any structure of any sig-
nature, there is a structure is C that has the same computability-theoretic properties such
as the same degree spectrum, the same computable dimension, etc. More formally, we can
ask that the two structures be effectively bi-interpretable, which implies that they have the
same computability-theoretic properties. Many classes of structures—graphs, groups, rings,
and fields—have been shown to be universal. Other classes of structures—Ilinear orders,
boolean algebras, torsion-free abelian groups, real closed fields—are known not to be uni-
versal. Usually in these cases, there is some specific computability-theoretic property that
cannot be realized in the class. For example, if a boolean algebra has a low copy, then it has a
computable copy, and so there is no boolean algebra with Slaman-Wehner degree spectrum.

The case of trees is different however. Trees are not universal in the sense that there
are structures which are not bi-interpretable with any tree, but the issue is with the auto-
morphism groups and not with any computability-theoretic property. We will discuss this
in more detail in Section 2. In fact, we do not know of any purely computability-theoretic
property that can be realized in some structure, but not in a tree. This is because trees can
code sets, families, families of families, and so on, into their existential types, and so any
example that is constructed in such a way—which, after looking through the literature and
many conversations with other experts in the field, seems all of the known examples—can be
replicated by a tree. So for example there is a tree with each possible computable dimension,
there is a tree with Slaman-Wehner degree spectrum, and there is a tree which is computably
categorical but not relatively computably categorical. We will discuss such examples in more
detail in Section 3.

This is an undesirable situation, because what we really care about is the informal notion
of universality: is it true that for every structure of any signature, there is a tree with the
same computability-theoretic properties? The formal notion involving bi-interpretability is
just an attempt to capture this informal notion. So when we show that a class of structures
is not universal, we really want to exhibit some particular computability-theoretic property
that cannot be realized in that class.

For trees, the best approach seems to be by looking at degree spectra.

Question 1.4. Is every degree spectrum the degree spectrum of a tree?

What we are looking for is a way of transforming a structure into a tree, and the back-
and-forth tree construction is the obvious thing to try. In Section 4, we show that given
a structure A, there is a tree without labels that has the same degree spectrum (in fact is
effectively bi-interpretable with) the back-and-forth tree 7(A). So if A and T(A) had the

same degree spectrum, then this question would have a positive answer.



But Theorem 1.2 says exactly the opposite, and so this attempt to answer the question
fails. And as the back-and-forth tree seems like the best transformation of a structure into
a tree that one could hope for, we conjecture that the answer is negative: there is a degree
spectrum which is not the degree spectrum of a tree. Answering this question would tell use
something new and very interesting about degree spectra.

1.3 Linear orders

Frideman and Stanley [FS89] also proved that linear orders are Borel complete. Recall that
this means that for each fixed language, there is a Borel operator ® that takes a structure
A to a linear order ®(.A) such that

A= B = (A) = O(B).

Their operator & is in fact computable and can be defined as the composition of the back-
and-forth tree operator T and the following operator L.

Definition 1.5. Let T be a labeled tree. Define £(T') recursively as follows: L£(T) is the
shuffle sum of Q + ¢(0) + 2 + Q + L(T,) for all children o of the root node, where T}, is the
subtree of T below ¢ and ¢(0) is the (integer code for) the label of o.

So the Friedman-Stanley operator is ® = £ o 7. We conjecture that:

Conjecture 1.6. For each computable ordinal «, there is a structure A such that ®(A) is
computable but A has no AY copy.

2 Trees and Universality Under Bi-Interpretability

In this section we will show that trees are not universal under effective bi-interpretability. Ef-
fective interpretations were first introduced by Montalbédn [Mon13a] but they are essentially
the same as the parameterless version of the well-studied notion of »-reducibility which was
introduced by Ershov [Ers96]. The elementary first-order definitions of a model-theoretic
interpretation are now replaced by effective A{ definitions, and the interpretation is allowed
to use tuples of arbitrary sizes.

Definition 2.1. An effective interpretation of A = (A, P, P4, ...) in B consists of:
e a Af-definable subset Dom%5 C B<¥,
e a Af-definable equivalence relation ~ on DomZ,

e a sequence of uniformly A$-definable sets R; C (Dom5)*, where k is the arity of P;,
which respect ~,

e a surjective map f§: Dom5 — A which induces an isomorphism

f3: (DomB/ ~; Ry/ ~,Ry/ ~,...) = A



Two structures A and B are effectively bi-interpretable if they are each effectively in-
terpretable in the other, and moreover, the composition of the interpretations—i.e., the
isomorphisms which map A to the copy of A inside the copy of B inside A, and B to the
copy of B inside the copy of A inside B—are definable.

Definition 2.2. Two structures A and B are effectively bi-interpretable if there are effective
interpretations of A in B and of B in A such that the compositions

T o I3 Domg}omﬁ) — B and fBo fg: Dom(f?omé) — A
are A§-definable in B and A respectively.

Two structures which are effective bi-interpretable share essentially all the same computability-
theoretic properties (see [Monl4, Lemma 5.3]). Moreover, two structures which are bi-
interpretable have the same automorphism group. We can use this fact to show that there
are structures which are not bi-interpretable with any tree, and so trees are not universal.

Proposition 2.3. The linear order (7, <) is not bi-interpretable with any tree.

Proof. The automorphism group of (Z, <) is the additive group Z. We will argue that Z
is not the automorphism group of any tree; since structures which are bi-interpretable have
the same automorphism groups, this shows that (Z, <) is not automorphic to any tree.
Suppose to the contrary that T is a tree with automorphism group Z. Fix an automor-
phism f which generates this automorphism group. Let o € T be such that f(o) # o, but
such that f fixes the parent 7 of 0. Let 0/ = f(0). The subtree T, below ¢ must be isomor-
phic to the subtree T,/ below ¢’. Then T has an automorphism g which maps o to ¢’ and o’
to o (and mapping T, to T, and vice versa using the isomorphism between these subtrees),
but which fixes every other node. This map ¢ has order 2, contradicting the assumption
that T has automorphism group Z. O

3 'Trees and Enumerating Families

Even though there structures that are not bi-interpretable with any tree, in this section we
will show how to construct trees realizing many different computability-theoretic properties
by coding families of sets into trees.

We begin with a couple of standard definitions about enumerating families.

Definition 3.1. Let F be a countable family of subsets of w. A set W is an enumeration of
a family F if F = {W[i] : i € w}, where W[i| ={j | (i,7) € W} is the ith column of W.

We say that X enumerates F if there is an enumeration W of F which is c.e. in X. For
« a computable ordinal, we say that X YX2-enumerates F if there is an enumeration of F
which is X2 in X.

Definition 3.2. Two enumerations U and W of a family F are computably equivalent if
there is a computable permutation f of w such that W{[f(i)] = UJi].

It is not hard to code a family F into a tree T'(F) so that every enumeration of F
computes a copy of T'(F), and a copy of T'(F) can enumerate F.
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Definition 3.3. For a set W C w, let T(W) be isomorphic to the following subtree of w<*:
{2}u{n0™ : m<neW}U{n0"0:neWiu{nd"l:nc W}.

Let T(F) by the tree with a root node, whose children are the roots of subtrees T'(WW) for
WeF.

For example, for W = {1,2,5}, T(W) is the following tree:

We can easily enumerate W from T'(W), and compute a copy of T'(W) from an enumeration
of W (though the domain might not be an intial segment of w). Thus an enumeration of F
computes a copy of T'(F), and a copy of T'(F) can enumerate F.

We will now consider a number of construction which proceed by coding a family into a
structure. Consider for example the result of Slaman [S1a98] and Wehner [Weh98] that there
is a structure whose degree spectrum is exactly the non-computable degrees. The following
theorem is explicit in Wehner’s proof, and Slaman mentions that it follows easily from his
proof:

Theorem 3.4 (Slaman [Sla98] and Wehner [Weh98|). There is a family F which can be
enumerated by exactly the non-computable sets.

Taking this family F and building 7'(F), we immediately obtain:

Corollary 3.5. There is a tree which has a computably copy in every non-computable degree,
but no computable copy.

So there is a tree with Slaman-Wehner degree spectrum.

We can do the same for a number of other results. We will give two more examples of
a computable tree with finite computable dimension greater than 1, and of a computable
tree which is computably categorical, but not relatively computably categorical. The orig-
inal constructions of structures with both of these properties proceeded explicitly through
construction a family of sets.



Theorem 3.6 (Goncharov [Gon80]). For each n, there is a family F that has exactly n
enumerations up to computable equivalence.

Corollary 3.7. For each n, there is a computable tree of computable dimension n.

Theorem 3.8 (Badaev [Bad77], Selivanov [Sel76], Goncharov [Gon77]). There is a family
F that has one enumeration up to computable equivalence, but for some X, multiple non-X -
equivelent X -enumerations.

Corollary 3.9. There is a tree which is computably categorical but not relatively computably
categorical.

We will not give a formal construction, but we can even generalize the ideas of this section
to families of families, and so on. So any such construction can be replicated by a tree, and
this includes constructions using marker extensions etc., and in fact we do not know of a
construction which cannot be emulated by a tree in this way.

4 Back-and-forth Trees

We will now describe the construction of the back-and-forth tree of a structure. Recall that
this was implicit in work of Friedman and Stanley [FS89]. The construction is simpler in the
case of structures which have only finitely many relations of each arity, but a standard trick
allows us to transform any structure into a structure of this type, e.g. by replacing an n-ary
relation R by an m + n-ary relation S satisfying S(z,y) <= R(Z).

Definition 4.1. Let L be a set of infinitely many unary relations ¢ called labels. A labeled
tree is a tree T' such that each node of T has exactly one label.

The Friedman-Stanley construction did not make the labels explicit, but rather coded
them directly into the tree. Any labeled tree can be coded into a tree without labels.

Proposition 4.2. For every labeled tree T, there is a tree S = S(T) such that S and T are
effectively bi-interpretable.

Proof. Let ({s)se., be an enumeration of the labels L. Given o € T', let T,, be the subtree of
T with root o. For each node o € T with label ¢; and children (7;);c;, we will define a tree
S(T,) using in its construction subtrees S(77,):



V

: s nodes

Given a copy of T, it is easy to see how to build a copy of S(T"). Given a copy S* of S(T),
one builds a copy T of T as follows. The nodes of T™ at level n will be the nodes o of
S* which are at level 2n and such that for all & < n, o9 has a child which itself has two
children, and this child is not o[ox;1. The extension relation will be the same in S* as it was
in T* (so that o is the parent of 7 in T* if and only if o is the parent of the parent of 7 in
S*). The labels can be recovered as follows. Given o € T*, find the child 7 of ¢ in S* which
itself has two children. One of the children p of 7 itself has a child. Count the number s of
children of children of p until we find some node below p which has two children. Then o is
labeled 4. O

The back-and-forth tree is defined as follows:

Definition 4.3 (Friedman-Stanley [FS89]). Let A be a structure. Define the labeled tree
T(A) as follows. The nodes of 7(A) are the tuples from A. The extension relation is the
extension of tuples. Label each tuple with (a code for) its atomic type.

The back-and-forth tree is an isomorphism invariant.

Proposition 4.4. Two structures which have isomorphic back-and-forth trees are isomor-
phic.

Proof. The isomorphism between the back-and-forth trees induces a map f: A<Y — B<¥
such that:

o f(9)=2,
e for each tuple a € A and element o’ € A, f(ad') = f(a)b for some b € B,

e for each a € A, f(a) is has the same atomic type as a.



We will define an isomorphism ¢g: A — B using a back-and-forth construction. Begin by
picking the first element ag € A and define g(ag) = by = f(ag). Then let b; be the first
element in B not yet chosen, and let a; be such that f(apa;) = boby. Define g(a;) = by. Then
let as be the first element of A not yet chosen, and define g(as) = by where by is such that
f(apajas) = bobiby. Continuing in this way, we define an isomorphism g. O

There is a natural map f: 7(A) — A< which takes a node of T to the corresponding
tuple of A. This map has the property that it takes a node to a tuple whose atomic type
corresponds to the label of the node. Though it is the canonical such map, it is not the
only such map; and moreover, if T is a labeled tree isomorphic to 7 (A), then there is no
canonical such map T" — A<“. We call such a map a pseudo-isomorphism.

Definition 4.5. Let A be a structure and let T" be a tree labeled with atomic types of A.
An embedding f: T — A<¥ is a pseudo-embedding if:

e f maps the root node of T to the empty tuple,
e whenever 7 is a child of o, there is a € A such that f(7) = f(0) a,
e cach o € T is labeled with the atomic type of f(sigma).

We say that f is a pseudo-isomorphism if it is also surjective.

It is easy to see that if there is a pseudo-isomorphism f: T — A<“ then T is isomorphic
to the back-and-forth tree of A.

Proposition 4.6. If T is a tree, then DgSp(T) = DgSp(T (T)).

Proof. 1t is clear that DgSp(T) C DgSp(T (T)) as each copy of T' computes a copy of T (7).
We claim that each copy of 7(T") computes a copy of T.

Note that 7T is isomorphic under a natural identification to the subtree of 7 (T') consisting
of those tuples aq,...,a, where a; is a child of the root node, ay is a child of a;, and so
on. This subtree is ¥;-definable in 7(7") because the atomic type of a4,...,a, determines
whether this is true. It follows that each copy of T(7T') computes a copy of T'. n

Later we will use the fact that if we have a disjoint union of structures, we can compute the
back-and-forth tree of the disjoint union from the back-and-forth trees of each component.

Lemma 4.7. Let A be the disjoint union of A;. Suppose that T (A;) has a computable copy
uniformly in i. Then T (A) has a computable copy.

Proof. TODO O

5 Marker extensions

5.1 A, Marker extensions

We use the Marker extensions described in []. Let aw > 1 be a computable successor ordinal.
Fix computable structures By and B; in the same relational language such that:
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1. the pair {By, By} is a-friendly,
2. By and B satisfy the same X3 sentences for 5 < a,
3. each of By and B; satisfies a computable ¥, sentence that the other does not.

Such structures exist; see [].

Given a structure A, define the 3, Marker extension Ay, of A as follows. Let {R; : i € I}
be the language of A, with R; of arity a;. The domain of Ay, is AU J,c; U; where A is the
domain of A and the U; are disjoint infinite sets. Ay, has unary relation P4 and P; picking
out A and U; respectively. For each i there is also an a; + 1-ary relation @); assigning to each
a;-tuple u an infinite set U, 5, with v € U, 5 if and only if Q;(@,v). The sets U, ; are infinite
and partition U;. For each ¢ and u € A%, U, 5 is the domain of a structure U; ; which is
isomorphic to either By or By, with U; ; = By if A = R;(u), and U; 5 = B; otherwise.

Then we have:

Lemma 5.1 (See Lemma 5.5 of []). Let o be a computable successor ordinal and let A be a
structure. Then A has a A% copy if and only if Aa, has a computble copy.

We can also prove a similar fact about the back-and-forth trees of a structure.

Lemma 5.2. Let A be a structure and suppose that T(A) has a A, copy. Then T(Aa,)
has a computable copy.

Proof. TODO [

5.2 X, Marker extensions

Let a > 1 be a computable successor ordinal, though we will only need the case o = 1. Fix
computable structures By and B; in the same relational language such that:

1. the pair {By, B;} is a-friendly,
2. By <, By (B satisfies every ¥, formula satisfied by B)
3. By satisfies some computable ¥, sentence that B; does not.

Such structures exist; for example, for o = 1, we can take By and B; to be infinite structures
in a language with a single unary relation P, and have By have a single element satisfying
P, while By has no elements satisfying P. Define Ay, in the same way that we defined
A, except using the new By and B;. We sometimes write A3 for Ayx,. We can prove the
corresponding lemmas.

If A is a structure, a 3, copy of A is one in which the relations are ¥°. Note that such
a copy is automatically A% ;.

Lemma 5.3 (See Lemma 5.5 of []). Let a be a computable successor ordinal and let A be a
structure. Then A has a X° copy if and only if As, has a computble copy.
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Proof. If As_ has a computable copy, then it is not hard to make a 3° copy of A; given @
and R;, have A = R;(u) if and only if U; ; = By, and this is 3. (We use here the fact that
B, satisfies a computable ¥, sentence that B; does not.)

For the other direction, if A has a ¥:° copy, we can use the uniform version of the following
fact (see ??) to build a computable copy of As,: For any X0 set S, there is a uniformly
computable sequence (C,)new such that C,, = By if n € S, and C,, = By otherwise. O

Lemma 5.4. Let A be a structure and suppose that T (A) has a ¥, copy. Then T (As,) has
a computable copy.

Proof. TODO O

6 Main Result

In this section, we will prove the main result of this paper.

Theorem 6.1. There is a structure A with no computable copy such that T (A) has a com-
putable copy.

The proof is quite involved and will extend over the rest of this section. We build A as
the disjoint union of structures A,,, with A, satisfying a unary relation R,,. We will make
sure that A, is not isomorphic to the structure with domain R, in the nth computable
structure. Thus A will have no computable copy. 7 (A,) will have a computable copy which
is computable uniformly in n, and so by Lemma 4.7, T (A) will have a computable copy.

Fix n for which we will define A = A, which is not isomorphic to B, the structure
with domain R,, in the nth (possibly partial) computable structure. The language of A will
consist of infinitely many unary relations called labels and infinitely many n-ary relations for
each n. The relations R will be relations on unordered tuples. We’ll consider these relations
to all be c.e. relative to a presentation of A. Similarly, we will consider the trees to have
c.e. labels. The actual structure will be an existential Marker extensions of these relations;
Lemmas 5.3 and 5.4 show that this all works out.

We will build A as a limit of a computable sequence of finite structures on increasing
domains. The construction will proceed by stages, each divided into at least three, but
possibly more, steps. At stage s, step ¢, we will define A,,. At each stage s and step ¢,
after defining A, we wait for an ¢ such that B, is isomorphic to A,;. If there is no such
stage, then we just put A = A, and win; in this case, there are only finitely many stages
of the construction. If the construction lasts for infinitely many stages, then there will be
a sequence sy < S; < Sg < --- of true stages, and we will have A = USZ, As, 0 as a nested
union. When describing the construction we will generally assume that for each stage s and
step ¢ a value 7 as above exists, and write B, for B;; note that the B,; are nested, with B
being their union. It is this asymmetry—that the opponent must produce nested structures
while we do not—that we will exploint to make A not isomorphic to B; however, we will
still have to show that a copy of T (A) is computable uniformly, whether there are finitely
or infinitely many stages of the construction, and so we are actually quite restricted in what
we can do.
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To the stage s we associate a number n(s). The true stages are those stages s for which,
for every t > s, n(t) > n(s). If s <t, then t belicves s if for all s < &' < t, n(s’) > n(s). If
t believes s, then if t is a true stage then s must be a true stage. Write s <t if ¢ believes
s. It will always be the case that n(s + 1) = n(s) + 1 or n(s + 1) < n(s); the value of n can
never stay the same from one stage to the next, or increase by more than one.

To show that 7 (A) is computable, we will build a computable sequence of labeled trees
T+, each isomorphic to the corresponding 7 (As;), and such that

Too €To1 CTop S CTpgCT11 S CTogC -
Since the A,; are not nested, it is not true that
T (Aoo) €T (A1) €T (Ap2) C---CT(A1g) CT(A11) C--- CT(Azp) C---

under the natural inclusion of their domains; so the structure A will have to be constructed
carefully to ensure that the T, are nested. The tree 7" which is the union of the T}, is
computable, but we must argue that it is actually isomorphic to 7 (A). To see this, we will
also keep track of pseudoisomorphisms g,;: Ts; — A, and try to ensure that g = lim g, is
a pseudoisomorphism 7" — A. To make sure that this happens, during the construction we
will make sure that if s < s’ then gy ¢ does not change too much from g, (; more precisely:

e if s < and n(s) = n(s") then g,o C gy 0; and

o if s < s and n = n(s) < n(s’) then gy and gy o agree on all nodes of Ty of height
<n.

Then there are three cases to consider:

1. There are only finitely many stages. If s and ¢ are the last stage and step, then A = Ay,
and T'=T,; = T (As,) so we are done.

2. There is n such that for some sg, for all true stages s > sg, n(s) = n. In this case,
9 = Usrue s> 5,0 15 & nested union.

3. There is no bound on n(s) for s a true stage. Then the g5 come to a limit g defined
as follows. For o € T, g(0) = gso(0) where s is any true stage which is sufficiently
large that o € Ty and n(s) > |o|. This g is a pseudoisomorphism 7" — A.

See Lemma 6.8 for the details.

At each stage s and step ¢, every element of A,, will have a label ¢ which holds of
that element and no other element. We call this ¢ the (s,t)-distinguishing label of a (or
the s-distinguishing label is ¢ = 0); as the notation implies, the distinguishing label of a
particular element of A will change over time. At each stage s and step t, we will also have
certain elements which are designated as killed. What this means is that these elements will
never again be given a new label, and they will keep the same distinguishing label. Once
an element is killed it will remain killed from then on, even if it became killed at a non-true
stage.

At stage s, let n = n(s) and let ty < ¢ < ty < -+ < t, = s be the previous stages
believed by s such that ¢; is the least stage with n(¢;) = i. The elements of A, will consist
of:
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® C,

® ay,...,0n,

for each 1 <@ <n, ay,,...,a;, foreachi, and

killed elements.

These elements are all distinct. Over the course of stage s, we will introduce elements ¢, and
A gy 0y g (s +1) =n(s)+ 1, so that s is a true stage, then we will have a, 1 = c/.
These values are dependent on the stage. If s < t, then t agrees with all of the values
defined at stage s; but a stage s with n = n(s) which is not a true stage may define an value
for a,, which is later cancelled (that element becoming killed) when we find out that s is not
a true stage, and a later stage ¢ with n = n(t) may then redefine a,, as a new element. All

true stages agree on the values of these elements.

Suppose that the construction has infinitely many stages; we must argue that A is not
isomorphic to B. The element ¢ € A will be special: we will ensure that B does not have an
element isomorphic to it. Because B, is isomorphic to A,;, and each element of A, has
a distinguishing label, there is a unique isomorphism f;; between A,; and B,;. We may
assume that the domain of By, is an initial segment of w. During the construction we will
make sure that at every stage s, fso(a1),..., fso(an) < fso(c) in the standard order on w; it
is the opponent that decides how to build B, so we will have to construct A in such a way
that the opponent is forced to maintain this. Thus if, along the true stages, limgn(s) — oo,
then lim, fso(c) — oo, and so B will have no element isomorphic to ¢ € A. (To make this
true, we also guarantee that if s is a true stage, ¢ will never be given the s-distinguishing
label of any other element of A;(.) The other possibility is that for sufficiently large true
stages s, the value of n(s) stays the same, say n(s) = n. Whenever we have s < ¢ and
n(s) = n(s"), we will have f;o(c) < foo(c); this will be because a new element shows up in
B below the image of ¢, and then that new element is then killed. So in this case as well, we
will have that B does not contain an element isomorphic to c.

6.1 First few stages of the construction

In an informal way we will go through the first few steps of the construction. In Figures 1
and 2 we show the first two stages of the construction, ending in stage 2 step 0. The two
figures show the two possibilities, depending on how B responds. We always have n(0) = 0
and n(1) = 1 since we cannot have n(1) < n(0) = 0. But then we could either have n(2) = 2
in which case 0, 1, and 2 are all true stages (at least so far), or n(2) = 0, in which case 0
and 2 are true stages so far, but 1 is not. The figures show A, , for each stage, the response
Bs: by our opponent, and the tree T,. The nodes of the tree are labeled with the images
of the pseudoisomorphism gs;: Ts; — As;. Elements of the structures and the tree are
represented by black dots; two dots which are in the same position from one diagram to
the next represent the same elements of the domain. So, for example, the node on the first
level of the tree at 0,1 which is labeled ¢ is the same as the node at 0,2 labeled ¢’; what
has happened is that the image of this node under the pseudoisomorphism has changed. In
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the structures A and B, the numbers below an element represent the labels given to that
element. The elements of B are labeled with their preimages under f,; though we drop the
subscript to save space.

Begin at stage 0 (and step 0) with Ay consisting of a single element ¢ with the label ‘1’
At step 1, we introduce a new relation Ry and have it hold of ¢; this is represented in the
diagrams by the line attached to the element. At step 2, we introduce a new element ¢, and
change the structure to have Ry hold of ¢ instead of ¢. Both ¢ and ¢, have the same label
‘1’ that ¢ had at step 1, but they each get a new label that the other does not have: 2’ for
c and ‘3’ for ¢. Note that Ag; € Ap2. Now B must copy A, except that as it has already
put Ry on the first element of its domain, this element must copy c{ rather than c. We must
also expand the tree, and adjust the pseudoisomorphism; the node that previously mapped
to ¢ now maps to ¢j. Finally, at stage 1 step 0, we put Ry on all of the elements of A4 and
promise to put it on any new elements that show up from now on. This essentially means
that we can forget about Ry from now on, and we no longer draw it. We also set n(1) =1
and a; = ¢j. Note that f(a1) < f(c), so that we have made one step towards forcing B to
omit an image of the element ¢ € A.

Now at stage 1 step 1, we put a new binary relation R; on ¢ and a;; this relation will be on
unordered tuples. B;; must copy this. At step 2, we introduce new elements ¢} and @) ; which
have the same labels that ¢ and a; had respectively in A4, ;. Each of the four elements gets a
new label so that they are still distinguished. In A, 2, we put R; on the pairs ¢, a} ; and ¢}, a;
but not on ¢, a; so A1 € Aj . Before discussing our opponent’s possible responses, let us
talk about the tree 77 5. Once again the pseudoisomorphism 73 ; — A; ; cannot be extended
to a pseudoisomorphism 77, — A; 2. However, we can keep the pseudoisomorphism the
same on the first level of the tree, because the tuple ¢, a; satisfies the same atomic formulas
in Ay as the tuples ¢}, a; and ¢, @) ; what is going on here is that any existential formula
true in A; ; with one(= n(1)) parameter is still true of the same parameter in A 5.

Our opponent must copy A; 2, and they have two choices; they can either turn what
used to be the image of ¢ into the image of ¢}, or they can turn what used to be the image
of a; into the image of @} ,. In Figure 1 we show the former, and in Figure 2 we show the
latter. We will begin by discussing the latter. Since f(c}) < f(c), at stage 2 step 0 we can
set ag = ¢}, n(2) = 2, and put the relaton R; on every pair of elements of A (so that we stop
drawing it). Note that we have fy0(a1), f20(a2) < foo(c) as desired. We have also preserved,
from stage 1 to stage 2, the pseudoisomorphism on the first level of the tree.

Let us now consider the other possibility for the opponent’s response B ;, as shown in
Figure 2. The key is that the opponent has put the image of a, after the image of c. In Ay,
we will do the following. First, we put R; on every pair of elements, and stop drawing it.
Second, we take all of the labels on ¢ = a; in A; » and give them to ¢, and vice versa. Both
of these elements receives a new distinguishing label. Finally, we set n(2) = 0 and kill all of
the elements that were introduced since stage 0, i.e., all of the elements other than c. In the
diagrams, we use a circle to represent an element that has been killed.

Note that in the tree 75, we are able to switch back the swap of ¢ and ¢, that we made
at stage 0 step 2. This is because each of these elements satisfies in Ay all of the same
existential formulas the other satisfied in A; 5. Thus the pseudoisomorphism 75 — Az
extends the pseudoisomorphism Ty, — Ago at the previous 2-true stage. The unlabeled
elements of the tree are mapped to a killed element, and so will never have to change from
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Now on.

The opponent is also allowed to switch, from Bj s to Bag, the images of ¢ and ¢, = a;.
However, because the opponent made the image of ¢, = a; larger than the image of ¢, this
will not allow them to decrease the image of c. So essentially we have returned to where we
were at stage 0, except that we have some new elements which are all killed (and hence will
not interfere with the construction) and that the image of ¢ in By has increased compared
to what it was in By, so that we have made some progress towards having A 2 B.

An additional consideration. At stage s where n(s) > 2, it is possible that we will require
more steps. We illustrate this in Figure 3. Due to space constraints, we will no longer keep
track of the trees T;. We begin at stage 2 step 0 where we left off in the case n(2) = 2 as
in Figure 1. We begin by introducing a ternary relation R, in step 1, followed by elements
Ch, @} 9, and ay , in step 2. Suppose that the opponent responds with By as shown. To take
advantage of the fact that they have put the image of as above that of c—and so the image
of the new element a’272 is below ¢—in Ay 3 we give c every label that as had in Ay 5, and vice
versa. We also give a; every label that a} ; had in Aj,. This allows us to undo the injury
to the pseudoisomorphism Ts; — A,; that was done at stage 1 step 2 (on the second level
of the tree, see Figure 1). Now the opponent, in building B, 3, can swap the images of ¢ and
ay =, and of a; and a/1,1- One way that they might do so is shown in Figure 3. The issue
here is that we have allowed our opponent to make f(c) < f(a1), and so we cannot go on to
the next stage. But what we can do a similar move again: give c all of the labels that a; had
in A, 3 and vice versa. This allows us to undo the injury done to the pseudo-isomorphism
in stage 0 step 2, and we have n(3) = 0.

6.2 Formal Construction of A

The formal construction will look slightly different than the informal picture just given. At
a stage s, we may not know how many steps there will be until B allows us to move on to
the next stage. Because of this, if ¢ is the last step at stage s, we will have A1 = As.
We will also keep track, through the steps ¢ at stage s, of a value m,;. This value will be
the current guess at n(s+1). If ¢ is the last stage of step s, then we will have n(s+1) = m;.

Construction.

e Stage s = 0, step 0. Begin with 4, consisting of a single element ¢ labeled with a
single label.

o Stage s+ 1, step 0. Let t be the last step at stage s. Let As110 = Ass. Let n(s+1) =
mgy. If n(s+ 1) > n(s), let apsq1) = ¢,. Otherwise, cancel everything but the values:

_—
_ al,...,an(s+1),
_ a’l,s,,...,aas, for each 1 < i <n(s+1) and s’ < s+ 1.

o Stage s, step 1. Choose a new n + l-ary relation R,. As; will be Ay except that we
have
Rs(c,ay, ... ay).
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Recall that R; is a relation on unordered tuples.

Stage s, step 2. Since we did not add any new elements or labels in A, ;, we have that
fs1 = fso. So we have B, = Ry(fso(c), fsola1),-.., fso(an)). (Recall that R is a
relation on unordered tuples.)

The structure Ao will look like A,y but with new elements, labels, and relations.

Introduce, in Ay, new elements ¢, a} ,, ..., a, ,. These elements have the same labels
that the corresponding elements c,aq, ..., a, had in A, but we give each element a

new unique label. So, for example, ¢ and ¢, have all the same labels that ¢ had in A, ,
but each of them has one more label that the other does not. We have relations

R(cd,,ay, ... ay) and, for each 7, Ry(c,ay,...,a. ... a,).

) 1,89

We do not have R4(c,aq,...,a,). In general, R, holds of any such tuple where there
is exactly one ’.

Stage s, step 3. Whether we proceed onto stage s + 1, or add another step to stage s,
depends on what B does.

Recall that fs; = fso was the isomorphism A, ; — Bs 1, and so it gives a map A, o —
B 2, but this map is not neccesarily an isomorphism since A ; is not a substructure of
As o (but Bg; is a substructure of By ). There are two possibilities for f;(c); either it
is equal to fs(c), or it is one of the new elements in B, 2 — B, ;. This is because all of
the other elements of B, ; have a label which ¢ does not. Similarly, for each a;, either
fs2(a;) is fso(a;) or it is one of the new elements in Bso — B 1.

Since B, is a substructure of B; 2, we must have that

55,2 )Z Rs(fs,O(C)a fs70(a1)a e 7fs,0(a'n))

since this was true of B, ;. However, it is not true of Ao that Ass = Rs(c,ay, ..., a,).
So the isomorphism fs9: As2 — Bs2 cannot extend f;o. There are n + 1 differ-
ent n + 1-tuples which satisfy Rs in A, and it must be one of these that maps
to fso(c), fso(ar), ..., fso(a,) in Bso. These tuples are ¢, ay,...,a, and, for each i,
C,Q1, .-, 0, -+, Gp; MOTEOVET, these must map to fso(c), fso(ar), ..., fso(a,) in order.

So we have n + 1 possibilities divided into two cases:

Case 1. fso(c) € Bsa — Bs 1. For each 1 <i <n, fsao(a;) = fso(a;) € Bs.

Case 2. There is j such that fso(a;) € Bsa — Bs1. For each 1 < i < n, i # j,
fs2(ai) = fsola;) € Bgy; and fo2(c) = fso(c) € B

In Case 1: This is the last step of stage s. We define A3 O A,-. Put R, on every
n + 1-tuple of elements, and on every n + 1-tuple of elements which is added to A at
any later stage of the construction. Set mg3 = n(s) + 1.

In Case 2: We do not yet move onto stage s + 1. We define A3 O A,5. Put R, on
every n + 1-tuple of elements, and on every n + 1-tuple of elements which is added to
A at any later stage of the construction.
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Let s' < s be the previous stage with n(s’) = j — 1. Give c all of the labels a; = ¢,
had in A;», and give a; = ¢, all of the labels ¢ had in A,,. Similarly, for 1 <i < j,
give a; all of the labels a; , had in Aj, and give a] , all of the labels a; had in A; .
Each of these elements gets a new (s, 3)-distinguishing label.

Set ms3 = j — 1. Continue the stage s with step 4 of stage s.
e Stage s, stept +1 > 3. Let m = m,;. We have two cases.

Case 3. fsi(a1),..., foilam) < fsi(c).
Case 4. For some j, fs1(aj) > fs.:(c).

In Case 3: Step t + 1 will be the last step of stage s. We define Ay, = As;. Set
Mg t41 = Mg

In Case 4: Let j be least such that f,.(a;) > fsi(c). Let s’ < s be the previous
stage with n(s’) = j — 1. Give c all of the labels a; = ¢, had in A;,, and give ¢, all
of the labels ¢ had in A,;. Similarly, for i < j, give a; all of the labels a; , had in
A, and give a;S, all of the labels a; had in A,;. Each of these elements gets a new
(s,t 4 1)-distinguishing label.

Set myy1 = 7 — 1. Continue the construction with step ¢ + 2 of stage s.

End of construction

6.3 Verification

We will begin by proving various lemmas about the construction. First, we show that
elements which are introduced at non-true stages are killed when we find out that that stage
was not a true stage.

Lemma 6.2. Suppose that s 2 s+ 1, and let s' < s be the previous s + 1-true stage. Then
each element of Ay — Ay is killed by stage s + 1.

Proof. At stage s + 1 step 0, we kill all of the elements other than:

°c

® Qy,...,0n(s41),

® ay...,a; foreach 1 <i<n(s+1)andt<s+1.
These elements were all introduced at stage s’ or earlier. O
Lemma 6.3. Suppose that s <t and x € A is killed at stage s. Then fs(x) = fi(x).

Proof. Looking at the construction, we see that no new labels are added to a killed element,
and so the s-distinguishing label of x is still its ¢-distinguishing label. O
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Lemma 6.4. Suppose that s < s+ 1 <t. Then, for each 1 <1i < n(s):
flai o) = forr(ais) > fs(o).

Proof. Since s < s+ 1, we must be in Case 1 at stage s step 3. For each i, 1 <7 < n(s), there
are only two elements of A, » satisfying the s-distinguishing label of a;—a; and a} ,—and of
these only a; was in Ayo. So there is only one element of B, satisfying this label, and this
element is fso(a;). Since we are in Case 1, fs2(a;) = fso(a;) and so fia(a;,) € Bsa — Bso;
thus fi2(a; ;) > fso(c) since the latter is in B, o. We also have fo1(a; ) = fs2(a},) since we
make no further changes to A at stage s. So we have shown that f.1(aj,) > fo)-

Now we claim that a , has no more labels at stage ¢ than it had at stage s + 1. There
are only two times when we give an element a new label at a stage u:

1. When we introduce the elements ¢, and @} ,,,...,a, we give a new label to ¢ and

> Yn(u),u?
A1y .-y Op(y)-

2. In Cases 2 and 4 when we give ¢ and a; = ¢, each other’s labels, and a; and a; , each
other’s labels, for some s' < u.

No new labels are given to a;, for the sake of (1). At each stage u, s +1 < u < ¢, since s
is a u-true stage, (2) can only happen for j > n(s). Thus a new label cannot be added to
a; , for the sake of (2) before stage ¢. So a;, is still the only element at stage t satisfying its
s + 1-distinguishing label. This means that f;(a;,) = fsy1(a;,). O

Lemma 6.5. If s < t, fi(c) > fs(c).

Proof. We argue inductively. It suffices to show this where s is greatest such that s < ¢.
It will also be more convenient to adjust the value of ¢ by one: given s < t + 1, show that
frv1(e) > [fs(c).

First, suppose that s =t. Then we must be in Case 1 at stage s step 3, as in Case 2 we
end up with n(s+1) < n(s). Then foy1(c) € Bsa—Bs1 and so fsi1(c) > fs(c) as fs(c) € Bsa
and this is an initial segment of B .

Second, suppose that ¢ 4 ¢+ 1. We have s < t (since n(s) < n(t +1) < n(t)) and
so fs(c) < fi(c) by the inductive hypothesis. So if we can show that f;11(c) > fi(c), then
we are done. Since t £ t + 1, we are in Case 2 at stage t step 3. Note that we then
have f;2(c) = fio(c) = fi(c). We also have fia(c}) € Bsa — Bsy and so fra(c)) > fialc).
Looking at what we did in the construction in Case 2, we see that either f;3(c) = fia(c) or
fi3(c) = fia(c)) > fi2(c) as there is a label that at this point has been given only to ¢ and
din A, and fi2(c) and fio(c') in B. In either case, fi3(c) > fia(c) = fi(c).

The construction now proceeds to step 4. If, at step 4, we are in Case 3, then we make
no further changes to A, and so fi11(c) = fis(c) > fi(c) as desired. On the other hand,
suppose that at step 4 we are in Case 4. We will argue inductively on steps r > 3 that
fir(c) > fs(c), and then if r is the last step of stage ¢, fir1(c) = fir(c) > fs(c). We already
have the base case r = 3. Suppose that we know that f;,.(c) > fi(c). At step r + 1, if
we are in Case 3, then r + 1 is the last step of stage ¢t and we do nothing to A, so that
fir1(¢) = fir1(c) = fir(c) > fs(c). So suppose that we are in Case 4. Let j be as in Case 4,
with m,; = j — 1. We have f;,(a;) > fi,(c). Looking at the construction, we have either
Jer+1(c) = fir(c) or firpa(c) = fir(a;) > fir(c), as these are the only elements of A, 4
with the (¢, r)-distinguishing label of c. In either case, fi,41(c) > fi,(c) as desired. O
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Lemma 6.6. Suppose that s is a true stage, v,y € Ay with x #y. Then no element of A
has both the s-distinguishing label of x and the s-distinguishing label of vy.

Proof. The elements of A, are:

® C,
® dy,...,0n,
o foreach 1 <i<n,ay,,...,a;, foreachi, and

o killed elements

where n = n(s) and tg < t; <ty < --- < t, = s are the previous stages believed by s such
that ¢; is the least stage with n(t;) = 1.

Killed elements keep the same distinguishing labels forever, so we may assume that x and
y are not killed. There are two times when we give a label already applied to one element
to another element at a stage ¢:

1. When we introduce the elements ¢; and aj,, ..., a; ), which have the distinguishing

labels of ¢ and ay, ..., a, respectively.

t),t

2. In Cases 2 and 4 when we give ¢ and a; = ¢, each other’s labels, and a; and a; ,, each
other’s labels, for some s' < t.

After stage s, since s is a true stage, (2) can only happen for j > n(s) and s’ > s. Thus the
elements a}, ,...,a;, for 1 <i <n keep the same distinguishing labels from stage s on.
We claim that the only elements which can receive the s-distinguishing label of a;, 1 <
i < n(s), are elements of the form a; , for s’ > s. Indeed we see that in both (1) and (2),
whenever one of these elements (a; or a; , for s' > s) receives a label which had already been
given to another element, that other element is also one of these elements. Thus no element
can ever be given the s-distinguishing labels of both a; and a;, i # j, or of a; and c. This
proves the lemma. O

Lemma 6.7. A is not isomorphic to B.

Proof. Let sp < s1 < 9 < s3 < --- be the true stages. Given z € B, we claim that x is not
the isomorphic image of ¢. Using Lemma 6.5, let ¢ be such that z € By, o and fs,(c) > x.
Then z = f,(y) for some y € Ay, 0, y # ¢. So in By, o, « has the s;-distinguishing label
of y. By Lemma 6.6, no element of 4 has both the s;-distinguishing label of y and the s;-
distinguishing label of ¢. So x cannot be the isomorphic image of ¢. Thus B is not isomorphic
to A. O

Lemma 6.8. T(A) has a computable copy.

Proof. For each stage s, let is be the last step of stage s. We will computably build

Too CTo1 €+ ClToyo=T1oC - CThy, =T C -+
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such that T, is isomorphic to 7 (As;). Moreover, for each stage s, we have a pseudo-
isomorphism f: T — Aso. We will argue that 7' = [J T ; is isomorphic to A.

Note that we define T ; at every stage s and step ¢, whereas f; is only defined for every
stage s. It is of course possible that there are only finitely many stages, because B stops
copying A. Then, if s,7 is the last stage and step, we have T' = T, is isomorphic to
T(As;) = T(A). So T is isomorphic to 7 (.A) even though we did not necessarily build an
isomorphism between the two.

If there are infinitely many stages of the construction, then T' = | J T; o will be an infinite
union, so we must give an argument that 7' is isomorphic to 7 (A). We will have that
f = lim f, is a pseudo-isomorphism from 7" — A. This limit will be a A9 limit along the
true stages.

We make a new convention: At stage s, an active element of A, is one of the elements
C,a1, ..., an(). We also write f(o) for the tuple f(ol1),..., f(o llo])- The other elements
are all inactive. Given stages s =< t, the maps f; and f; will satisfy a certain agreement
condition:

(x) If n(s) = n(t) then f, C f;. If n(t) > k = n(s) then whenever o € T, is such that f (o)
contains at most k active elements (but possibly other inactive or killed elements),

then f.(0) = f,(0).

A second property that we will use to argue that f = lim f, stabilizes is as follows:

(f) Suppose s = s+ 1, so that n(s) = k and n(s +1) = k+ 1. Given o € Ty, f,.1(0)
contains at most k + 1 active elements.

Using (*) and (}), we can argue that f = lim, f, is a pseudo-isomorphism 7" — A. Let
Sg = 81 X §9 = --- be the sequence of true stages. If there are n and I such that for all i > I
n =n(s;), then f = Uizf fs, and these are nested. So we may assume that lim; . n(s;) = co.

e Given o € T, we must argue that fs(c) comes to a limit. If o € T}, o, with s; greatest
with that value of n(s;) = k, then s;11 = s; + 1 and n(s;41) = n(s;) +1 =k + 1. By
(1), ?SM (o) contains at most k + 1 active elements. Then we can argue inductively on
J, using (), that f,,, . (0) = fs,,(0). So f(o) comes to a limit.

e Given a € A<Y, we must argue that there is o € T such that f(o) = a. Let s; be a
true stage such that n(s;) > |a|. Then a can have at most |a| < n(s;) live elements.
There is ¢ such that f, (o) = a, and by (%), f(o) = a.

We must now give the construction of 7" and f and then verify that they satisfy (%) and ().
We will also build intermediate maps g,,: T5; — As;, with g = gs.

Construction. Begin with Ty o = T (Ag) and f, the natural pseudo-isomorphism Ty 9 — Ao .
Suppose that we have defined

Too CTo1 C---Chpyiy=T1pC - CThy;, =150 C - C Ty

and fo,...,fs. We must define T5;,T52,...,Ts,;,,Tsy10 and for1. In the process, we will
also define the g; ;.
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Step 1: A;; O A, and they have the same domains, so we can define T,; O T, with
gs1 = gso = gs still a pseudo-isomorphism 7T ; — A;; .

Step 2: For each 0 € T;;, define g2(0) as follows. If gs(o) is inactive or killed, then
gs2(0) = gs(0). If, among gs(7), for 7 < o, there are less than n active elements,
then also set gs;2(0) = gs(o). Finally, if there are n active elements among g,(7), for
T < o, then set g;2(0) as follows: if g;(c) = ¢, then gs2(0) = ¢; if gs(0) = a;, then
g8,2<0> = a{i,s'

We can see from the construction of A, 5 that this is a pseudoembedding. Now extend
Ts1 to Ts o and extend g5 2 to a pseudoisomorphism 7§ o — A; 9.

Step 3: If s < s+ 1, then this is the last step of stage 3 and A, 3 = As2. So set gs3 = gs2.

If s £ s+1, let ¢t be maximal with n(t) = ms3. Then we have my3 =n(t) < n(t+1) <
n(s) and ¢ < s. We claim that g;: T3 9 C Tso — Ass is still a pseudoembedding.
Consider 0 € Tip. Then by (1), fiii(0) has at most n(t) + 1 = n(t + 1) active
elements. By (x), fi(0) = fir1(0); also, gsa(0) = fi(0) because f (o) has at most
n(t) < n(s) active elements. So fi+ is a pseudoembedding T;11 9 — As 3.

We want to argue that f; is also a pseudoembedding T} o — A 3. Given o € T, since
t = t+ 1 the only change we made from f; to f;,1 is that sometimes when f;(c) = ¢
we set fi11(0) = ¢; = an(41), and sometimes when fi(0) = a; we set fi(o) = aj,. But
in Case 2 of step 3 at stage s+ 1, we give c all of the labels ¢} had and vice versa, and
similarly for a; and a;,. So f; is a pseudoembedding T} o — As 3.

Define T 3 and gs3: Ts3 — A3 such that g, 3 2 ¢ is a pseudoisomorphism.

Step t: This is similar to step 3.

Verification. We must now check (%) and (f). For (x), if s < s+ 1 = ¢, then this is clear
from the construction—step 2 above is the only place where f,.; is made to differ from f.
Otherwise, if t < s is maximal such that n(t) = n(s), then in step 3 / step ¢t we define fs4
be having it extend f;. The other cases of () follow from these two cases.

For (1), if s < s + 1 then we do nothing in step 3. In step 2, it is not hard to see that if
o € Typ then f,, (o) can have at most n(s) + 1 = n(s + 1) active elements, as for 7 < o,
fs+1(7) can only be active if fi(7) was, and there are only n(s)+1 active elements of A,. [

6.4 Conclusion of the proof

We have built \A,, (which, by abuse of notation, we were calling A). By Lemma 6.7 is not
isomorphic to B, the structure with domain R,, in the nth (possible partial) computable
structure. Moreover, by Lemma 6.8, 7 (.A,,) has a computable copy uniformly in n.

Then let A be the structure which is the disjoint union of the A,,, each of which satisfies
the unary relation R,. Then 4 has no computable presentation. By Lemma 4.7, 7 (A) has
a computable copy.
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7 More on Enumerations of Families

The second author showed that whenever a structure codes a family of sets, the family of
sets can be recovered from the existential types of certain tuples, but the set of tuples to
look at is only Y3-definable.

Let {O. : e € w} be the standard computable enumeration of all enumeration-operators.

Lemma 7.1 (Lemma 3.5 of [Mon13b]). Let A be a structure. If F is a family of subsets of
w which is enumerated by all copies of A, then there is a tuple a and a uniformly computable
list of X3 formulas wi(Z,y) such that

F ={04(D1-tp,(a,0) : L €w, be A<, A= 0u(a,b)}.

If the family is simple enough—Ilike the Slaman-Wehner family, where all of the sets
in the family are c.e.—then the X3 formulas are already complicated enough to code the
family without having to actually look at the structure at all. The Y3 formulas can just
say to enumerate the sets given by certain operators @, which just enumerate a c.e. set in
the family without looking at the »;-type. On the other hand, the Y3 formulas cannot be
improved to ¥; formulas.

Corollary 1.3. There is a computable structure A and a family F of subsets of w which is
enumerated by all copies of A for which there do not exist a tuple a € A<Y and a uniformly
computable list of X1 formulas wi(Z,y) such that

F ={04(S1-tpa(@,b) : L € w, be A<, A= 0u(a,b)}.

Proof. Let A be the structure from Theorem 6.1. Let F be the Slaman-Wehner family which
is enumerated by every non-computable degree. Then every copy of A is non-computable,
and hence enumerates F.
Suppose that there were a € A<“ and a uniformly computable list of ¥; formulas ¢, (Z, )
such that
F ={04(Z1-tpy(a,b) : l €w, b€ A, A= ¢i(a,b)}.

Then every copy of T(A) could enumerate F. But 7 (.A) has a computable copy, a contra-
diction. []

8 Higher Up

We can use Marker extensions to obtain Theorem 1.2 from Theorem 6.1.

Theorem 1.2. For any computable ordinal «, there is a structure A such that T (A) has a
computable copy but A itself has no AL copy.

Proof. We may assume that « is a successor ordinal. Relativize Theorem 6.1 to 0(*) to obtain

a structure A be such that 7(A) has a 0(*)-computable copy but A has no 0(*)-computable
copy. Let B be the A,-Marker extension of A. Then by Lemma 5.2 7 (B) has a computable
copy, but by Lemma 5.1 B has no 0(*)-computable copy. O
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