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Rome, Italy

ISSN 1064-3745 ISSN 1940-6029 (electronic)
Methods in Molecular Biology
ISBN 978-1-0716-1153-1 ISBN 978-1-0716-1154-8 (eBook)
https://doi.org/10.1007/978-1-0716-1154-8

© Springer Science+Business Media, LLC, part of Springer Nature 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations
and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to
be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty,
expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been
made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Humana imprint is published by the registered company Springer Science+Business Media, LLC, part of Springer
Nature.
The registered company address is: 1 New York Plaza, New York, NY 10004, U.S.A.

https://doi.org/10.1007/978-1-0716-1154-8


Preface

Proteins are at the interface between simple and complex systems as aptly synthesized some
years ago in an enlightening paper by Hans Frauenfelder and Peter Wolynes (Frauenfelder,
Hans, and Peter G. Wolynes. “Biomolecules: where the physics of complexity and simplicity
meet.” Physics Today;(United States) 47.2 (1994)). This peculiar position makes the study of
protein structure and dynamics as the most convenient vantage points were to look at all
those features like self-organization, signal/noise discrimination, specificity of interaction,
multiple equilibria that are not present in organic molecules (whose behavior can be
satisfactorily faced by standard chemo-physical approaches) and that are too difficult to
grasp and analyze in biological systems (whose behavior emerges from a nondecomposable
mixture of top-down and bottom-up regulations). It is not without meaning that one of the
most influential journals in protein science is Biophysical Chemistry that in the title embeds
the three most central fields of natural science.

The investigation in protein science stems from very reliable data coming from the
“simplicity” end (atomic coordinates of protein structures from X-ray crystallography,
chemo-physical properties of amino acid residues) and goes into the “complexity” territories
of the discrimination of relevant “signals” from thermal noise in the case of allostery or the
conundrum of the structure–function relation in natively unfolded proteins.

This creates a perfect playground to explore the “mesoscopic realm” (Laughlin, R. B.,
Pines, D., Schmalian, J., Stojković, B. P., &Wolynes, P. (2000). The middle way. Proceedings
of the National Academy of Sciences, 97(1), 32-37.) where the still largely unknown organi-
zation principles ordering the middle-scale between atoms and galaxies are hidden.

This very ambitious goal is (more or less) latent in all book chapters that rebound
around the two basic issues of “allostery” and “network” that are present in almost all the
chapter titles. These two issues are each other connected by the fact that proteins are the
most basic “machine-like” objects sharing with human-made machine the need to organize
their architecture to a purpose that pertains to a different organization layer. It is convenient
to talk of a “purpose” more than a “function” (that is present even in simpler systems) for
the same reason that differentiates an isolated piston (whose function is to transform the
energy coming from oil explosion into a rhythmic motion) from the entire car that needs to
integrate the different functions of its parts into a coherent whole. At odds with a car, a
protein accomplishes its goal (e.g., to transport oxygen from lungs to tissues along blood
flow) without a driver, thus it must take care of self-organizing according to its micro-
environment (e.g., lowering its affinity constant for oxygen in the peripheral tissues and
increasing the affinity in the lungs). This implies the need of a sensor–control–effector circuit
like any self-adjusting device; these three tasks correspond to concerted changes of the
whole configuration that start from a sensor and end up at the effector that is exactly what
“allostery” is for: sensing a relevant stimulus, transporting the information across the entire
structure, and changing the configuration accordingly.

In order to do so, the protein must have a wiring architecture that allows to both
discriminate relevant signals by thermal noise (in a situation where signal-to-noise ratio is
near unity in energetic terms) and make the signal to reach the correct effector (e.g., the
active site). This wiring architecture can profitably be interpreted in terms of a “network”
whose nodes are amino acid residues and links the effective contacts between them, and the
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investigation of the features of the network architecture can shed light on the dynamics and
efficacy of allosteric control and open the way to a completely new avenue of therapeutic
intervention. The general paradigm of proteins as “self-organizing” machines is the “red
line,” unifying all the different chapters of the book.

In Chapter 1, the authors put into an historical perspective the problem of allostery and
demonstrate how this issue constitutes the basic issue to give a scientific foundation to
biology freeing the life science to invoke “Maxwell demons” to get rid of the otherwise
impossible to understand extreme specificity of cell metabolism.

Chapter 2 has a methodological/computational flavor focusing on the necessary link
between allostery and network formalism.

Guang Hu in Chapter 3 presents a rigorous way to “dynamize” structural network by
considering their links as springs, and this modeling choice allows to simulate the allosteric
behavior of the protein molecules.

Chapter 4 goes in depth into the energetic features of allostery. The authors are able to
establish a link between the presence of oscillating modes traversing the structure and the
underlying network wiring, thus giving a physically motivated picture of allosteric process.

Adnan Sljoka, in Chapter 5, proposes a mechanical perspective for the elucidation of the
“second secret of life” (a suggestive but very well-motivated definition of allostery) in terms
of rigidity perturbation.

Chapter 6 (apparently) deals with another theme that is the nature of protein–protein
interaction, and this issue asks for the consideration of cooperative effects that are at the very
basis of any kind of signal transduction across protein structures.

The convergence between protein–protein interaction and allostery is clarified in
Chapter 7. Both allostery and protein–protein interaction rely on the shared need of contact
network rewiring that is at the very basis of any motion of the “protein machines.”

Chapter 8 is a reprise of the methodological line of reasoning of Chapter 2, going in
depth into the presence of “sub-networks” (domains) of global contact network and
introducing the crucial issue of “assortativity” that generates that breaks the symmetry of
contacts distribution creating “specialized spatial patches” in protein territory.

The “symmetry breaking” introduced by Lesieur and Vuillon in Chapter 8 is further
analyzed in Chapter 9, describing a method that combines the information on the correlated
protein motions resulting from atomistic MD simulations with a network analysis based on
graph partitioning into mutually exclusive groups, named communities.

Chapter 10 introduces a software suite designed to analyze molecular dynamics and
structural ensembles in a network perspective allowing to conjugate the three main dimen-
sions of protein science: dynamical, structural, and chemical, allowing the different classes of
intra- and intermolecular interactions to be represented, combined, or alone in the form of
interaction graphs starting from molecular dynamics trajectories.

Chapter 11 faces the most paradigmatic case of interaction specificity in biomedicine:
the antigen–antibody recognition in terms of allostery allowing the reader to grasp the
fundamental role of this phenomenon in life sciences.

The “action at distance” by the transduction of signal across an organized network
structure is both the theme of Chapter 12 and the fundamental “recipe” of living entities at
the molecular level.

The central position of allosteric-like signal transduction is the focus of Chapter 13,
dealing with the probably most famous (and studied) hub protein. P53 located at the cross-
road of cell cycle regulation, genome integrity, and cancer development. Elena Papaleo in
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this chapter asks for the need for a fresh approach to the study of this protein, encompassing
a more integrated and systemic attitude.

Chapter 14 introduces the most direct applicative dimension of the network-based
approaches to allostery, introducing a totally new approach to pharmacology: allosteric
drug paradigm that promises to make pharmacological research to exit from a bottleneck
lasting since at least two decades.

Chapter 15 constitutes a (largely unexpected) widening of the perspective telling us not
only proteins but even RNA systems display allosteric and cooperative features. Besides the
applicative value for exploiting gene expression regulation, these findings open the way to
very stimulating hypotheses about an RNA world at the very origin of life.

We can safely state that the authors contributing to this book are representatives of the
frontiers of integrated approaches to protein science and the picture emerging is in turn
coherent and fully integrated, thus contributing to the recovery from the fragmentation of
scientific thought that is probably the most dangerous menace facing science in these times.

Rome, Italy Luisa Di Paola
Alessandro Giuliani
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Chapter 1

Allostery: The Rebound of Proteins

Alessandro Finazzi Agrò and Giampiero Mei

Abstract

The discovery of hemoglobin allosteric properties is briefly summarized and contextualized in the frame of
the main biochemical revelations that characterized the first half of the XX century. In particular, the
historical background of DNA, RNA, and protein structure research is recalled and the new role that
protein-protein interaction may have on allosteric regulation is discussed.

Key words Myoglobin, Hemoglobin, Allosteric effect, Oligomerization

The history of Biochemistry in the past century can be jokingly, but
even not so much, due to pertinacity and pride of the respective
supporters, described as a fight for supremacy among proteins,
DNA and RNAs.

No doubt that the first half of twentieth century was dominated
by the biochemistry of proteins, especially those endowed with
enzymatic or other functionally well understandable functions.
The first and most famous among this class was, and is, hemoglo-
bin, due to two remarkable and useful properties: our connatural
fascination (or aversion) for blood and the abundance and relative
easiness of its purification. In fact, hemoglobin was the first protein
to be purified and crystallized more than 150 years ago [1]. From
thence and for the following hundred years, proteins were the main
character on the biochemistry stage. Not by chance, their collective
name, proteins, comes indeed from the Greek word πρoτειoν (pro-
teion, primary) [2]. Another important ability of proteins was
afterwards discovered: their role as organic catalysts soon denomi-
nated to enzymes (again a Greek-derived word: ενζυμoν, enzu-
mon ¼ in leaven) [3]. As a matter of fact, already for thousands
of years the ability of yeast to convert organic matter into human’s
more desirable foods (beer, leavened bread, wine) was known and
exploited.

The elemental chemistry, amino acid composition, primary
(amino acids sequence), secondary, tertiary, and quaternary
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structure of proteins required the strenuous effort of a host of
brilliant biochemists, chemists, and physicists. In the past century,
many of them have been awarded by Nobel prize. The first big
achievement was made by Max Perutz who described the structure
of hemoglobin tetramer [4], which gained him and his fellow John
Kendrew (for the structure of the cognate protein myoglobin) the
1962 Nobel Prize in Chemistry.

In the same years, a second star molecule, DeoxyriboNucleic
Acid (DNA), was gaining moment. First described by Miescher [5]
in 1869 and analyzed by Levene [6] in 1919, DNA took the centre
stage in 1953, thanks to a most famous paper by Watson and Crick
[7], perhaps one of the clearest and more provoking scientific
articles that everyone studying biology must read.

In this paper, James and Francis put down the basis of genetic
code which since then has been the favorite issue of thousands of
scientists all over the world, of many pharmaceutical and diagnostic
firms, and even of lay people whose a frequent locution became: “It
is in my (his, their, its) DNA”.

This “fashion” reached its climax around the turning of millen-
nium when the whole human genome was decrypted [8] and the
individual DNA sequence made available by skilled entrepreneurs
for a handful of dollars. It came out that only a tiny fraction (�2%)
of the DNA filament was actually coding for proteins, inducing
several scientists to preposterously call the remaining part “junk
DNA” [9]. However, after a few years, the finding of new functions
for the noncoding regions of the DNA molecule induced the
scientific community to reconsider the matter [10].

In the meantime, it started a more accurate search for the role
of RiboNucleic Acid (RNA), which till then considered no more
than an efficient and compliant servant with three different atti-
tudes (messenger, mRNA; transfer, tRNA; and ribosomal, rRNA).
This simplistic view was soon abandoned by the discovery of several
new types and functions of RNA. Just to mention a few, we today
acknowledge the presence and function of heterogeneous nuclear
(hnRNA), small interfering (siRNA), short hairpin (shRNA), piwi-
interacting (piRNA), micro (miRNA), and small nucleolar
(snoRNA) ribonucleic acids, not to mention double strand RNA
(dsRNA) found in some viruses.

The most recent finding about RNA is its ability to serve as a
catalyst in several reactions involving DNA, proteins, and RNA
itself [11, 12]. This particular ability gave room to hypothesize a
“RNA world” when ribonucleic acid might have been the unop-
posed king of all the living matter, before the appearance of proteins
on earth and then the takeover by DNA as repository of genetic
information [13, 14].

Nonetheless, it was evident that proteins, with their much
greater possibility of variation, these being written with 20 different
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letters, in comparison to the poorer four letters code of nucleic
acids, could play much more characters in the life programme.

Notwithstanding, proteins appeared to be downgraded in a
second row by the explosion of nucleic acids research and impor-
tance, as proven by the relative number of paper published, and by
the fall of impact factors attributed to protein structure-function-
devoted journals.

In these days, however, most likely to what happens with
fashion, proteins are regaining a central role, thanks to rediscovery
of an old concept, namely allostery. Allostery is again a Greek-
derived word: αλλoσ (allos)¼ different and στερεoσ (stereos)¼ solid
(object). Allostery is a term created by the team of Jacques Monod
at the Institute Pasteur just more than 50 years ago.

As Jean-Pierre Changeux put it: the history and significance of
the word “allosteric” is directly associated with the 1961 26th Cold
Spring Harbor Symposium on Quantitative Biology entitled “Cel-
lular regulatory mechanisms.” The word “allosteric” was not orally
pronounced during the meeting. It appeared for the first time in
the printed version of the Proceedings: in the General Discussion
written by Monod and Jacob as a conclusion of the meeting [15].

Nowadays, the term “allosteric” appears in more than 24,000
articles since the famous “number one” [16].

Among this ocean of scientific literature, there are several
recent reviews [17–22] that render almost worthless any effort of
writing a new one. But at least two articles deserve special mention
for their significance in the development of the field, both
connected with the evergreen model allosteric molecule, i.e.,
hemoglobin. The first, seminal for the quantitative treatment of
allostery [23], was written by the two French researchers of Pasteur
Institute, Jacques Monod and Jean Paul Changeux, and by an
American scientist, Jeffries Wyman, who after wandering in USA,
Europe, and Middle East found a convenient and comfortable
niche in the Rome University at the Institute of Biological Chemis-
try. This apparently odd choice of him, who had a chair at Harvard,
was due, besides the fascination of the Eternal City, to the presence
in the Biochemistry Institute of the University (at those times the
only one present in Rome) of two outstanding personalities: Ales-
sandro Rossi Fanelli and Eraldo Antonini, both of them, together
with their coworkers, already renowned for their studies on hemo-
globin and the cognate protein myoglobin. So, it was not by chance
or by preposterous self-esteem that hemoglobin gained the nick-
name “Roman molecule.”

Anyhow, hemoglobin is by far the most studied allosteric pro-
tein and is a reference for every polymeric protein showing this kind
of behavior, i.e., to change its activity upon binding at some distant
site an effector molecule. Soon after the publication of the so-called
MWC paper [23], Perutz gave structural ground to the theory
[24]. Nonetheless, this theory was debated even among the same
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proponents [25, 26] and subsequently an alternative hypothesis
was formulated, i.e., the so-called “sequential model” put forward
by Daniel Koshland, George Némethy, and David Filmer
[27]. Nowadays, the allosteric behavior of hemoglobin is still mat-
ter of research and comments [28].

It is important to recall that deciphering the structure of hemo-
globin required a titanic computational effort to reach a still unsat-
isfactory resolution of 5.5 Å (consider that at this resolution it is
impossible to establish the exact position of the amino acids side
chains, Fig. 1a). Only more than thirty years later, Perutz and
coworkers were able to increase the resolution down to 1.75 Å,
allowing a more reliable modeling of the protein and its allosteric
properties [29]. This important achievement was essentially due to
the development of computers. It might be recalled that the first
data on hemoglobin (or myoglobin) crystallographic structure
required weeks of almost hand calculations and modelling that
nowadays could be performed in few hours [30].

Thanks to this new computational power, further models of
allostery are arising, making anew proteins the main characters of
biological research [31]. These models do not consider as a funda-
mental property for an allosteric protein to be oligomeric, or to
show well-defined “active, R” and “inactive, T” states, as initially
described for hemoglobin and congeners. Instead, a concept of
“dynamic allostery” started to gain momentum [32] till a general
view of “conformation selection and population shift” became
recognized to possibly explain all the observed allosteric phenom-
ena [33]. Here, not only the binding of a small molecule may affect

Fig. 1 The advent of computer science and the model of hemoglobin, the most representative oligomeric
protein for allostery. Left panel (a): the original structure (at 5.5 Å resolution) solved by Max Perutz and John
Kendrew, thanks to the introduction of computational biology (i.e., computer routines, since 1951) and the
isomorphous replacement methodology (introduced by Max Perutz in the 1930s). Right panel (b): a
re-elaboration of the human deoxyhemoglobin structure at 1.74 Å resolution (pdb file 2hhb), deposited by
Max Perutz and collaborators in the protein data bank, in 1984
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the overall shape and activity of a protein, but a close interaction
between two, or more, different proteins may change completely
their conformation and physiological role. In this way, it was possi-
ble to understand the multiple role of some proteins, for instance
when they get in contact with other proteins inside a membrane,
giving rise to a receptor. This completely new approach renders very
actual the definition of allostery as “the second secret of life”,
prophetically disclosed by Jacques Monod [34] and subsequently
confirmed and extended by many others [35]. Thus, the supremacy
of proteins seems today to be definitely accepted.
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https://doi.org/10.1021/acs.chemrev.6b00283
https://doi.org/10.1021/acs.chemrev.6b00283
https://doi.org/10.1016/S0022-2836(65)80285-6
https://doi.org/10.1016/S0022-2836(65)80285-6
https://doi.org/10.1038/228726a0
https://doi.org/10.1038/228726a0
https://doi.org/10.1016/j.jmb.2013.03.015
https://doi.org/10.1016/j.jmb.2013.03.015
https://doi.org/10.1016/j.jmb.2013.03.012
https://doi.org/10.1016/j.jmb.2013.03.012
https://doi.org/10.1021/bi00865a047
https://doi.org/10.1021/bi00865a047
https://doi.org/10.1111/febs.12586
https://doi.org/10.1111/febs.12586
https://doi.org/10.1016/0022-2836(84)90472-8
https://doi.org/10.1016/0022-2836(84)90472-8
https://doi.org/10.1002/pro.660
https://doi.org/10.1002/pro.660
https://doi.org/10.1007/BF00276625
https://doi.org/10.1007/BF00276625
https://doi.org/10.1371/journal.pcbi.1004966
https://doi.org/10.1371/journal.pcbi.1004966
https://doi.org/10.1016/j.tibs.2008.05.009
https://doi.org/10.1016/j.tibs.2008.05.009


Chapter 2

Disclosing Allostery Through Protein Contact Networks

Luisa Di Paola, Giampiero Mei, Almerinda Di Venere,
and Alessandro Giuliani

Abstract

Proteins are located in the twilight zone between chemistry and biology, where a peculiar kind of
complexity starts. Proteins are the smallest ‘devices’ showing a sensible adaptation to their environment
by the production of appropriate behavior when facing a specific stimulus. This fact qualifies (from the
‘effector’ side) proteins as nanomachines working as catalysts, motors, or switches. However (from the
sensor side), the need to single out the ‘specific stimulus’ out of thermal noise qualifies proteins as
information processing devices. Allostery corresponds to the modification of the configuration (in a
broad sense) of the protein molecule in response to a specific stimulus in a non-strictly local way, thereby
connecting the sensor and effector sides of the nanomachine. This is why the ‘disclosing’ of allostery
phenomenon is at the very heart of protein function; in this chapter, we will demonstrate how a network-
based representation of protein structure in terms of nodes (aminoacid residues) and edges (effective
contacts between residues) is the natural language for getting rid of allosteric phenomena and, more in
general, of protein structure/function relationships.

Key words Protein contact networks, Network descriptors, Spectral clustering

1 Introduction

Allostery is a neologism modeled upon Greek language, which has
to do with the ability of proteins to transmit a signal from one site
to another in response to environmental stimuli. This ability is
related to the transmission of information across the protein mole-
cule from a sensor (allosteric) site to the effector (binding) site
[1]. The molecule, hence, perceives ligand binding at a distance
from the active site, or any other microenvironmental perturbation,
like pH changes. The information transfer across protein molecules
can be approached by many different methods going from experi-
mental (change in affinity of the enzymatic systems upon allosteric
stimulus exposition) to structural (comparison of X-ray or NMR
structures correspondent to different activation states) and theo-
retical (molecular dynamics simulation of allosteric agent binding)
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perspectives. Here we propose an approach that already gave very
interesting results in allostery elucidation [1–3], building upon the
consideration of protein structures as network system having ami-
noacid residues as nodes and the presence of an effective
non-covalent (and thus folding-induced) contact between residues
as edges.

This approach is conveniently located at half-way between
theoretically intensive and structural/experimental ones: while
relying upon a fully quantitative formalization (network topological
descriptors), the adopted mathematics is intuitive (simple count
statistics on nodes and edges) and free from any physical constraint
or hypothesis. On the other hand, the relation between network
and 3D structure is univocal and clear and the statements coming
from network analysis readily testable by experimental means.

Still more important is the fact that network formalism allows
for a ‘naturally multiscale’ approach to allostery. Network graph-
theoretical approaches are located half-way between bottom-up
and top-down approaches focusing on the relation between the
elements of the studied phenomenon. We can roughly describe
the network approach as the answer to the question “What can
we derive from the sole knowledge of the wiring diagram of a
system?” [4]. A graph G is a mathematical object made of a finite
set of vertices (or nodes) V and a collection of edges E connecting
two vertices; in our case we deal with the simplest form of graphs:
nondirected graphs whose edges can be traversed in both directions
and have the same strength. This is formally equivalent to a binary
two entries matrix having as rows (columns) the nodes and a 1/0
value at i, j cross (being 1 marking the presence and 0 the absence
of an edge, Fig. 1).

Fig. 1 The incidence (adjacency) matrix (left) is isomorphic to the network (right)
formalization
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It is immediately possible to compute topological descriptors at
all the levels of definition from single residue (node) to the entire
protein (whole network) passing by cluster of nodes (structural
domains).

Thus, we can compute the degree of each node (how many
edges correspond to a residue) that is a local, microscopic feature of
the system or the “average shortest path” corresponding to the
average length of minimal paths connecting all the node pairs (this
is a wiring architecture global descriptor) or to group the residues
into maximally connected clusters (a mesoscale feature) [5, 6]. The
unique feature of graph formalization is that these different levels
views are strictly intermingled and cannot by no way be considered
as independent and/or simply corresponding to gross averages: a
residue endowed with a low average shortest path with other
residues (single node property) obtains its value thanks to the entire
network wiring architecture (top-down causation), while in the
same time influences the flux of information (energy) across the
entire molecule (bottom-up causation). This natural interaction of
scales allows to disentangle the different aspects of allostery from
the recognition of the aminoacid residues more involved in signal
transmission (microscopic layer) to the ‘paths’ linking sensor and
effector sites (mesoscopic layer) and the modifications of the entire
graph wiring architecture (macroscopic layer).

In the following, after a general introduction to complex net-
work analysis and a thorough definition of the main topological
descriptors, we will present some practical examples of network
approaches to allostery.

2 Materials

2.1 Structural Data The computational approach of protein contact networks relies on
the availability of structural information on proteins.

The reference database for protein structures is the Protein
Data Bank [7] (PDB, http://www.rcsb.org/), which also defines
the PDB format, a standard for recording atom files. All files
recorded on the Protein Data Bank repository follow the PDB
format. Information in PDB files is organized in lines, named
records. The PDB files include many types of records, recognizable
by the line header and arranged in a given fashion, to convey all
structural data through a standard format.

Atom coordinates are reported in the ATOM record, organized
as reported in Table 1.

The information of interest for the protein contact networks
constructions are the coordinates recorded in columns 31–54.
Notice that alpha carbons are distinguished by other carbons in
the residues and denoted by the character string “CA”.

Disclosing Allostery Through Protein Contact Networks 9
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2.2 Protein-Ligand

Binding, Allosteric

Proteins,

and Protein-Protein

Interactions

Databases

Protein-ligand databases provide information on protein-ligand
binding thermodynamics and the structural data (PDB reference).
Correlation between binding affinity data and structural (network
topology) descriptors allows for a deep insight in the binding
mechanism.

BindingDB [8] is a public, web-accessible database (http://
www.bindingdb.org/) of experimental binding affinities, with a
special regard to potential protein-drug targets. At the moment,
the database contains 2291 protein-ligand crystal structures with
BindingBD affinity measurements for proteins with 100% sequence
identity and 5816 crystal structures allowing proteins to 85%
sequence identity.

Analogously, PDBbind database [9] catalogued 5671 protein-
ligand complexes out of 19,261 experimental structures (in 2003 at
the moment of the database publication), whose 1359 matched
with binding affinity data.

More recently, BioLIP [10] (http://zhanglab.ccmb.med.
umich.edu/BioLiP/) is a database of biologically relevant
protein-ligand complexes; the biological relevance of recorded
complexes requires a careful manual verification. The current ver-
sion (updated on May 26th, 2017) contains 81,811 protein struc-
tures from PDB, of those 23,492 with binding affinity data.

Table 1
Description of the coordinates section of PDB files

Columns Data Justification Data type

1–4 “ATOM” Character

7–11 Atom serial number Right Integer

13–16 Atom name Left Character

17 Alternate location indicator Character

18–20 Residue name Right Character

22 Chain identifier Character

23–26 Residue sequence number Right Integer

27 Code insertions of residues Character

31–38 X orthogonal coordinate (Å) Right Real

39–46 Y orthogonal coordinate (Å) Right Real

47–54 Z orthogonal coordinate (Å) Right Real

55–60 Occupancy Right Real

61–66 Temperature factor Right Real

73–76 Segment identifier Left Character

77–78 Element symbol Character
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3 Methods

3.1 Protein Contact

Networks Definition

Protein Contact Networks (PCNs) are graphs whose nodes
(or vertices) are the protein residues and links (or edges) between
the i-th and the j-th nodes (residues) occur if the distance between
the two residues dij is higher than 4 and lower than 8 Å. The lower
end excludes all covalent bonds (disulfide and peptidic bonds),
which are not sensible to environment change (so to protein func-
tionality), while the upper end gets rid of weaker non-covalent
bonds (so not significant for protein functionality).

So, the first step is to extract from the PDB file the coordinate
for all alpha-carbon atoms: with reference to Table 1, in lines with
“ATOM” as header take only coordinates (columns 31–54) for
alpha carbons (if “Atom Name”—column 13–16—is “CA”),
keeping record as well of the “Residue name” (column 18–20).

As a result, a matrixN � 3 is reporting X, Y, and Z coordinates
of alpha carbons for all N residues, ordered according to the pri-
mary sequence. Another vector will keep trace of residue names in
the sequence.

Starting from the coordinates matrix, it is possible to build up a
distance matrix, whose generic element dij reports the Euclidean
distance between residues i and j:

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � x j

� �2 þ yi � y j

� �2
þ zi � zð Þ2

r
ð1Þ

(xi, yi, zi) and (xj, yj, zj), respectively, being the cartesian coordi-
nates of residue i and j.

At this point, it is possible to build up adjacency matrix A,
whose generic element is defined as:

Aij ¼
1 if 4 ̊A < dij < 8 ̊A

0 otherwise

�
ð2Þ

The adjacency matrix A is the mathematical descriptor of
unweighted, undirected graphs, from which all main topological
descriptors can be derived (seeNote 1). The adjacency matrix A can
be visualized as matrix plot (Fig. 2). It is evident that the nature of
A is sparse matrix.

3.2 Computation

of Descriptors

Network topology translates into mathematical descriptors, derived
from the adjacency matrix A. As follows, the definition of main
descriptors and their relevance in protein structure and functional-
ity description.

1. Node degree: the degree of the i-th node (residue) ki computes
the number of links the node participates in. It can be easily
computed as the sum of elements of the i-th row or column:
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ki ¼
X
j

Aij ð3Þ

The degree distribution helps classifying networks according to
models (random, regular, small-world). Notice that protein contact
networks escape classification, roughly described as small-world
networks, albeit presenting key features of random networks
(such as, Gaussian degree distribution).

2. Shortest path: the shortest path spij between the i-th and j-th
node describes the lowest number of links connecting the two
residues (see Fig. 3). Algorithms to solve the shortest path

Fig. 2 The recoverin’s three-dimensional structure (left) is translated into a network, graphically represented
by means of the matrix plot of the adjacency matrix (right). Reprinted with permission from [11]

Fig. 3 Graphical representation of a graph with eight nodes and 13 total links: nodes u and v are connected by
two links (shortest path). Reprinted with permission from [14]
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problems root in the information theory [12, 13]. On the web,
libraries in Java and Python are available to compute shortest
paths, mainly based on Dijkstra’s algorithms [13].

The average shortest path, also known as network charac-
teristic length, plays a key role in signal transmission through-
out protein contact networks and is of a major relevance in
protein functionality [15]. Notice that the shortest path is
averaged over all possible node pairs Nñ N�1ð Þ

2

3. Centrality metrics: how central is a role is the first address to
topological role of nodes in the network. This concept flanks
the continuous quest for functional role of residues in proteins,
which is also a topic in allostery identification. The simplest
centrality metrics is the above-mentioned node degree, which
describes the local structure of networks (and of proteins).
However, allostery and, more in general, cooperativity have
to do with global signatures of protein structures, which are
represented by corresponding global network properties. In
this perspective, the functional relevance of centrality must
pass through a global analysis of protein structures and
corresponding contact networks. Global centrality metrics
pass by shortest paths computation [16]: the most relevant in
the protein contact networks analysis are:
(a) closeness centrality [17]: it is defined as the inverse of

fairness, in turn defined for a node, as the sum of the
shortest paths with all other nodes. Given a set of vertices
V, the closeness centrality of a node i is defined as:

close ið Þ ¼ 1P
u∈V ,u 6¼ispui

ð4Þ

Amitai and coworkers [18] demonstrated that residues in active
sites show high closeness, but no clue comes as for residues acting
in cooperative processes (allostery).

(b) betweenness centrality (seeNote 2): it describes for a node the
number of shortest paths coming through it. Given a set of
vertices V, the betweenness centrality of a node i is defined as:

betw ið Þ ¼
X

v∈V , v 6¼i

X
u∈V ,u 6¼i

σuv ið Þ
σuv

ð5Þ

σuv being the total number of shortest paths connecting nodes
u and v and σuv(i) the number of shortest paths connecting the
two nodes and also coming through the node i.

The betweenness centrality is among the most relevant descrip-
tor to identify the role of residues (nodes) in the signal transmission
network of protein structures. In terms of network robustness, the
focused removal of high betweenness nodes is detrimental in the
whole network connectivity.
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4. Graph energy: it is defined as the sum of the absolute values of
the adjacency matrix eigenvalues. This descriptor is strongly
grounded into Chemical Graph Theory, aimed at describing
chemico-physical properties of organic molecules from connec-
tivity indices of chemical structural graphs [19]. Graph energy
for protein contact networks highlights special features of enzy-
matic allostery [20] and of protein-protein interactions [21].

3.3 Clustering Cooperativity in proteins is a direct effect of their modularity
[22]. Thus, a key step in protein allostery analysis is to identify
modules in protein structures, which somehow correspond to
recognized functional domains.

Protein contact networks formalism strongly helps in this direc-
tion by means of network clustering: clusters in protein contact
networks well match with protein domains [20].

Two methods have been devised to partition PCNs into clus-
ters [23]: a geometrical method, based on the k-means algorithm
and spectral clustering, which demonstrated to be very effective in
identifying functional regions in proteins (see the azurin case dis-
cussed in ref. 23).

Spectral clustering is based on the spectral decomposition of
the laplacian matrix L, defined as follows:

L ¼ D �A ð6Þ
A being the adjacency matrix and D the degree matrix, i.e., a

diagonal matrix whose diagonal is the degree vector. The eigen-
value decomposition is applied to the laplacian L: the eigenvector
corresponding to the second minor of eigenvalue v2 is of interest
for the clustering partition. Considering the partition in two clus-
ters, for instance, nodes are divided into the two clusters according
to the sign of the corresponding components of the vector v2.

Spectral clustering is a clustering based on binary partition, so
the number of clusters that can be obtained is only a power of two
(2,4,8, . . .).

Spectral clustering allows to identify cluster of nodes maximally
interacting with each other, rather than nodes close in the space
(such as in geometrical clustering). In this respect, spectral cluster-
ing is specifically apt to identify functional regions [23].

Once clusters have been specified (see Note 3), two descriptors
assign the topological role of nodes with regard to their communi-
cation attitude:

(a) the participation coefficient is defined for the node i in the
cluster s as:

Pi ¼ 1� ksi
ki

� 	2

ð7Þ

14 Luisa Di Paola et al.



ksi being the degree of node i computed with respect only of
nodes pertaining to the same cluster s and ki the node i degree.
High P nodes, thus, have strong connections with nodes pertaining
to other clusters, so they are likely to play a key role in signal
transmission between the two clusters (domains in PCNs).

(b) the intramodule connectivity z-score z defined for the node
i in the cluster s as:

z ¼ ki � ks
σs

ð8Þ

ks and σs being the average and the standard deviation of
intramodule degree in cluster s. High z nodes are responsible for
the cluster stability, but are not likely to participate in communica-
tion between clusters.

The clustering profile of networks is aptly represented by means
of P-z maps: in general, once the protein contact network is built, it
is possible to use web resources to perform clustering and represent
P-z maps [24]. Incidentally, P-z maps for protein contact networks
have a very specific shape (“dentist’s chair”) strongly conserved for
a large number of proteins. Figure 4 reports a typical P-z map for
protein contact networks.

Eventually, it is useful to map the variation of the participation
coefficient ΔP ¼ Pbound � Punbound upon binding: this vector is
simply the difference between the P vectors for the unbound and

0 0.1 0.2

P < 0.75 (inmost)

P > 0.75
(outmost)

P = 0.75 (wall)

0.3 0.4 0.5

P
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0.6 0.7 0.8 0.9 1
–2.5

–2

–1.5

–1

–0.5

0

0.5

1
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2

Fig. 4 A typical P-z map: P values of 0.75 represent a distinct break in the
topological role of nodes: nodes with P higher than 0.75 share more links with
nodes pertaining to the other clusters than with nodes on their same cluster.
Reprinted with permission from [25]
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bound (complex) form (if both are available). We previously
demonstrated that these maps identify allosteric response of the
protein structural networks [11, 20].

4 Applications

Herein, we present a short survey of possible applications of the
method, with reference to some of our previous works and relevant
literature in the field.

4.1 Allostery

in Protein-Ligand

Binding

The capital application of the method in allostery identification
deals with the identification of allosteric activation in protein-ligand
binding.

De Ruvo and coworkers highlighted a specific response in
allosteric proteins, not present in non-allosteric proteins under-
going binding, such as albumin [11]. The paper focused on
calcium-binding proteins, traditionally parted into sensors (alloste-
ric) and buffers (non-allosteric). Starting on this well-defined clas-
sification, we reported projections of P onto protein sequence
(Fig. 5).

In this work, we highlighted a sharp change of P values in
regions close to the active site upon binding, while fainter changes
are appreciable in non-allosteric forms (see Fig. 5).

In more recent works, we reported maps of ΔP (seeNote 4) for
different forms of a class of plant enzymes, which are in charge of
many different reactions in common plant organisms. We com-
pared also ΔPmaps (seeNote 5) with corresponding displacement,
finding out an intriguing result: Fig. 6 reports results for cell
invertase from Arabidopsis Thaliana. First of all, clustering well
identifies functional domains (Fig. 6a). Then, upon binding,
P increases in the region between the two domains (Fig. 6b). One
may think it is only a result of a rigid displacement of the two
domains, but the displacement map (Fig. 6c) tells a different
story: only outer, more flexible regions move upon binding, while
the interdomain region remains practically motionless.

This case is particularly intriguing since this allosteric activation
does not result into a conformational change, falling in the category
of entropically driven allosteric transitions—of great interest since
only recently identified and classified [26].

4.2 Allostery

in Protein-Protein

Interactions

A very hot topic in the field of drug discovery is the identification of
allosteric sites to modulate protein-protein interactions [27]. In
this perspective, the allosteric drugs analysis strongly relies on the
network paradigm [28].

In 2015, we presented a work focused on the analysis of the
anthrax complexes [29]: it is a trimeric complex made up of a
protective agent (PA), an edema factor (EF), and a lethal factor
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Fig. 6 Clustering results projected onto ribbon structures: application to cell invertase form Arabidopsis
thaliana. (a) Clustering identifies domains in the apo form (PDB code 2 AC1); (b) ΔP projection upon binding
with sucrose (PDB code 2 AC1); (c) displacement upon binding with sucrose. The region between the two
domains activates upon binding, without displacement. This is an eminent case of allostery in play without
relevant conformational transitions (only small displacement in outer, flexible regions). Reprinted with
permission from [20]

Fig. 5 P values distribution for apo (blue) and holo form (red) of recoverin (RC) (a) and of parvalbumin (PV) (b).
Residues involved in the active sites are emphasized. Overall, P values abruptly change upon binding in RC,
whereas, in the case of PV, P does not vary significantly. Reprinted with permission from [14]
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(LF). The interface of protein-protein complexes was described by
means of the interchain degree, i.e., the number of links nodes
establish with nodes pertaining to a chain different from that they
belong to (Fig. 7d). In this way, putative interface residues are
highlighted. Further, P and betweenness centrality profiles identify
probable allosteric sites (Fig. 7a, b). The closeness centrality reports
only a kind of “rigidity” map, useless to identify functional nodes
(Fig. 7c).

5 Notes

1. The distance cutoff to define links derives from chemico-
physical considerations and statistical significance analysis
[30]; however, a recent study reports a simple cutoff of 5 Å
between residues center of mass as optimal for PCNs descrip-
tion [31]. This could be a useful option to define protein
contact networks.

Fig. 7 Ribbon maps of network descriptors for the anthrax trimeric complex (PA-EF-LF). (a) betweenness
centrality; (b) participation coefficient P; (c) closeness centrality; (d) interchain degree. The lethal factor LF is
marked by the red circle. Reprinted with permission from [29]
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2. The betweenness centrality computation requires purposed
algorithms; Brandes’ algorithm is the most applied [32] and
its version for Matlab, Java, and Python environments is avail-
able for free on web;

3. The clustering procedure is by far the most burdening part of
the whole algorithm and relies on the solution for the eigen-
values problem; it is also a crucial step to define proper data
structure to keep all useful information about clusters nodes.
Writing an efficient algorithm for this part will strongly affect
the whole program speed (shifting from many minutes to
seconds);

4. When computing ΔP, it is necessary to verify that the apo (not
bound) and holo (bound) forms are resolved with the same
number of residues; in any case, it is advisable to verify their
alignment through purposed software (see for instance, Super-
Pose http://wishart.biology.ualberta.ca/SuperPose/);

5. To create the ribbon maps, it is necessary to modify the PDB
files, by replacing the B-factors in the ATOM section with the
value of interest (i.e., node degree). To simplify the procedure,
it is advisable to implement the whole algorithm in the same
language of the molecular visualization system (Python for
PyMol and Java for Jmol, for instance).
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Chapter 3

Identification of Allosteric Effects in Proteins by Elastic
Network Models

Guang Hu

Abstract

Allostery is a fundamental regulatory mechanism in the majority of biological processes of molecular
machines. Allostery is well-known as a dynamic-driven process, and thus, the molecular mechanism of
allosteric signal transmission needs to be established. Elastic network models (ENMs) provide efficient
methods for investigating the intrinsic dynamics and allosteric communication pathways in proteins. In this
chapter, two ENMmethods including Gaussian network model (GNM) coupled withMarkovian stochastic
model, as well as the anisotropic network model (ANM), were introduced to identify allosteric effects in
hemoglobins. Techniques on model parameters, scripting and calculation, analysis, and visualization are
shown step by step.

Key words Normal mode analysis, Global motion, Commute time, Allosteric site, Communication
pathway

1 Introduction

One of the central goals in current biology is to understand the
allosteric effects in molecular machines [1, 2]. Allostery is a funda-
mental process that regulates the function of proteins via a local
perturbation of one site, such as ligand binding, mutations, or
covalent modifications, which can induce a communication across
the structure to another spatially distant site [3]. Identification of
allosteric effects in proteins may help in efficient drug discovery and
protein design [4]. After the first incorporation of the concept of
allostery in describing the cooperative transition of hemoglobin
[5], different models have been proposed to understand the molec-
ular mechanism of allosteric regulations [6]. However, two funda-
mental aspects in allosteric effects are still needed to be uncovered.
On the first hand, the identification of potential allosteric sites and
how to quantify their allosteric ability remains an enigma. On the
other hand, the mechanism that underlies distal communications
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pathways between allosteric sites and other active sites including
catalytic sites or ligand-binding sites also needs to be established.

Computational approaches including both sequence and
structure-based methods have been widely used to investigate the
molecular basis of allosteric regulation and communication [7–
11]. Sequence-based models can describe allosteric sites in terms
of conservation and coevolution properties and enumerate poten-
tial communication pathways by constructing evolutionary net-
works [12]. Network-based structural studies (also called PSN)
have also demonstrated that the topology and connectivity of pro-
tein structures provide a robust framework for understanding allo-
steric effects in terms of local and global graph-based parameters
[13]. Recent evidence supports the view that allosteric communi-
cation is facilitated by the intrinsic dynamics of the biomolecules
[14]. These methods, combined with molecular dynamics (MD)
simulations, have been recently applied to elucidate allosteric com-
munication pathways of diverse protein systems [15–19]. In the
most recent studies, Verkhivker et al. [20, 21] have combined
evolutionary analysis, MD simulations of the molecular chaperone
of Hsp90 with the network analysis, and perturbation response
scanning (PRS) approach to probe key sites in allosteric
mechanisms.

An alternative dynamical approach, Elastic network model
(ENM) [22], was first introduced by Tirion to study the intrinsic
dynamics of proteins by using normal mode analysis. In ENMs, a
protein structure was considered as a network consisting of a set of
residues interconnected by elastic springs. Currently, two main
types of ENMs are widely used, which are the Gaussian network
model (GNM) [23] and the anisotropic network model (ANM)
[24]. Based on ENMs, several theoretical approaches have been
made toward understanding the molecular basis of allosteric com-
munication. ENM combined with dynamics perturbation analysis
(DPA) [25] and PRS [26, 27] were developed to detect the key
residues whose perturbation couple structural dynamic changes at
distal distance. By using ENM to calculate the correlations between
the fluctuations in spring length of pairwise residues, a new method
was also proposed to identify allosteric residues [28]. In addition, a
thermodynamic method based on ENM was proposed to predict
the allosteric sites on the protein surface [29]. ENM and PSN are
two coarse-grain methods, and the integration of them may help to
understand the pathways of communication between spatially dis-
tant sites [30]. The first attempt to combine ENM and PCN has
been reported to investigate allosteric communication pathways in
the PDZ2 domain [31]. The successful applications of combining
ENM and PSN in the prediction of structural dynamics and alloste-
ric sites have been proved in several protein systems [32] and
bacterial ribosome [33].
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It should be noted that introducing a Markovian process into
coarse-grained models (such as GNM) has offered opportunities to
assess signal propagation in proteins. In 2006 [34], Bahar’s group
proposed a novel GNM approach to elucidate allosteric communi-
cation pathways, by coupling Markov stochastic model based on
information theory and spectral graph methods. In this framework,
hitting and commute times were defined based on GNM fluctua-
tions to measure the communication abilities of residues [35]. The
relationship between allosteric communication pathways and the
intrinsic structural dynamics of proteins was described by their
coupling and provides a new avenue for further examination of
protein allostery from local dynamical changes to global motions
[36]. Applying this method has found that metal-binding sites are
designed to achieve allosteric signaling properties [37]. In our
recent work, we have shown the ability of using GNM works with
Markovian model to study DNMT3A and highlighted the key role
of dimer interface in allosteric communication [38].

In this chapter, two types of ENMmethods were introduced to
study the allosteric effects of a typical allosteric protein, hemoglo-
bin (Hbs). Theoretical basics of GNM-Markov model and ANM
calculation are outlined briefly. We showed techniques and com-
puter scripting to elucidate the overall protein structure by using a
combination of GNM and Markov stochastic modeling. Further-
more, the most cooperative modes of motions are predicted by
ANM calculations. The functional coupling between global dynam-
ics and signal transduction pathways could give more insight of
mechanical mechanism of allostery. A simplified representation of
the methods used in the chapter is shown in Fig. 1.

2 Materials

1. The structures of two Hbs [39] were downloaded from protein
data back (https://www.rcsb.org/). Hbs with two quaternary
conformations are used: T-Hb (PDB code: 2dn2) and the
high-affinity state R-Hb (PDB code: 2dn1). Both structures
are composed of four subunits: α1 and α2 subunits of

Fig. 1 A simplified representation showing the identification of allosteric effects in proteins by ENMs
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140 residues, β1 and β2 subunits of 145 residues. The structural
alignment (Fig. 2) of two states shows the difference caused by
the torsional rotation of α1β1 dimer and α2β2 dimer, with
RMSD of 2.41 Å.

2. Both GNM and ANM calculations were performed using
ProDy [40], which is a free and open-source Python package
for protein structural dynamics analysis (http://prody.csb.pitt.
edu/). The installation of ProDy may require latest versions of
Biopython, NumPy, andMatplotlib. SeeNote 1 for more tools.

3. VMD 1.91 or the newer releases (http://www.ks.uiuc.edu/
Research/vmd/) are required for visualization and rendering.
Normal Mode Wizard (NMWiz) is a VMD plugin, which is
developed to visualize GNM modes and ANM motions.

4. Matlab (http://www.mathworks.com/products/matlab/) was
used to calculate to identify shortest path between two sites in
proteins. Two Matlab scripts used in this section can be down-
loaded at http://sysbio.suda.edu.cn/pdbgraph/.

Fig. 2 The structure alignment of Hbs with T and R states
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3 Methods

Normal mode analysis has become a gold standard for studying
protein dynamics and allosteric regulation of protein systems. Here,
two ENMs are employed to perform normal mode analysis.
See Note 2 and Note 3 for their main advantages and limitations.

3.1 Predicting Hinge

Sites by GNM

3.1.1 Theory of GNM

GNM [41] describes a protein as a network of Cα connected by
springs of uniform force constant γ if they are located within a
cutoff distance rc. In GNM, the interaction potential for a protein
of N residues is

V GNM ¼ � γ
2

XN�1

i¼1

XN
j¼iþ1

Rij �R0
ij
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∙ Rij �R0

ij
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The normal modes are extracted by eigenvalue decomposition:

Γ ¼ UΛUT, U being the orthogonal matrix whose kth column uk is
the kth mode eigenvector. Λ is the diagonal matrix of eigenvalues,
λk. Hinge sites for a protein are defined by GNM at the fluctuation
minima of the lowest modes. Hinge sites not only correspond to
key residues for maintaining collective behaviors of proteins, but
also have been proved to be implicated in allosteric
mechanisms [42].

3.1.2 GNM Calculation GNM calculations are carried out with ProDy. Using T-Hb as an
example, the calculation steps are listed as follows:

1. Import of all related content from ProDy:

$from prody import *

$from pylab import *

$from numpy import *

$ion ()
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2. Defining the T-Hb structure by parsing the PDB file with only
Ca atoms:

$THb = parsePDB (‘2dn2.pdb’, subset = ‘calpha’)

3. Defining the class of GNM analysis:

$gnm_T=GNM (‘T-Hb’)

4. Construction of Kirchhoff matrix of atomic coordinates:

$gnm_T.buildKirchhoff (T-Hb)

5. Calculation of GNM modes (20 modes by default) by diago-
nalization of Kirchhoff matrix:

$gnm_T.calcModes ()

6. Calculation of square fluctuations for the first and the second
GNM modes to identify hinge sites.

$sq_1=calcSqFlucts (gnm_T [0])

$sq_2=calcSqFlucts (gnm_T [1])

7. Saving square fluctuations for the first and the second GNM
modes.

$np.savetxt (‘sq_1.txt’, sq_1)

$np.savetxt (‘sq_2.txt’, sq_2)

The square fluctuations of the T-Hb based on the first and
second GNM modes are shown in Fig. 3a. The hinge residues for
mode 1 are distributed in the α1-β2 interface, including Thr38,
Thr41, Leu91, Val93, Pro95, and Ser 138 in α1 (the blue line),
while for mode 2 are distributed in the α1-β1 interface, including
Thr118, Ala120, Ala123 in α1, and His112, Phe118 in β1 (the red
line). Based on the first and second GNM modes, similar protocol
can be performed to obtain fluctuations of the R-Hb, which are
shown in Fig. 3c. The hinge residues for mode 1 (the blue line) are
not only distributed in the α1-β2 interface including Val93, Asp94,
Pro95, Thr137, Ser138 in α1, but also the α2-β1 interface including
Asp94, His97in β1, while for mode 2 (the red line) are also
distributed in the α1-β1 interface, including Phe117, Val121 in
α1, and Ala 115 in β1. The distributions of these residues predicted
by the first GNM mode (green beads) and the second GNM mode
(yellow beads) in the three-dimensional structures of T and R-Hbs
are displayed in Fig. 3b, d, respectively.
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3.2 Identifying Key

Sites

for Communications

3.2.1 Markov Stochastic

Model

The Markov stochastic model coupled with GNM was used for
exploring the signal transductions of perturbations in proteins.
The affinity matrix A describes the interactions between residue
pairs connected in GNM; its generic element aij is defined as:

aij ¼ Nijffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NiN j

p ð4Þ

where Nij is the number of atom-atom contacts between residues
i and j based on a cutoff distance of 4 Å, Ni is the number of side
chain atoms in residue i. The density of contacts at each node i is
given by:

di ¼
XN
j¼1

aij ð5Þ

The Markov transition matrix M, whose element mij ¼ d�1
j aij

determines the conditional probability of transmitting a signal from
residue j to residue i in one time step. Accordingly, the hitting time
for the transfer of a signal from residue j to i is given by

H i, jð Þ ¼
XN
k¼1

Γ�1
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kj
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Fig. 3 Results for predicted hinge site in Hbs. (a) The minima of square fluctuations based on the two lowest
GNM modes predict hinges that are located at different interfaces in T-Hb, and (b) green and yellow beads
denote hinges predicted by the first and the second GNM modes, respectively. Similar results (c, d) were found
for R-Hb
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where Г is Kirchoff matrix obtained by GNM. The average hit time
for the i-th residue<H(i)> is the average ofH(i, j) over all starting
points i. The commute time is defined by the sum of the hitting
times in both directions, that is:

C i, jð Þ ¼ H i, jð Þ þH j , ið Þ ð7Þ
Accordingly, commute times provide a metric of the efficiency

of allosteric communication.

3.2.2 Calculations

of Hitting Time

and Commute Time

The commute time enables us to identify residues that are more
sensitive to allosteric communication across the protein. The appli-
cation of Markov stochastic model to Hbs for computing commute
time includes the following commands:

1. Import the program for computing the hitting times and com-
mute times into ProDy:

$from IT_HitCommute import *

2. Write the Kirchhoff matrix from GNM.

$K_T=gnm_T.getKirchhoff ()

3. Pass the Kirchhoff matrix to hit/commute time.

$hc_T=IT_HitCommute (K_T)

4. Calculation and save of hit time matrix.

$H_T=hc_T.buildHitTimes (K_T)

$np.savetxt (‘H_T.txt’, H_T)

5. Calculation and save of commute time matrix.

$C_T=hc_T.buildCommuteTimes ()

$np.savetxt (‘C_T.txt’, C_T)

The commute time map of ?-Hb is displayed in Fig. 4a, where
the blue and red regions correspond to short and long commute
time. The average values of each row or column of the commute
time map were also calculated to evaluate the communication
abilities of each residue. In addition, the minima of the average
commute time indicate the key residues allostery in Hbs. As shown
in Fig. 4b, the profiles of average commute times for α1 chain in
both T- and R-Hbs show that Val10, Leu29, Arg31, Thr39,
Cys104, Val107, His122, and Leu125 in α1 chain are residues
with highest communication abilities. Figure 4c predicts that
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Ala27, Val109, Cys112, and Gln127 in β1 chain are potential
allosteric sites in both states. It is worth noting that the two α
chains and two β chains have the same profile shapes. The distribu-
tions of these residues showed that Arg31, Cys104, Val107, and
His122 in α1 chain and Cys112 and Gln127 in β1 chain are located
at α1-β1 interface. Likely, the same region was also found at α2-
β2 interface.

3.3 The Identification

of Communication

Pathways

3.3.1 The Determination

of Start and End Points

For the identification of communication pathways, the first step is
the determination of start and end points of these pathways. T-Hb
is the unliganded form, while R is O2–bound form, with binding
sites located at Val62, His58, and His87 in α chain and Val67,
His63, and His92 in β chain. In order to investigate the allosteric
communication pathways induced by O2 binding in the R state, the
signal transmission between ligand-binding sites and allosteric resi-
dues located at interfaces in R-Hb were considered. Thus, the
binding sites in R-Hb were chosen as start points, and the allosteric
sites with low average commute time at interface were chosen as
end points. For the particular case studies, the Val62 in α1 chain and
His 92 in β1 chain were set as start points, while Arg31 and Asp94
in α1 chain, as well as Ala 115 and Val33 in β1 chain located at α1β1
interface, were set as end points.

3.3.2 Shortest Pathway

Calculation

For the communication pathways calculation, a protein was trans-
formed into a graph whose topology is decided by Kirchhoff
matrix, with each edge weighted by the commute time C(i, j).
Then, Dijkstra’s algorithm was used to find the shortest pathway
between nodes in the graph. Shortest pathway calculation is

Fig. 4 Allosteric properties for Hbs. (a) The hitting time map for T-Hb. (b) The average commute time profiles
for α1 chain in T- (blue line) and R-Hbs (red line). (c) The average commute time profiles for β1 chain in T- and
R-Hbs
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implemented in Matlab. To follow this tutorial, you will need the
following execute files:

Cafrompdb.m: this is a function for reading a protein structure
from PDB file.

Graph.m: this is a function for transforming a protein structure
into a graph.

1. Start Matlab.

2. Copy cafrompdb.m and to Graph.m the work directory, and
use Cafrompdb.m and Graph.m to construct graphs from PDB
files, and type the flowing command lines in the Matlab
workspace.

$[G, A, C]=Graph(pdb_file, C, cutoff, pdb_path)

$ G = sparse (G);

G is a connected graph generated from the adjacent matrix (G),
in which each edge is weighted by commute time (Cij).

3. Calculate shortest pathway using the Matlab built-in
functions.

$[dist, path, pred] = graphshortestpath(G, S, T)

For example, the pathway between Val62 in α1 chain to Asp94
α1 chain located at α1β1 interface can be calculated as:

Input: [G,A,C]=Graph (‘2dn1.pdb’, ‘C_R.txt’, 7, ‘./’)

G=sparse(G);

[dist, path]=graphshortestpath (G, 62, 94)

Output: dist=5.6316e+03

path=62 25 28,104,101 97 94

Table 1 displays four examples of such pathways in R-Hb,
starting from Val62 in α1 chain and His 92 in β1 chain, to Arg31
and Asp94 in α1 chain, and Ala115 and Val33 in β1 chain located at
α1β1 interface.

Table 1
Proposed paths of communication between ligand-binding and allosteric
sites within the monomer in R-Hbs

α1 Val62 ! Gly25 ! Ala28 ! Arg31

α1 Val62 ! Gly25 ! Ala28 ! Cys104 ! Leu101 ! Asn97 ! Asp94

β1 His92 ! Val98 ! Pro100 ! Arg104 ! Asn108 ! Cys112 ! Ala115

β1 His 92 ! Val98 ! Pro100 ! Phe103 ! Leu106 ! Leu31 ! Val 33
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3.4 Global Motions In the previous ENM study [43], the allosteric communication
effects are often well-described by low-frequency modes that iden-
tify most cooperative motions. In this section, ANM method was
used to investigate global motions of T- and R-Hbs, and their
conformational change, toward gaining a mechanistic understand-
ing of the allosteric couplings.

3.4.1 Theory of ANM In ANM [44], the interaction potential for a protein of N residues
is

V ANM ¼ γ
2

XN
i, j

Rij

�� ��� R0
ij

��� ���� �2

ð8Þ

The motion of the ANMmode of proteins is determined by the
3 N � 3 N Hessian matrix H. The eneric element is given as:

Hij ¼

∂2V
∂Xi∂X j

∂2V
∂Xi∂Y j

∂2V
∂Xi∂Z j

∂2V
∂Y i∂X j

∂2V
∂Y i∂Y j

∂2V
∂Y i∂Z j

∂2V
∂Z i∂X j

∂2V
∂Z i∂Y j

∂2V
∂Z i∂Z j

2
666666664

3
777777775

ð9Þ

whereXi,Yi, and Zi represent the Cartesian components of residues
i, V is the potential energy of the system. rc used here is 13 Å.
Accordingly, ANMs not only provide the information about the
amplitudes, but also about the direction of residue fluctuations.

The similarity between two ANM modes, uk and vl, evaluated
for proteins with two different conformations can be quantified in
terms of inner product of their eigenvectors, i.e.:

O uk, vlð Þ ¼ ukñvl ð10Þ
The degree of overlap between kth ANM modes uk and the

experimentally observed conformation change Δr of Hbs among
different states is quantified by Δrñuk=Δrj j

� �
. Therefore, the cumula-

tive overlap CO(m) between Δr and the directions spanned by a
subsets of m ANM modes is calculated as:

CO mð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼1

Δrñ
uk

Δrj j
� 
2

vuut ð11Þ

3.4.2 NM Calculation The ANM calculation was also performed in ProDy, as follows:

1. Defining the class for ANM analysis for T- and R-Hbs.

$anm_T, T-Hb=calcANM (T-Hb)

$anm_R, R-Hb=calcANM (R-Hb)
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2. Saving the ANM model for visualization in VMD and
NMWiz:

$writeNMD (‘ANM_T.nmd’, anm_T, T-Hb)

$writeNMD (‘ANM_R.nmd’, anm_R, R-Hb)

3. Calculation of the subspace overlap between the first 5 ANM
modes of T- and R-Hbs.

$calcOverlap (anm_T [:5], anm_R [:5]

$showOverlapTable (anm_T[:5], anm_R[:5])

The overlap map between the five ANM slowest modes (eigen-
vectors) was calculated to compare the global dynamics of T- and
R-Hbs (Fig. 5a). The upper limit of 1 indicates perfect overlap
(red), and 0 indicates no overlap (blue). It can be see that the
reordering of the first two modes was found, which means that
the motion of the first mode of T-Hb corresponds to the motion of
the second mode ofR-Hb (overlap of 0.92), while the first mode of
R-Hb shifts to the second mode of T-Hb (overlap of 0.90).

4. Visualization of ANM results in NMD format by using VMD
plugin Normal Mode Wizard.

$Start VMD

$Select Extensions!Analysis!Normal Mode Wizard

$Select ‘Load NMD File’

Two ANM modes are:

ANM Mode 1.

The first ANMmode of the T-Hbs (also the second ANMmode of
the R-Hb) shows the tong-like motion (Fig. 5b), which is

Fig. 5 ANM results for Hbs. (a) Overlaps between the five slowest ANM modes of T- and R-Hbs. (b) The tong-
like motion, corresponding to the first mode of T-Hb or the second mode of R-Hb. (c) The hinge-binding
rotation, corresponding to the second mode of T-Hb or the first mode of R-Hb. The figures are rendered by
NMWiz in VMD, and arrows indicate the opening and the rotation directions
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consistent with the opening motion of β1 and β2 in opposite direc-
tions, while two α chains are relatively stable, mainly in a rigid-
body-type motion. This observation is consistent with the pervious
molecular dynamics study, which has shown that β chains are more
strongly linked to the quaternary transition than α chains [45].

ANM Mode 2.

The second ANMmode of the T-Hbs (also the first ANMmode of
the R-Hb) shows another global motion involving quaternary
changes of two dimers (Fig. 5c), namely, α1β1 dimer, exhibiting a
torsional rotation in an opposite direction with α2β2 dimer, coordi-
nated by the hinges at the α1-β2 and β1-α2 interfaces. This hinge-
bending rotation defines the intrinsic dynamics of Hbs, which may
facilitate their allosteric communication pathways via hinge regions.

4 Notes

1. Main advantages of ENMs lie at its simplicity, whose modes at
low frequencies are enough to capture intrinsic dynamics and
allosteric properties of biomolecular systems. Thus, ENM
methods are applicable to large systems, as well as for high-
throughput investigation of protein data.

2. There are some limitations in ENMs since ENMs only consider
Cα atoms without considering specific interactions. It can be
known that allostery should take into account the roles of
flexible regions such as loops. ENMs may not be suitable for
modeling the allosteric effects of these flexible regions.

3. Additionally, there are some other normal mode analysis-based
web servers to predict allosteric sites and signal propagation
pathways in proteins and their complexes, such as PARS [46],
SPACER [47], AlloPred [48], and DynOmics [49] servers.
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Chapter 4

Locating and Navigating Energy Transport Networks
in Proteins

Korey M. Reid and David M. Leitner

Abstract

We review computational methods to locate energy transport networks in proteins that are based on the
calculation of local energy diffusion in nanoscale systems. As an illustrative example, we discuss energy
transport networks computed for the homodimeric hemoglobin from Scapharca inaequivalvis, where
channels for facile energy transport, which include the cluster of water molecules at the interface of the
globules, have been found to lie along pathways that experiments reveal are important in allosteric
processes. We also review recent work on master equation simulations to model energy transport dynamics,
including efforts to relate rate constants in the master equation to protein structural dynamics. Results for
apomyoglobin involving relations between fluctuations in the length of hydrogen bonds and the energy flux
between them are presented.

Key words Energy transport networks, Allostery, Water cluster, Nonbonded networks

1 Introduction

Progress in locating energy transport pathways in proteins both
computationally and experimentally has been proceeding at a rapid
pace [1]. Time-resolved IR and Raman techniques, e.g., have
provided detailed pictures of the nature and rate of energy transport
in peptides and proteins [2–7], including recent advances in iden-
tifying transport through individual amino acids of several heme
proteins [8–10]. Energy transport pathways have since some time
been identified by molecular simulations [11, 12], with recent
focus on the development of coarse-graining approaches [13–25],
some of which have exploited analogies to thermal transport in
other molecular materials [26, 27]. Network analysis has been
applied to facilitate identification of pathways and residues that
control protein dynamics [28–51], where a variety of definitions
of a network have been adopted, including those that incorporate
distance, conformational fluctuations, and energy criteria. The
energy transport channels of a protein form a network, and analysis
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of the energy transport network reveals how a protein responds to
local structural changes, possibly pointing to pathways along which
allosteric transitions occur. In this chapter we review an approach to
calculate energy transport networks in proteins that is based on
calculation of local thermal transport in nanoscale materials. We
illustrate the method with the example of a homodimeric hemo-
globin, where prominent energy transport channels were found to
lie along pathways important in allostery. In addition to locating
energy transport networks, the calculated local energy diffusion
coefficients can be used to model energy transport by master equa-
tion simulations, as we review here. We also examine the possibility
of relating the rate constants to dynamic fluctuations of hydrogen
bonds, where we present calculations exploring such a connection
in apomyoglobin.

That energy transport pathways exist, i.e., energy does not
simply flow isotropically through a globular protein, is an inherent
property of the geometry of a folded protein [52–60], which
resembles that of a percolation cluster at threshold. Some channels
are relatively long range, which may contribute to function such as
allostery [41, 51, 61–65], by which proteins regulate reactions that
occur in remote regions of the molecule [66–69]. In efforts to
elucidate protein dynamics, strategies have been adopted to identify
pathways or ensembles of pathways [64, 65, 70–75] along which
transitions between different states of the protein occur. Whether
or not vibrational energy transport channels point to pathways
involved in allosteric transitions, energy relaxation pathways regu-
late chemical reaction dynamics. Optical studies of energy relaxa-
tion in myoglobin have since some time produced a detailed picture
of events that follow excitation of the heme and ligand photolysis,
elucidating chemical dynamics of that protein [76, 77]. However,
the extent to which the relaxation pathways identified in myoglobin
play a role in allostery in hemoglobins remains unclear, due to the
diversity of orientations of the monomeric units of different hemo-
globins [78]. It would thus be desirable to identify energy transport
in individual hemoglobins to examine the extent to which they
overlap pathways or ensembles of pathways along which allosteric
transitions take place.

Towards this goal, and as an illustrative example of the energy
transport networks that can be computed for a protein, we summa-
rize recent computational work identifying networks of energy
transport channels in the allosteric homodimeric hemoglobin
from Scapharca inaequivalvis, HbI [79]. When HbI is in the unli-
ganded state the crystallographic structure reveals a cluster of
17 water molecules at the interface between the two globules,
whereas 11 are found in the liganded state. The free energy of
ligand binding in HbI and the origin of cooperativity is mainly
entropic [80, 81]. Ligand-linked tertiary structural changes occur
upon ligand binding, including rotation of Phe97 into the interface
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between the globules, which is otherwise tightly packed against the
proximal histidine, His101, in the unliganded structure. Coopera-
tivity depends on a number of residues at the interface in contact
with the tightly bound [82] cluster of water molecules [83–85],
and the Lys30-Asp89 salt bridge [86], which is farther from the
water cluster but crucial to the stability of the homodimer. Crystal
structures reveal differences between the hydrogen bonding
arrangement of the waters and side chains at the interface of the
unliganded and liganded states [87]. Modification of this arrange-
ment by point mutation apparently influences cooperativity
[83, 85]. Overall the ligand-linked changes are mainly tertiary in
HbI. Quaternary changes that take place, among the last steps [88],
are much smaller than those in tetrameric human hemoglobin.

Having identified networks along which energy transport
occurs wemodel the flow of energy by master equation simulations.
Rate constants in the master equation can be obtained from local
energy diffusion coefficients or more directly by fitting results of
all-atom simulations of energy flow to a master equation. We
discuss here a recent comparison between results of a master equa-
tion simulation and results of all-atom nonequilibrium simulations
of energy flow in the villin headpiece subdomain HP36, where the
rate constants used in the master equation simulations were related
to the energy diffusion coefficients obtained by coarse-graining
thermal transport in the protein [17]. A more recent study on
HP36 by Stock and coworkers suggested that the rate constants
in the master equation simulations are related to dynamic fluctua-
tions of the protein [23]. We consider that possibility here for the
hydrogen bonds of apomyoglobin. The hydrogen bond dynamics is
analyzed from results of molecular dynamics (MD) simulations,
and the rate constants for energy transfer along the bond are
obtained using the same trajectory in a calculation of the local
energy current, using the methodology developed by Yamato and
coworkers [13, 14].

In the following section we summarize a coarse-graining
approach to locate energy transport channels in proteins and dis-
cuss one application to the identification of energy transport net-
works in the homodimeric hemoglobin, HbI. We then review
results comparing the dynamics along protein energy transport
networks obtained by master equation simulations using rate con-
stants obtained from a communication map with results of all-atom
simulations of the villin headpiece subdomain, HP36. Possible
scaling relations between rate constants in a master equation for
hydrogen bonds in a protein and the dynamics of that hydrogen
bond are then discussed. Concluding remarks are given in
Subheading 3.
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2 Computational Methods

2.1 Communication

Maps: Locating Energy

Transport Networks

To identify pathways along which energy transport is facile one can
carry out nonequilibrium simulations, which have been done
extensively by all-atom MD simulations [1, 12, 89]. Simulations
in harmonic approximation via wave packet propagation [57, 58]
have also been run to examine harmonic and anharmonic contribu-
tions to energy transport. The latter approach was used, e.g., to
calculate vibrational energy transport in HbI. Those results are
plotted in Fig. 1 for the case where energy is first introduced to
one of the hemes and the flow of energy calculated over the next
few picoseconds. Anisotropic transport is observed; the cluster of
water molecules at the interface apparently serves as an energy
transport channel from one globule to the other.

More coarse-grained approaches have also been introduced,
including the local conductivity analysis of Yamato and coworkers
[13, 14], which we shall adopt below to examine a relation between
hydrogen bond dynamics and energy flow between two hydrogen
bonded residues. An alternative coarse-graining method yields a
network weighted by local energy diffusion coefficients calculated
in terms of normal modes [19]. The weights for the network are
expressed in terms of the matrix elements of the energy current
operator, S, which in harmonic approximation can be written in
terms of the Hessian matrix, H, and eigenmodes, e, of the object
[90]. The mode diffusivity, in turn, can be expressed in terms of the
matrix elements of S [90]. We break each matrix element up into
contributions from individual residues. The contribution to the
energy flux between residuesA andA0 to matrix element Sαβ is [19]

S
AA0f g

αβ ¼ iℏ ωα þ ωβ

� �
4V

ffiffiffiffiffiffiffiffiffiffiffi
ωαωβ

p
X

r, r 0∈ x, y, zð Þ

X
l, l 0∈AA0

eαl H
ll0
rr 0 R l �R l 0ð Þeβ

l 0 , ð1Þ

where Rl is the position of atom l and r is a coordinate (x, y, or z).
We sum the atoms l together in a given region, A, and sum atoms l0

together in region A0. V is the volume of the space spanned by the
two regions. While such a volume remains somewhat ambiguous, it
cancels out in the definition of the local energy diffusivity, Eq. 2.

For mode α the energy diffusivity is a sum over the squares of
matrix elements of the heat current operator, i.e., Dα /P
β 6¼α

Sαβ
�� ��2δ ωα � ωβ

� �
. Considering only energy flow between resi-

dues A and A0, we approximate the local energy diffusivity in mode
α using the harmonic model as

D AA0f g
α ¼ πV 2

3ℏ2ω2
α

X
β 6¼α

S
AA0f g

αβ

���
���
2

δ ωα � ωβ

� �
: ð2Þ
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D AA0f g
α is the mode-dependent energy diffusivity between

regions A and A0. For a local thermal diffusion coefficient to be
well defined we need to assume that thermalization occurs within
each residue. Thermalization in molecules has been the focus of
considerable attention [91–119], in part because it mediates chem-
ical reaction kinetics [120–131], and it appears to largely hold on
the scale of peptides [132–138]. In practice a region,A, is a residue
or a cofactor such as a heme, or perhaps a cluster of water molecules
in the protein. We note that when A and A0 span the molecule,
Eq. 2 gives the mode diffusivity [90], from which the coefficient of
thermal conductivity, κ, can be expressed for the whole system,
κ ¼ P

α
CαDα, where Cα is the heat capacity per unit volume of the

molecule (V ¼ 1, as it is not relevant below) for mode α, given by

Cα ¼ kB βℏωαð Þ2 eβℏωα

eβℏωα � 1ð Þ2 : ð3Þ

Fig. 1 Simulations of vibrational energy flow in HbI, starting with all the energy in one of the hemes, shown as
the red one at 1 ps. The percentages indicated correspond to percent kinetic energy of the whole system
contained in a residue or the interfacial waters. Any part of the protein not highlighted by a color is relatively
cold. Reprinted with permission from R. Gnanasekaran, J. K. Agbo and D. M. Leitner, “Communication maps
computed for homodimeric hemoglobin: Computational study of water-mediated energy transport in proteins,”
J. Chem. Phys. 135, 065103, Copyright (2011), American Institute of Physics
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We calculate a thermal average as we would to obtain the
thermal diffusivity for the protein, i.e.,

DAA0 ¼
P
α
Cα Tð ÞD AA0f g

α

P
α
Cα Tð Þ , ð4Þ

where Cα is calculated with Eq. 3, which incorporates the thermal
population of the modes and is the only quantum effect that is
accounted for in the energy transport. Assuming energy diffusion
between pairs of residues, the time constant between A and A0 per
degree of freedom, τAA0, is calculated as

τAA0 ¼ d2
AA0=2DAA0 ð5Þ

where dAA0 is the distance between A and A0, which in practice we
take to be the distance between the center of mass of the two
residues. Local energy diffusion occurs along a path between
these two centers of mass of regionsA andA0. The energy diffusion
thus occurs essentially along a one-dimensional path, so we include
the factor of 2 as appropriate for diffusion in one dimension.

2.2 Communication

Maps: Illustrative

Example

We recently constructed an energy transport network for the
homodimeric hemoglobin from Scapharca inaequivalvis, HbI,
where we obtained the transition times between residues with
Eq. 5 [22]. In addition to a network where all edges were weighted
by τAA0 we also identified networks of nonbonded residues and the
water cluster subject to cutoff times for τAA0, specifically 2 and 3 ps.
Any nonbonded residue pair, or a residue and the water cluster, lies
within a nonbonded network (NBN) if they are linked by an edge
with a value of τAA0 that is below the cutoff. While there are many
such nonbonded pairs, a criterion whereby at least five nodes must
be so connected was used to form an NBN, which indicates path-
ways along which rapid response to local strain occurs in the protein
via nonbonded interactions.

In Fig. 2 we illustrate the energy transport NBNs for the deoxy
(top 2 images) and oxy (bottom 2 images) states. The threshold
values for τ are 2 ps (two images shown on left) and 3 ps (two
images shown on right). Consider first deoxy HbI, plotted as the
two images on the top. For the short time cutoff (left) we observe
two regions, one (red) that includes the heme, the water cluster,
and several residues in the middle of the E helix and the upper
portion of the F helix, where more information about the specific
residues is detailed in Ref. [22]. Both the proximal and distal
histidines belong to the same NBN as the heme and water cluster,
a network that spans both globules. The other NBN (purple)
includes the salt bridge formed by Lys30 and Asp89, as well as
other residues of the upper portion of the B helix, the lower portion
of the E helix and a few residues of the F helix. This NBN also spans
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both globules. When we extend the cutoff to longer times (right)
both of these NBNs grow and new ones appear. In addition to the
much-expanded red network, which includes the hemes and water
cluster, the upper parts of the E, F, and H helices, and the moder-
ately expanded purple network, which includes the salt bridges,
three other NBNs localized on each globule form. One of these
NBNs (yellow) includes residues from the lower portion of the B
helix, residues of the lower portion of the H helix, and a few
residues of the E helix. Another (blue) includes a few residues in
the upper part of the B helix, the C helix, and the G helix. A third
new NBN (green) includes the middle of the B helix.

The NBNs for unliganded HBI are distinct from those of
liganded HbI, shown as the bottom two images in Fig. 2. At the
shorter cutoff (lower left) we again find only two NBNs, but only
one that spans both globules, the purple network that includes the
Lys30-Asp89 salt bridge, as well as Asp28, Asn32, Asn86, and
Val93. The NBN that includes the heme (red) does not include

Fig. 2 Nonbonded networks (NBNs) for unliganded (top) and liganded (bottom) HbI. An NBN is defined for at
least five connected nonbonded residues where τ is less than 2 ps (left) or 3 ps (right). The most robust NBNs,
found using the smaller τ, include the one spanning both globules and including the Lys30-Asp89 salt bridge
(purple), and another (red) that includes the hemes, distal and proximal histidines, and other nearby residues.
For the unliganded structure it also includes the cluster of water molecules at the interface. Reprinted with
permission from D. M. Leitner, “Water-mediated energy dynamics in a homodimeric hemoglobin,” J. Phys.
Chem. B 120, 4019–4027 (2016). Copyright (2016) American Chemical Society
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the cluster of water molecules at the interface, which is smaller
(11 molecules) than in the unliganded protein (17 molecules).
The red NBN consists of the heme, His69, Leu73, Leu77, Ala98,
His101, and Arg104, as well as a few residues from the E and F
helix. At the longer time cutoff (lower right) there is again only one
NBN spanning both globules (purple), which includes the Lys30-
Asp89 salt bridge and water cluster, as well as the lower portion of
the B helix, the upper part of the D helix, and parts of the E and F
helices, including Phe97. The red network, which includes the
heme, grows only slightly beyond the NBN obtained with the
shorter cutoff. Three other NBNs appear each confined to one
globule. The yellow and blue NBNs partially overlap the NBNs of
the unliganded protein of the same color. Another network (silver)
does not overlap NBNs of deoxy HbI. The yellow NBN includes
the lower part of the B helix, the upper part of the E helix, and the
upper part of the H helix. The blue NBN includes the upper
portion of the B helix, the G helix, and the lower part of the H
helix. The silver NBN includes parts of the B, C, and E helices.

These NBNs constitute groups of residues that respond to local
strain via nonbonded interactions. Both unliganded and liganded
states contain an interglobule network with the Lys30-Asp89 salt
bridge at its core, while the unliganded protein also contains an
interglobule network that includes the hemes and nearby residues
bridged by the cluster of water molecules at the interface. For the
unliganded protein the more immediate response of the water
cluster to local strain at each heme is consistent with expulsion of
water molecules that accompanies the allosteric transition to the
liganded state, as discussed further below.

Of course, the more complete network also includes the main
chain, along which energy transport occurs readily. A more general
analysis must therefore include all interactions. One means to
quantify information flow along the entire network is calculation
of the betweenness centrality, CB. If we take a residue, heme, and
water cluster to be a node, ν, of a network, then CB is defined by
[34, 139].

CB νð Þ ¼ 2
N � 1ð Þ N � 2ð Þ

XN�1

s¼1

XN
t¼sþ1

σst νð Þ
σst

, ð6Þ

whereN is the number of nodes in the network, σst is the number of
shortest paths linking nodes s and t, and σst(ν) is the number of
shortest paths between s and t that also include node ν. The
betweenness centrality has been used to locate hubs in information
flow related to protein dynamics [34], though other centrality
measures may also be usefully adopted [51]. For a weighted net-
work, where values for the edges are the time constants given by
Eq. 5, we can locate the shortest path between nodes s and t using
the Dijkstra algorithm [140].
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We have computed values for the betweenness centrality, CB,
for all the nodes of unliganded and liganded structures HbI and
plot the largest values for each structure in Fig. 3. The largest value
for the unliganded structure, 0.15, lies on the cluster of water
molecules at the interface, highlighting again the centrality of this
feature to the global network of energy transport in unliganded
HbI. The next largest values, 0.12, lie on the Lys30-Asp89 salt
bridge, with somewhat smaller but comparable values on nearby
residues, including Arg67, Leu84, Asp85, Asn86, Pro87, and
Asp88. The hubs of information flow on the energy transport
network as quantified by CB lie in regions critical to the stability
of the protein, and to the allosteric regulation of HbI.

Mutation studies that influence interactions between the water
cluster and the protein reveal significant effects on cooperativity
[83–85]. Mutation of Lys30 to Asp30 destabilizes the protein
altering the mechanism of cooperativity, which then involves disso-
ciation of the two globules upon oxygen binding, and reformation
of the dimer upon dissociation [86]. The largest values of the
betweenness centrality calculated for the energy transport network
apparently identify two regions that control allostery in this pro-
tein. Both of these regions controlling allosteric regulation identi-
fied here were also identified as NBNs.

The largest values of CB calculated for the liganded protein,
also plotted in Fig. 3, are 0.16 and 0.13 for, respectively, Lys30 and
Asp89, with somewhat smaller values obtained for several residues
of the E and F helices at the interface between the proteins, includ-
ing residues Tyr75, Leu77, Gln78, Asn79, Gln83, Leu84, Asp85,
Val91, Cys92, and Val93. The Lys30-Asp89 salt bridge forms the
basis of the only interglobule network for the liganded protein, and
its pivotal role in cooperativity was noted above. The residues
around Cys92 on the F helix form a hinge with residues around
Arg67 on the E helix that has been observed in time-resolved
crystallography experiments to serve as a pivot point for structural
change following ligand photolysis [141]. We find sizable values of
the betweenness centrality, 0.11 and 0.06, respectively, for Cys92
and Arg67. More details concerning network analysis of this allo-
steric protein can be found in Ref. [22].

2.3 Master Equation

Simulations of Energy

Dynamics

on a Network

We turn now to dynamics along a network, where we simulate
energy dynamics with a master equation, using as rate constants
the time constants obtained with the local energy diffusion coeffi-
cients, Eq. 5. In a recent study of the 36-amino acid fragment from
the villin headpiece subdomain, HP36, the results of a master
equation simulation using the rate constants obtained from com-
munication maps were compared with results of all-atom nonequi-
librium simulations. Here we summarize work carried out in that
study [17]. The master equation is,
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Fig. 3 Sizable values of the betweenness centrality, CB, for nodes of the energy transport network for the (a)
unliganded and (b) liganded states. Nodes with the largest values (red) are labeled and include side chains.
Other nodes with sizable values are indicated in yellow. Reprinted with permission from D. M. Leitner, “Water-
mediated energy dynamics in a homodimeric hemoglobin,” J. Phys. Chem. B 120, 4019–4027 (2016).
Copyright (2016) American Chemical Society



dP tð Þ
dt

¼ kP tð Þ, ð7Þ

where P is a vector with elements corresponding to the popu-
lation of each residue and k is the matrix of transition probabilities
between residues. The elements of the matrix, {kij}, are the rate
constants for energy transfer between a pair of residues, i and j. The
solutions of the master equation describing the time evolution of
the population of the residues are given by

P tð Þ ¼ exp ktð ÞP 0ð Þ, ð8Þ
The elements of the rate matrix were obtained using Eq. 5.

Damping due to coupling to the solvent was also included in some
of the simulations reported in Ref. [17], which matched closely
results of all-atom nonequilibrium simulations of hydrated villin,
but we summarize here only the results without damping.

The detailed analysis of energy flow in HP36 revealed some
shortcuts in sequence space. Initial excitation of the protein was
taken to be near the middle of the sequence, at residue 16. Because
of the hydrogen bond between residues 15 and 4, shown in Fig. 4,
the authors examined the population of residues near 4. In Fig. 5a,
P(t) is plotted [17] for residues 3–7 obtained from the master
equation simulation, where the hydrogen bond between residues
4 and 15 gives rise to rapid energy transport to residue 4. Energy is
also seen to reach residues 3 and 7 relatively quickly, followed by
residues 5 and 6, which, like the others, are seen to reach their
equilibrium populations of�0.028 somewhat after 20 ps. Since the
system studied here is closed, the population of each residue

Fig. 4 Villin headpiece subdomain (HP36) with some of the residues discussed in
text highlighted. Reprinted with permission from D. M. Leitner, S. Buchenberg,
P. Brettel, G. Stock, “Vibrational energy flow in the villin headpiece subdomain:
Master equation simulations,” J. Chem. Phys. 142, 075101, Copyright (2015),
American Institute of Physics
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converges to the inverse of the number of residues in the protein,
which for the 36-residue villin headpiece subdomain is about
0.028.

The results of the master equation simulations were compared
with the population of residues 3–7 obtained by all-atom nonequi-
librium simulations, plotted in Fig. 5b. Overall energy flow into
and out of the residues in this part of the protein occurs at times
similar to the times found in the master equation simulation, where
some modest differences were attributed to the time needed to heat
residue 16 from the attached azobenzene in the all-atom simula-
tions, not accounted for in the master equation simulations, among
other factors. The two simulations were found to provide a consis-
tent picture for all residues at early times, i.e., below 1 ps, with some
differences seen in the heating and cooling of some of the individ-
ual residues beyond 1 ps. The results of the two simulations con-
verged again at longer times, beyond about 10 ps, as equilibrium is
approached.

Another shortcut in sequence space due to a hydrogen bond
appears in a second region of the protein and was also examined. P

Fig. 5 (a) Master equation simulation of P(t) and (b) all-atom nonequilibrium MD simulation of kinetic energy
per degree of freedom, E(t), for residues 3 (black), 4 (red), 5 (green), 6 (blue), and 7 (magenta) of HP36 when
residue 16 is heated initially. Rapid heating of residue 4 arises from shortcut due to hydrogen bond between
residues 4 and 15. (c) Master equation simulation of P(t) and (d) all-atom simulation of kinetic energy per
degree of freedom, E(t), for residues 22 (black), 23 (red), 24 (green), 25 (blue), and 26 (magenta) of HP36 when
residue 16 is heated initially. Rapid heating of residue 26 arises from shortcut due to hydrogen bond between
residues 18 and 26. Reprinted with permission from D. M. Leitner, S. Buchenberg, P. Brettel, G. Stock,
“Vibrational energy flow in the villin headpiece subdomain: Master equation simulations,” J. Chem. Phys.
142, 075101, Copyright (2015), American Institute of Physics
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(t) for residues 22–26 obtained by master equation simulations is
shown in Fig. 5c, which can be compared with the time-dependent
energy obtained by the all-atom nonequilibrium simulations, plot-
ted in Fig. 5d. Figure 5c shows that energy transport to residue
22 is fastest in this region, followed by residue 26, then followed by
residues 23, 24, and 25, the latter two appearing around the same
time. The sequence could be explained by the local energy diffusion
coefficients calculated between residue 16 and the residues of this
part of the sequence, as well as values of the other local energy
diffusion coefficients corresponding to this part of the protein. At
early times, similar trends are seen in the all-atom simulations,
plotted in Fig. 5d, and again some differences are seen between
1 ps and the equilibration times beyond 10 ps, and are further
discussed in Ref. [17].

2.4 Rate Constants:

Scaling Energy

Transport Through

Hydrogen Bonds

with Hydrogen Bond

Fluctuations

While the local thermal diffusion coefficients appear to provide a
means to estimate the rate constants in a master equation, an
alternative based on a scaling relation between fluctuations of non-
bonded residues and rate constants was found for pairs of hydrogen
bonded residues of villin [23]. The results of the all-atom nonequi-
librium simulations, which were carried out at low temperature
(less than 100 K), were fit to a master equation, and the resulting
rate constants, when introduced to the master equation, repro-
duced the results of the all-atom simulations very closely
[23]. Interestingly, Stock and coworkers found that those rate
constants scale with 1= δr2ij

D E
, where δr2ij

D E
is the variance in the

distance between the two atoms, i and j, forming the hydrogen
bond. Some theoretical justification for the scaling relation is dis-
cussed in Ref. [23]. Briefly [23, 59, 142, 143], the master equation
given by Eq. 7 for the diffusion of energy among residues has the
same form as the equation of motion for lattice vibrations with
nearest-neighbor interactions,mα

d2uα

dt2
¼ P

β 6¼α
kβαuβ, wheremα and uα

are the mass and displacement, respectively, at site α, and here kαβ is
the force constant connecting the masses. The only difference
between the equations is the presence of a first- and second-order
time derivative, respectively. A solution to the diffusion equation is
obtained from the vibrational problem by substituting t for
ω�2 [142], which is proportional to δr2ij

D E
, so that the transition

rate between i and j, which is proportional to the energy flux
between these residues, is proportional to 1= δr2ij

D E
.

Here we examine scaling relations for hydrogen bonds in apo-
myoglobin by comparing the energy flux and hydrogen bond fluc-
tuations obtained by classical MD simulations at 300 K. More
details can be found in Ref. [143]. The simulations were carried
out as follows: The solvated protein system investigated, apomyo-
globin, was created from the starting structure of bilverdin apo-
myoglobin (PDB 1BVD). We carried out the MD simulations
using the AMBER16 MD package and the amber ff14SB force
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field [144]. The protein structure was first minimized with steepest
descent followed by conjugate gradient for 500 steps total. The
system was solvated with 6661 solvent molecules with a NaCl
concentration of 0.2 M in water using the TIP3P water model.
The final system was minimized once more for 2000 steps to
remove bad contacts. Consecutive position-restrained 1 ns canoni-
cal ensemble and 1 ns isothermal–isobaric ensemble simulations
were performed with a heavy atom restraint force constant of
500 kcal/(mol Å2) with the Berendsen thermostat and barostat
[145] at 300 K and 1 bar, respectively. The system was then
simulated under isothermal–isobaric ensemble for 700 ps converg-
ing the system density, followed by a 5 ns production simulation.
System snapshots were taken at 100 ps intervals along the 5 ns
trajectory and were further simulated using the microcanonical
ensemble (NVE) for 150 ps using 0.5 fs time steps, outputting
the velocity and position trajectory files every 10 fs.

The trajectories of the MD simulations were then analyzed. To
compute the inter-residue flux for each NVE simulation we used
the CURP (CURrent calculations for Proteins) program developed
by Yamato and coworkers [13]. The flux between residues is multi-
plied by kBT, where T was 300 K in the MD simulations, and the
results are reported in units of (kJ/mol)2 ps�1. The polar contact
dynamics was calculated over the same trajectory. A polar contact
search was carried out on each simulation looking for all donor
nitrogen or oxygen, donor proton and oxygen acceptor triplets and
for all triplets where the donor proton and oxygen acceptor dis-
tances are �0.28 nm for at least 99% of the NVE trajectory. For the
pairs that met the distance criteria we calculated 1= δr2ij

D E
. For each

trajectory the polar contact dynamics calculated was paired with the
corresponding energy flux. We then defined hydrogen bonds as
having a donor-proton-acceptor angle greater than or equal to
150� over the duration of the simulation.

For each pair found in any one of the simulations that satisfied
the hydrogen bond criterion, we plot the value of the flux against

1= δr2ij

D E
in Fig. 6. As in the HP36 work [23], amino acid pairs

within 4 in sequence space are not included, since those pairs are
within helices along which energy transport is anyway relatively fast,
the rate constants for which follow a different relation appropriate
for energy transfer along the backbone [23]. The data are separated
into two groups, one for hydrogen bond pairs that lie 5–9 amino
acids away and another group where they are further away in
sequence space. The first group consists only of pairs that are
5 and 6 away in sequence space, and 3 of the four pairs identified
involve backbone–backbone hydrogen bonds. They are shown in
Fig. 7, and are seen to be at turns just beyond one of the helices.
The points corresponding to those hydrogen bonds appear to be
well fit by a line in Fig. 6 given by flux ¼ 76.4 þ 0.0273/ δr2ij

D E
,

50 Korey M. Reid and David M. Leitner



which is shown in the figure. A second set of points also appears to
fall fairly close to a line. They include one of the hydrogen bonds
close in sequence space and the rest, which are further away. All of
these hydrogen bonds are formed between a side chain and back-

bone, and a fit gives flux ¼ 417:1þ 0:248= δr2ij

D E
, which is also

shown in the figure. A linear relation between flux and 1= δr2ij

D E
was

justified by the relation between diffusion along an elastic network
of residues. We find here a different slope for hydrogen bonds
formed, respectively, between side chains and those formed
between backbone and side chain. Further work has been reported
in Ref. [143].

3 Concluding Remarks

Energy transport networks can be located computationally by the
thermal transport approach reviewed here. For the dimeric hemo-
globin discussed above the energy transport channels that have
been identified and characterized overlap regions involved in allo-
steric transitions. Simulations of energy transport dynamics can be
carried out with master equation approaches using rate constants
obtained from the local energy diffusion coefficients computed for
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Fig. 6 Flux vs. 1= δr 2ij

D E
, where δr 2ij

D E
is the variance in the distance between

the two atoms, i and j, forming the hydrogen bond. Pairs within 5 and 9 residues
in sequence space are indicated by * and those 10 or more residues away by
X. Two linear regions are seen, one apparently corresponding to backbone–-
backbone hydrogen bonds, which have a smaller slope, and the rest
corresponding to side chain–backbone hydrogen bonds. Linear fits to each set
are shown and discussed in the text
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the protein. There are also indications that at least some of the rate
constants may be related to protein structural fluctuations, and can
thus be obtained from relatively short MD simulations. This was
originally pointed out in a computational study of energy flow in
the villin headpiece subdomain [23], HP36, and we have here
presented newer results exploring scaling relations between hydro-
gen bond dynamics and energy transfer along hydrogen bonds in
apomyoglobin.

Future work will explore connections between dynamics of
other kinds of nonbonded contacts and energy flow between
them. For instance, work on apomyoglobin indicates that ionic
contacts, which are less localized, exhibit much greater variability
than hydrogen bonds [143]. Moreover, less localized interactions
will couple dynamically to the hydration layer surrounding a pro-
tein. Protein and water dynamics are coupled, as revealed, e.g., by
THzmeasurements andmolecular simulations [146–171]. Fluctua-
tions of contacts closer to the surface will undoubtedly be influ-
enced by the water dynamics as well. Despite these complicating

Fig. 7 Apomyoglobin, highlighting hydrogen bonds contributing to the results in Fig. 6. Only those hydrogen
bonds where the distance between amino acids in sequence is greater than 4 were considered. Two scaling
relations were found, one for backbone–backbone hydrogen bonds (participating residues are green) and
another for side chain–backbone hydrogen bonds (orange). ILE99 participates in both groups (blue)
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features, future computational studies of energy transport in larger
proteins and protein complexes will be facilitated by any connec-
tions between protein dynamics and energy transfer that can be
identified. Work in these directions is in progress [172–175].
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Chapter 5

Probing Allosteric Mechanism with Long-Range Rigidity
Transmission Across Protein Networks

Adnan Sljoka

Abstract

Allosteric transmission refers to regulation of protein function at a distance. “Allostery” involves regulation
and/or signal transduction induced by a perturbation event. Allostery, which has been coined the “second
secret of life,” is a fundamental property of most dynamics proteins. Most of critical questions surrounding
allostery are largely unresolved. One of the key puzzles is to describe the physical mechanism of distant
coupled conformational change. Another hot research area surrounding allostery is detection of allosteric
pathways or regions (residues) in the protein that are the most critical for transmission of allosteric
information. Using techniques inspired by mathematical rigidity theory and mechanical linkages, we have
previously proposed a mechanistic model and description of allosteric transmission and an accompanying
computational method, the Rigidity Transmission Allostery (RTA) algorithm. The RTA algorithm and
method are designed to predict if mechanical perturbation of rigidity, for example, due to ligand binding, at
one site of the protein can transmit and propagate across a protein structure and in turn cause a change in
available conformational degrees of freedom and a change in conformation at a second distant site,
equivalently resulting in allosteric transmission. The RTA algorithm is computationally very fast and can
rapidly scan many unknown sites for allosteric transmission, identifying potential novel allosteric sites and
quantify their allosteric effect. In this chapter we will discuss the rigidity-based mechanistic model of
allosteric communication. As a case illustrative study, we will demonstrate RTA analysis on a G protein
coupled receptor (GPCR) human adenosine A2A receptor. Our method gives important implications and a
novel prospective for general mechanistic description of allosteric communication.

Key words Allostery, Protein flexibility, Degrees of freedom, Rigidity theory, Big data, Pebble game
algorithm, Molecular theorem, FIRST, Rigidity-transmission allostery, RTA algorithm
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1 Introduction

Allosteric control of protein function refers to regulation at a
distance. Allostery is one of the most powerful and predominant
means of regulating protein activity and has been referred to as “the
second secret of life.” [1]. Allosteric regulation is a universal phe-
nomenon that is initiated by a perturbation through binding of an
effector molecule at an allosteric site that is topographically distinct
and remote from orthosteric/active binding site. Binding of an
effector molecule at the allosteric site(s) triggers a local conforma-
tional change that can propagate a substantial distance to cause a
rearrangement and a change in conformation and dynamics at a
distant functional active site, subsequently resulting in modification
of protein function. Allostery is a common event in a cell and it
occurs in all dynamics proteins, in RNA and DNA polymers [2–4].
Initial perturbation can arise due to covalent (i.e., phosphorylation,
enzyme-substrate reaction, point mutation) and noncovalent
(binding of drugs, proteins, ions, etc.) modifications at the alloste-
ric site [2]. It is integral to the control of metabolic and signaling
pathways, and it provides organisms the ability to adapt to constant
changes in cellular and environmental conditions [1–4]. As alloste-
ric interactions at a remote site lead to conformational and ulti-
mately a change in functional site and deregulation of a protein
function, allostery has direct relevance to cellular function and
disease [2]. Remarkably, even after 50 years since the concept of
allostery was first introduced [5], most of the critical questions
surrounding allostery remain unresolved. One of the key puzzles
is to provide a mechanistic description of allosteric transmission
between remote sites in a protein, specifically how a structural
change in conformation at an allosteric site (in some cases a subtle
change) can induce a change in conformation at a distant active site.
Moreover, what region in the protein is important for allosteric
transmission (i.e., what are the allosteric pathways?). Since allostery
is a crucial biological phenomenon for understanding biological
systems, disease, and design of novel allosteric drugs, decoding the
mechanism of allosteric transmission remains one of the key long-
standing unsolved problems in biological sciences.

In this chapter we describe and summarize the mechanistic
description and physical model for allosteric transmission called
Rigidity Transmission Allostery (RTA) analysis. RTA is based on
concepts in mathematical rigidity theory [6, 7] building on our
initial work on mathematical models and algorithms for studying
allostery [8] with further theoretical considerations in [9]. We will
demonstrate the RTA analysis on a crystal structure of a GPCR
receptor. RTA algorithm was recently used to predict and quantify
allosteric interactions between remote sites in protein structures
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and it can be extended to identify the allosteric pathways and detect
potential novel allosteric sites [10–12].

In the next two subsections we give a brief review of how to
predict flexibility of proteins with rigidity theory methods, focusing
on method FIRST [13]. In Subheading 2 we discuss rigidity-based
prediction of allosteric communication using the RTA analysis.

1.1 Analyzing

Molecular/Protein

Rigidity

with Mathematical

Rigidity Theory

To understand how proteins function including allosteric transmis-
sion requires deep knowledge of protein flexibility and its dynamics.
Protein motions take place on a wide range of time scales from rapid
bond-vibrations on the femtosecond range to large-amplitude col-
lective motions occurring on milliseconds-seconds range
[14, 15]. A typical protein can contain thousands of conforma-
tional degrees of freedom, whose conformational fluctuations
among the structural ensemble members are rapid, transient, and
result in structures that are mostly spectroscopically undistinguish-
able compared to the ground state [14–17]. The ultimate desire is
to observe proteins move in real time at atomistic level as they
accomplish their function, but despite many advances in experi-
mental measures of dynamics and biophysical and computational
methods including molecular dynamic simulations we are still far
from actualizing this goal [14, 17]. The computational time
needed to investigate large-scale functionally relevant motions
including those of allosteric transmissions with MD simulations,
even with special-purpose commodity computer clusters such as
Anton, is beyond practical wide-range applications [18]. To tackle
this challenge, there is a clear need to come up with alternate and
fast computational methods that simplify the force fields which can
still provide accurate and efficient protein flexibility predictions that
are in agreement with experimental measures. Numerous advances
in the mathematical rigidity theory [6–8, 19, 20] over the last
35 years have facilitated developments of several emerging technol-
ogies [8, 10–12, 16, 21–24] for fast computational predictions of
both protein flexibility and their dynamics.

Rigidity theory examines the rigidity/flexibility of frameworks
which are specified by geometric constraints (distances, directions,
etc.) on a collection of points and rigid bodies [6, 7] which has
many applications to both natural structures (molecules, crystals,
etc.) and engineered structures (bridges, robots, etc.) [13, 16, 22,
23, 25]. Proteins are modeled as constrained geometric molecular
frameworks (a mechanical linkage in kinematics and robotics vocab-
ulary) consisting of atoms and an assortment of linking intermolec-
ular forces (constraints) [7]. In a molecular framework model of a
protein (in rigidity theory referred to as a body-bar framework
[7, 26] (see Fig. 1a) we assume the angles between the bonds of
an atom (body) are fixed allowing dihedral angles to freely rotate,

Probing Allosteric Mechanism with Rigidity Transmission 63



and the locked dihedral angles associated with double and peptide
bonds together with non-covalent interactions impose additional
constraints (bars). Each atom is treated as a fully rigid body with six
trivial degrees of freedom (DOF) and rotatable bonds (hinges) as a
set of five bars (edges), where each bar removes a single DOF,
leaving one bond rotational DOF (see Fig. 1b, c). Double or
peptide bonds are modeled as a set of 6 bars between the two
atoms locking the rotational DOF [7]. Non-covalent interactions
(hydrogen bonds, hydrophobic contacts, etc.) are modeled as a set
of 1–5 bars that further restrict the protein’s internal conforma-
tional DOF [16, 22]. Depending on the energy strength and
persistence of a hydrogen bond, and if an ensemble of structures
is available, the number of bars can be appropriately adjusted
[16]. Hydrophobic contacts are modeled between any contacting
pairs of carbon-carbon, carbon-sulfur, or sulfur-sulfur atoms
[13]. A molecular body-bar framework is said to be rigid if every
motion results in framework that is isometric to the original one
(i.e., the framework only has rigid-body motions); otherwise, the
framework is flexible [7]. A molecular theorem [7, 19] states that
(generic) rigidity of a molecular framework is only a property of the
underlying topology (i.e., graph, network), which also prescribes a
necessary and sufficient mathematical counting certificate for rigid-
ity. In other words, we only need to count the number of atoms
(vertices) and bars (edges) in the body-bar graph and its distribu-
tion throughout the subgraphs to determine the rigidity of a
corresponding molecular model of a protein.

Fig. 1 (a) A general 3D body-bar framework composed of rigid bodies whose motioms are restricted by
connecting bar constraints, where each (independent) bar removes a single DOF. (b) Molecular framework of
ethane has a single internal DOF and can be modelled as a body-bar framework (multigraph). Each carbon
atom together with its locked bonds is modeled as a fully rigid body with 6 trivial DOF and is represented as a
vertex (node) and the rotatable bond between two carbon atoms as a set of five bars (edges) leaving 1 internal
DOF between the two rigid bodies (i.e. 6 + 6 – 5 ¼ 7 DOF; 6 trivial rigid body DOF and 1 internal DOF). (c) A
cyclohexane and its body-bar multigraph representation. (d) Protein structure in stick representation (body-
hinge) with gray, red and green lines corresponding to covalent bonds (hinges), hydrogen bonds and
hydrophobic contacts, respectively. (e) Body-bar multigraph representation of a protein framework
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1.2 Protein Rigidity/

Flexibility Analysis

with Method FIRST

Given a PDB structure or an ensemble of structures, the program
FIRST [13] (and its various spinoff methods—Kinari, DCA, CNA
and others [20]) converts the structure to a body-bar multigraph
(network) model of a protein, consisting of vertices (atoms) and
edges (covalent bonds, hydrogen bonds, hydrophobic contacts,
and electrostatic interactions) (Fig. 1d, e). The strength of each
hydrogen bond is calculated using an energy potential [13]. A user
selects a hydrogen bond energy cutoff value such that all bonds
weaker than this cutoff are ignored and the final constraint body-
bar multigraph is obtained. FIRST then applies the pebble game
algorithm [8, 27] on the multigraph which checks the combinato-
rial characterization of rigidity prescribed in the molecular theorem
[7, 19]. The pebble game determines if each constraint (bar/edge)
is “independent” (i.e., removes a DOF from the network) or is
otherwise “redundant.” Pebbles are synonymous with conforma-
tional degrees of freedom and a removal of a pebble indicates the
inserted constraint (edge) is independent. The pebble game finally
decomposes the protein into rigid clusters and flexible regions. A
rigid cluster moves as a single rigid body with its trivial 6 DOF
(a combination of 3 rotations and 3 translations). A typical protein
normally consists of several rigid regions connected by flexible
linkers (Fig. 2). Given such a decomposition of a protein into
rigid and flexible connections, fast Monte-Carlo methods such as
FRODA [23] (which give 100,000 speedups compared to MD
simulation) go a step further and can simulate the actual protein
motions and explore their dynamics. Sampling of conformational
space and dynamics can be done on very large systems, such as
ribosome and even viral capsids [28], and we have recently been
extending these techniques and applied it on intrinsically flexible
proteins which have a substantial amount of disorder and an
extremely high number of internal DOF [24].

In Fig. 2a–d we have shown the output of FIRST on a human
adenosine A2A GPCR at several hydrogen bond energy cutoffs.
Hydrogen bonds can be removed one by one (i.e., by lowering of
hydrogen bond energy cutoff) in the order of increasing strength,
while maintaining all other covalent and hydrophobic interactions
intact, and then repeating the analysis as hydrogen bonds are
removed while recalculating rigid and flexible regions. Change in
rigidity can be visualized in the hydrogen bond “dilution plot”
(Fig. 2e). FIRST can predict the rigid clusters and flexible connec-
tions (known as the rigid cluster decomposition) in less than a second
on a standard PC/laptop. Many studies have demonstrated that
FIRST gives accurate predictions of flexibility and rigidity in pro-
teins that are in agreement with experiments [10, 11, 16, 22].
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2 Methods

2.1 Rigidity

Transmission Model

as a Mechanistic

Description

of Allostery

In rigidity transmission model of allostery, a change in rigidity
induced by a binding event(s) which results in a change and trans-
mission in DOF (i.e., a conformational change) across protein
network to a remote distant site(s) gives a mechanical description
for allosteric coupling between distant sites in a protein. The math-
ematical and mechanical model of allosteric communication is
founded on our initial foundation work in mathematical allostery
in rigidity theory introduced in [8]. Further mathematical proper-
ties were further considered by Whiteley et al. [9] in a special class
of geometric frameworks. Recently, we have applied this
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Fig. 2 Rigid cluster decomposition with program FIRST on human A2A adenosine receptor (pdb 2ydo) at various
hydrogen bond energy cutoffs. Blue is the largest rigid cluster, black regions are flexible parts of the protein.
(a) At �0.1 kcal/mol hydrogen bond cutoff, the protein is mainly composed of a single large rigid cluster. At
this cutoff, most hydrogen bonds are modeled in the network including very weak/transient hydrogen bonds.
(b) As hydrogen bonds are diluted, the receptor breaks into several rigid clusters. (c) Individual helices are
separated into rigid components. (d) As stronger hydrogen bonds are removed, helices become flexible. (e)
Hydrogen bond dilution plot. Columns on the left are updated and display the hydrogen bond energy levels and
total number of remaining hydrogen bonds. Corresponding energy cutoff lines are highlighted in black at�0.1,
�0.9,�1.1 and�1.7 kcal/mol. Flexible regions are shown as thin black lines, with coloured blocks indicating
distinct rigid clusters. Initially with inclusion of all potential hydrogen bonds, the protein is quite rigid (red
block) and as hydrogen bonds are gradually broken with increasing energy, the protein decomposes into
several rigid clusters, many which correspond to TM helices. Purple dashed lines indicate the start
(�0.944 kcal/mol) and end of allosteric transmission (�1.387 kcal/mol) (see Fig. 5c)
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mechanistic view of allostery for deciphering allosteric coupling in
enzymes, receptors, antibodies, and other protein structures [10–
12, 21].

Our model of allostery is designed to predict if a mechanical
perturbation of rigidity and a change in conformational DOF
(mimicking a binding event) at a given site A on a protein can
percolate and transmit across a protein structure and result in a
change and transmission in rigidity and available conformational
DOF at a second remote site B. A key step is to introduce the local
perturbation of rigidity at site A by adding extra constraints (edges)
to site A up to its rigidification. (Note that in the description of
RTA algorithm below, no actual edges need to be added, but the
same effect can be obtained, which is mathematically verified.)
Upon the initial perturbation (rigidification) of site A, if this results
in a reduction of conformational DOF at site B, then A “transmits
degrees of freedom’ (DOF) to B and the two sites are in ‘rigidity-
transmission communication.” The maximum possible reduction
in DOF in site B quantifies the strength of the allosteric transmis-
sion signal, where larger the reduction, the stronger the allosteric
transmission signal. As a mechanistic description, the presence of
rigidity-transmission allostery (transmission of DOF) between sites
A and B can be mathematically verified to be equivalent to a
statement that a change in shape (conformation) in site A (i.e.,
mechanically change the shape as binding might) will lead to rear-
rangement and change of shape and conformation of the second
site B [8]. Thus, rigidity-based allostery captures the essence of
coupled conformational change between distant sites inherent in
allosteric communication.

In Fig. 3b, c we have illustrated the concept of DOF transmis-
sion and a change in shape propagation between two remote sites in
a 2-dimensional bar and joint framework toy model, which is built
with bars (rods) which fix the distance between the connecting
flexible joints. This framework has a single internal DOF and
responds specifically to a stimulus at a second distant site. When
we introduce a subtle change in the distance between the two joints
in site A (analogous to simulating ligand binding), this initial shape
change propagates across the framework and results in a change in
shape and conformation at the distant site B. Equivalently, fixing
the distance between the end joints in A (i.e., insert a bar connect-
ing u and v) and rigidifying site A will in turn rigidify site B,
stopping the motion in B. Hence, there is a transmission of one
DOF between A and B. As an analogy to allostery in a hypothetical
protein, a small ligand that fits in site A can pull on the two vertices,
which in turn leads to a change in conformation and a closing
motion at site B, allowing site B to more likely dock its binding
ligand partner (i.e., a hypothetical analogue to positive allosteric
modulation).

Probing Allosteric Mechanism with Rigidity Transmission 67



In rigidity-transmission allostery model, once we have added
constraints in site A (up to its rigidification), the effect on B is one
of the following: (1) no-change in DOF is observed at B (i.e., A and
B are not in communication); (2) there is a reduction in DOF at B
but some internal DOF still remain in B, or (3) all internal DOF in
B are removed (i.e., B becomes rigid). The effect of a change in
DOF propagating across the network to reach site B, upon initial
perturbation at site A, forces the second site B to move in a different
conformational space than prior to perturbation. In terms of the
conformational ensemble view of protein structure, conformational
selection, and energy landscapes, presence of rigidity-transmission
allostery will lead to a change in shape, stabilizing certain confor-
mations and biasing (restricting) of distribution of states that can be
sampled within the conformational ensemble [29].

We now describe the RTA procedure for allostery computation
in proteins.

2.2 Rigidity-

Transmission Allostery

(RTA) Analysis

For simplicity, we assume we are given two sites A and B on the
protein of interest. It is possible that only one site is known (i.e.,
active site) and we test all other potential sites for allosteric com-
munication with the active site; these details will not be discussed

Fig. 3 (a) The goal of RTA analysis is to check if upon perturbation (rigidification) of site A (mimicking ligand
binding): (1) are the two remote sites A and B in rigidity-transmission communication (i.e. is there a
transmission of DOF from A to B—a coupled conformational change), (2) to identify the strengh of the
allosteric transmission signal between A and B and (3) to find the pathway that is critical for this allosteric
transmission. In (b) and (c) we illustrate allostery in a 2-dimensional bar and joint framework model and a
hypothetical example of positive allosteric transmission. This framework has one non-trivial DOF (excluding
green edges) and this single DOF can transmit between A and B. In other words, a change in shape in site A
(i.e. moving u and v closer together using the single DOF) simulating ligand binding will propage across the
framework and cause a change in shape in site B (increasing likelyhood for binding). The green edges are not
relevant for this communication and would not form part of the allosteric pathway, their removal/insertion has
no effect on A and B cross-talk
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here and will appear in forthcoming papers. To predict if A and B
are in rigidity-transmission communication we apply the following
procedure (see Fig. 4 for a schematic overview):

2.2.1 Preparation

and Preprocessing

1. Input a PDB structure file (or an ensemble of structures, which
can be handled as described in [11]) and add missing hydrogen
atoms (typically this is the case with crystal structures; here we
use the WHAT IF server (http://swift.cmbi.ru.nl/servers/
html/htopo.html) to add hydrogens).

2. Create a corresponding molecular body-bar multigraph Gh and
select a hydrogen bond energy cutoff h.

3. Select two sites A and B (in graph theory terminology, A and B
are disjoint vertex induced subgraphs in Gh). Sites A and B can
be a collection of residues, ligands, or a specified set of atoms.

2.2.2 Task Check if rigidification of A results in a transmission (reduction) in
conformational DOF at B. If there is transmission, calculate the
maximum DOF transmission using the following RTA algorithm
steps:

1. Calculate the available DOF in site B, call it DOFB: (DOFB is
the number of independent edges that would need to be added
to B that results in its rigidification. We can also run the pebble
game algorithm on Gh and count the maximum number of
pebbles on B.)

2. Perturb rigidity of A (rigidify A by adding maximum number of
independent edges within A).

3. Re-calculate the available DOF in B, call it DOFBAperturbed.

2.2.3 Output Transmission of DOF from A to B is: DOFAB ¼ DOFB �
DOFBAperturbed.

(i.e., maximum reduction in DOF at B given perturbation/
rigidification of A).

When DOFAB > 0, then A and B are in allosteric
communication.

2.2.4 Remark1 Rigidity-transmission allosteric communication has a symmetric
property; in other words the effect of perturbing rigidity of site A
on site B and the maximum amount of DOF transmission is identi-
cal if we perturb B and observe the effect on site A. That is
DOFAB ¼ DOFBA.

Fig. 4 Overview of rigidity-transmission allostery procedure
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2.2.5 Remark2 Transmission is possible if A and B have some internal flexibility
(i.e., DOFA and DOFB > 0).

2.2.6 Remark3 Uniqueness and correctness of the DOFAB counts extracted from
RTA algorithm, the pebble game extensions that allow fast compu-
tations of counts in step 1 and 3, and the relevant region detection
algorithm for detection of allosteric are mathematically verified [8].

Extensions of this work (to appear) will show how to accurately
map out the pathways that correlate with NMR experimental mea-
sures for probing allosteric crosstalk.

2.3 Case

Study: GPCR

We will illustrate the RTA method on human adenosine A2A recep-
tor, a G protein coupled receptor (GPCR). GPCRs are the largest
class of receptors in the human genome [29–34]. The rhodopsin
family of G protein coupled receptors (GPCRs), also known as
family A GPCR, represents over 80% of all GPCRs. Humans have
over 800 unique GPCRs, which are characterized by the same
underlying topology consisting of 7-transmembrane alpha-helices.
GPCRs mediate most transmembrane signal transduction by
responding to an enormous variety of extracellular stimuli (drugs,
hormones, neurotransmitters, ions, proteins, etc.) as well as senses
of sight, olfaction, and taste. GPCRs also play an important role in
disease and drug discovery with around 50% of all modern medici-
nal drugs targeting GPCRs [2, 30, 31, 34].

GPCRs are typically regulated by extracellular ligands called
agonists. Agonists and inactivating ligands antagonists or inverse
agonists usually bind at the similar location at the extracellular
region (i.e., orthorsteric pocket) of the receptor and activation
can be further increased or decreased through interactions with
allosteric modulators that bind at different sites from the orthors-
teric site and also residue specific mutations [30, 31]. Agonist
binding induces a subtle conformational change within the binding
pocket, which causes relative movement of α-helices and a
subsequent larger change in conformation at the intracellular side
of the receptor [31, 32]. This enables activation of GPCR and
binding to its G protein partner, leading to exchange of GDP and
GTP, dissociation of the G protein into an α-subunit and a β-
γ-subunit and subsequent activation of additional downstream
partners.

A significant movement and conformational change at the
cytoplasmic end of TM helix 6 is believed to be central in GPCR
activation together with smaller rearrangement of TM3, TM5 and
TM7 [30–32]. GPCRs are naturally allosteric as orthrosteric site
and G protein binding region crosstalk must travers over large
distance, spanning the TM region. As is the case with many dynam-
ics proteins, GPCRs do not function through simple on and off
switches. GPCRs are highly dynamic and can adopt a multiple of
conformational ensemble states which are normally categorized as:
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inactive, active-like functional states, fully active state with
G-protein and intermediate states linking these states. Agonist
binding generally tends to shift the conformational ensemble that
closer resembles the active-like states [29, 35]. A key unresolved
mystery is how GPCRs transmit the allosteric signal across the TM
region leading to activation. In particular, how does binding of
certain ligands (agonists, partial agonist, positive allosteric modu-
lators, etc.) trigger an allosteric transmission and the necessary
conformational change for activation at the intracellular part of
the receptor, while other ligands such as antagonists do not pro-
duce this effect. The mechanism that controls ligand binding and
GPCR activation is extremely complex, and this puzzle is a major
research interest with big implications to design of novel therapeu-
tics [30, 34].

Adenosine receptor is a prototypical family A GPCR and prob-
ing how it functions and transmits allosteric signals across the TM
region is critical for deepening our overall understanding of GPCR
activation mechanism. The A2A receptor plays an important role in
regulating myocardial oxygen consumption, coronary blood flow,
and is a drug target for multitude of disorders (inflammation,
insomnia, Parkinson’s disease, cancer, diabetes, infectious diseases,
and neuronal defect disorders) [31, 35, 36].

To provide insight into potential allosteric mechanism activa-
tion in GPCRs, we have applied the RTA algorithm on several
structures of human adenosine A2A receptor (Fig. 5). We defined
site A as the orthosteric site (here taken to be all atoms and bonds
that are interacting with the agonist (or antagonist)) and site B
chosen as residues 230 and 291 at the intracellular side where the
receptor interacts with the G protein (Fig. 5b). Starting with four
crystal structures of A2A receptor in the presence of different
ligands, RTA algorithm was performed for all hydrogen bond
energy cutoffs h (see Subheading 3.2) in increment steps of
0.01 kcal/mol and DOF transmission (DOFAB) is calculated for
each cutoff h. Results are shown in Fig. 5c.

The RTA algorithm predicts that in all three agonist-bound
(active-like) structures, perturbation of rigidity at the orthorsteric
site will transmit across the receptor, and in turn induce a change in
conformational DOF at a remote G protein binding region. The
addition of agonist allosterically restricts the overall available DOF
at the G-protein binding region, and in terms of conformational
selection, agonist binding will bias the receptor to more often
sample the conformational state(s) increasing the likelihood for
GPCR activation and interaction with G protein [29]. On the
other hand, in the inactive structure with a bound antagonist, no
DOF transmission occurs; equivalently no allosteric transmission is
induced. This analysis suggests that transmissions of rigidity and
DOF upon binding of agonist are important for facilitating struc-
tural and conformational changes at G-protein binding region, and
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ultimate activation of a GPCR and binding of G protein. On the
other hand, antagonist binding prevented the transmission of DOF
and subsequent signal propagation across the TM region. This
analysis points to the role of rigidity-transmission communication
as a mechanistically property of allosteric control of A2A receptor.
Similar analysis was performed to detect allosteric sites and describe
the role of calcium and magnesium as positive allosteric modulators
or A2A receptor [11].

a b

Gα Gβ Gγ

Extracellular

Intracellular

A

B

c

Fig. 5 (a) Schematic representation of a GPCR with a G-protein, showing a bound agonist (purple block) at
orthosteric site, which leads to conformational change and rearangement of TM helices, transmitting the
signal across the TM region, allosterically activating the receptor. (b) RTA analysis of adenosine A2A receptor
was tested between sites A (orthosteric site) and site B (G-protein binding regions). (c) Plot of transmission of
DOF as a function of energy cutoff in four different A2A receptor crystal structures. In all three active-like
structures bound to agonists, transmission of DOF occurs, in the inactive state transmission of DOF is not
seen. When the cutoff is close to 0 kcal/mol no transmission is possible as the whole protein is rigid including
sites A and B (see also Fig. 2e). As cutoff is lowered, more hydrogen bonds break, the protein becomes less
rigid and eventually allosteric transmission starts (in agonist bound structures). Transmission of DOF continues
for some range of cutoffs and stops once a significant portion of hydrogen bonds have been diluted
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For allosteric communication to be effective and transmit DOF
and change in shape across long-range distances across protein
networks, the delicate balance between rigidity and flexibility is
critical. Some large rigid components (i.e., helices which are great
at transmissions over large distances) and connecting flexible
regions are needed to observe long-distance propagation. We can
see this by observing the range of energy cutoffs where transmission
occurs and the corresponding rigid cluster decomposition. We see
no allosteric transmission when the protein is either overly rigid or
overly flexible (see Fig. 2a, d).

The two agonists adenosine and NECA are structurally very
similar, and interestingly produce a very similar DOF transmission
allostery profiles. Previous studies have shown that the two config-
urations of adenosine- and NECA-bound crystal structures are in a
partially active state [31]. On the other hand, the authors in [32]
report that the UKA-bound agonist crystal structure is in active
state conformation (fully active state is reached in presence of
G-protein). Moreover, UKA is a stronger agonist of the three
agonists considered here. This may point to why adenosine- and
NECA-bound structures transmit DOF at an almost identical
hydrogen bond energy range, whereas UKA-bound receptor is
more effective in allosteric transmission as it transmits more DOF
and also at an earlier and wider range of energy cutoffs.

3 Notes and Conclusions

The progress over the last 20 years in the field of mathematical
rigidity theory has opened up a number of exciting avenues for
analyzing the close relationship between protein function, flexibil-
ity, and dynamics. A straightforward method that describes how
allosteric signals are transmitted across protein structures and
describes a mechanistic insight into allosteric propagation has
been previously difficult to design and conceptualize. Our novel
model of allosteric communication via transmission of degrees of
freedom across protein networks and RTA analysis offers a new
window to study the allosteric cross-talk between remotes sites in
proteins. In this initial methodology expose, we have shown how
RTA analysis can be a powerful tool for probing allostery which also
provides a strong case for a mechanistic interpretation of mysterious
allosteric transmission and regulation. RTA analysis was recently
applied on a bacterial homodimeric enzyme fluoracetate dehalo-
genase where we predicted and accurately demonstrated the pres-
ence of physical allosteric pathways between the two protomers as a
key functional control of the enzyme catalysis, which is closely
supported and validated by experimental data [10] with other
applications in detection of allosteric sites in GPCRs and in epitope
mapping. Forthcoming work (to appear) will reveal further novel
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uses, improvements, and extensions of the methodologies
described in this chapter that solidify the RTA analysis and further
validation with experimental data. A remarkable strength of the
RTA procedure is that we can detect and attain information about
complex allosteric communication using only a single 3D snapshot
(coordinates) without doing long, complex, and expensive simula-
tions. Due to the speed of the underlying algorithms, RTA proce-
dure is well suited for high throughput allostery analysis. This
should eventually allow us to obtain a better understanding of
allostery and functionally important features in protein signaling
and ultimately have tools to tackle complicated signaling events in
the cell.
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Chapter 6

Protein Assembly: Defining the Strength of Protein-Protein
Interactions Coupling the Theory with Experiments

Giampiero Mei, Almerinda Di Venere, Luisa Di Paola,
and Alessandro Finazzi Agrò

Abstract

In this paper we report a procedure to analyze protein homodimer interfaces.
We approached the problem by means of a topological methodology. In particular, we analyzed the

subunits interface of about 50 homodimers and we have defined a few parameters that allow to organize
these proteins in six different classes. The main characteristics of each class of homodimers have been
discussed also taking into account their stabilization energy, as reported in the literature from the experi-
mental measurements. A paradigmatic example for each class has been reported and a graphical representa-
tion proposed in order to better explain the meaning of the parameters chosen.

Key words Dimeric interface, Protein structure, Homodimers, Protein-protein interaction, Protein
topology

1 Introduction

The peculiarity of allosteric proteins and enzymes resides in the
mechanism of their regulation, a process that requires the propaga-
tion through long distances of a mechanical stress produced in a
limited region of the macromolecule structure. Such mechanical
stress is typically induced by the binding to the polypeptidic chain
of molecules that are generally very small in size, as compared to the
overall protein dimensions. It is therefore obvious that this
“machinery” requires a concerted movement of the protein
domains and, in fact, flexibility and cooperativity are the main
features that characterize the network of amino acids involved in
the fine, complex regulation of allosteric enzymes.

As known, what confers a protein its specific functional proper-
ties is its tri-dimensional shape, which is dictated by the sequence of
its amino acids and obtained through the so-called folding mecha-
nism. This is even more so if a quality as allostery is needed: the
propagation of local changes, produced by the modulator binding
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process, requires an appropriate scaffolding to produce long-range
effects. Studying the connections between folding and functional
cooperation is therefore a crucial step that must be faced to unravel
the many mysteries of the world of allosteric enzymes [1]. A very
common feature of these proteins is their high propensity to form
oligomers, and in particular dimers and tetramers. Indeed, despite a
quaternary structure is not mandatory [2], most of the enzymes
and proteins that play a crucial role in the regulation of metabolic
pathways, signaling, and metabolites transportation are allosteric
oligomers.

But which is the basic link between allostery and folding? Since
the so-called “induced-fit” hypothesis was introduced [3], it was
clear that the balance between conformational stability and flexibil-
ity is critical for all enzymes and many proteins, too. Obviously, in
the case of oligomers the free energy of folding/unfolding also
depends on the presence of the subunits interface, whose quater-
nary interactions are, in several cases, the main driving force for
folding and stabilization of these complex proteins.

In oligomeric enzymes characterized by allosteric properties
the inter-subunits interactions accomplish another fundamental
task: they transmit the mechanical stress produced by ligand bind-
ing in one subunit to distal sites belonging to another subunit.
Studying what happens at such interfaces is therefore important to
characterize how the propagation of signals occurs, from regulatory
to active sites. Since the simplest oligomers are those obtained by
two identical subunits, discussing the topology of homodimeric
interfaces is paradigmatic for more complex kinds of subunits asso-
ciation. Indeed, in a previous of paper [4] we suggested that
correlations between the size, the sequence, and the quaternary
structure of homodimers might be easily found taking into account
a few structural parameters that can be obtained directly from the
PDB files deposited in the protein data banks. A further topological
analysis through protein contact networks [5] allowed to find a
direct correspondence between the experimental folding energy of
dimers and the roughness of the subunits interface. It was demon-
strated that the topological analysis has two advantages: (1) it
drastically reduces the number of descriptors of oligomer stability;
(2) it allows predictions on the role played by the interface, inde-
pendently on the kind of amino acid involved in quaternary
interactions.

Here we describe an easy procedure that can be usefully applied
to classify any homodimeric structure on the basis of its topological
features. In particular, analyzing more than 50 crystallographic
structures (Table 1), we have identified six groups of homodimers
(Table 2), whose characteristics include the stabilization energy
obtained in equilibrium unfolding measurements and the
tri-dimensional features of the two chains at the interface (such as
the “roughness” of the contact area due to the presence of
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Table 1
List of proteins analyzed in this study

PDB
code Protein

ΔGunfolding kcal/
mol

Number of a.
a. Class

1rop COLE1 ROP protein 17.2 63 1α

1ety E. coli factor for inversion stimulation 13.7 93 1α

1mul E. coli Hu Alpha2 protein 8.3 90 1α

2cpg Transcriptional repressor COPG 13.4 45 1α

1a7w Histone HMFB 14.1 68 1α

1puc Cell-cycle control protein, P13SUC1 20.0 102 1α

2zta GCN4 leucine zipper 9.0 31 1α

1wrp DNA-binding domains of TRP repressor 18.8 105 1α

1buo BTB domain from PLZF 12.8 125 1α

1gta Glutathione S-transferase 26.0 218 1β

1g6w Prion protein URE2 49.0 257 1β

1hnb Glutathione transferase GSTM2–2 42.0 218 1β

1m9a Glutathione S-transferase with
S-hexylglutathione

26.0 216 1β

1cmi Calmodulin 23.4 89 1β

5cro CRO repressor protein 11.2 62 2α

1a8g HIV-1 protease 14.0 99 2α

1siv SIV protease 13.0 99 2α

1aam Aspartate aminotransferase R292D 15.9 396 2α

1ohv 4-Aminobutyrate-aminotransferase 461 2α

1xra S-Adenosylmethionine synthetase 383 2α

1oho Ketosteroid isomerase Y16F/D40N mutant 22.0 127 2α

1a43 HIV-1 CAPSID protein dimerization domain 21.0 72 2α

1bet Nerve growth factor 19.3 116 2α

1d1l CRO-F58W mutant 11.9 61 2α

1lj9 Transcriptional regulator SLYA 145 2α

1b8k Neurotrophin-3 22.7 122 2α

1qll Piratoxin-II (PRTX-II) - A K49 PLA2 24.5 121 2β

2gsr PI glutathione S-transferase 25.2 207 2β

1hti Human triosephosphate isomerase 19.4 248 2β

1tyd Tyrosyl-tRNA synthetase 41.7 319 2β

(continued)
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“loops”). A specific dimeric structure has been chosen to represent
each class as a practical example and a table summarizing the
average values of the descriptors provided, together with confi-
dence tests. General comments are also added in the conclusion
section.

2 Methods

2.1 Preparing

and Analyzing the PDB

Files of Homodimers

Since the crystallographic structure might not correspond to the
effective in vivo/ex vivo tri-dimensional assembly, a careful inspec-
tion of the PDB file is recommended.

Table 1
(continued)

PDB
code Protein

ΔGunfolding kcal/
mol

Number of a.
a. Class

1pkw GST A1–1 26.8 222 2β

1ypi Yeast triosephosphate isomerase 24.7 248 2β

2f83 Human coagulation factor XI zymogen 14.7 604 2β

1i5z CRP-CAMP 26.4 206 2β

1spd Human CU,ZN superoxide dismutase 28.6 154 3α

1beb Bovine beta-lactoglobulin 12.0 162 3α

3hzd Bothropstoxin-I 17.0 133 3α

1dfx Desulfoferrodoxin 34.6 125 3α

1a7g E2 DNA-binding 9.8 82 3α

1cp3 Apopain 25.8 277 3α

1psc Phosphotriesterase 40.4 329 3α

1vqb Gene V protein 16.3 87 3α

1yai Bacterial CU,ZN superoxide dismutase 22.7 173 3α

3ssi Proteinase inhibitor SSI 6.03 113 3α

1cz3 Dihydrofolate reductase 34.0 168 3α

1aoz Ascorbate oxidase 17.0 282 3β

2fsf SEC-A 22.5 408 3β

1mt5 Fatty acid amide hydrolase 15.5 299 3β

2tdm Thymidylate synthase 27.8 250 3β

1run Activator protein (CAP) 18.6 127 3β
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In particular:

1. Control in the literature which is the functional quaternary
structure of that specific protein/enzyme;

2. Once the crystallographic file has been uploaded in the protein
data bank server (http://www.rcsb.org/pdb/home/
home.do), check whether the preferential quaternary structure
composition corresponds to that observed for biological func-
tion (step 1);

3. Check the number of a.a. included in the PDB file: sometimes
crystallization is possible only for a segment and not for the
entire, natural polypeptide length;

4. Use the PISA software to analyze the dimer interface (http://
www.ebi.ac.uk/pdbe/pisa/). This interactive software
(provided in the Protein Data Bank server) checks in the PDB
file for the presence of multiple chains, through the “assem-
blies” option. In the case that more than two chains are pres-
ent, it provides information on the best combination to form
the dimer: for instance, if four homologous chains are present
(say A, B, C, and D), and the couple AC scores 1, it means that
AC is the most probable (and thus reliable) quaternary struc-
ture representing the real protein.

5. Download the file that at step 4 the PISA routine recognized as
the most reliable (in the example mentioned, AC).

6. Enter in “Details” to get the list of a.a. lying at the interface and
their position in the primary structure. In this section of the
program other interesting parameters are listed, such as the
overall area of the protein surface, the area buried upon dimer-
ization, the number of a.a. at the interface, etc.

Table 2
Calculation of characteristic parameters of protein dimeric interfaces

Slla Q/Ra IARa ΔGunfolding/N (kcal/mol) Qν
a Nb

Class 1α 0.06 � 0.01 0.82 � 0.06 0.93 � 0.04 0.21 � 0.03 0.70 � 0.08 75 � 10

Class 1β 0.05 � 0.01 0.72 � 0.04 0.42 � 0.06 0.18 � 0.03 0.22 � 0.02 200 � 29

Class 2α 0.10 � 0.01 0.48 � 0.03 0.90 � 0.02 0.17 � 0.02 0.22 � 0.03 179 � 42

Class 2β 0.12 � 0.01 0.57 � 0.02 0.38 � 0.05 0.11 � 0.02 0.12 � 0.02 272 � 51

Class 3α 0.25 � 0.02 0.32 � 0.03 0.85 � 0.03 0.14 � 0.02 0.09 � 0.02 164 � 23

Class 3β 0.27 � 0.08 0.25 � 0.07 0.58 � 0.06 0.05 � 0.01 0.05 � 0.02 467 � 91

aSll, Q/R and IAR are defined as described in Subheading 2.2
bN is the average number of a.a. of proteins belonging to each class
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2.2 Definition

and Calculation

of Characteristic

Parameters

The main parameters used in the present classification of dimeric
interfaces are:

l N, the total number of a.a. in each chain;

l R, the section (in number of a.a.) of the polypeptide chain
between the first and last residues involved in quaternary inter-
actions. Thus, for monomers R ¼ 0, while in the special case in
which the first and last a.a. of each subunits are lying at the
interface, R � N.

l The Interface A.A. Range, IAR, defined as IAR ¼ R
N , so that

0 < IAR � 1. This parameter indicates the percentage of
a.a. directly involved in quaternary interactions.

Others important descriptors are defined in the following pro-
tocol based on the example reported in Fig. 1, in which a hypo-
thetic homodimer is sketched. Let us assume that the length of each
chain is 100 and that the positions of residues a and q (i.e., the first
and last a.a. lying at the interface) are 5 and 85.

1. CalculateR and IAR. In the case of Fig. 1:R¼ 85 – 5 + 1¼ 81
and IAR ¼ 81/100 ¼ 0.81.

2. Calculate the generalized number of a.a. at the interface, Q,
defined as the number of consecutive a.a. (less than 5 position
far apart from each other) involved in interaction with the other
subunit. This parameter is characterized by a slightly larger
value with respect to that obtained with the PISA software,
since it consider “at interface” also those residues that are not
exactly at the interface but that are lying in small loops (less
than 5 a.a. in length, see Note 1) between two residues at the
interface. For instance, in the example of Fig. 1 the number of
a.a. involved in direct inter-subunit contacts is n ¼ 5 (and in
particular residues a, d, e, p, q) while Q ¼ 7 because it includes
also residues b and c.

ab

c
e
d

p
q

N-Term 

C-Term 

Fig. 1 Schematic representation of a homodimeric protein with interface amino
acids represented by circles
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3. Calculate Q/R. This quantity is a raw evaluation of the inter-
face “roughness”: the more Q/R is close to 1, the less is the
length of the loops formed in each subunit with respect to the
dimeric contact surface. In particular when Q ¼ 1 all the
residues are located at the interface.

4. Calculate Qn defined as: Q n ¼ Q
R

Q
N . This parameter takes

simultaneously into account the presence of loops (Q/R) and
the percentage of a.a. that are “at” or “close to” the dimeric
interface (see Note 2).

5. Calculate the Squared Loops Length, Sll, defined as the sum of
squared distances (in number of a.a. in the sequence) between
two consecutive residues involved in quaternary interactions,
weighted by the total number of amino acids. In the example of

Fig. 1: Sll ¼ �ad
2þ �de

2þ �ep2þ �pq2

N2

where �ad
2 ¼ 9; �de

2 ¼ 1, etc:

2.3 Assigning

Dimeric Structures

to the Different

Classes

The different typologies of dimers may be ordered on the basis of
four of the main parameters introduced in Subheading 2.2. The
assignment of 50 PDB files (see Note 3) to the six classes of dimers
has been performed according to the following procedure.

1. Identify those proteins that do not contain significant loops at
the interface: as shown in Table 1, these dimers are character-
ized by the smallest Sll and the largestQ/R values (seeNote 4).
The structural meaning of such values is shown in the examples
of Fig. 2.

2. Within the same group identified in step 1, two possibilities
may exist: (1) all (or a large part of) the a.a. are located at the
subunits interface; (2) only a segment of the polypeptide chain
is involved in quaternary interactions. These two situations may
be easily discriminated examining the IAR value. When
IAR > 0.8, the shape of the dimer looks like a flat ellipsoid
(class 1α) and a typical example is that represented by the
structure of 1rop (Fig. 2, left). On the contrary, a small IAR
(< 0.6) indicates a more prolate structure, in which a consider-
able fraction of a.a. are far away from the interface. Interest-
ingly, this subgroup of proteins (class 1β) is characterized by a
larger size with respect to class 1α.

3. Identify subclasses 2α and 2β: in these cases, typically Sll � 0.1
and Q/R � 0.5 (Table 3 and Fig. 3), diagnostic of loops of
intermediate length (30–50 a.a.). As a consequence, class
2 includes dimers with a larger size, especially for low IAR
values (class 2β).

4. In the case Sll > 0.25 and Q/R � 0.3 the dimer must be
assigned to class 3, which is characterized by very large loops
(Fig. 4). Due to this feature, both subgroups 3α and 3β display
a small contact interface with respect to the overall shape and
size of the macromolecule.
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2.4 Insights

on the Folding

Strategies

of Homodimers

A fourth parameter that has not been taken into account so far is
Qn. A protein contact network approach (seeChapter 2), performed
on a restricted but interesting group of homodimers, has demon-
strated that Qn correlates with the size of the interface and with the
intersubunit interface strength, evaluated theoretically as the differ-
ence between the graph energy of the dimer and that of the two
isolated monomers [5]. Qn therefore represents a sort of dimeric

CLASS 1 : small loops

1α:  Large  IAR = R/N 1β: Small  IAR = R/N

1rop:  63 a.a. 1gta:  218  a.a.

Q/R = 0.798
Qn = 0.29

SII = 0.046
IAR = 0.454

Q/R = 1
Qn = 0.87

SII = 0.027
IAR = 0.873

Fig. 2 Characteristics and examples of class 1 dimers
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folding efficiency, i.e., a local descriptor that reflects a compromise
between several and somehow opposite requirements. Dimeriza-
tion, in fact, provides a gain in stability in small size proteins, for
which a linear dependence has been found between the free energy
of folding and the chains length [4, 6, 7]: therefore it is not
surprising that class 1α and class 1β display the highest Qn values
(Table 2). On the other hand, large loops (Sll > 0.2; Q/R � 0.3 in
Table 1) mean few contacts at interface, a condition that at the
expense of stability (low ΔG/N and low Qn, Table 2) provides the
dimer with an enhanced flexibility: this is a mandatory requisite for
the transmission of signals between the two subunits and thus for
cooperativity. While a large part of DNA binding and regulating
protein are included in class 1, it can be speculated that allosteric
proteins and enzymes mostly belong to class 2 or class 3, the
requirement of conformational flexibility being better guarantee
by the presence of loops. On the other hand, as recently pointed
out by Kim and co-workers [8], the transmission of mechanical
signals between the subunits of a dimeric enzyme might be a very
general thermodynamic mechanism to enable enzyme catalysis,
extending the concept of oligomeric cooperation well beyond the
“simple” and “trivial” allosteric regulation. The analysis of protein-
protein interfaces combined with experimental data on protein
conformational compressibility and flexibility will help to confirm
such hypothesis.

Table 3
Calculation of diameric structure and a table summarizing the average values of the descriptors

Sll Q/R IAR ΔGunfolding/N Qν N

Class 1α 0.06 � 0.01 0.82 � 0.06 0.93 � 0.04 0.21 � 0.03 0.70 � 0.08 75 � 10

Class 1β 0.05 � 0.01 0.72 � 0.04 0.42 � 0.06 0.18 � 0.03 0.22 � 0.02 200 � 29

Class 2α 0.10 � 0.01 0.48 � 0.03 0.90 � 0.02 0.17 � 0.02 0.22 � 0.03 179 � 42

Class 2β 0.12 � 0.01 0.57 � 0.02 0.38 � 0.05 0.11 � 0.02 0.12 � 0.02 272 � 51

Class 3α 0.25 � 0.02 0.32 � 0.03 0.85 � 0.03 0.14 � 0.02 0.09 � 0.02 164 � 23

Class 3β 0.27 � 0.08 0.25 � 0.07 0.58 � 0.06 0.05 � 0.01 0.05 � 0.02 467 � 91

Class 1α: 1ety, 1mul, 1rop, 2cpg, 1a7w, 1puc, 2zta, 1wrp, 1buo

Class 1β: 1g6w, 1gta, 1hnb, 1m9a, 1cmi

Class 2α: 5cro, 1a8g, 1siv, 1aam, 1ohv, 1xra, 1oho, 1a43, 1bet, 1d1l, 1lj9, 1b8k

Class 2β: 1qll, 2gsr, 1hti, 1tyd, 1pkw, 1ypi, 2f83, 1i5z
Class 3α: 1yai, 1spd, 1beb, 1cp3, 1psc, 3hzd, 1dfx, 1a7g, 1wqb, 3ssi, 1cz3
Class 3β: 1mt5, 1aoz, 2fsf, 1run, 2tdm
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Fig. 3 Characteristics and examples of class 2 dimers
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Fig. 4 Characteristics and examples of class 3 dimers
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3 Notes

1. Despite being arbitrary, the choice of (at most) five consecutive
a.a. to identify small loops is due to the large number of small
homodimers that have been found to share such a structural
feature (see comments on Fig. 2a).

2. Originally [5]Qnwas based exclusively on those (n) a.a. lying at
the interface Q n ¼ n

R
n
N

�
), according to the crystallographic

data. However, including also residues of small loops (i.e.,
not necessarily at the interface, but close enough) resulted in
a more incisive classification of homodimers.

3. The 50 dimers selected for this study have been preferentially
chosen among those whose stabilization energy of folding is
reported in literature (from equilibrium and/or kinetic unfold-
ing measurements, see Table 1) [4, 7, 9].

4. A classification of the homodimers such as that reported in
Table 1 is essentially based on “average” values. The heteroge-
neity of tri-dimensional structures that protein may assume
makes this task hard sometimes because the two parameters
chosen to identify the main class of assignation may not go in
the same direction. An a posteriori check can be made using a t-
test (easily performed on line or with most of the graphic
packages commercially available) that provides more rigorous
criteria of assignment. Such procedure has been used, for
instance, in the construction of Table 1.
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Chapter 7

Network Re-Wiring During Allostery and Protein-Protein
Interactions: A Graph Spectral Approach

Vasundhara Gadiyaram, Anasuya Dighe, Sambit Ghosh,
and Saraswathi Vishveshwara

Abstract

The process of allostery is often guided by subtle changes in the non-covalent interactions between residues
of a protein. These changes may be brought about by minor perturbations by natural processes like binding
of a ligand or protein-protein interaction. The challenge lies in capturing minute changes at the residue
interaction level and following their propagation at local as well as global distances. While macromolecular
effects of the phenomenon of allostery are inferred from experiments, a computational microscope can
elucidate atomistic-level details leading to such macromolecular effects. Network formalism has served as an
attractive means to follow this path and has been pursued further for the past couple of decades. In this
chapter some concepts and methods are summarized, and recent advances are discussed. Specifically, the
changes in strength of interactions (edge weight) and their repercussion on the overall protein organization
(residue clustering) are highlighted. In this review, we adopt a graph spectral method to probe these subtle
changes in a quantitative manner. Further, the power of this method is demonstrated for capturing
re-ordering of side-chain interactions in response to ligand binding, which culminates into formation of a
protein-protein complex in β2-adrenergic receptors.

Key words Graph theory, Allostery, Protein structure networks, Protein-protein interactions, Side-
chain interactions, Weighted networks, Spectral decomposition, Laplacian matrix

1 Introduction

Biology is anchored on the flow of information between macro-
molecules. These cascades of information exchange are orche-
strated at multiple levels and collectively build up to a biological
entity. At the heart of this lie protein-protein interactions (PPIs).
The overarching factors which characterize PPIs and their interac-
tion interface can be broadly classified into size and shape, surface
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complementarity, interface residue propensity, hydrophobicity of
interface residues, and conformational changes on binding [1].

Networks have been used successfully in understanding the
complex nature of interactions in various disciplines such as biol-
ogy, engineering, earth sciences, economics, and social sciences. In
this chapter, the primary focus lies on networks of protein struc-
tures, and various aspects of network theory related to protein-
ligand, protein-protein interactions, and its relevance to allostery
are discussed.

To study allostery, the formulation of networks is used exten-
sively. One approach is to build a network of PPIs as done by
Szklarczyk et al. [2]. In such a study, the interest is in finding out
the binding partner(s) of a protein or family of proteins. The role of
evolutionarily conserved residues in PPI and allostery was shown by
Süel and co-workers [3]. Tsai et al. [4] explored how hub proteins
in a PPI network can bind to multiple partners. A broader approach
on the causes behind protein interaction and allostery in
co-localization was taken by Kuriyan and Eisenberg [5]. The
importance of conformational ensembles in understanding allo-
stery is emphasized by Motlagh et al. [6].

Conformational changes or conservation of residues in allo-
stery can be efficiently studied using Protein Structure Networks
(PSNs). Various versions of PSNs such as Protein Contact Net-
works [7] and Residue Interaction Networks (RINs) [8] are avail-
able in literature. Di Paola et al. [9] beautifully capture the utility of
these protein interaction networks. While most of these methods
focus on backbone topology of proteins, emphasis on side-chain
interactions are also given in Protein Side-chain Networks (PScNs)
or Protein Energy Networks (PENs) [10]. PSNs give a bottom-up
(atom-atom contacts to conformational changes and effects on the
binding partners) or top-down (effect of binding partners on atom-
atom contact redistribution) approach to hone in on the multi-scale
contributions in allostery. A key observation in allostery is that the
conformational changes could span the entire protein structure. It
was reviewed in [10] that such changes can be deconstructed into
allosteric communication pathways. Using known network para-
meters, such communication pathways can be studied by looking at
optimal paths, their sub-optimal or alternate paths and junction
nodes.

This chapter deals with network methods to study allostery and
PPIs. The basics of network approach and metrics relevant to the
studying of PSNs are provided in Subheadings 2 and 3. The details
and its capability in investigating allostery have been covered exten-
sively in earlier reviews [10–12], and the salient features are sum-
marized here. Recent advances made in these methods [13–15],
weighted networks and their spectral properties capture the influ-
ence of small perturbations on the entire system. The technique not
only allows us to quantitatively evaluate the differences but also
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provides the set of interacting parts undergoing transformation,
which can enhance our understanding of allostery at the fundamen-
tal level. These developments are presented in Subheading 4. A case
study on G-Protein Coupled Receptors (GPCRs) is presented in
Subheading 5, illustrating the application of these methods to
obtain better insight in allostery in these receptors.

2 Introduction to Networks

For exploring the behavior of a collection of entities, the relation-
ship and dependencies between them should be known. For exam-
ple, the behavior of a committee of people can be studied by the
knowledge of the committee members and the nature of interac-
tion with respect to each other. These entities, along with their
inter-relations, can be represented as a network, in which the entities
are named as nodes and the connections between them are called
edges. The connections between the nodes can be binary (existing
or non-existing) or can vary along a scale of values. Depending on
the type of connections, the edges can be constructed as
unweighted (binary) or weighted. The range of the weights depends
upon the system and the type of problem that is being studied. A
network can be represented as a graph or an adjacency matrix (row
and column arrangement of numbers) of size n � n, where n is the
number of nodes in it. Once the network related to the system
under scrutiny is constructed, it can be studied through various
basic metrics such as degree, hubs, and clustering coefficient to gain a
better insight about the system. Cliques and communities represent
higher-order connectivity in a network, and they capture the local
geometries in detail, within the framework of global topology of
the network. All these parameters of a network can be enlisted and
studied using various software likeGRAPROSTR[16] and CFinder
[17] by giving the adjacency matrix as input.

Though unweighted (binary) networks are easier to compre-
hend, the connections in most of the real-world networks (like
social networks, metabolic networks, and protein structure net-
works) are non-binary. It is not only whether a connection exists
between two nodes that matters, but the strength of the connection
is more important here. In this context, weighted networks play an
important role in studying real-life situations. Also, apart from the
above-mentioned parameters, weighted networks can be analyzed
by ego-net (sum of weights of all edges) of a node and many other
parameters specific to weighted networks. For example, the shortest
path between specific nodes can be evaluated using methods such as
Dijkstra’s algorithm [18], and has been adopted to PSNs [19] in
elucidating the paths of communication due to allostery. Despite
advancement in quantitatively capturing specific parameters, the
matrix of a network contains a wealth of information which is
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unexplored. One such intricacy is node clustering. The overall
connectivity in the network leads to node clusters, such that connec-
tivity between nodes of same cluster is higher compared to that
across clusters. While the difference in edge weights between same
nodes due to minor perturbation in a network speaks about the
local variation in connections between them, they may sometimes
lead to a change in global clustering among the nodes in the
network. The change in node clustering can be identified by com-
paring Fiedler vectors of both the systems where Fiedler vector is
defined as the eigen vector corresponding to the second smallest
eigen value. Recent developments in network theory include Net-
work Similarity Score (NSS) which considers all eigen vectors and
eigen values of two networks and compares them at various levels
like local edge weight, local clustering change, and global clustering
changes [13, 14]. The unique advantage of the method lies in
accurate scoring in the case of comparison between large number
of extremely similar networks and also in identifying the regions of
differences between the networks.

The insight regarding the changes that occur due to allostery
and protein-protein interactions is brought by studying the cluster-
ing of nodes and changes in it, which forms the primary focus of
this chapter.

3 Construction and Analysis of PSNs

Network representation of protein structures has proved to be
successful in addressing various problems related to protein folding,
dynamical behavior, ligand binding, and interactions between pro-
teins. Network parameters such as hubs, clusters, cliques, commu-
nities, and shortest paths are the most common ones that are
evaluated for characterization of critical residues, folded and
unfolded states, and long-range communication during protein-
protein interactions. A detailed overview of analysis of various
metrics from network methodology has been discussed in reviews
[10, 11] and references therein. A succinct representation is given
here, which is a prerequisite to follow the recent developments
presented in the following section.

The three-dimensional structure of a polypeptide chain is dic-
tated by an optimal non-covalent interaction between different
amino acids in the chain and various definitions are used to repre-
sent the non-covalent interactions in a PSN. For example, back-
bone networks are considered to study gross characteristics such as
domain identification and protein folding [20, 21]. Similarly, side-
chain networks are considered to study clusters of residues such as
those involved in the interactions of the protein with other proteins
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or ligands [22]. Different ways of constructing PSNs are described
in detail in [10–12]. Here, a brief account of the construction of
backbone and side-chain networks is provided.

For a backbone network, Cα atom of each amino acid is consid-
ered as a node and edges are defined based on a cut-off criterion
between Cα atom distances. Two nodes are connected by an edge, if
their Cα atoms are within the distance less than the cut-off. Increase
in this cut-off value leads to more number of edges for a given node
in the network. Various cut-off values are in usage, but the most
common one is 6.5 Å. The radial distribution of non-covalently
interacting Cα atom distances is maximum around this cut-off
value, representing the first shell of interaction [23, 24].

The simplest way to create an unweighted side-chain network is
to draw an edge between any two residues i and j in which at least
one pair of atoms is within 4.5 Å. Several studies have adopted this
procedure. Further, binary networks can also be created, depend-
ing on a cut-off value of the interaction strength (Imin) between the
residues. If the interaction strength between two nodes is equal to
or greater than the cut-off value, an edge is placed between the
nodes. The interaction strength between the residues used to con-
struct Protein Side-chain Networks (PScN) has been defined based
on the equation below:

I i,jð Þ ¼ nij=sqrt N i �N j

� �� �� 100

where I(i,j) is the strength of interaction between residues i and j, nij
is the number of atom pairs between residues i and j within a
distance cut-off of 4.5 Å, Ni and Nj are normalization values for
residues i and j based on the maximum atom contacts the residue
can make that are obtained from a statistically significant dataset of
proteins [25]. Lower cut-off values in interaction strength (Imin)
yield networks with higher connectivity and vice versa. The degree
of a node in PSN depends on the number of nodes it can interact
with and is limited due to steric constraints. Hubs formed in various
types of PSNs are identified to correlate with key residues for the
structural stability, function, and allosteric communication in pro-
teins. For example, mutations that affect the ligand efficacy, but not
the binding affinity, are hub residues or located near hub residues in
GPCR allosteric communication pathway networks [26]. The
metrics, namely cliques and communities, capture the local geome-
tries in detail within the framework of global topology. They are
used to identify rigid regions in the structure and the conforma-
tional changes due to ligand binding as shown in the example with
Methionyl tRNA synthetase [27, 28]. Network analysis provides an
excellent way to identify conformational changes as well as commu-
nication paths.
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4 Recent Developments in PSNs

Early representations of protein structures as networks are usually
binary. (Edges in binary networks are either 0 or 1, treating all
edges as similar.) Though these representations capture a wealth of
information, more realistic interpretations can be made by weigh-
ing the interactions between residues in terms of their strength or
energy. This is realized by implementing weighted network
approach for studying protein structures. The construction of
weighted PSNs and its advantages are presented in detail in Sub-
heading 4.1.

Subtle variations in pair-wise side-chain interactions will not
only lead to local changes but can also permeate to global level. In
fact, biological functions such as allosteric communication are
known to take place at distances away from perturbation sites.
Graph theoretical treatment of networks through eigen spectra is
ideally suited to capture such global changes. One of the parameters
which can get affected by subtle changes in interactions is the
grouping of residues also known as clustering of nodes. Recent
developments involve comparison of weighted PSNs and capturing
changes in residue clustering using graph spectral methods. A brief
overview of the graph spectral methods to study residue clustering
in proteins is given in Subheading 4.2.

4.1 Weighted PSNs The weighted PSN is generated by transforming the uniquely
folded geometry of the proteins at the side-chain level to a
two-dimensional weighted matrix. The edges between two residues
in a protein can be weighed in various ways, say, interaction energy
obtained by atomistic simulations, surface complementarity, or
knowledge-based potentials, to name a few. A consolidated list of
the variety of definitions used to create weighted PSNs is outlined
in [10]. The simplest way of constructing weighted PSNs is based
on interaction energy using geometric coordinates as described in
Subheading 3. In the case study presented in Subheading 5 of this
chapter, a variation of this method in calculating interaction energy
has been used, which is shown below:

I ij¼nij=Nij

Here Nij is the maximum possible number of contacts that a
pair of residues can make (obtained by studying a database of high-
resolution protein structures). Such a kind of weighted representa-
tion elegantly captures the side-chain orientations with respect to
each other. For example, a higher edge weight is obtained in case of
stacking of aromatic residues. Similarly, in the case of hydrogen
bonding between the residues, they are automatically drifted closer
to each other leading to more number of atom contacts and hence
higher edge weight. Additionally, the normalization of the number
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of contacts with respect to the maximum possible contacts between
two residues handles the large variation occurring in size and shape
of the residues and weighs the interaction between them accord-
ingly. The edge weights in this representation range between 0 and
1. Therefore a change of 0.5 and above is considered as a significant
change (more than 50%) in the edge weights. A difference in edge
weight between two residues can occur in the case of residues
moving apart from each other at the backbone level or a change in
their mutual orientations even if there is no change in the distance
between their Cα atoms. Biological functions such as ligand binding
or allosteric communication induce subtle conformational changes
in the residues in both local and distal places in the structure of the
protein and the change in pair-wise conformations can be studied
precisely by considering weighted PSNs.

4.2 Residue

Grouping and Spectral

Analysis

PSNs are complex in nature and their overall topology contains
geometric entities such as hubs, cliques, and communities that are
composed of interacting residues and that can be identified from
the adjacency matrix as described earlier [10]. What is not easy to
comprehend, define, and identify is the subsequent level of organi-
zation, i.e., residue grouping. The residues are clustered together in
such a way that the residues in one group interact more within
themselves than with the remaining residues. In many cases, the
function of a protein is attributed to a specific grouping of residues.
The changes in residue grouping between two similar proteins
(or two states of the same protein) can be obtained broadly by
comparing the Fiedler vectors of their networks which can be
obtained from graph spectral analysis. Further, they can be visua-
lized by coloring the residues in the three-dimensional protein
structure according to their Fiedler vector components.

The graph spectral way of analyzing protein structures has been
used earlier to identify entities such as clusters and cluster centers
[20]. It has been used to detect domains and domain interfaces in
multi-domain proteins [29]. Further, the interface cluster and the
hotspots which are responsible for the stability of two alpha-
subunits in RNA polymerase were correctly predicted using cluster
analysis of PSNs [30]. Cluster analysis is also useful in identifying
motifs which are not sequential, but spatially close to quaternary
associations in lectins [31]. The formation of non-homogeneous
clusters of residues at interface of oligomers elucidates the modular
architecture of protein-protein interfaces [32]. The wealth of infor-
mation from these studies is obtained from graph spectral features
of unweighted networks. However, the increase in information will
be manifold by adopting a spectral analysis of weighted networks
and the results would be more realistic as well as biologically
relevant.

Network Re-Wiring During Allostery and PPI 95



The clustering of nodes is uniquely obtained from graph spec-
tral decomposition on a network which involves obtaining eigen
values and eigen vectors of Laplacian matrix of the network.
Nodes of the same cluster have closer numerical values in the
Fiedler vector components. Therefore, sorted Fiedler vector com-
ponents are used to obtain node clustering in the network. A
flowchart describing this methodology is depicted in Fig. 1.

A holistic understanding of an allosteric system can be obtained
by analyzing edge weights and node clustering using weighted
PSNs. This is illustrated below in the case of a protein complex
with a well-characterized biological activity.

5 Case Study of β2 Adrenergic Receptors

We apply the methodology discussed above to understand the
mechanism of signal transduction that involves transmission of
chemical or physical signals through the cell, triggering a character-
istic cellular response. Herein, we focus on the archetypal trans-
membrane (TM) signaling molecules i.e., G-Protein Coupled
Receptors (GPCRs), which possess extraordinary potential to
respond to a diverse set of extracellular stimuli like light, ions,
hormones, neurotransmitters, and small molecule ligands and
thereby mediate cellular signaling by interacting with heterotri-
meric GTP-binding proteins (G-proteins) [33]. At the heart of
this signaling cascade lies the ligand-dependent activation of
GPCRs, followed by G-protein coupling and nucleotide exchange
that eventually culminates in regulation of downstream effector
proteins [34]. GPCRs function by means of ligand-driven activa-
tion followed by conformational changes that mediate interaction
with GDP-bound G-protein heterotrimers (Gαβγ). Nucleotide
exchange and the subsequent dissociation of Gβγ from Gα result
in regulating the activities of cellular effectors like kinases, ion
channels, and other enzymes. GPCRs control a variety of physio-
logical processes that include sense of smell, taste, sight as well as
immune response, behavior, autonomous nervous system transmis-
sion, and homoeostasis modulation [35, 36]. Their implication in
numerous biological phenomena thus warrants an understanding
of intricacies in their three-dimensional molecular structure [37].

X-ray crystallography–based experimental studies offer high-
resolution atomistic details on molecular structure of GPCRs.
Details from the three-dimensional structure can be used to explain
effects of GPCRs in response to a diverse array of small molecule
ligands. These ligands bind to the GPCRs at conserved or orthos-
teric binding site located at the core of their seven-helical trans-
membrane (7TM) region. Discrete classes of ligands include those
that maximally activate the receptor (agonists), induce sub-optimal
activity (partial agonists), inhibit basal activity (inverse agonists),
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selectively activate specific signaling cascades (biased agonists), and
abolish activity of other ligands (antagonists). Co-crystallization of
the GPCR with such ligands reveals distinct structural changes that
occur upon GPCR activation.

The structure of the agonist-occupied (ligand P0G, i.e., 8-[(1R)-
2-{[1,1-dimethyl-2-(2-methylphenyl)ethyl]amino}-1-hydroxyethyl]-
5-hydroxy-2H-1,4-benzoxazin-3(4H)-one), active state of β2-Adren-
ergic Receptor (β2AR) bound to a nucleotide-free Gs-protein hetero-
trimer provides the first high-resolution view of the ternary complex of
GPCR activation (PDB ID: 3SN6, hereafter referred to as β2AR-Gs).
Here we revisit this classical complex [38] and analyze it in terms of
weighted PSNs. Additionally, we also consider an antagonist
alprenolol-bound inactive state β2AR [39] (PDB ID: 3NYA, hereafter
referred to as β2AR-anta) for elucidating ligand-induced conforma-
tional changes at side-chain levels. Being one of the first GPCRs to be
biophysically characterized, cloned [40] and structurally determined
by means of X-ray crystallography [41], the β2-Adrenergic Receptor
serves as a classical system for understanding cell signaling. β2AR
functions by binding to hormone and neurotransmitter adrenaline
(also known as epinephrine) and inducing physiological responses
like smooth muscle relaxation and bronchodilation via the agency of
L-type Calcium channels [38]. A schematic representation of the
ternary complex of GPCR, G-protein and ligand is depicted in Fig. 2.

With a view to understand ligand-induced complex formation
between GPCR and G-protein, we investigate agonist and
antagonist-bound GPCR complexes in terms of weighted side-
chain edges and bring to light distinct clustering patterns that
delineate ligand-induced conformational changes. We adopt the
weighted PSN methodology to understand the propagation of
information across the 7TM architecture in terms of non-covalent
side-chain interactions. In this section we investigate the following:
(1) ligand-protein contacts in β2AR-Gs and β2AR-anta; (2) conse-
quence of ligand binding on redistribution of interactions in
GPCR-G-protein bound systems, and (3) manifestation of these
perturbations on the local and global re-wiring of GPCRs in terms
of residue (node) clustering.

5.1 Binding Site

Comparison

of β2AR-Gs
and β2AR-Anta
Complexes

Comparison of the ligand binding pocket in β2AR-Gs and β2AR-
anta complexes reveals crucial information about the role of TM
helices in maintaining ligand-protein contacts. In particular, the
high-affinity agonist P0G (or BI-167107) in β2AR-Gs is housed
in the binding pocket by means of strong hydrogen bonds
mediated by residues Asp1133.32, Asn3127.39, Ser2035.42, and
Ser2075.46 (Fig. 3 panel a, superscripts indicate Ballesteros-
Weinstein numbering Scheme [42] in which the first digit in super-
script indicates helix number and digits in superscript following
decimal point indicate residue number relative to the most con-
served residue in that particular TM helix which is numbered as
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50 in the given helix). Residues belonging to TM6 and ECL2 also
participate in maintaining this complex network of interactions that
nestles the agonist in the binding pocket in an optimal fashion.

The ligand binding pocket in the β2AR-anta complex (Fig. 3,
panel b) shows a shift in these ligand-protein contact preferences.
Contacts with Ser2035.42 and Ser2075.46 are lost, though
Asp1133.32 and Asn3127.39 continue to interact with the antagonist
through four hydrogen bonds formed with β-OH and NAP atoms
of antagonist JTZ. Formation of short hydrogen bonds with
Tyr3167.43 recruits TM7 into the role of locking the antagonist
into the binding pocket.

The loss of hydrogen bonds with TM5 (mediated by
Ser2035.42 and Ser2075.46) results in a cascade of subtle ligand-
induced conformational changes which render TM helices 5 and
6 immobile in the β2AR-anta structure. In GPCRs, the motion of
these helices is crucial for the formation of a cleft on the intracellu-
lar side of the receptor that gets occupied by the α5 helix of the

Extracellular side

Intracellular / cytoplasmic side

Gα

Gβ

Gγ

Nb35

Transmembrane (TM) region
TM1

TM2

TM3

TM4

TM5 TM6

TM7

Ligand 

Fig. 2 A schematic representation of a typical GPCR. A cartoon representation of a typical G-protein Coupled
Receptor (GPCR, orange) showing its association with a ligand (pink, sticks) and Gs-protein (Gα: green, Gβ:
cyan, Gγ: magenta), along with a stabilizing nanobody (yellow). Membrane boundaries depicted as red dots
(extracellular side) and blue dots (intracellular/cytoplasmic side)
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G-protein. Hence, it is interesting to note how changes in ligand
binding pocket translate into structural alterations in TM5, TM6
and TM7 which facilitate the binding of Gs. Agonist interactions
with Ser2035.42 and Ser2075.46 give rise to a 2 Å inward motion of
TM5 at Ser2075.46 and 1.4 Å inward movement at Pro2115.50

[38]. This pull disturbs a highly conserved network of contacts
between Pro2115.50, Ile1213.40, Phe2826.44 and Asn3187.45. As a
result, Ile1213.40 and Phe2826.44 are repositioned, along with a
rotation about Phe2826.44, leading to an outward displacement of
TM6 at the cytoplasmic end. In the β2AR-anta complex, the antag-
onist JTZ (Alprenolol) is unable to form hydrogen bond with
Ser2035.42 and Ser2075.46 because of the absence of an electroneg-
ative atom in JTZ in the vicinity. Additionally, Pro2115.50 stacks
with Trp1223.41. This freezes Pro2115.50 in its position and hence
it is incapable to disturb the network of contacts between TMs 3, 5
and 6. Consequently, Phe2826.44 is unable to undergo local twist-
ing to undergo displacement. Hence, the mobility of TM6 is com-
promised owing to re-wiring of contacts in the ligand binding
pocket.

Another scenario brought to light is the disengagement of
individual helices because of agonist-induced conformational

Fig. 3 Comparison of ligand binding sites of β2AR-Gs and β2AR-anta. A schematic diagram depicting protein-
ligand interactions at the ligand binding site of (a) β2AR-Gs, and (b) β2AR-anta. Green dotted lines represent
hydrogen bonds. Binding site representations are obtained through LigPlot [43]
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changes. In other words, the presence of an agonist in the ligand
binding pocket enables individual helices to extricate themselves
and gain flexibility, thus ultimately facilitating binding of the
Gs-protein. On the other hand, presence of an antagonist compels
the helices to associate with each other (at the cytoplasmic region)
and thus makes binding of Gs-protein impossible. Overall, we
observe that local changes in the ligand binding site translate to a
re-wiring of contacts at the cytoplasmic region, thus exhibiting a
characteristic allosteric response. Further, the strength of these
interactions examined in terms of side-chain edge weights also
highlights the mechanism of information flow across the TM archi-
tecture, which is discussed below.

5.2 Differences

in Edge Weights

Between

the Complexes

β2AR-Gs
and β2AR-Anta

Analyzing non-covalent side-chain interactions in terms of edge
weights highlights subtle differences in the overall architecture of
the transmembrane region. Herein, we compared the agonist and
antagonist-bound β2AR complexes and obtained a list of interac-
tions which differ among the compared systems by an edge weight
of 0.5 (Table 1).

5.2.1 Differences

Between β2AR-Gs
and β2AR-Anta Complexes

Disengagement of individual helices in the agonist bound case has a
dramatic effect on β2AR to interact with Gs. A closer look at edge
weight differences between β2AR-Gs and β2AR-anta reveals an
interesting trend among residues that are present in the cytoplasmic
side of TMs 5 and 6 as well as the ICL2 (Fig. 4). Ideally, when the
receptor coordinates with its cognate G-protein, these residues are
recruited for establishing contacts with the α5 and αN helical
regions of Gs, leading to stabilization of the complex. Here, we
highlight certain examples from our findings that illustrate a change
in the behavior of these bridging residues. First, Ser143 (ICL2)
forms strong residue contacts with Asp1303.49 and Val672.38 in
β2AR-anta (edge weights 0.75 and 1.00 respectively). In the
G-protein bound complex the same residue, i.e., Ser143 (ICL2),
coordinates via its OG atom and forms intermolecular interaction
with the Ala139 (CB) in the αN helix. Second, Gln2295.68 interacts
with a high edge weight with Lys140 (ICL2) in the β2AR-anta
(edge weight 0.75). In the G-protein bound complex β2AR-Gs, it
establishes contacts with a network of residues (Asp381, Gln384,
Arg385 and Leu388) present in the α5 helical region. Third, in
β2AR-anta, His2696.31 forms an interaction with Ala2265.65 (edge
weight 0.67). But Ala2265.65 from the receptor interacts with
Leu388 and Leu393 from the α5 region of G-protein in the
G-protein bound complex. From these cases, we postulate that
residues from the interface region are coerced into forming intra-
molecular interactions rather than getting involved in inter-
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Table 1
Pairwise comparison of differences in side-chain edge weights

Edge weight differences between β2AR-Gs and β2AR-anta

Serial
no.

Residue
name

Residue
no. Helix

Residue
name

Residue
no. Helix

Edge weight
difference

Inter-helical interactions:

1 HIS 269 TM6 ALA 226 TM5 �0.67

2 PRO 211 TM5 TRP 122 TM3 �0.62

3 CYS 116 TM3 ALA 78 TM2 �0.5

4 SER 120 TM3 ALA 78 TM2 �0.5

5 MET 279 TM6 ALA 128 TM3 �0.5

6 CYS 327 TM7 VAL 54 TM1 0.5

7 SER 161 TM4 ALA 119 TM3 0.5

8 ALA 335 TM8 PHE 61 TM1 0.71

9 PHE 332 TM8 CYS 327 TM7 0.77

10 ASN 322 TM7 LEU 75 TM2 1

Intra-helical Interactions:

11 VAL 86 TM2 MET 82 TM2 �0.5

12 SER 165 TM4 GLY 162 TM4 �0.5

13 SER 207 TM5 SER 203 TM5 �0.5

14 ASP 79 TM2 LEU 75 TM2 0.5

Helix-loop:

15 VAL 67 TM2 SER 143 ICL2 �1

16 GLN 229 TM5 LYS 140 ICL2 �0.75

17 LYS 273 TM6 PHE 264 IL3 �0.64

18 ASN 103 TM3 GLU 188 ECL2 0.5

19 ALA 134 TM3 TYR 141 ICL2 0.5

20 PHE 332 TM8 LEU 64 ICL1 0.53

21 GLU 268 TM6 CYS 265 ICL3 0.6

Loop-Loop:

22 CYS 191 ECL2 TRP 99 ECL1 �0.88

23 SER 143 ICL2 ASP 130 TM3 �0.75

24 TYR 185 ECL2 ARG 175 ECL2 �0.61

25 THR 189 ECL2 GLU 187 ECL2 �0.57

(continued)

102 Vasundhara Gadiyaram et al.



molecular interactions with its cognate G-protein in the antagonist
bound β2AR (Fig. 4). The same behavior can be observed among
other residues present in the ICL2 region of β2AR. Specifically,
residues like Leu144, Ser137, and Tyr141 form interactions within

Table 1
(continued)

Edge weight differences between β2AR-Gs and β2AR-anta

Serial
no.

Residue
name

Residue
no. Helix

Residue
name

Residue
no. Helix

Edge weight
difference

26 LEU 144 ICL2 SER 137 ICL2 �0.5

27 LYS 140 ICL2 SER 137 ICL2 0.67

A tabular representation of differences in side-chain edge weights between β2AR-Gs and β2AR-anta. Interactions in bold

font indicate those that are stronger in β2AR-anta and regular font indicate interactions stronger in β2AR-Gs. Interactions
are grouped according to secondary structures involved for ease of understanding

β2AR-Gs & β2AR-anta

TM1

TM2

TM7

TM5

TM6

Fig. 4 Comparison of edge weight differences across β2AR-Gs and β2AR-anta.
Comparison of side-chain edge weight differences across systems, i.e., β2AR-Gs
and β2AR-anta. GPCR is depicted as green cartoons while the ligand is shown as
grey spheres. Red and blue spheres represent Cα atoms of amino acid residues.
Red edges denote edges that are stronger in β2AR-anta, whereas blue edges
signify those that are stronger in β2AR-Gs
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the receptor rather than entering into stabilizing interactions with
the G-protein.

Another striking feature observed is weakening of interaction
between Ser2035.42 and Ser2075.46. This interaction suffers a loss
in its edge weight (0.75 in β2AR-anta and 0.25 in β2AR-Gs). Due to
this weakening, the Pro2115.50 is unable to get inward into the TM
core and as a resulting cascade of interactions; it leads to the
immobility of TM6. Also interesting is that this inability of
Pro2115.50 to move inward may be owing to strong stacking inter-
actions with Trp1223.41 signified by a high edge weight (0.69 in
β2AR-anta and 0.07 in β2AR-Gs).

5.3 Spectral

Decomposition-based

Side-Chain Clustering

Patterns

The Fiedler vectors of the side-chain networks reveal the difference
in clustering profiles of the systems analyzed (Fig. 5). These are
obtained by spectral decomposition of the Laplacian of weighted
side-chain networks. The residues depicted in same color are pres-
ent in the same clusters. Figure 5, panel a shows β2AR-Gs with the
spread of its clusters across the protein structure such that the core
of the TM helices forms one dominant cluster, as depicted in red
color. Additionally, residues in the intracellular regions of TM 5 and
6 segregate into a smaller, yet significantly sized, cluster (dark blue
color). Interestingly these residues are also implicated in interacting

Fig. 5 Spectral decomposition-based residue clustering Node clustering based on Fiedler vector of side-chain
networks in (a) β2AR-Gs, and (b) β2AR-anta. The side-chains are shown in stick representation, and ligand in
grey spheres. The binding partners, i.e., Gs (panel a), are shown as purple cartoons. For better clarity, residues
88–202 from Gα subunit are omitted in panel a
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with the G-protein. Clusters are seen to be spread over extracellular
regions encompassing residues of ECL2 and ECL1 regions (cyan
color). These clusters can also be seen to propagate to the intracel-
lular region, hence establishing a possible link between these areas.
In the case of β2-anta (Fig. 5, panel b), the limited mobility of the
helices because of antagonist binding leads to a more compact and
discrete intracellular region. Hence the lateral clustering becomes
more dominant and discrete clusters can be observed in intracellu-
lar region.

To explore the spread of clusters in a more elegant way, the
sorted Fiedler vectors of the agonist and antagonist cases are com-
pared in Figs. 6 and 7. A tabular representation of a representative
cluster and its constituent residues is given in Tables 2 and 3.
Supplementary Table 1 contains a comprehensive list of residues
belonging to all clusters in β2AR-Gs and β2AR-anta. In Figs. 6 and
7, the top panel depicts the sorted Fiedler vectors of β2AR-Gs

(3SN6) and β2AR-anta (3NYA). It is interesting to note that the
clustering is clearer and the clusters are more distinguishable in
β2AR-anta (3NYA) compared to that of β2AR-Gs (3SN6). The
clusters are shown in different colors, and the coloring scheme is
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Fig. 6 Sorted Fiedler vectors and clustering representations of β2AR-Gs (3SN6). Top: Profile of sorted Fiedler
vectors in β2AR-Gs (3SN6); Bottom: Location of individual clusters mapped onto protein structure
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used to represent the position of residues in three-dimensional
structures in the bottom panel. The global effect of the disengage-
ment of the TM helices in the agonist bound case, i.e., β2AR-Gs

(3SN6), and the proximity of helices in the antagonist bound case,
i.e., β2AR-anta (3NYA), at the side-chain interaction level are strik-
ingly obvious from the clustering patterns adopted by these two
systems. In the agonist bound case, i.e., β2AR-Gs (Fig. 6, 3SN6),
the residue clustering has happened perpendicular to the mem-
brane plane, i.e., in a vertical fashion, reflecting the disengagement
of helices in the agonist bound case, thus facilitating the binding of
Gs protein. On the other hand, in antagonist-bound case β2AR-
anta (Fig. 7, 3NYA), the clusters traverse parallel to the membrane
plane, i.e., in a horizontal fashion. This way of clustering has even
more dramatic impact in terms of keeping the receptor amenable
for communication across the membrane boundaries.

In summary, we have reviewed the methods available to extract
network parameters from side-chain interactions for the study of
protein structures. Some of these have already been reviewed in
literature and are summarized here. The recent development of
extracting information from weighted network is elaborated in
this chapter. Subtle changes in the conformations during allostery
and protein-protein interactions are captured by difference in the
edge weight and the manifestation of its effect at global levels. We
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Fig. 7 Sorted Fiedler vectors and clustering representations of β2AR-anta (3NYA). Top: Profile of sorted Fiedler
vectors in β2AR-anta (3NYA); Bottom: Location of individual clusters mapped onto protein structure
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Table 2
Residue clustering in β2AR-Gs. A tabular representation containing list of residues which belong to
cluster2 in β2AR-Gs shown as red sticks. Individual columns represent node, residue number, TM
helix number, sorted Fiedler vector component and slope of the sorted Fiedler vector respectively

Residues cons�tu�ng cluster2 in 3SN6 (b2AR-Gs)
Node ResNum TM LapFV Slope
224 296 TM6 -0.03741 0.01968
223 295 TM6 -0.03691 0.00248
231 303 TM7 -0.03643 0.00242
220 292 TM6 -0.03352 0.01452
235 307 TM7 -0.03203 0.00747
240 312 TM7 -0.03201 0.00007
216 288 TM6 -0.03178 0.00119
245 317 TM7 -0.03132 0.00228
239 311 TM7 -0.03128 0.00019
253 325 TM7 -0.03108 0.00103
249 321 TM7 -0.03063 0.00225
209 281 TM6 -0.03058 0.00024
250 322 TM7 -0.02938 0.00600
213 285 TM6 -0.02836 0.00512
246 318 TM7 -0.02822 0.00069
243 315 TM7 -0.02672 0.00748
93 124 TM3 -0.02605 0.00335
86 117 TM3 -0.02604 0.00007

217 289 TM6 -0.02598 0.00027
214 286 TM6 -0.02551 0.00239
44 75 TM2 -0.02425 0.00630

114 145 TM4 -0.02249 0.00880
102 133 TM3 -0.02207 0.00207
98 129 TM3 -0.02043 0.00822

187 221 TM5 -0.01981 0.00311
105 136 TM3 -0.01973 0.00039
101 132 TM3 -0.01947 0.00128
176 210 TM5 -0.01896 0.00257
184 218 TM5 -0.01885 0.00052
180 214 TM5 -0.01846 0.00196
177 211 TM5 -0.01834 0.00058
90 121 TM3 -0.01825 0.00049
94 125 TM3 -0.01816 0.00045

206 278 TM6 -0.01791 0.00121
185 219 TM5 -0.01755 0.00183
97 128 TM3 -0.01749 0.00028

207 279 TM6 -0.01709 0.00201
181 215 TM5 -0.01633 0.00382
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Table 3
Residue clustering in β2AR-anta. A tabular representation containing list of residues which belong to
cluster3 in β2AR-anta shown as red sticks. Individual columns represent node, residue number, TM
helix number, sorted Fiedler vector component and slope of the sorted Fiedler vector respectively

Residues cons�tu�ng cluster3 in 3NYA (b2AR-anta)
Node ResNum TM LapFV Slope

82 113 TM3 -0.00478 0.01276
55 86 TM2 -0.00445 0.00167
51 82 TM2 -0.00317 0.00637

250 322 TM7 0.00823 0.05703
85 116 TM3 0.01699 0.04379
50 81 TM2 0.02174 0.02378
47 78 TM2 0.02527 0.01762
54 85 TM2 0.02636 0.00547

206 278 TM6 0.02794 0.00787
253 325 TM7 0.02899 0.00528
81 112 TM3 0.02933 0.00168

205 277 TM6 0.02963 0.00150
201 273 TM6 0.02995 0.00162
256 328 TM7 0.03017 0.00107
202 274 TM6 0.03030 0.00068
89 120 TM3 0.03344 0.01568
77 108 TM3 0.03529 0.00928
73 104 TM3 0.03567 0.00190
44 75 TM2 0.04019 0.02257
93 124 TM3 0.04184 0.00825
74 105 TM3 0.04346 0.00810

210 282 TM6 0.04353 0.00034
92 123 TM3 0.04388 0.00176
43 74 TM2 0.04591 0.01014
58 89 TM2 0.04598 0.00038

246 318 TM7 0.04675 0.00383
214 286 TM6 0.04687 0.00060
243 315 TM7 0.04705 0.00089
86 117 TM3 0.04713 0.00043

213 285 TM6 0.04728 0.00074
209 281 TM6 0.04729 0.00006
123 154 TM4 0.04737 0.00040
90 121 TM3 0.04774 0.00187

242 314 TM7 0.04800 0.00126
181 215 TM5 0.04831 0.00159
177 211 TM5 0.04841 0.00046
70 101 TM3 0.04850 0.00047

238 310 TM7 0.04851 0.00006
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Table 3
(continued)

174 208 TM5 0.05011 0.00076
207 279 TM6 0.05032 0.00105

65 96 TM2 0.05048 0.00081
69 100 TM2 0.05073 0.00121
68 99 TM2 0.05096 0.00118

157 191 ECL2 0.05118 0.00108
75 106 TM3 0.05120 0.00010
96 127 TM3 0.05120 0.00001

178 212 TM5 0.05145 0.00127
62 93 TM2 0.05158 0.00063
40 71 TM2 0.05165 0.00037
78 109 TM3 0.05183 0.00088
59 90 TM2 0.05202 0.00094

185 219 TM5 0.05204 0.00012
170 204 TM5 0.05213 0.00046
188 222 TM5 0.05244 0.00155
204 276 TM6 0.05249 0.00022
222 294 TM6 0.05261 0.00062
175 209 TM5 0.05265 0.00021
189 223 TM5 0.05279 0.00068
119 150 TM4 0.05281 0.00011
211 283 TM6 0.05297 0.00082

95 126 TM3 0.05309 0.00057
36 67 TM2 0.05314 0.00025

208 280 TM6 0.05314 0.00003
112 143 ICL2 0.05331 0.00084

99 130 TM3 0.05336 0.00024
114 145 TM4 0.05337 0.00006

97 128 TM3 0.05340 0.00014
122 153 TM4 0.05360 0.00101
215 287 TM6 0.05413 0.00263
219 291 TM6 0.05436 0.00116
184 218 TM5 0.05821 0.01926

91 122 TM3 0.04856 0.00021
249 321 TM7 0.04863 0.00039

94 125 TM3 0.04872 0.00043
180 214 TM5 0.04908 0.00183
245 317 TM7 0.04930 0.00106

61 92 TM2 0.04962 0.00164
218 290 TM6 0.04996 0.00167
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have utilized specialized algorithms of spectral analysis of weighted
networks to obtain re-grouping of residues as clusters in response
to binding of different ligands or proteins. The information at such
a level obtained on protein structures has been presented in the
context of allostery and protein-ligand complex formation. The
protocol of interpreting the metrics like Fiedler vector has been
demonstrated, and the biological relevance of the methods dis-
cussed here has been highlighted with the example of β2 adrenergic
receptor, a member of GPCR family.

6 Additional Notes

1. While comparing PSNs using edge weight difference, sufficient
care is to be taken such that comparison is being made between
nodes corresponding to same residues. A Needleman-Wunsch
alignment [44] can be used with default settings for this node
correspondence. Any missing residues are either to be compen-
sated by adding additional dummy rows and columns in the
network with missing ones or to be removed from the other
network.

2. The spectral decomposition of the networks using Laplacian
matrix requires that there are no isolated nodes (nodes with
zero edges) in the network. Hence any such nodes are to be
made non-isolated by adding an edge to those nodes with a
logically relevant node. For example, for backbone network,
the node with nearest Cα distance can be selected. For side-
chain networks, the node can be connected to that of a residue
with atom contacts nearest to it. The weight of the edge added
should be of very low value (for example, 10�32) so that it does
not interfere with the spectral information.

3. Clusters in a network are identified by cutting the Fiedler
vector of the Laplacian matrix of the PSN. If the clusters are
well separated as in the case of antagonist in GPCR case-study
(Fig. 5, panel b), they are also well separated in their Fiedler
vector components, nodes in the same cluster possessing very
close values. In the case of clusters well interspersed with each
other like that of agonist in case study (Fig. 5, panel a) making
the sorted Fiedler vector a continuous increasing one, the cut
in the Fiedler vector to obtain clusters is to be done judiciously.
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Chapter 8

Topology Results on Adjacent Amino Acid Networks
of Oligomeric Proteins

Claire Lesieur and Laurent Vuillon

Abstract

In this chapter, we focus on topology measurements of the adjacent amino acid networks for a data set of
oligomeric proteins and some of its subnetworks. The aim is to present many mathematical tools in order to
understand the structures of proteins implicitly coded in such networks and subnetworks. We mainly
investigate four important networks by computing the number of connected components, the degree
distribution, and assortativity measures. We compare each result in order to prove that the four networks
have quite independent topologies.

Key words Adjacent amino acid network, Topology of graphs associated with proteins, Subnetworks,
Protein contact network, Long range network, Hot spot network, Induced hot spot network,
Connected components, Degree distribution, Assortativity measures

1 Introduction

The main goal of this chapter is to present mathematical tools to
investigate the structure of protein using network topology. It is
well known that proteins, oligomeric proteins in our case study,
have geometrical control over their shapes (folding) and functions
(dynamics) based on four structural levels, so-called 1D, 2D, 3D,
and 4D structural levels [1, 2]. Proteins have a 1D structure which
is the sequence of amino acids involved in each chain; this sequence
is by definition one-dimensional and has an intrinsic ordering com-
ing from the addition upon protein synthesis, of the amino acids
one by one via peptide bonds. The next remarkable geometrical
structure comes from the 2D structure of the protein that is the
ability of constructing local geometrical structures like alpha helix
or beta sheet; these structures are rather local and involve nearest
amino acids of the 1D structure. The folding mechanism is also
crucial to construct the 3D (tridimensional) structure by bringing
into contacts amino acids, which are far in the 1D structure but
become close in space. By this step, the 2D structures are connected
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to one another to form a 3D shape. The last important structura-
tion is related to the construction of interfaces between chains in
order to construct a protein oligomer; the 4D structure is the
number of copies of a chain, which composed the oligomer (see
the tiling theory for proteins in [3]). Not all proteins have a 4D
structure.

We propose to investigate these geometrical structures by con-
sidering adjacent amino acid properties and networks. This trans-
formation from geometrical structure to networks using a cutoff
allows us to ignore geometrical positions and focus only on the
topology of the proteins, that is, the connectivity of amino acids
given by the network of adjacent amino acids, distant by a cutoff of
5 Å. In network theory, many measurements exist to investigate
topology, among which we will use the following:

l The Connected Components of the network or any
sub-networks relevant to the structural hierarchy considering
the Stoichiometry (4D structure) (see [4]),

l The Degree Distribution of the nodes of the network (see [4]),

l The Assortativity gives a global measurement for the local topol-
ogy of the networks and is linked to folding rates in protein
networks and more generally is involved in the spreading rates of
error propagation or of diseases (see [4, 5, 6, 7, 8]).

The different structural levels that compose a protein can be
respectively modeled by different networks of adjacent amino acids.
The most studied network is the Adjacent Amino Acid Network
(also called in the literature Protein Contact Network or protein
structure network) (seeDPB, [2, 9, 10]) where the nodes are amino
acids and the links between two amino acids are when amino acid
are at distant less or equal to a cutoff value (here we use 5 Å)
[11]. This network gives information on the whole structure of
the protein and we use PCN to denote the Adjacent Amino Acid
Network.

In addition, we investigate three other networks: the HSN, the
IHSN, and the LRN. The Hot Spot Network (HSN) represents the
amino acids involved in the interface between chains in oligomeric
proteins codes for the 4D structure (see [2, 12] and references
within (we call a Hot Spot, an amino acid, which is linked to at
least one amino acid from another chain). The Induced Hot Spot
Network (IHSN) constructed from the Hot Spots and all amino
acids in contact with hot spots in the chain (with distant less or
equal to 5 Å). The IHSN gives the contacts of the hot spots with
other hot spots (contacts between chains) and with amino acids
within a chain. Thus HSN provides only the 4D contacts of the
interface while IHSN provides all contacts information of the hot
spots. The Long Range Network (LRN), which is constructed for
each chain considering two amino acids in spatial contact in the
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protein and far in the chain according to the sequence ordering
(that is with at least with 7 amino acids in the sequence between the
two considered amino acids). The Long Range Network codes for
the 3D structure.

The HSN, IHSN, and LRN are sub-networks of the PCN
modeling the contacts involved in the different structural levels of
a protein. We investigate if these networks have different topologi-
cal properties, considering the connected components, the degree
distribution, and the assortativity, which suggest the different
structural levels have some specificity, coding, and structural
independency.

The chapter is divided in five sections. The first describes the
proteins of the dataset and the networks; the second defines the
four networks; the connected components, the degree distribution,
and the assortativity are provided in the third, fourth, and fifth
sections.

2 Proteins and Networks

In this chapter, we focus on oligomeric proteins, which are com-
posed of k times the same chain of amino acids (k is called the
quaternary structure of a protein). The amino acid residues of
different chains, called Hot Spots, are connected together by chem-
ical and physical interactions to form the atomic interfaces that
build the oligomer. Thus usually we name the k chains by distinct
letters in an alphabetic order (for a pentamer the names of the five
chains could be A, B, C, D, E or D, E, F, G, H or other combina-
tions of consecutive letters in an alphabetic order). Each chain is
formed by a sequence of amino acids, which corresponds to the
order in which the amino acids are covalently attached to one
another (1D structure). The ordering from the sequence which is
encoded at the DNA level gives a natural ordering of the amino
acids in each chain; this ordering is given by a sequence of consecu-
tive integers (thus we could speak of the amino acid number 50 in
the chain B and for short we use the notation 50:B [or B50 in this
chapter] for this amino acid with the concatenation of the name of
the chain with the position of the amino acid in the chain). The
20 amino acids with special chemical and geometrical properties are
constituted by a set of covalent atoms. In order to understand the
construction of oligomeric proteins, we propose to define formally
several networks and investigate their topology. Thus, we use
mathematical tools and theory of networks to study biological
constructions and coding.

The main mathematical tool for our study is a network (also
called graph) G ¼ (N, L) with nodes (also called vertices) noted N
and links (also called edges) noted L. This graph is constructed by a
Protein Data Base file associated with a given protein (Fig. 1) from
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atomic coordinates according to the X-ray structure of the protein.
To illustrate the notion, we use the 1EEI.pdb file, which is the
crystallographic version of the Cholera Toxin (see [13]).

The Cholera Toxin is composed by 5 identical chains and the
whole protein has a cyclic shape (Fig. 2).

Nevertheless, the whole study is done using a data set of
750 oligomeric proteins from 2 up to 20 chains (Fig. 3).

For each protein, we take the associated PDB file and we
consider all the atoms and their spatial positions in the three
dimensional space given in Angstroms. The Adjacent Amino Acid

Fig. 1 Screenshot of one page of the Protein Data Bank

Fig. 2 Cyclic shape of the cholera toxin
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Network PCN(N,L) is constructed considering the amino acids of
the protein as set of nodes N and, for every two nodes in N there
exists a link in L between these two amino acids (two nodes) if the
two amino acids have at least one atom each in proximity, namely at
a distance less than 5 Å. In fact, a node in the network represents a
union of atoms of a given amino acid and a link between nodes
means that two amino acids are at spatial distance less than 5 A (see
[2, 10]).

In Fig. 4, we find the representation of the Cholera Toxin by
plotting all atoms.

The PDB file contains many information and in particular the
atomic (x, y, z) coordinates of each atom and this is useful to
compute the distance between amino acids (Fig. 5).

By computing the Euclidian distance between two amino acids
and for all of them using a cut off at 5 Å, we construct the Adjacent
Amino Acid Network of each protein (see Fig. 6 for the Adjacent
Amino Acid Network of the Cholera Toxin).

We are able to represent graphically the network, and investi-
gate its geometry and topology. Thus the amino acids could be near
in a chain (called intramolecular residues) or between at least two
chains (called intermolecular residues) (Fig. 7). We remark, in
Fig. 7, that D39 is a Hot Spot because it is linked to the amino
acid 2, 3, 4, and 6 of the H chain.

3 The Four Networks

This chapter is based on the Adjacent Amino Acid Network PCN
(N,L) defined in Subheading 2. And we would like to investigate
sub-networks or induced networks defined formally in the next
paragraphs.

Fig. 3 Part of the Data Set (see [12])
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Fig. 4 Atomic representation of the cholera toxin in spacefill (van der Waals atomic radius is represented by
spheres)

Fig. 5 List of atoms and atomic (x, y, z) coordinates
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The general definition of an induced network IN(N0,L0) of
PCN(N,L) is a subset N0 of nodes in N, and there is a link in the
induced network between n,m ∈ N0 if there exists a link between
the nodes n and m in PCN(N,L) (see for example the textbook
[14]). Thus, the induced graph is a subgraph of nodes N0 and all
links in L but only between nodes in N0.

Fig. 6 PCN for 1EEI (representation of the network by Gephi)

H8

H3

D48

D50

D49

D47

D40
D41

D39

D38

D37

H2
H4

D29

D28

D26
D27

Fig. 7 Zoom in the 1EEI PCN. First neighbors of D39 (Black circle) with amino acids in the D chain (Blue circle,
intramolecular residues) and in the H chain (Red circle, intermolecular residues); D39, H2, H3, H4 and H6 are
Hot Spots (Amino Acids in the interface)
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l PCN: Adjacent Amino Acid Network: the whole adjacent amino
acid network.

l HSN Hot Spot Network: the nodes are Hot Spots and the links
are between two nodes in different chains (each amino acid
involves in the interfaces). This network models the 4D
structure.

l IHSN Induced Hot Spot Network: the induced graph of amino
acids involved in the interfaces. The nodes are Hot Spots (subset
N0 of the N nodes in PCN) and the links of the induced network
are all links between Hot Spot in the PCN network. This net-
work is given by the Hot Spots and all links between them; thus,
the links between hotspots within the same chain are present
while in the HSN they are not.

l LRN Long Range Network: For each amino acid i in a single
chain, we take all amino acids j on the same chain with distant
position in the sequence of at least 8 amino acids (this is with the
distance on the sequence |i � j| > 7) that are linked in PCN and
thus we add in the network all links in PCN from i to j and the
amino acids i and j such that |i � j| > 7 . For example, if we
consider the chain A and the amino acid in position 10 then we
add in the network the amino acids of the chain A in position
1, 2, and the 18, 19, and so on that are linked with the amino
acid 10 in PCN. This network models the 3D structure of the
protein.

All these networks have many distinct topological properties
and may be involved in some important structural mechanisms of
the proteins.

The Adjacent Amino Acid Network gives information on the
whole structure of the protein and it is based the sub-networks that
control the 2D, 3D, and the 4D structures. Comparing the four
different networks PCN, HSN, IHSN. and LRN aims at investigat-
ing the independency of the structural level coded by each of the
sub-network, that is, to what extent the structural levels have their
own topological characteristics.

We are particularly interested in comparing the topological
properties of the interface with the rest of the protein because the
Hot Spot Network is made of only 10% or less of the total amino
acids of the protein, making the interface potentially fragile. Since
protein oligomers are not more susceptible to mutations than
monomeric proteins, it suggests the existence of a mechanism to
increase the interface robustness and protect it from harm. IHSN
can be compared with the Adjacent Amino Acid Network (PCN)
and with the Hot Spot Networks to study how the protein masks
the position of the interface or to investigate the backup of the
interface, respectively [15]. Backups are additional links that make
the interface more robust to mutation and to special perturbation
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of atomic motion. More generally, we could compare IHSN with
PCN to test the hypothesis that there is a mechanism (topological
mechanism) that protects the interface: prevent perturbations from
reaching it (mutations of non-hotspot amino acids) or allow cor-
recting errors introduced by mutations of hotspots.

The Long Range Network codes for the 3D structure and
could be compared to the HSN to see if the 4D and the 3D
topologies are independent. We could test different assembly
mechanisms such as the fly casting mechanism where interface
formation and folding happen concomitantly while the induce-fit
mechanism folding occurs first ([16] and references within, [17]).
The Long Range Network topology is known to have a strong
correlation with the folding rate of the protein (see [5]) and remark
that in the paper they consider amino acids in the sequence with
distance greater than 11 while in our construction we use a distance
greater than 7).

4 Stoichiometry and Connected Components

First of all, we investigate the stoichiometry and the number of
connected components of the four networks in order to understand
the topology of proteins in the data set. In fact, the stoichiometry is
an information on the number of chains used for the protein
construction. A connected component of a network is the set of
nodes that are connected together by paths following the links. By
definition PCN has only one connected component because an
oligomeric protein is composed of a single protein. HSN could
have only one connected component; that means that all the inter-
faces are connected together by paths following the links. More
interestingly if there are 2 or more connected components in HSN
this means that some interfaces are relatively far from each other in
the protein.

In our data set, we study 750 oligomeric proteins with stoichi-
ometry (the number of chains) from 2 up to 20 (see [15]). In fact, in
the PDB sometimes the protein appears with copy of itself, and thus
the number of chains and connected components increases numer-
ically; thus, we just discard these cases and reduce the number of
cases. Only 714 PDB files appear with 1 connected component for
PCN; this means with a single protein in the PDB, 30 PDB files
with two copies of itself and 2 PDB files with three copies of itself. If
we restrict to the 714 PDB files with a description of a single
protein, we notice that 218 proteins have 4 chains, 168 proteins
have 2 chains, 116 proteins have 3 chains, 70 proteins have 6 chains,
46 proteins have 6 chains, 30 proteins have 12 chains, 23 proteins
have 5 chains, and so on (Fig. 8). Remember that the number of
divisors of the stoichiometry k is important because if k is com-
posed by many divisors the combinatorics give more proteins than
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prime numbers (see [15]). We have only 1 proteins with 11 chains
and in contrast 30 proteins with 12 chains because 12 could be
written 12¼ 2� 6¼ 3� 4¼ 3� 2� 2; this means a cyclic protein
with 12 chains or a dimer of 6 chains or a trimer of 4 chains and so
one.

Interestingly if we look carefully at interfaces between chains in
the data set that is for the Hot Spot Network, we find that 241 pro-
teins have a single connected component (that is all existing inter-
faces between chains are connected by links between hot spots (see
Fig. 14 to see this property of single connected component for the
Cholera Toxin), 117 proteins with 2 connected components,
81 proteins with 3 connected components, 62 proteins with
4 connected components, and so on (see Fig. 9). In this study, we

Fig. 8 The different stoichiometries in the Data Set

Fig. 9 The number of connected components for HSN
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give no insight on the topology of the connected components of
the Hot Spot Network and for example the single connected com-
ponent could be as a ring or not.

Thus we find a nice power law for the number of connected
components for HSN (by computing directly on the graphic we fit
the function f(x) ¼ 388x�1.56 with R2 ¼ 0.963).

We notice that proteins (1EEI, 1LTR, 1EFI, the latter with
unknown assembly mechanism) which share similar structures but
have different assembly mechanisms (see [18]) nevertheless have the
same number of CC in the four networks: 1 connected component
for PCN, HSN, IHSN and 10 connected components for LRN.
This means that the number of connected components is a rather
global measurement, which does not account for the way the
protein is built. Globally the interfaces between chains of the
three “versions” of the cholera toxin are linked together to form a
whole global interface network. On the other hand, the three
toxins 1EEI, 1LTR, and 1EFI, all AB5 toxins, have their 3D struc-
tures organized in two domains, indicated by the ten CC.

For the Induced Hot Spot Network, we find 568 proteins with
1 connected component, 55 with 2 connected components,
38 with 3 connected components, 28 with 4 connected compo-
nents, and 6 with 5 connected components (Fig. 10). Thus, if the
IHSN network has mostly a single connected component this
means that the Induced Hot Spot Network globally controls the
spatial position of the interfaces in the whole protein. And to be
robust to mutation it is better to link all the k interfaces in a single
connected component. While in article [12], we argued that too
many connections lead to fragility to perturbations, here we have
no measurement on the density of the connections in the network.

Fig. 10 The number of connected components for IHSN
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We just conclude by a statistical argument that 568/715 ¼ 79% of
the data set has a single connected component for IHSN, and this
property implies that proteins prefer to adopt a single CC in order
to control the spatial position of the interfaces.

For the Long Range Network, we find equal or more
connected components than the stoichiometry, and this means
that in a same chain the network of the 3D contacts could be split
in different subnetworks and these subnetworks are independent.
This means that we find with the connected components of LRN
some independent 3D structures and we must make mutations in
order to prove that these connected components control the fold-
ing domains of the protein (Fig. 11).

5 Degree Distribution

The degree distribution of the nodes gives information on the
global structure of each network. They also reflect the laws of
construction and of the network emergence or of subnetwork
emergence that is the way of building each part of the Adjacent
Amino Acid Network.

5.1 Degree

Distribution

in Adjacent Amino

Acid Network

We already constructed the whole adjacent amino-acid networks
(Fig. 6) and we would like to investigate the degree distribution of
the nodes. We find for the cholera toxin 1EEI the following distri-
bution of degrees for PCN (Fig. 12). While the degree distribution
of the whole data set is near a Gaussian (Fig. 13) to construct the
plot, the occurrences of each degree are summed over the entire
dataset for all proteins; for example, we have almost 80,000 nodes

Fig. 11 The number of connected components for LRN
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in the Data Set with degree 12. This global distribution means that
the degrees are driven by a normal distribution to have a majority of
moderate degrees and not too many high or low degrees. While
each node could control the 2D, 3D, and/or 4D structures of the
protein, the normal distribution of degrees masks the role of each
node (that is, we are not able to predict the structural role of each
amino just by looking at its degree).

5.2 Degree

Distribution in Hot

Spot Network

The Hot Spot Network is constructed by adjacent amino acids in
two different chains and compose the interfaces of the protein. We
remark that this network between two chains is bipartite: that is
between two chains the first neighbors of a given Hot Spot are Hot
Spots of the other chain (Fig. 14). Indeed, two nodes of a link in
this network fall by construction in two distinct chains. We first

Fig. 12 Degree distribution of PCN for the Cholera Toxin

Fig. 13 Degree distribution of PCN on the whole Data Set
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investigate the cholera toxin 1EEI and we find in Fig. 15 the
distribution of degrees for HSN. The degree distribution of the
HSN for the whole data set is an exponential decrease law (Fig. 16)
(by computing directly on the graphic we fit the function
f(x) ¼ 491568e�0.9264x with R2 ¼ 0.97). Notice that the distribu-
tion is not anymore Gaussian-like in the whole proteins, and the
exponential decrease reflects the very special structure of the Hot
Spot Network. We already notice in [12, 19] that for interfaces
between two chains the degree distribution is exponential; this
means no hub in the interface but quite low degrees. For the
PCN, we find a Gaussian distribution, so this means considering

Fig. 14 Hot Spot Network for the Cholera Toxin

Fig. 15 Degree distribution of HSN for the Cholera Toxin
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all contacts, the amino acids adopt a characteristic moderate degree
right with a mode (degree with highest frequency in the distribu-
tion) and a mean around 12. This means that many links are added
to the Hot Spots outside of the Hot Spot Network to reach the
PCN degree distribution. This mechanism is crucial to mask the
position of the Hot Spots.

5.3 Degree

Distribution in Induced

Hot Spot Network

The Induced Hot Spot Network of amino acids involves in the
interfaces is represented in Fig. 17. We find for the cholera toxin
1EEI the following distribution of degrees for IHSN (Fig. 18). We
notice that the degree distribution of the Induced Hot Spot Net-
work is also near a Gaussian (Fig. 19). Remark that the mode for

Fig. 16 Degree distribution of HSN for the Data Set

Fig. 17 Induced Hot Spot Network for the Cholera Toxin
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IHSN is in 8 while the mode for PCN is 12. Thus, we find a shift of
4 degrees in the degree values between the Gaussian of PCN to the
Gaussian of IHSN. This means that in means 8 links are devoted to
control the interfaces and in means 4 more links control the neigh-
borhood to mask the position of the interfaces and to plunge the
sub-network IHSN in the whole PCN network.

5.4 Degree

Distribution in Long

Range Network

For the Long Range Network, we take for all pairs of amino acids in
the same chain at positions i and j in the sequence with |i � j| > 7
(the distance in the sequence is greater or equal to 8) and such that
the amino acid i and j are also linked in PCN and thus we construct
the Long Range Network (Fig. 20). For the cholera toxin 1EEI we
find in Fig. 21 the distribution of degrees for LRN. The degree
distribution of the whole data set is not any more a Gaussian and

Fig. 18 Degree distribution of IHSN for the Cholera Toxin

Fig. 19 Degree distribution of IHSN for the whole Data Set
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the mode is now 4 (see Fig. 22). In fact, we notice that the LRN is
constructed with less links than the PCN and we have to add in
mean 8 links to reach the PCN degree distribution. This implies
that in order to mask the position of the LRN and to reach a
Gaussian distribution we add in mean 8 links.

To conclude these parts on the topology of each network and
subnetwork, we have seen that the subnetworks have really distinct
behaviors and are embedded on the PCN with a mask property of
each subnetwork. We now want to describe more precisely the

Fig. 20 Long Range Network for the Cholera Toxin

Topology Results on Adjacent Amino Acid Networks of Oligomeric Proteins 129



structure of each network in terms of assortativity, and we will focus
on the relative independence of each network.

6 Assortativity Measures

We investigate the topology of various networks by considering the
correlation of degree defined by Newman [7, 8]. The idea is to
compare globally the difference between the degree of each node to
the mean degree of its first neighbors. To do that we compute for
each protein the degree correlation coefficient:

r ¼
X
i, j

ij ei,j � pip j

� �
σ2

Fig. 21 Degree distribution of LRN for the Cholera Toxin

Fig. 22 Degree distribution of LRN for the whole data set
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where ei,j is the probability of finding a node with degrees i and j at
two ends of a randomly chosen link and pi is the probability to have
a degree i node at the end of a randomly chosen link and

σ ¼
X
i

i2pi �
X
i

ipi

" #2

:

In fact, r is the usual Pearson regression coefficient and its
variation is between �1 and 1. If r is around 0 then the network
is neutral that is ei,j ¼ pipj and this means that the average degree of
the neighbors is independent of the degree of the node. If r is
greater than 0, then the network is assortative and high degree
nodes are preferentially linked to high degree nodes and low degree
nodes are preferentially linked to low degree nodes. If r is lower
than 0 then the network is disassortative and high degree nodes are
preferentially linked to low degree nodes and low degree nodes are
preferentially linked to high degree nodes. In biology, gene regula-
tion networks are disassortative and protein-protein interaction
network is also disassortative [7]. Here we focus on assortativity
results of adjacent amino acid networks. We compute the assorta-
tivity measures for the four networks defined previously for each
protein of our data set. For example, for the cholera toxin (PDB
1EEI) we have the values of r for PCN Adjacent Amino Acid
Network: 0.2455, for LRN Long Range Network: 0.1259, for
IHSN Induced Hot Spot Network: 0.2426, for HSN Hot Spot
Network: �0.2667 (see Fig. 23). We remark that the first three
networks for the cholera toxin are assortative and the Hot Spot
Network is disassortative. And the computation of the assortativity
values on the whole data set gives the following results (see Fig. 24).

To summarize the results for the 746 proteins of the data set
(because for assortativity it is not important to discard the copy of
proteins in the PDB), we sort the result in three classes: the neutral
class with assortativity measure beginning by 0.00 or �0.00 (for
example a network with assortativity measure 0.0012 or �0.0099
are considered in the neutral class), the assortative class with values
above 0.001, and the disassortative class with values below�0.001.

The results are summarized in Table 1 and we have for the
Adjacent Amino Acid Network 745 assortative networks and 1 dis-
assortative network confirming the fact that the adjacency amino
acid networks are assortative (see [5]). For the Long Range Net-
work, we have 615 assortative networks, 31 neutral networks, and
99 disassortative networks. This means that the network that con-
trols the 3D structure is most often assortative. Remark that in the
31 neutral networks we have 5 proteins with an empty graph for
LRN (for the following PDB numbers: 3nve, 2omp, 3nhc, 2omq,
2ona) because these proteins are constructed by juxtaposition of
short peptides and thus no long-range interactions are available.
Remember also that 99 proteins, that is only 13% of the Data Set,
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Fig. 23 Assortativity values of 1EEI

Fig. 24 Assortativity values of the Data Set (in abscissa we have the proteins in the data set from 1 to 746 and
in ordinate the assortativity values with range from �1 to 1)

Table 1
Assortativity results for the 4 networks

Assortative Neutral Disassortative

PCN 745 0 1

LRN 615 31 99

IHSN 736 4 6

HSN 68 9 669
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have a disassortative Long Range Network and this is in accordance
with the results on the article of Bagler and Sinha [5] about the
global assortativity of LRN. For the Induced Hot Spot Network,
we have 736 assortative networks, 4 neutral networks, and 6 disas-
sortative networks. This could mean that the IHSN mimics the
whole protein network property in order to mask the position of
HSN. In contrast, for HSN that is the network of interfaces
between two chains of the protein, we find 68 assortative networks,
9 neutral networks, and 669 disassortative networks.

The first direct interpretation comes simply by the fact that
HSN is by construction a bipartite graph. Indeed, for a complete
bipartite graph Km,n we have r ¼ �1 if m 6¼ n and r ¼ 1 if m ¼ n.
Thus, a complete bipartite graph is either fully assortative or fully
disassortative. Nevertheless, HSN is bipartite but far from being
complete. This is why we think that the disassortative property of
the interface between two chains could be the signature of a dis-
assortative barrier. In fact, we have seen already that in the interface
a high degree node is protected from damages by placing a low
degree node near, as perturbation propagates to the neighbors of
the high degree nodes instead of impacting the low degree node
connections [ASVSL].

Now we would like to study the independence of the topology
of network two by two by using information of the assortativity and
proving that there are only few correlations between the assortativ-
ity measures of each network. Indeed, if we plot for each protein the
assortativity values of PCN versus the assortativity values of HSN,
all values are almost on a circle. This is the signature of noncorre-
lated variables and in particular the R2 is near zero (the value is
around 0.0076) (see Fig. 25). In conclusion the assortativity prop-
erty of the whole protein is independent of the assortativity prop-
erty of the interface.

Fig. 25 Assortativity of PCN versus HSN
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In the same spirit, if we plot the assortativity values of PCN
versus LRN we find a signature of very slightly correlated variables
with R2 ¼ 0.02733 and thus in the whole protein network the
assortativity property is independent of the Long Range Network.
If we plot the assortativity values of PCN versus IHSN we find
R2 ¼ 0.0405; thus, the protein assortativity property is indepen-
dent of the Induced Hot Spot Network. One explanation of these
nonintuitive topological results comes from the fact that the pro-
tein structure masks the position of crucial networks. In particular
the Long Range Network is important in order to maintain the 3D
structure and to fold the protein. And looking at the degree corre-
lation of amino acids is not sufficient to guess which one is in the
LRN. We find the same result between LRN and IHSN
(R2 ¼ 0.0058) and between LRN and HSN (R2 ¼ 0.0406) and
thus few correlations between the 3D network (LRN) and the
interface networks (HSN or IHSN). Thus PCN vs HSN, PCN vs
LRN, and LRN vs IHSN are topologically independent, and this
could be a mechanism to prevent propagation of modifications
from one network to another. It is also the reflection of a
non-hierarchical structure of the whole proteins and a relative
independence of each network.

In the opposite if we plot for each protein the assortativity
values of IHSN versus the assortativity values of HSN, the values
are elongated around a segment of line, and this is the signature of
correlated variables. Indeed, the R2 is around 0.18 and implies a
slight correlation between variables that contrast with the noncor-
relation property betweenHSN and PCN (see Fig. 26). Of course, a
tight control of the interface is embedded in the HSN and that
means that many links of PCN are not involved in this control. This
could be also a defense property because the evolution masks the
essential links for the control of the structure by randommutations.

Fig. 26 Assortativity of IHSN versus HSN
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In conclusion the structural property and the assortativity property
of the interfaces influence the assortativity property of the induced
hot spot network.
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4. Barabási A-L, Pósfai M (2016) Network sci-
ence. Cambridge University Press, Cambridge

5. Bagler G, Sinha S (2007) Assortative mixing in
protein contact networks and protein folding
kinetics. Bioinformatics 23(14):1760–1767

6. Karsai M, Kivel€a M, Pan RK, Kaski K,
Kertész J, Barabási A-L, Saram€aki J (2011)
Small but slow world: how network topology
and burstiness slow down spreading. Phys Rev
E Stat Nonlinear Soft Matter Phys 83:025102

7. Newman MEJ (2002) Assortative mixing in
networks. Phys Rev Lett 89:208701

8. Newman MEJ (2003) Mixing patterns in net-
works. Phys Rev E 67:026126

9. Di Paola L, Giuliani A (2015) Protein contact
network topology: a natural language for allo-
stery. Curr Opin Struct Biol 31:43–48

10. Vuillon L, Lesieur C (2015) From local to
global changes in proteins: a network view.
Curr Opin Struct Biol 31:1–8

11. Viloria JS, Allega MF, Lambrughi M, Papaleo
E (2017) An optimal distance cutoff for
contact-based Protein Structure Networks

using side-chain centers of mass. Sci Rep 7
(1):2838

12. Feverati G, Achoch M, Vuillon L, Lesieur C
(2014) Intermolecular β-strand networks
avoid hub residues and favor low interconnec-
tedness: a potential protection mechanism
against chain dissociation upon mutation.
PLoS One 9(4):e94745

13. Berman HM, Westbrook J, Feng Z,
Gilliland G, Bhat TN, Weissig H, Shindyalov
IN, Bourne PE (2000) The protein data bank.
Nucleic Acids Res 28(1):235

14. Reinhard D (2000) Graph theory, graduate
texts in mathematics, vol 173. Springer-Verlag,
Berlin

15. Achoch M, Dorantes-Gilardi R, Wymant C,
Feverati G, Salamatian K, Vuillon L, Lesieur C
(2016) Protein structural robustness to muta-
tions: an in silico investigation. Phys Chem
Chem Phys

16. Lesieur C, Cliff MJ, Carter R, James FL, Clarke
AR, Hirst TR (2002) A kinetic model of inter-
mediate formation during assembly of cholera
toxin b-subunit pentamers. J Biol Chem 277
(19):16697–16704

17. Shoemaker BA, Portman JJ, Wolynes PG
(2000) Speeding molecular recognition by
using the folding funnel: the fly-casting mech-
anism. Proc Natl Acad Sci 97(16):8868–8873

18. Zrimi J, Ng Ling A, Arifin EGR, Feverati G,
Lesieur C (2010) Cholera toxin b subunits
assemble into pentamers-proposition of a
fly-casting mechanism. PLoS One 5(12):
e15347

19. Achoch M, Feverati G, Vuillon L,
Salamatian K, Lesieur C (2014) Protein sub-
unit association: NOT a social network. In:
TABIS. Institute of Physics, Belgrade, Belgrade

Topology Results on Adjacent Amino Acid Networks of Oligomeric Proteins 135

https://doi.org/10.5772/58577
https://doi.org/10.5772/58577


Chapter 9

Community Network Analysis of Allosteric Proteins

Ivan Rivalta and Victor S. Batista

Abstract

Community network analysis (CNA) of correlated protein motions allows modeling of signals propagation
in allosteric proteic systems. From standard classical molecular dynamics (MD) simulations, protein
motions can be analysed by means of mutual information between pairs of amino acid residues, providing
dynamical weighted networks that contains fundamental information of the communication among amino
acids. The CNAmethod has been successfully applied to a variety of allosteric systems including an enzyme,
a nuclear receptor and a bacterial adaptive immune system, providing characterization of the allosteric
pathways. This method is complementary to network analyses based on different metrics and it is particu-
larly powerful for studying large proteic systems, as it provides a coarse-grained view of the communication
flows within large and complex networks.

Key words Protein correlated motions, Allosteric enzyme, Protein graph, Community network
analysis, Allosteric pathways

1 Introduction

Understanding protein allostery is hindered by the complex and
elusive nature of the allosteric mechanisms in proteic systems
[1]. In fact, despite pioneering allostery models date more than
half a century back [2] and the distinct views developed so far have
been recently unified [3, 4], many aspects of allosteric phenomena
remain poorly understood [5]. In particular, considering the ubiq-
uitous role of allostery in biological systems, it is highly desirable to
fully exploit its potential for rational drug design and protein
engineering [6–8]. For instance, allosteric enzymes could be
manipulated to inhibit/enhance their enzymatic activity by point
mutagenesis or by binding of exogenous allosteric ligands (effec-
tors) and/or by disclosing unknown allosteric sites [9–12]. To his
aim, computer simulations represent an exceptional tool that can
provide the necessary system-specific information for rational
design, avoiding extended (and costly) trial-and-error
investigations.
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In allosteric enzymes, the binding of a (effector) ligand at the
allosteric site, i.e., a site distant at least 1 nm from the functional
active site, regulates the enzymatic function, thus involving com-
munication of a chemical signal from the allosteric to the active site.
This allosteric signal is expected to involve physico-chemical inter-
actions between, generally conserved amino acid residues impor-
tant for allostery [13–15], encompassing secondary structure
elements that define the “allosteric pathways” of the enzymatic
system [16]. Experimental characterization of allosteric pathways
is extremely challenging, and computational chemistry techniques,
such classical molecular dynamics (MD) simulations, could provide
unique information on protein dynamics at atomistic resolution
that significantly contributes to the elucidation of allosteric
mechanisms [17–19]. Standard MD simulations, in fact, are rou-
tinely used to monitor protein motions up to the μs timescale,
yieldingMD trajectories that comprise the protein dynamics under-
pinning the allosteric mechanisms [20]. On the other hand, the
atomistic resolution of MD simulations and the large size of pro-
teins (in the atomistic scale) make the recognition of allosteric
pathways (within the large network of physico-chemical interac-
tions typical of proteic systems) a real challenge for standard analysis
of MD trajectories. Graph theory encompasses the appropriate
tools for modeling complex dynamical networks of chemical inter-
actions resulting from atomistic MD simulations. Various graph
theory approaches could be exploited to represent a protein and
to decipher its allosteric mechanism, including the contact and the
elastic network models reported in details in this book series
[21, 22]. Here, we describe a method that combines the informa-
tion on the correlated protein motions resulting from atomistic
MD simulations with a network analysis based on graph partition-
ing into mutually exclusive groups, named communities. The com-
munity network analysis (CNA) has been applied to several
biological systems, including allosteric enzymes, nuclear receptors,
and bacterial adaptive immune systems [23–30], providing elucida-
tion of allosteric pathways and supporting rational discovery of
synthetic allosteric modulators [31, 32]. As exemplifying case, we
report here the CNA analysis of the imidazole glycerol phosphate
synthase (IGPS) enzyme from the thermophile Thermotoga mar-
itima, an allosteric enzyme that represents a potential target for
allosteric drugs development [23, 33–35].

2 Materials

2.1 Initial Conditions The proposed CNA method is based on the measure of protein
motion correlations and thus relies on the protein dynamics result-
ing from classical MD simulations. In order to set up MD simula-
tions, initial conditions need to be defined. First, basic structural
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information on the target protein is required, with initial structure
usually extracted from the reference database for protein structures,
i.e., the Protein Data Bank [36]. The protein dynamics is preferen-
tially simulated in realistic environmental conditions, i.e., in pres-
ence of the explicit solvent (generally water) and eventually, if the
protein is particularly small, accounting for appropriate salt concen-
tration. The whole system is generally comprised within a cubic
box, which is then periodically replicated using periodic boundary
conditions.

2.2 Molecular

Dynamics Simulations

Several freely distributed coded are available for performing classi-
cal MD simulations, including for instance AMBER [37], GRO-
MACS [38], and NAMD [39], which also an extended set of useful
tutorials for beginners [40–42]. In our applications of the CNA
method, we have employed the NAMD software, choosing the
AMBER (all-atom) force fields [37, 43] to describe the interactions
between atoms. Anyway, the choice of a different all-atom force
field does not exclude the possibility of performing the CNA anal-
ysis, as explained in the following section. A time window for the
CNA analysis has to be selected, in order to perform MD simula-
tions of opportune lengths (see Note 1). Standard MD simulations
generally provide trajectories for not more than few micorseconds
and thus enough statistics could be collected for time windows of
few hundreds of nanoseconds (see Note 2), a timescale in which
several protein motions (such as unhindered surface side chain loop
motions, collective motions, partial folding/unfolding, helix-coil
transitions, etc.), eventually related to allostery, already occur.

2.3 Protein Motion

Correlations

MD simulations produce trajectories that are subsequently ana-
lyzed to obtain protein motion correlations. Pair-correlations
between motions of two amino acid residues can be obtained
from MD trajectories by calculating the normalized covariance
matrix, r[xi,xj], of atomic fluctuations (xi and xj for atoms i and j,
respectively), generally using alpha carbon atoms (Cα) to represent
each residue, defined analogously to the Pearson correlation
coefficient as

r xi, x j

� � ¼ xi∙x j

� �
= x2i

� �
x2j

D E� �1=2
ð1Þ

with values close to 0 for uncorrelated motions and 0< r[xi, xj]� 1
for correlated motions and �1 < r[xi, xj] � 0 for anti-correlated
ones. This measure of pair-correlation is however limited to linear
correlations and is strongly dependent on the relative orientation of
atomic fluctuations, i.e., correlated motions that are orthogonal
result as uncorrelated due to zeroing of the dot product in the
definition of r[xi,xj]. Since the protein graph in the CNAmethod is
based on the measure of such pair-correlations, using a more accu-
rate estimate of protein motions is highly desired [23]. We have
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opted for the generalized correlation coefficient rMI proposed by
Lange et al. [44] and defined as

rMI xi, x j

� � ¼ 1� exp �2I xi, x j

� �
=d

� 	
 � ð2Þ
where d is the dimensionality of the variables xi and xj, and I[xi,xj] is
the mutual information (MI) between the two variables (see Note
3), which is associated to the expected value of the information
content of a discrete random variable, i.e., to its Shannon entropy
[43]. The information content is calculated using the Cα atomic
positions fluctuations derived from the MD simulations, upon
removal of translational and rotational motions by alignment of
Cα atoms along an MD trajectory, by means of the k-nearest
neighbor distances algorithm [45] as implemented in the “g_cor-
relation” code [44] of the GROMACS software [38], which can be
also used to compute the Pearson correlation coefficient. The
rMI[xi,xj] coefficient will be zero for fully uncorrelated motions
and it will assume values up to 1 for fully correlated motions, so it
can be compared with the absolute value of the r[xi,xj] Pearson
correlation coefficient. As shown in Fig. 1, the rMI[xi,xj] coefficient
captures more correlations with respect to the r[xi,xj] Pearson
coefficient as it accounts for nonlinear correlations and it does not
vanish for correlated motions with orthogonal orientations.

Fig. 1 Comparison of the generalized (rMI, lower right triangle matrix) and the
Pearson (r[xi,xj], upper left triangle matrix) correlation coefficients, with Pearson
coefficient absolute values reported. The data refer to 50 ns representative MD
simulation of the apo-IGPS enzyme, as reported in and reprinted with permission
from ref. [23]
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In order to improve the estimates of the protein motion corre-
lations a statistical analysis over multiple MD simulations should be
performed. The correlation coefficients can be computed for each
independent MD trajectory (or as a single computation of conca-
tenated independent trajectories) and then averaged out. As men-
tioned above, the correlation coefficients (including r[xi,xj]) can be
computed using the GROMACS software, which requires the
topology file (containing all the necessary information to compute
the forces and velocities for the MD) to be in the GROMACS
format. This topology file format can be obtained from other
topology formats (e.g., from AMBER topology file) using free
software, such as ParmEd [46].

3 Methods

3.1 Dynamical

Weighted Network

The pair-correlations coefficients defined above measure how cor-
related are the motion of two residues recorded during a MD
simulation. When employing the mutual information measure,
i.e., the generalized rMI[xi,xj] coefficients, the pair-correlations
are directly related to the exchange of information between two
residues and can then be used to weight a graph that models the
information exchange within a protein according to its dynamics,
i.e., to build a dynamical weighted network. First, a protein graph
needs to be defined. Since the correlation coefficients are computed
using the Cα atomic positions fluctuations, each node of the graph
is associated to each Cα of the protein representing each amino acid
residue in the primary sequence, see Fig. 2a. To complete the graph,
one needs to build an adjacency matrix,A, i.e., a matrix that defines
the existence of connections (edges) between the nodes, thus with
entries Aij equal to zero if the nodes i and j are not linked by an
edge, or is different from zero if the nodes are connected. For a
graph weighted by wij coefficients, the adjacency matrix reads

Aij ¼
wij if edge for nodes i and j exists

0 otherwise

(
ð3Þ

The zeros of the adjacency matrix should thus represent the
pairs of residues that do not exchange information (through corre-
lated motions) and thus are not linked in the dynamical weighted
network. Sethi et al. [27] proposed to use a distance cutoff to
discriminate between residues that are linked or not in dynamical
weighted networks, i.e., suggested to include only edges that rep-
resent pairs of residues that are found at chemical distance (at least
one distance between heavy atoms is below the cutoff, varying in
the range of 3.5–5.5 Å) during theMD simulations, thus excluding
long-range correlations from the network of communications, see
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Fig. 2b. The distance cutoff thus defines the presence of contacts
between residues and it is complemented by a statistical “percent-
age” cutoff, which is related to how long two residues are in contact
along the MD trajectories: for a fixed cutoff distance, the contacts
are evaluated along the trajectories and their existence is deter-
mined as function of the percentage of frames (from 65% to 85%)
in which these contacts are effectively present. The CNA results are
checked against these two cutoffs (distance and percentage) in
order to provide robust and converged outcome.

Finally, the edges weights wij that fill the nonzero entries of the
adjacency matrix, as defined in Eq. 3, are obtained from the
generalized correlation coefficient rMI[xi,xj] (see Eq. 2) by convert-
ing them into communication “distances” dij by taking the �log
[rMI(xi,xj)] for all pairs of residues i and j that are in contact, see

Fig. 2 Schematic representation of the graph theory methodology employed. (a) The nodes in the graph are
associated to the Cα of the amino acid residue in the protein primary sequence. (b) The edge between two
nodes exists if a contact distance cutoff (varying between 3.5–5.5 Å) is satisfied. (c) For all pairs of residues
i and j that are in contact, the generalized correlation coefficient rMI[xi,xj] is converted into communication
“distance” dij that is used to weight each edge in the network. (d) The edge betweenness (EB) defined as the
number of shortest pathways (SPs) that cross a given edge is used as partitioning criterion for the weighted
network. In the example, the SPs for the three pairs of residues i-j, i-k, i-l all cross the edge between residues
a and b, yielding an EBab equal to three. (e) The Girvan-Newman algorithm removes (or cuts) edges with the
highest EBs, partitioning progressively the weighted network into communities
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Fig. 2c. In this way, the dynamical weighted network represents a
communication network where the residues physically in contact in
the protein structure (for most of the time along the MD simula-
tion) exchanging more information (i.e., have larger pair-
correlation coefficients) and are found closer in distance within
the graph with respect to those that, despite being in physical
contact, have lower correlation coefficients and thus communicate
less among each other.

3.2 Community

Network Analysis

The dynamical weighted network, as defined in the above section, it
contains information paths and critical nodes that are important for
communication within the proteic system under study. Such net-
work already contains relevant information for allostery and it can
be analyzed by determining the shortest pathways (SPs) between all
pairs of (not directly linked) nodes/residues. The SPs within the
protein communication network can be calculated using the Floyd-
Warshall algorithm [47], representing the best communication
pathways among pairs of residues. The communication pathways
between physically distant amino acid residues (such as those in the
active and allosteric sites) are of extreme relevance for the elucida-
tion of allosteric mechanisms. Still, it is not straightforward to
identify the allosterically relevant residues among which to calculate
the SPs, since both the allosteric and active sites are generally
characterized by sized domains, possibly involving a relatively
large number of amino acid residues. Thus, it becomes quite useful,
especially for large proteic systems, to use the information embod-
ied in the SPs for partitioning the whole dynamical network,
providing a coarse-grained view of the communication flows within
the protein network that facilitates the understanding of the allo-
steric mechanisms.

The Girvan-Newman algorithm [48] can be used to split the
dynamical weighted network into “communities,” i.e., local sub-
structures involving groups of nodes within which the connections
are dense but between which they are sparser. This algorithm
exploits as partitioning criterion for the weighted network the
edge betweenness, EB, defined as the number of SPs that cross a
given edge, see Fig. 2d [49], measuring of how much this edge is
responsible for connecting the other pairs of nodes in the network.
Therefore, the edges with the highest between-nesses are those
carrying on the highest amount of information exchange within
the protein network. An iterative procedure that starts from the
whole protein network as a single big community and removes/
cuts the edges with highest between-nesses would, then, isolate the
nodes progressively creating smaller and smaller communities, up
to generation of a number of communities that corresponds to the
number of (isolated) nodes, see Fig. 2e. The iterative procedure
could, however, be interrupted at given step and produce a specific
partition of the dynamical weighted network, namely a community
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structure. If one considers the community structure as a network of
communities, then each node in such graph is a community and the
edge connecting two different communities is the sum of all (pro-
tein network) edges (with highest EBs) that have been removed
during the Girvan-Newman procedure. Thus, the community net-
work represents a coarse-grained, where linked communities are
connected by edges that are weighted by the inter-communities EB
(IEB), i.e., the sum of the EBs associated to the pairs of residues
connecting the two communities. The IEBs indicate the strength of
the communication flow between pairs of communities and thus
represent a simplified way to represent the communication asso-
ciated to correlated protein motions within a protein.

The optimal partition of the protein network into communities
is obviously not that where the number of communities equals the
number of nodes and, thus, the quality of the network partition has
to be evaluated in order to determine the best distribution of nodes
in the communities, i.e., the optimum community structure. The
modularity of a given network division, i.e., the difference in prob-
ability of intra- and inter-community connections [49], is a very
useful quantity to measure the quality (or strength) of a community
structure. The modularity, Q, is defined as

Q ¼
X

i
eii � a2

i

� 	 ð4Þ
where eij is the fractions of edges that link nodes in community i to
nodes in community j, and ai ¼ ∑j eij is the fraction of edges that
connect to nodes in community i. The modularity values range
from 0 to 1 (see Fig. 3), the higher the values, the higher the quality
of the community structure, with typical values for community
networks originated from 3D structures being >0.4 [49]. By
selecting the community structure with the maximal modularity
among those generated by the iterative Girvan-Newman algorithm,
the optimum community structure is chosen in such a way that each
community contains nodes that are highly intra-connected while
different communities are poorly inter-connected but through few
critical edges, representing the pairs of nodes crucial for commu-
nications among communities.

3.3 Assessment

of Cutoff Parameters

Choice

As mentioned in the previous sections, the adjacency matrix defin-
ing the dynamical weighted network is bound to the contact crite-
rion associated to the distance and percentage cutoff parameters. As
a consequence, the generation of the optimum community struc-
ture for the dynamical weighted network, described in the above
section, is carried out for a given set of these two cutoff parameters,
i.e., one contact distance and one percentage of MD frames. In
order to assess the reliability of an optimum community structure
representing the correlated protein motions in a given MD simula-
tion, thus, is necessary to analyze the effect of the cutoff
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parameters. To this aim, the community repartition difference
(CRD) [27] between two different community structures (e.g., c1
and c2) can be computed as

CRD c1,c2ð Þ ¼ 1�
P

ni ,n j
z ni,n j , c1
� 	

z ni,n j , c2
� 	

P
ni ,n j

z ni,n j , c1
� 	 ð5Þ

where z(ni, nj, ci) is 1 if nodes ni and nj belong to the same
community in a given community structure (ci) and 0 otherwise.
Thus, CRD represents a normalized count of node pairs that are
grouped together in both community structures (c1 and c2), going
to 0 if the two community structures are identical or to 1 if they are
totally different. The CRD is then a good estimate of the similarities
between two optimum community structures obtained with differ-
ent values of the distance and/or percentage cutoff parameters (see
Fig. 5).

4 Applications

The CNA method (see Note 4) described in the above section has
been applied to various proteic systems featuring allosteric regula-
tion, including allosteric enzyme [23], nuclear receptor [24], and

Fig. 3 Schematic workflow of the community network analysis. MD simulations and estimate of correlated
motions (gray boxes) are followed by dynamical weighted graph construction and edge betweenness
computations (green boxes), allowing application of the iterative Girvan-Newman algorithm with evaluation
of the community network modularity (blue boxes) in order to define the optimum community network (red
box)
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bacterial adaptive immune system [25]. In particular, the imidazole
glycerol phosphate synthase (IGPS) enzyme from the thermophile
Thermotoga maritima, see Fig. 4, has been the target system for
assessing the community network analysis based on mutual infor-
mation of correlated motions. This prototypical enzyme is, indeed,
a V-type allosteric enzyme (i.e., allosteric regulation affect enzy-
matic kinetics but not substrate binding affinity) featuring a tight
connection between protein dynamics and allosteric regulation as
previously demonstrated by nuclear magnetic resonance (NMR)
relaxation dispersion experiments and calorimetry measurements
[50, 51]. The IGPS enzyme is involved in essential biochemical
pathways (purines and histidine synthesis) of pathogens but it is
absent in mammals, thus representing a potential target for antibi-
otic and antifungal development [33–35]. The HisH glutamine
amidotransferase, which catalyzes the hydrolysis of the substrate
(glutamine), and the HisF cyclase, where the effector PRFAR, i.e.,

Fig. 4 (a) Typical evolution of modularity (Q) values during the iterative Girvan-
Newman procedure, with maximum value, max(Q), determining the optimum
community structure. (b) Typical plot of community repartition difference (CRD)
values obtained comparing community structures with different distance
(3.5–5.5 Å) and percentage (65–85%) cutoff parameters, with reference set to
community structure at 5.0 Å and 75%. Reprinted with permission from ref. [23]
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N0-[(50-phosphoribulosyl)formimino]-5-aminoimidazole-4-car-
boxamide-ribonucleotide binds, are the two tightly associated pro-
teins constituting the IGPS allosteric enzyme, as shown in Fig. 4.
PRFAR effector binding accelerates glutamine hydrolysis by
ca. 5000-fold, with respect to the apo-IGPS enzyme [52].

As shown in Fig. 4, the outcome of the CNA method is a
coarse-grained picture of the division of the allosteric proteic sys-
tem, which has a straightforward structural interpretation but it
also contains information on the communication flow within the
complex network of amino acid residues. In the case of IGPS, the
CNA method showed to be quite sensitive to the changes in
communication network induced by the allosteric regulator, allow-
ing detection of suggested secondary structure elements and key
residues involved in the allosteric signal propagation [23]. In par-
ticular, the IGPS allostery involves a specific sequence of interac-
tions at one side of the IGPS complex (sideR, see Fig. 4) that alters
the protein dynamics, with i) hydrophobic interactions in the fβ2
strand and hydrogen bonds in the flexible loop1 at the HisF alloste-
ric site; ionic interactions between fα2, fα3, and hα1 helices at the

Fig. 5 (a) 3D representation of the community network structures for apo and effector-bound IGPS enzymes,
showing how communities are related to groups of secondary structure elements within the HisH and HisF
proteins. (b) Schematic representation of the community network structures, showing how the links between
communities, whose widths are proportional to the IEB values, can readily describe the changes in
communication flow induced by the PRFAR effector. (c) IGPS allosteric pathways connecting effector and
active sites, as suggested by the CNA method. Reprinted with permission from ref. [23]
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HisF/HisH interface; and hydrogen-bonding between the Ω-loop
and the conserved 49-PGVG sequence (i.e., the oxyanion strand)
adjacent to the HisH active site. The CNA outcome showed to be
of particular help for further manipulation of the allosteric regula-
tion in IGPS, allowing rational design of allosteric inhibitors that
could interfere with the suggested allosteric pathways [32] and
promoting experimental mutagenesis studies [53] that granted
knockout of IGPS allosteric signal propagation. Moreover, the
CNA proved to be a transferable approach that we have successfully
employed to other allosteric systems [24, 25], in conjunction with
other graph approaches involving the eigenvector centrality metric
to account for long-range correlated motions [26] and to dynami-
cal perturbation networks based on inter-residues physical contacts
along MD simulations [54].

5 Notes

1. The CNA method is based on the outcome of standard MD
simulations, and the outcome is strictly related to the simula-
tion time and the window the user decides to analyze. Gener-
ally, time windows around 50–150 ns are reasonable, while this
depends on the system size: larger protein usually requires
longer MD simulation time to sample motions possibly rele-
vant to allostery.

2. To get the best possible statistical analysis of correlated
motions, once a time window is selected (e.g., 100 ns), several
“running” time windows of that length should be extracted
from the MD trajectories. As mentioned above, running more
than one independent simulation is strongly suggested. The
correlation coefficients computed for each of these time win-
dows (and for multiple trajectories) can then be averaged out to
provide a single correlation matrix for each system. A prelimi-
nary investigation of the CNA outcome as function of the time
window length chosen (e.g., comparing results with 50, 100,
150 ns time windows) is also suggested.

3. For very large proteic systems, the computation of the correla-
tion coefficients might be quite demanding. To overcome this
limitation, a suggested solution is to use linearized MI coeffi-
cients, as suggested by Lange et al. and implemented in the
“g_correlation” code [44] of the GROMACS software [38].

4. The code for the CNAmethod is available under request to the
authors of this chapter. The code provides as output pictures
like those in Fig. 4b and text files that can be readily used to
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produce 3D representation of the community network struc-
tures by employing a visualization software, such as the Visual
Molecular Dynamics tool [55].
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Chapter 10

The PyInteraph Workflow for the Study of Interaction
Networks From Protein Structural Ensembles

Matteo Lambrughi, Valentina Sora, and Matteo Tiberti

Abstract

PyInteraph is a software package designed for the analysis of structural communication from conforma-
tional ensembles, such as those derived from in silico simulations, under the formalism of protein structure
networks. We demonstrate its usage for the calculation and analysis of intramolecular interaction networks
derived from three different types of interactions, as well as with a more general protocol based on distances
between centers of mass. We use the xPyder PyMOL plug-in to visualize such networks on the three-
dimensional structure of the protein. We showcase our protocol on a molecular dynamics trajectory of the
Cyclophilin A wild-type enzyme, a well-studied protein in which different allosteric mechanisms have been
investigated.

Key words Protein structure networks, PSN, Structural communication, Allostery, Salt bridge,
Hydrogen bond, Atomic contact, Non-covalent interaction, Graph

1 Introduction

1.1 Long-Range

Structural

Communication in

Proteins

Localized changes in the structure of a protein can influence distant
regions, resulting in sometimes dramatic changes far from the site
of the perturbation in terms of both structure and dynamics. Such
perturbations can be, for instance, the binding of a small molecule
as inhibitor or effector, but also a mutation or a post-translational
modification [1–3]. The localized perturbation at a site imposes
stress on the protein structure and changes in dynamics, and such
changes propagate throughout the structure to other parts of the
protein. The transmission of structural information happens
through pathways of interconnected residues that are
pre-encoded in the structural ensemble and can be one or more
likely several. Mutations in these communication routes may affect
the propagation of the signal [4]. In this sense, dynamical motions
and intra-residue contacts are the underlying substrates through
which structural communication happens.
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In this context, in silico methods, such as Molecular Dynamics
(MD) simulations, have been used to identify the most important
residues and pathways involved in structural communication, due
to their ability to inform about how the protein behaves in the
ensemble at least on a limited timescale [1, 2, 5–7]. To extract
information about the most important residues involved in com-
munication and possible structural communication pathways, as
well as to identify key structurally important residues and important
interactions between residues, protein structure networks (PSNs)
have been proved to be a particularly useful representation of the
protein structure and dynamics. In the following paragraph, we will
summarize how PSNs are derived and analyzed, and detail our
approach for their investigation – implemented in the PyInteraph
software [8].

1.2 Definition

of Protein Structure

Networks

Networks or graphs have been used extensively to map and analyze
relations between elements of a system in disparate fields. This
powerful model allows to keep track of and study the behavior of
complex systems in which the interaction of single elements gives
rise to emergent behaviors. A graph is a mathematical model com-
posed of unique elements (nodes) that are connected to each other
through arcs or edges according to the existence of a specific
relation between each pair. Such networks can be represented as
square matrices called adjacency matrices, in which each row and
column corresponds to an individual node, and a value different
from zero is present in the respective position in the matrix if an
edge is present between those two nodes. A number or weight can
be associated to an edge in order to quantify the extent of their
relation. Once a system is represented as a network, analysis tech-
niques can be applied agnostically with respect to the type of data
they encode, makingmany different analyses andmethods available.
Not surprisingly, the network paradigm has been applied in the field
of structural biology as well, among others, in the form of protein
structure networks (PSNs), also called residue interaction networks
(RINs) or amino acid networks (AANs). Extensive reviews on what
PSNs are and how they are used in the context of structural biology
are available elsewhere [9–13] and here, we will summarize the
main concepts behind them. A PSN is a network representation
of the relations between residues in a protein, calculated either from
a single experimental structure or an ensemble of conformations,
depending on how the network is defined. The definition of what
nodes and edges correspond to in the protein structure is what
defines the network, the most common choice being to consider
the monomeric unit of a protein (i.e., the residue) as a node. Edges
are undirected, meaning they have no specified direction, and can
be defined in a number of ways depending on which property or
feature is used to measure the relation between residues, and if this
relation is detected on a single protein structure or ensemble of
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structures. Edge weight is often used to quantify the relation so that
only edges that are associated with significant weights are retained;
however, the decision of connecting two residues with an edge does
not necessarily depend on the weight itself, and the two can be
independent.

The most popular edge or weight definitions that have been
employed so far are based, among others, on atomic side-chain
contacts or otherwise defined interatomic distances, on interaction
energy based on a force-field or knowledge-based potentials and
others. Other network representations of protein dynamics
are based, for instance, on local changes in the protein structure
[14–16].

1.3 Analysis of PSNs Once a PSN has been calculated from a protein structure or ensem-
ble, different graph analysis techniques and network parameters can
be calculated on the graph to extract useful information. One of the
simplest and most important to calculate is the degree of each node,
equal to the number of edges that are connected to that node. This
allows identifying hubs, i.e. residues that are particularly well
connected in the protein structure and are usually important for
protein stability and as communication hubs [9].

Paths are successions of residues or edges which allow reaching
a target residue from a source one. In this way, a chain of contacting
residues through which structural communication may happen can
be identified. Shortest paths are usually considered in PSNs as the
most straightforward routes of structural communication [9].

Clusters or connected components are related with the global
structure of the network and are defined as subgraphs in which
paths exist between each pair of nodes but not with the rest of the
network, representing more interconnected regions of the
protein [9].

1.4 PyInteraph Most definitions of PSNs rely on distances between atoms, the
most popular ones being based on simple atomic contacts. While
atomic contacts are indeed descriptive of the intraprotein interac-
tions in an ensemble, they do not account for the different physico-
chemical properties of the protein amino acids and do not take in
consideration specific types of non-covalent interactions that are
known to be important for stability and dynamics. Such interac-
tions are sometimes residue-specific (for instance in the case of salt
bridges), meaning that their analysis can help in understanding how
mutations affect the interaction network in the protein. Under
these premises, a PSN based on different classes of the most rele-
vant non-covalent interactions found in proteins may help us get a
clearer picture of the interactions occurring among residues and
complement more standard PSN analyses based on atomic con-
tacts. This was the drive behind the development of PyInteraph, a
set of tools designed to facilitate the generation and analysis of
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network types based on specific residue-residue interaction net-
works. Since long-range communication can happen through less
specific contacts, however, we also included a more general way to
generate and analyze the PSN which is based on distances between
centers of mass (cmPSN).

The primary function of PyInteraph is to compute, on confor-
mational ensembles, three types of intramolecular interactions
which are thought to be the most important non-covalent interac-
tions in the protein structure: hydrophobic contacts, hydrogen
bonds, and salt bridges. In PyInteraph, a hydrophobic contact is
identified when the center of mass of the side chain of two hydro-
phobic residues is found within a given distance cut-off, which is
5 Å by default.

For salt bridges, the program is able to derive which charged
groups belonging to side chains and main chain are present,
depending on the topology. Charged groups are defined as those
groups of charged residues (as Asp, Glu, Lys, Arg, and His, plus
main-chain N- and C-termini) with a certain protonation state.
Considering one pair of charged groups at the time, all the dis-
tances between atom pairs belonging to them are calculated, and
they are selected as taking part in a salt bridge if at least one pair of
atoms is found at a distance shorter than 4.5 Å by default.

A hydrogen bond is identified when a hydrogen and an accep-
tor atom are within 3.5 Å and the donor-hydrogen-acceptor angle
is greater than 120�.

Each type of interaction is calculated independently and con-
sidered as a separate network at first. For each ensemble conforma-
tion, an interaction graph is calculated and two nodes are
connected by an edge if at least one interaction of the specified
type is found between the residues. The final network is con-
structed by counting, for each residue pair, the number of ensemble
conformations in which two residues were connected by an edge
over the total number of frames, times 100 to obtain a persistence
value. In this way, one network per interaction type is collected, in
which edges are weighted by the persistence of the given interaction
in the ensemble. Two residues are connected by an edge in the final
network if this value is above 0.0 or above a chosen significance
cut-off.

Merging these networks to account for the interactions of each
type is just a matter of keeping those edges that are present in at
least one network, thus generating the so-called intramolecular
interaction network (IIN).

PyInteraph also implements a knowledge-based potential [17]
for the calculation of energy networks. Briefly, it is based on a four-
distance description of interactions between specific atoms of side
chains, which were chosen as those having the largest number of
contacts in a dataset of high-resolution protein structures. The
potential is calculated as follows:
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ΔE ¼ �kBT ln P real=P randð Þ
where

P ¼ P distf gjAAð ÞP AAð Þ
P({dist}|AA) is the probability of identifying a specific combi-

nation of the four distances for a residue pair and P(AA) is the
probability to observe a contact between side chains for a residue
pair in the structure. Preal was derived using experimental structures
while Prand was determined using a random model.

PyInteraph also includes scripts for the analysis of the networks,
for the determination of persistence significance thresholds, and for
the calculation of network properties such as hubs, connected
components, and paths.

Finally, the suite includes a PyMOL plug-in for the visualiza-
tion of the identified single interactions on the protein structure.
Visualization of the networks is best done using the xPyder plug-in,
detailed in Subheading 1.6.

PyInteraph has been used for the study of several biological
systems, giving insight on local and long-range effects and allowing
to investigate residues important for structural stability and intra-
molecular interactions [18–29].

1.5 Customization PyInteraph has been built to be as customizable as possible and
none of the parameters described throughout the text are hard-
coded. The user can modify the cut-offs and definitions of the type
of interactions described above. Charged groups are defined in a
configuration file which can be modified with custom charged
groups of any residue, natural or not, or even of other molecules.
Similarly, another configuration file is available for hydrogen bonds,
and the user can define which atoms are possible hydrogen bond
donors or acceptors to consider non-standard residues. More
details are available in the Notes.

1.6 Related Tools:

xPyder

xPyder [30] is a PyMOL [31] plug-in initially designed to visualize
and analyze networks of correlated motions on the protein struc-
ture, such as dynamic cross-correlation matrices. The program is,
however, agnostic regard to the type of network it is able to plot
and analyze, the only requirement being an adjacency matrix file
encoding a weighted network which has precisely one node per
protein residue in the input structure. Since the PSNs calculated by
PyInteraph are by default stored in such a format, xPyder is the
ideal tool to plot and visualize them. xPyder represents networks in
the protein structures as cylinders connecting residues in the three-
dimensional 3D structure, whose thickness depends on the weight
of the associated edge. The plug-in includes options to filter the
network according to a number of criteria, including edge weight,
sequence proximity, distance between nodes, selection of specific
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nodes and edges and more. It allows performing network analysis
by calculating and visualizing hubs, connected components, and
paths between selected residues on the structure. It also allows to
calculate the difference matrix between two loaded matrices and
visualize it as well. Finally, it supports customizing colors, thick-
ness, and scale of the plotted interactions to produce publication-
ready figures. xPyder has been used in a number of studies for the
analysis and visualization of different types of networks, including
those generated by PyInteraph [21, 32–38].

1.7 Our Test System:

Cyclophilin A

We have used Cyclophilin A as a test case for our protocol. CypA is a
peptidyl prolyl cis-trans isomerase involved in different biological
functions and an important therapeutic target due to its involve-
ment in pathological processes such as viral infection, cancer, car-
diovascular diseases, neurodegeneration, aging, and others
[39]. Different studies investigated CypA’s dynamics and allosteric
mechanisms and how these are coupled to catalysis and substrate
recognition to shed light on its functions and exploit them for
inhibitor drugs development and protein engineering [40–44]. It
has been shown that dynamics of this enzyme happen on the same
timescale as the catalytic turnover and that they are coupled to
protein function, including long-range structural communication
effects. Mutations of residue Ser99, 14 Å away from the active site,
influence the dynamics of the catalytic residue Arg55 and affect
reaction rates through a dynamic network of residues [40, 45]. Fur-
ther experimental and computational works allowed to identify
different dynamic pathways and distal regions in CypA that are
involved in allosteric communication with the active site. For exam-
ple, distal regions around the Val29 and Val6 residues have been
recently identified to be involved in allosterically coupled dynamic
networks in CypA and mutations of these key hotspot residues alter
dynamics at the active site, modulating enzymatic function through
allosteric networks [42, 44]. These reasons make CypA particularly
suitable to be a good test case for our protocol.

2 Materials

The PyInteraph software was downloaded from https://github.
com/ELELAB/PyInteraph and the xPyder PyMOL plug-in from
https://github.com/ELELAB/xPyder. These packages were
installed according to the installation instructions included with
each. PyInteraph is written for Python 2.7 and includes C and
Cython extensions, which need to be compiled during installation
(see Note 1 for more details). xPyder is a PyMOL plug-in and thus
requires the PyMOL software to run.

We have used a 1 μs molecular dynamics simulation trajectory
of wild-type CypA to demonstrate our protocol, whose set up is
detailed elsewhere [25, 40]. Notably, this simulation was
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performed using the GROMACS software and the CHARMM22*
force field [46] and its trajectory was available in the XTC file
format (see Note 2 for details on compatibility with trajectory
formats). The steps described below were carried out on a server
running Ubuntu Server 14.04 from the command line, or on a
common MacBook Pro running macOS when a graphical user
interface was required, as when using xPyder.

3 Methods

3.1 Preparation

of Topology

and Trajectory

for the Analysis

As most trajectory analysis tools, PyInteraph requires a topology
and a trajectory file to work (see Notes 2 and 3). As the software
relies on atom names to recognize different analysis groups, the
names in the topology file should be consistent with atom and
group definitions that the software uses, so that PyInteraph can
correctly recognize the groups between which interactions are
calculated. This means that the user can either modify the configu-
ration file so that it matches the definitions in the topology file or,
conversely, modify the topology file so that atom names match the
definition in the configuration files. It should be noted that the
latter uses standard PDB residue and atom names, meaning that
they should fit most cases (see Note 4 for more details on analysis
customization). Nonetheless, depending on the setup of each sim-
ulation and used software, some adjustments may be required, as
MD software frequently assign non-standard names to residues or
atoms depending on the force-field definition. Running pyinteraph
with the verbose option (�v) outputs the groups from the topology
that the program will use for calculation, meaning that the user can
always verify whether the program recognizes groups correctly. In
particular:

1. For hydrophobic interactions, no adjustment is usually neces-
sary. Nonetheless, when asking the software to use force-field
masses during calculation (option --ff-masses of the pyinteraph
executable), masses will be assigned according to residue and
atom names. Standard atom and residue names are required to
assign masses correctly, and the software will try to guess the
element corresponding to the atom type and to assign a mass
value accordingly if they are not already available. This is espe-
cially important for force fields that use non-standard masses
for heavy atoms (as united-atoms or coarse-grained force fields;
see details in Note 5).

2. For hydrogen bonds, no adjustment is necessary in case the
topology file uses standard atom names.

3. For charged groups, no adjustment is necessary in case the
topology file uses standard atom names and standard residue
names.
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4. The protein or proteins in the trajectory need to be made
whole, meaning that no broken molecules should be present
because of periodic boundary conditions. It is also good prac-
tice to remove any molecule or atom that does not need to be
included in the analysis from topology and trajectory.

In the case of CypA, we modified the topology file by changing
the non-standard names assigned by GROMACS to some hydro-
gen atoms to the standard ones, so that charged groups of arginine
would be correctly recognized and that atomic masses would not
need to be guessed. We also added the missing chain name in the
topology pdb file (“A”) so that the output files would contain it
instead of the generic SYSTEM label, which is used when no chain
definition is supplied. In the case of CypA, we filtered the trajectory
by keeping only the protein atoms and we made sure that the
protein was whole throughout the entire trajectory using the
gmx trjconv program available in the GROMACS package.

3.2 Interaction

Networks

After preparing the system, PyInteraph can be used to calculate the
network of each intramolecular interaction type, which are hydro-
phobic contacts, salt bridges, and hydrogen bonds. The analysis
writes as output two main files for each interaction type. One is the
interactions file, a text file that contains the list of the non-covalent
interactions identified in the ensemble. This file can be used in the
interaction plotter PyMOL plug-in which is included in the distri-
bution of PyInteraph (more in Note 6). The second output is a
graph adjacency matrix file containing the adjacency matrix of the
interactions with persistence values as weights, and which can be
processed by using filter_graph and graph_analysis tools and visua-
lized on the structure using the xPyder plug-in in PyMOL (see
Note 7 for more details on the file format). The interaction net-
works are produced as follows:

1. Calculate non-covalent interactions between residues from the
MD trajectory. We used the pyinteraph programwith options -b
to analyze salt bridges, -f to analyze hydrophobic contacts, and
-y to analyze hydrogen bonds. For each interaction type, we
collected the corresponding interaction files and the adjacency
matrix files. The files containing the topology of the system and
the trajectory were specified with -s and -t options, respectively.
We used the --ff-masses option to perform the calculation using
the definition of masses from the CHARMM27 force field (see
Note 5 for details). The output files are defined by the --sb-
graph, --hb-graph, --hc-graph options for the graph adjacency
matrix files of salt bridges, hydrogen bonds, and hydrophobic
clusters, respectively. We calculated the hydrogen bonds con-
sidering only the donor-acceptor atoms located on the side
chains of the residues using the option --hb-class sc-sc, in order
to exclude hydrogen bonds involved in the formation of the
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secondary structure. We performed the calculation of salt
bridges considering the distances between positively and nega-
tively charged groups, as by default (see Note 4 for more
details). In this case, we decided to keep all the edges with a
persistence value higher than zero (see Note 8).

2. Identify the persistence significance threshold (Pcrit). In order
to remove the most transient interactions, we used the filter_-
graph tool to perform an estimation of the threshold of signifi-
cance for the interaction persistence in the graph (Pcrit). Pcrit is
calculated by filtering the original graph several times for
increasing persistence threshold values, which is accomplished
by removing edges having a weight lower than a given cut-off.
For each filtered graph, the size of the biggest connected
component is then calculated. The plot resulting from the
procedure, as the one from the graph of hydrophobic contacts
shown in Fig. 1a, generally exhibits an abrupt decrease, often
with a sigmoid-like shape for globular proteins, with a central
point that represents a threshold with a good balance between
having a too interconnected and a too sparse network. Based
on this analysis, we set a persistence threshold of 20, which was
also compatible and used for the salt bridges and hydrogen
bond graphs (not shown). This threshold indicates the mini-
mum percentage of frames in which an interaction should be
present over the whole ensemble to be considered.

3. Filter each graph according to the identified persistence thresh-
old. We used the filter_graph program to perform graph filter-
ing according to the selected Pcrit threshold of 20, removing all
the edges with weight lower than this value. We specified the
graph to be filtered with the option -d and the persistence
threshold using the -t option. Figure 1b–d shows the filtered
salt bridges, hydrogen bonds, and hydrophobic cluster net-
works, respectively.

4. Visualization and analysis of the calculated networks. We plot-
ted and visualized each interaction type on the reference struc-
ture, using the xPyder plug-in for PyMOL. To do so, we loaded
the topology PDB file in PyMOL, opened the xPyder plug-in,
and loaded an adjacency matrix file. We then generated the
corresponding graph in the Graph analysis tab and visualized
hubs, defined as residues involved in three or more distinct
interactions.

It should be noted that network properties, such as hubs and
connected components, can be analyzed using either xPyder or
the graph_analysis tool in PyInteraph. See section 3.5 for an exam-
ple of the latter.

Salt bridges can have local and long-range effects in proteins,
especially in solvent-exposed and disordered regions that have a
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high content of charged residues, playing roles in protein stability
and function [47, 48]. The identified salt bridges (Fig. 1b) are
mostly localized on the protein surface and the only hub identified
is Lys31 that makes interactions with Glu81, Glu84, and Glu86.
Lys31 is located far away from the active site (~17 Å) and is not

Fig. 1 (a): Size of the biggest cluster calculated for the hydrophobic contact network at varying cut-off of
persistence (Pmin). (b–d) Networks of salt bridges, hydrogen bonds between side chains and hydrophobic
clusters, respectively. In these networks, an edge is represented by a cylinder connecting Cα atoms of residues,
and the different thickness of the cylinders is proportional with the persistence value. Residues having their Cα
shown as sphere and labelled are network hubs, i.e. residues connected by at least three edges. The IIN is
plotted according to the same representation, except for cylinder thickness as the IIN is unweighted, in panel (e)
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directly involved in catalysis or substrate binding. This residue has
been proposed by a recent computational study to be coupled to
residues Val6 and Val29 [44], which have been identified as key
mutation hotspot residues that communicate by allosterically cou-
pled dynamic networks in CypA, affecting enzyme reaction rates
[42]. In the network of hydrogen bonds, we identified as hubs the
Arg37, His92, Glu23, and Gln63 (Fig. 1c). Hydrophobic contacts
are usually crucial to maintain protein structure and stability, com-
posing the major interactions between the residues in the protein
core, that are tightly packed and shielded to the solvent. We identi-
fied two clusters in the network of hydrophobic interactions: one
localized around the N-terminal of CypA, comprising Leu
24, Pro4, Val6, Ala26, and Ala33 and one at the other side of the
antiparallel β-sheet, comprising Val12, Leu17, Val139, Met142,
Phe145, Ile156 (Fig. 1d).

3.3 Construction

and Analysis of the IIN

PyInteraph can be used to obtain a general view of the interactions
in a protein ensemble, without considering the type of each intra-
molecular interaction and building a common map for their visual-
ization and analysis. In order to do so, the different interaction
graphs calculated in the previous section are combined in a meta-
Intramolecular Interaction Network (IIN). In this network, an
edge between two residues is present if at least one of the interac-
tion graphs has an edge between them. The network is by default
unweighted (i.e., all weights are set to 1.0), but weights can be
added using a knowledge-based potential implemented in PyInter-
aph as detailed in Sect. 3.4. The following steps allow to derive the
IIN from the calculated interaction graphs:

1. Combine interaction graphs to obtain the IIN. We used the
filter_graph tool to combine the filtered interaction graphs
described previously, by supplying the three filtered interaction
graphs using the -d option multiple times.

2. Visualization and analysis of the network. We plotted and
visualized the IIN on the reference structure, using the xPyder
plug-in for PyMOL as reported in Fig. 1e. To obtain the results
shown, we loaded the topology PDB structure in PyMOL and
used the xPyder plug-in to visualize the IIN, as detailed in the
previous paragraph. We visualized hubs, highly connected
nodes in the graph involved in three or more different interac-
tions using the Graph analysis tools in xPyder, as explained
previously.

The IIN permits to obtain an overall description of all the most
persistent non-covalent interactions in the ensemble and their loca-
tion on the protein structure. Together with the calculation of
hubs, it gives an idea of the most relevant residues in the network,
possibly important for stability and structural communication. In
the IIN, we identified several residues with high connectivity in the
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network and possible communication hubs: Val12, Glu23, Leu24,
Lys31, Arg37, Glu43, Gln63, His92, Val139, Met142, and Ile156.
The central role in the network of contacts of the Gln63 is particu-
larly interesting since it interacts directly with the substrate through
hydrogen bonds, and both NMR experiments and computational
investigations identified this residue as involved in the major
conformational processes of CypA [40, 49]. It should be noted
that the IIN contains all the analyzed interactions in the network,
without taking into account nonspecific contacts that can still take
part in communication pathways in the network. For this reason,
we also considered a more generic analysis, cmPSN, which
takes into account any possible contact between residues (see Sect.
3.5).

3.4 Energy

Interaction Network

As outlined in the introduction, PyInteraph can be used to calculate
average interaction knowledge-based potential pseudo-ener-
gies based on sets of four distances between pairs of residues. This
is especially useful to have an idea of how favorable the interactions
identified in the IIN or in the cmPSN are, especially for the IIN as it
has no associated weights by default. Given the definition of the
knowledge-based potential, negative values account for favored
interactions while positive values account for unfavored interac-
tions. The weighted IIN has been obtained as follows:

1. Calculate the interaction energy potential for all possible pairs
of residues. This is performed similarly as the other analyses,
using the pyinteraph program with the -p option. Lists of
interaction energies per pair of residues are written in the file
specified by --kbp-dat while the same information in adjacency
matrix form is saved with --kbp-graph. The calculated energy
network can be used as-is or it can be used to weight any of the
networks we calculate.

2. Assign weights to the IIN. This is done using the filter_graph
executable, with option -d for the IIN adjacency matrix file and
option -w for the knowledge-based potential graph.

3. Visualize the weighted IIN. We plotted the obtained weighted
graph using xPyder, as detailed above for the other interaction
graphs. SeeNote 9 for more details on network analysis on this
type of network.

The obtained energy network can be used to understand which
interactions are most favored among those identified and is shown
in Fig. 2. All except one of the identified interactions are found to
be somehow favorable when scored by the knowledge-based poten-
tial, however, with different magnitudes. As expected, there is a
degree of correlation between the most stable interactions and their
strengths, although some highly persistent interactions are not
considered to be strong when scored with the potential. This is
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especially true for hydrophobic contacts. For instance, Ala26 con-
tacts Ala33 and Pro4, but the found interactions are scored with
low absolute values of potential. Salt bridges are found to be among
the most favored interactions, with the associated magnitude
roughly correlated with the persistence in the ensemble. The only
positive value among the analyzed interactions is detected on a salt
bridge, between the charged N-terminal main-chain group and
Asp27. It should be noted, however, that the potential considers
distances between side-chain atoms exclusively, therefore it doees
not consider the interactions between terminal groups and resi-
dues. Among the interactions that are more energetically favored,
we list three salt bridges (Arg19-Asp9, Arg37-Glu34, Arg37-
Glu43), and three very persistent hydrogen bonds (Arg37-
Gln163, Asp123-His92, Ser99-His92). We note once again the
role of Arg37, which acts as an interaction hub and is involved in
two highly favored salt bridges and two persistent hydrogen bonds
of which one is particularly energetically favorable. Similarly, also
residueHis92 was found to be part of a highly persistent network of
energetically favorable hydrogen bonds.

3.5 Center

of Mass PSN

While the IIN takes into account the most prevalent but specific
type of interactions found in proteins, the transmission of structural
information can also happen through nonspecific contacts. For this
reason, we devised a more general analysis that takes into

Fig. 2 IIN re-weighted using the knowledge-based potential implemented in
PyInteraph. The same representation is used as in Fig. 1, except for spheres that
here represent all residues. Blue edges represent negative values, while green
edges represent positive values. The thickness of the cylinders is proportional
with absolute value of energy
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consideration all residues with a side chain of any type. This is called
the center of mass PSN (cmPSN) and relies on the identification of
contacts between side chains when the distance between their
center of mass is below a certain threshold. The calculation of the
cmPSN works in the same way as for hydrophobic contacts, except
that the calculation is extended to any residue except glycine. This is
possible as PyInteraph allows to specify which residues the hydro-
phobic contact interactions should be calculated among, poten-
tially including non-hydrophobic residues as well. Especially when
running this type of analysis, the distance cut-off between centers of
mass for the definition of a contact has a major influence on the
resulting cmPSN topology. We used a 5 Å cut-off, as suggested by
Salamanca Viloria et al. [25], which has been determined to be a
good value in the context of MD simulation with atomistic force
fields; this might be different depending on your setup and system
(see Note 10). In order to generate and analyze the cmPSN, we
carried out the following steps:

1. Calculate the cmPSN. We ran the pyinteraph command with
distance cut-off equal to 5 Å specifying all the residue types
except glycine for hydrophobic contacts (option --hc-residues).
We specified the files containing the topology of the system and
the trajectory with the -s and -t options, respectively, and the
output file with the --hc-graph option. The latter contains the
adjacency matrix representing the cmPSN. We set the software
to use masses from the CHARMM27 force field for the reasons
described above (see Note 5) using the -ff-masses option. We
chose not to set any persistence cut-off for the interactions in
this phase, as per Note 8.

2. Filter the cmPSN to remove transient interactions. Similarly as
done before with the interaction network, we filtered the adja-
cency matrix file to remove the most transient interactions,
which means edges with low persistence values, using the fil-
ter_graph program. This requires as input the unfiltered
cmPSN generated with the previous command (�d option),
and generates an output file with the same format, whose name
is specified with the -o option. We specified the persistence
threshold using the -t option. This threshold represents the
minimum percentage of frames in which the interaction must
be present over the whole trajectory. We set this threshold to
20, as previously done in previous benchmarking works [25].

3. Graph analysis. We then carried out basic graph analysis on the
resulting graphs, using the graph_analysis program, as detailed
above. We used the filtered cmPSN outputted by filter_graph as
input and considered any residue connected with 3 or more
other residues to be a hub node by setting the -k option to
3, which sets the minimum hubs degree. Similarly,
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graph_analysis allows calculating connected components on
the network by using opion -c. We specified the topology
with the -r option to be able to map the graph nodes and
edges onto the structure. Using the -ub option, we wrote a
PDB file containing the reference structure along with the
degree for each hub residue in the b-factor column. Likewise,
option -cb allows to write a PDB file containg the connected
component number for each residue in the b-factor column.

4. Calculation of shortest communication paths. We used the
graph_analysis program to identify pathways of structural com-
munication between a specific pair of residues. By default,
graph_analysis calculates all simple paths between a given pair
of residues up to a certain length. We first ran graph_analysis
with the -r and -a options alone so that it would print a list of
node names, which are used to specify which residues we will
calculate paths between. We then ran graph_analysis again with
the -p option so that it would try to calculate paths between the
residues specified by options -r1 and -r2 (see below for details),
using the node names as detailed above. By default, the maxi-
mum path length is 3. No paths were present with this length
and the program reported a minimum path length of 5, which
corresponds to the length of the shortest paths. Finally, we ran
the same command line this time specifying a length of 5 with
option -l. The found paths were printed to the standard output.
We used option -d to save each path as an independent sub-
graph (i.e., adjacency matrix).

5. Visualization of connected components on the protein struc-
ture. We used the xPyder plug-in to visualize the connected
components on the reference structure, as can be seen in
Fig. 3b. This was performed by loading the topology PDB
structure in PyMOL, loading the adjacency matrix in the xPy-
der plug-in, then generating the graph and calculating the
connected components in the Graph analysis tab, and finally
plotting them one by one changing the plotting color in the
main tab every time.

6. Visualization of hubs on the protein structure. The hubs were
subsequently visualized by loading the PDB file obtained with
the -ub option into the PyMOL software. We used the putty
b-factor in PyMOL representation that changes the thickness
and color of residues according to the values in the b-factor
column. Similarly, the color scale ranges from yellow to red as
the value increases.

By performing the graph analysis on the center of mass PSN in
CypA, we found 15 connected components, the biggest of which
were composed by 58, 19, and 11 residues, with the first connected
component comprisingmost of the secondary structure elements in
the protein and representing a large part of the protein core
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(Fig. 3a). Figure 3b shows the identified hub residues colored in
yellow, orange, and red. As can be seen, the red hubs Tyr32, Ala38,
His92, and Met142 are the ones with the highest degree
(degree ¼ 5); hence, the residues most prone to behave as commu-
nication hubs. Finally, we calculated shortest paths between the
catalytic residue Arg55 and Ser99. It is known that mutations in
position 99, which is remote from the active site, can influence
reaction rates. Previous works identified a dynamic network con-
necting these two residues, underlying the existence of a structural
communication path between them [40]. PyInteraph also identifies
a similar communication network in the form of two five-resi-
due paths that connect the two endpoints. It should be noted
that such a network cannot be represented in the IIN as it involves
unspecific interactions between residues; nonetheless, the IIN and
its composing networks can still be used to recover significant
interactions between residues once pathways have been identified
in the cmPSN.

4 Notes

1. PyInteraph is not compatible with the most current versions of
the MDAnalysis package [50, 51]. We suggest to install MDA-
nalysis and PyInteraph in a separate environment, such as a
Python virtualenv, so that different versions of the same library
can coexist in the operating system if need be. The required
version is specified in the installation instructions. An up to

Fig. 3 (a) The five most populated connected components mapped on the reference structure. The first
connected component is by far the largest and is displayed in pink. The other four connected components are
showed in yellow, green, light blue, and purple, respectively. (b) Hub nodes. Hubs are color-coded according
to their degree: red corresponds to 5, orange to 4, and yellow to 3. Labels are shown only for hubs with degree
4 or 5
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date version compatible with Python 3 is currently in the
making and will be released soon, and will be compatible
with the most recent MDAnalysis currently released (1.0.0).

2. PyInteraph is compatible with all the trajectory formats sup-
ported by MDAnalysis, the most popular being XTC,
NETCDF, and DCD. It is also compatible with many topology
formats, with PDB being the most widespread and
commonly used.

3. PyInteraph also supports as input a reference structure file.
This is useful for cases in which we want chain definition and
residue numbering in the output files to be different from the
ones in the topology. This can be useful for instance for cases
in which the MD software has changed the residue numbering
in the topology with respect to the experimental structure or
no chain definition is present in the topology file (as happens
in GRO files). A reference file needs to have the same number
of residues in the same order as topology file, but the number
of atoms can differ – so that an experimentally solved structure
can be used. When no reference file is provided, the topology
is used as the reference instead – as we did in this case
for CypA.

4. The default configuration files for PyInteraph are located in the
PyInteraph installation directory and allow to set which atom
groups constitute charged groups (charged_groups.ini) as well
as to set which atom types can act as acceptor or donor for
hydrogen bonds (hydrogen_bonds.ini). The files are read by
default from the main installation directory, but the user can
specify their specific versions with the command-line options --
sb-cg-file and --hb-ad-file. The file formats are straightforward:
for charged groups, the user defines specific charged groups
under the [CHARGED_GROUPS] section. Charged groups
can have any name but must end either with “p” or “n,”
respectively, for positively and negatively charged. Each group
is defined as a list of atom names; if an atomneeds not to present
for the group to be considered as charged, its name is prefixed
by an exclamation mark. The default_charged_groups entry is a
list of charged groups that any residue might have. Charged
groups are finally assigned to residues, defined as residue names,
in the [RESIDUES] section. The hydrogen_bonds.ini file just
contains lists of acceptor and donor atoms. By following these
conventions, it is possible to include in the analysis even
non-natural amino acids or small molecules. Further customi-
zation is possible through command-line options. It is possible
to calculate electrostatic interactions between residues of the
same charge using the --sb-mode option (--sb-mode
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same_charge) or all of them (--sb-mode all). pyinteraph also
allows to analyze main chain-main chain (--hb-class mc-mc),
main chain-side chains (--hb-class mc-sc), all (--hb-class all), or
hydrogen bonds between custom groups (--hb-class custom).
Custom groups of atoms are defined using MDAnalysis selec-
tion format through options --hb-custom-group-1 and --hb-cus-
tom-group-2. As far as hydrophobic contacts are considered, the
user can decide which residue needs to be included in the
analysis using the --hc-residues option.

5. pyinteraph supports assigning different masses to atoms
depending on the force field, which is especially important for
the calculation of the correct centers of mass. This is relevant
when considering united-atom force fields, such as GROMOS,
or even coarse-grained systems. PyInteraph supports the GRO-
MOS, AMBER, CHARMM, ENCAD, and OPLS force-field
families, but more can be added in the form of JSON-
formatted files. In the case of CypA, whose simulations use
the CHARMM22* force field, we used atomic mass from
CHARMM27 after checking that they were identical in the
force-field definition files of GROMACS. Masses files are
found in the ff_masses directory in the PyInteraph installation
directory.

6. interaction_plotter is a second PyMOL plug-in designed to plot
on the 3D structures single interactions between residues
groups encoded in single interaction files (see Note 7). These
include side-chain and main-chain atoms, and each residue can
interact through different groups, depending on the interac-
tion definitions. As the xPyder plug-in supports only one node
per residue, while intramolecular interactions can involve more
than one group per residue, the two formats are not
intercompatible.

7. Interaction networks are written by PyInteraph into two differ-
ent text formats. One details every single interaction found in
the ensemble and lists the groups of the two residues that are
interacting together with the associated persistence value. The
other is a graph adjacency matrix, which is simply an ASCII
square symmetric matrix in which every line and every column
represents a residue, ordered as the residues in the protein
under study. Each position of the matrix represents a single
edge weight, which is 0.0 if no interactions were found in the
ensemble (which means the edge does not exist in the context
of PyInteraph), or a value in the (0.0,100.0] range if they have
been found. The simplicity of this matrix format allows it to be
easily read in most programming languages and it is compatible
with the xPyder PyMOL plug-in.
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8. The pyinteraph program supports the option of writing filtered
graphs directly by specifying a persistence threshold with
options --hc-perco, --hb-perco, and --sb-perco. However, we
usually prefer not to perform any filtering at this stage so
that the original graph can be filtered more than once using
filter_graph, in case different values of Pcrit need to be tested.

9. xPyder graph analysis uses positive values only from the loaded
matrix. This works when using most of the networks identified
in this protocol, but can be problematic when using the
knowledge-based potential network in which the favorable
interactions are expressed as negative values. In that case we
suggest changing the sign of the energy values in the adjacency
matrix file before loading it into xPyder in order to consider
favored interactions when doing the graph analysis.

10. While this cut-off has been rationalized and validated on some
among the most popular force fields, it might not be the best
for other cases especially in which the definition of the topol-
ogy changes significantly (as for coarse-grained systems).
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Chapter 11

The Allosteric Effect in Antibody-Antigen Recognition

Jun Zhao, Ruth Nussinov, and Buyong Ma

Abstract

We studied the molecular details of the recognition of antigens by the variable domain of their cognate
antibodies in as well as those elicited by the constant domains, which do not directly interact with antigens.
Such effects are difficult to study experimentally; however, molecular dynamics simulations and subsequent
residue interaction network analysis provide insight into the allosteric communication between the antigen-
binding CDR region and the constant domain. We performed MD simulations of the complex of Fab and
prion-associated peptide in the apo and bound forms and follow the conformational changes in the
antibody and cross-talk between its subunits and with antigens. These protocols could be generally applied
for studies of other antigens-antibody recognition systems.

Key words Antibody-antigen interaction, Motion correlation, Dynamic network, Community analy-
sis, Disulfide bond, Allosteric effect

1 Introduction

Protein conformational dynamics and fluctuations in water are
intrinsic thermodynamic phenomena, with the distributions of
the states on the energy landscape determined by statistical ther-
modynamics. Protein dynamics and conformational changes have
been optimized by evolution to perform biological functions
[1]. Proteins are intrinsically allosteric, and their residue interaction
networks are controlled by the protein energy landscape [2–6].

The antibody variable regions are necessarily flexible to enable
recognition of diversified targets. Recognition is associated with
structural transitions [7–9]. The variable domains, especially
CDRs, mainly control the specificity and affinity [10], while the
constant domains modulate the isotype/effector [11] and indepen-
dently the variable and constant domains functions. Recent studies
indicate that besides the variable domains, the constant domain also
plays an essential role in antigen binding [12–16]. There is direct
communication between the variable domains of the light and
heavy chains [17] and distant communication between the variable
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and constant domains [18]. Redistribution of flexibility in stabiliz-
ing fragments of mutant antibodies was observed in anti-
lymphotoxin-beta receptor antibody [9]. Antibody-antigen recog-
nition appears to also involve allosteric effects [19]. Pritsch et al.
suggested that antibodies with identical variable domains, but dif-
ferent isotypes have significantly different affinities when binding to
tubulin [13]. Oda et al. showed that the binding of antigen causes
conformational changes in protein G and protein A binding sites on
the heavy-chain constant domains [20]. A recent study surveyed
over 100 crystal structures of antibodies in either the apo or bound
form and found that distant loops from CH1-1 undergo significant
fluctuation upon antigen binding and this fluctuation is common
among these structures [21].

Though several studies have shown that antibody constant
domains respond to antigen binding, molecular details and dynam-
ics are still unknown. We have studied conformational changes in
the antibody and cross-talk between its subunits and with antigens,
using MD simulations of the complex of Fab and prion-associated
peptide in the apo and bound forms. This allowed us to show that
the inter-chain disulfide bond between the CH-1 and CL domains
restrains the conformational changes of Fab, especially the loops in
the CH1 domain, resulting in inhibition of the cross-talk between
Fab subdomains which thereby may prevent prion peptide binding.
Structural cross-talks between the constant domains and the anti-
gen were shown by several negative and positive correlations of
motions between the peptide and Fab constant domains. The cross-
talk was influenced by the inter-chain disulfide bond which reduced
the number of paths between them. Importantly, network analysis
of the complex and its bound water molecules observed that those
water molecules form an integral part of the Fab/peptide network
of potential allosteric pathways. This chapter aims to provide robust
and general strategies to study allosteric effects in the antibody-
antigen recognition, which may help to develop strategies to incor-
porate these network communications—including the associated
water molecules—in antibody design.

2 Simulation Protocols

2.1 Materials

2.1.1 Structures

of Isolated Antibody

and Prion Peptide

1. The structures of the apo forms of the Fab are based on crystal
structures PDB IDs 1cr9 [22]. The unbound form was
obtained by manually removing the peptide in the bound
(1cu4) structure (see Note 1, Fig. 1).

2. The isolated prion peptide was simulated independently start-
ing from the conformation in 1cu4.
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3. A 500-step steepest descent (SD) minimization with backbone
atoms fixed is used to relax the initial structures of antibody and
prion peptide.

2.1.2 Structures

of Antibody-Antigen

Complexes

1. The structures of the bound forms of the Fab/peptide complex
are based on crystal structures PDB IDs 1cu4 (see Note 1,
Fig. 1).

2. The two unresolved N-terminal residues of the heavy chain in
the bound form were modeled using MODELLER.

3. The N- and C-termini are capped by NH3+ and COO- groups.
The tautomeric state of HIS residues is assigned based on local
environment.

4. A 500-step SD minimization with backbone atoms and key
hydrogen bonds/salt bridges fixed is performed to refine the
overall structure (see Note 2, Fig. 1).

2.1.3 Setup of Disulfide

Bond, Water Molecules,

and Numbering System

1. The inter-chain disulfide bond was either kept or removed for
the bound, unbound, and apo structures to consider the effects
of the inter-domain disulfide bond.

2. Crystallized water molecules in the crystal structures were kept
(see Note 3, Fig. 1).

VH
VL

CL

1cr9: Apo form

CH1

1cu4: Bound form

Fig. 1 Crystal structure of Fab 3F4 in Apo form (PDB:1cr9) and the complex (PDB:1cu4) with its cognate
peptide (SHaPrP104-113). Light chain, heavy chain, the cognate peptide, CH1-1 loop, the inter-chain disulfide
bond and the water molecules in the crystal are colored in pink, lime, red, purple, yellow, and cyan
respectively
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3. As the non-sequential Kabat numbering scheme is used in the
crystal structures, we renumber the residues for convenience in
the simulation.

2.2 Simulation

Methods

2.2.1 All-Atom MD

Simulations

1. The systems were then solvated by TIP3P water molecules in
the cubic water box with minimal margin of 15 Å

´
from any

protein atom to any edge of water box, and sodium and chlor-
ides were added to neutralize the system to a total concentra-
tion of ~150 mM.

2. The resulting solvated systems were energy minimized for
5000 conjugate gradient steps, with the protein fixed and
water molecules and counterions allowed to move, followed
by additional 5000 conjugate gradient steps, where all atoms
could move.

3. In the equilibration stage, each system was gradually relaxed by
performing a series of dynamic cycles, in which the harmonic
restraints on proteins were gradually removed to optimize the
protein-water interactions.

4. In the production stage, all simulations were performed using
the NPT ensemble at 310 K.

5. All MD simulations were performed using the NAMD software
[23] with CHARMM36 force field [24]. MD trajectories were
saved by every 2 ps for analysis.

6. To reduce the statistical noise, the systems of 1cu4, 1cu4 with
the inter-domain disulfide bond, 1cr9, and 1cr9 without the
inter-domain disulfide were repeated independently. The initial
structure of each individual repeat system was minimized by
using different energy minimization protocols. The systems
were then re-solvated randomly by water molecules and ions.
The initial velocity distribution of each repeat system was also
set differently. Thus, the repeat simulations were started from
alternate conformations.

2.2.2 Binding Energy

Evaluation

1. To evaluate the binding energy between Fab and the prion
peptide, the trajectory for each bound and apo system was
extracted from the last 20 ns of explicit solvent MD without
water molecules and ions.

2. The solvation energies of all systems were calculated using the
generalized Born method with molecular volume (GBMV)
after 500 steps of energy minimization to relax the local geo-
metries caused by the thermal fluctuations which occurred in
the MD simulations.

3. In the GBMV calculation, the dielectric constant of water is set
to 80 and no distance cutoff is used. The binding energy
between two Fab and the prion peptide was calculated by
hEbindi ¼ hEcomplexi � hEFabi � hEpeptidei.
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2.2.3 Evolutionary

Analysis

1. The sequence of Fab (PDB ID:1cu4) was used to generate
relative conservation scores for each amino acid position
using the Bayesian method implemented in the ConSurf
server [25].

2. The sequence homologues of Fab were identified after three
iterations of CS-BLAST algorithm against UNIREF90
database.

3. The selected sequence homologues with an E-value <0.0001
were then aligned using MAFFT [26].

4. The resulting Multiple Sequence Alignment (500 sequences
with �35% similarity) was used to calculate the conservation
scores, which ranged from 1 (variable) to 9 (highly conserved).
The Fab residues were color-coded based on conservation
scores obtained.

2.2.4 Correlation

Analysis

1. Correlations between all the residues in the six systems were
analyzed for the entire 100-ns MD trajectory (25,000 frames)
using the normalized covariance to characterize the correlation
in motion of protein residues [27], ranging from �1 to 1.

2. If two residues move in the same (opposite) direction in most
the frames, the motion is considered as (anti-)correlated, and
the correlation value is close to�1 or 1. If the correlation value
between two residues is close to zero, they are generally uncor-
related. The correlation evaluation was performed by using
CARMA [28] (see Notes 4–6, Fig. 2).

2.2.5 Weighted Network,

Community Analysis,

Optimal/Suboptimal Paths

in Fab/Peptide Systems

1. A network is defined as a set of nodes with connecting edges.
The nodes in this work represent the amino acid residues and
the essential bound water molecules. An edge between two
nodes was defined if any heavy atoms from the two residues/
water molecules are within 4.5 Å of each other in over 75% of
the analyzed frames (see Note 7, Fig. 3).

2. Neighboring residues in sequence are not considered to be in
contact because they will form numerous trivial suboptimal
paths in the weighted network.

3. The dynamical networks were constructed based on the 100-ns
trajectories.

4. To study the water effect on the network, the crystallized water
molecules on the antibody-antigen interface were kept from
the system.

5. The communities within a network were defined as the
sub-structures of the network in which the nodes are more
heavily interconnected to each other than to other nodes.
The community was identified by the Girvan-Newman algo-
rithm [29]. For simplicity and clarity, communities with
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member number <10 and edges with betweenness <1000
were not considered.

6. The length of a path between two distant nodes is the sum of
the edges weights between consecutive nodes along the path.
The shortest path is obtained by optimization of this length.

7. Suboptimal paths are determined in addition to the shortest
path to measure the path degeneracy of the network.

8. The network, community, and optimal/sub-optimal paths
analysis of Fab/peptide systems were performed by using Net-
workView [30] module in VMD.
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represented the communications between different communities and the communication strength
(betweeness) is proportional to width of the lines. P the prion peptide, VL light chain variable domain, CL
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2.3 Simulation Notes 1. Missing residues, especially the residues on the CH1-1 loop,
are important for allosteric effects. Thus, these missing residues
should be reconstructed.

2. The initially constructed structures may contain some unrea-
sonable steric overlaps between sidechains and backbones. The
SD minimization with CHARMM36 force field is required to
eliminate any bad atom contact. To minimize the structural
disruption of the complex, especially the residues on the
antibody-antigen interface, the hydrogen bonds and salt
bridges are harmoniously constrained during the SD
minimization.

3. The crystallized interfacial water molecules are crucial for the
antibody-antigen recognition. When constructing the systems,
these crystallized water molecules should not be excluded.

4. For cluster analysis, RMSD and Rg data for each structure in
the equilibrium trajectories are calculated. The structures with
the RMSD and Rg difference less than 4 Å

´
are assigned as the

same cluster.

5. Correlation analysis (Cij) of the motion required both simula-
tion conformations and initial crystal conformations, thus the
more conformations considered, the more accurate of the
motion correlation analysis.

6. During the network analysis, the oxygen of the water molecules
should be renamed to CA in order to be recognized by “net-
work view” program.

7. The sub-optimal path (default is 20) evaluation should be set
up carefully. In some cases when the complex is large, the
sub-optimal path should set up <20, or there will be unex-
pected long time to evaluate all the possible sub-optimal path.
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Chapter 12

Distal Regions Regulate Dihydrofolate Reductase-Ligand
Interactions

Melanie Goldstein and Nina M. Goodey

Abstract

Protein motions play a fundamental role in enzyme catalysis and ligand binding. The relationship between
protein motion and function has been extensively investigated in the model enzyme dihydrofolate reductase
(DHFR). DHFR is an essential enzyme that catalyzes the reduction of dihydrofolate to tetrahydrofolate.
Numerous experimental and computational methods have been used to probe the motions of DHFR
through the catalytic cycle and to investigate the effect of distal mutations on DHFR motions and ligand
binding. These experimental investigations have pushed forward the study of protein motions and their role
in protein-ligand interactions. The introduction of mutations distal to the active site has been shown to have
profound effects on ligand binding, hydride transfer rates and catalytic efficacy and these changes are
captured by enzyme kinetics measurements. Distal mutations have been shown to exert their effects
through a network of correlated amino acids and these effects have been investigated by NMR, protein
dynamics, and analysis of coupled amino acids. The experimental methods and the findings that are
reviewed here have broad implications for our understanding of enzyme mechanisms, ligand binding and
for the future design and discovery of enzyme inhibitors.

Key words Allostery, Protein motions, Dihydrofolate reductase, Point mutation

1 Introduction

The interaction between a ligand and its biomolecular target forms
the basis for many physiological processes [1, 2]. Understanding
the molecular mechanisms by which ligands recognize and bind
their targets remains a fundamental question in biochemistry and
biophysics. Over the years, several models have been proposed.
Early on, the “lock-and-key” model, where a protein and ligand
are a perfect match of rigid complementary structures, dominated
(Fig. 1) [3, 4]. In this model, the protein’s ligand binding site is
assumed to have a single, rigid shape and the ligand distinguishes
between different proteins in the cell based on the different shapes
of their ligand binding sites [4]. As technology has advanced, so has
our understanding of protein structure and dynamics, and it is now
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a

b

c

Fig. 1 Schematic representation of (a) “lock-and–key,” (b) “induced fit,” and (c)
“conformational selection” models. In the “lock-and-key” model (a), binding
occurs when there is an exact geometric fit between a protein and the ligand,
among an ensemble of many different proteins. The cross sign indicates that the
shapes of the protein and ligand are not a match. In the induced fit model (b),
there is no exact fit between the protein and ligand before binding occurs. The
ligand binds a protein molecule, inducing the protein shape to fit the ligand. In
the conformational selection model (c), the ligand selects a conformer from the
ensemble of conformers of the same protein, whose shape is complementary to
the ligand
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universally accepted that protein–ligand interactions are rarely rigid
[5]. Proteins are inherently flexible molecules that adopt an ensem-
ble of conformations in solution, which exist in a state of dynamic
equilibrium. This realization led to the formation of the “induced
fit” and, subsequently, the “conformational selection” models of
protein–ligand and enzyme–substrate interactions [1–17]. These
models account for conformational changes in ligand binding [9].

The induced fit and conformational selection models account
for the dynamic state of a protein, but differ in when in the binding
process the conformational change occurs [9]. In the induced fit
model, the ligand binds to the predominant, free conformation in
solution followed by a conformational change to the preferred
ligand-bound conformation (Fig. 1). The conformational selection
model proposes that a given protein exists in a state of dynamic
equilibrium between several conformations, termed the conforma-
tional ensemble and the “ligand-bound” conformation already
exists as part of the conformational ensemble in solution in a low
population state. The population state of a conformation refers to
the amount of protein in a particular conformation. Therefore, the
ligand recognizes and selectively binds to the conformer in the
favored state, shifting the conformational equilibrium to make it
the predominant conformation in the ensemble [10]. Conforma-
tional selection may appear similar to the “lock-and-key” model
because selection occurs via a match in the “shape” in both models.
However, in conformational selection, the selection is of a
conformer out of many different conformers of a single protein
rather than selection of a protein out of many different proteins, as
in the lock-and-key model (Fig. 1). In the conformational selection
model, ligand binding induces a change in the equilibrium of the
states, which forces the system to re-equilibrate, shifting the popu-
lation of the conformational ensemble toward the preferred
conformer. The population shift described in the conformational
selection model cannot be present in the lock-and-key model
because the ensemble is composed of different proteins rather
than different conformers [4]. Thus, the key difference between
these two models is the presence of a dynamic equilibrium which
allows for a population shift to occur upon ligand binding [16].

Conformational motions in enzymes are inherently linked to
their function and have a direct impact on binding of substrate or
cofactor, product release, and allosteric regulation [12, 15, 18,
19]. Enzymes are common therapeutic targets but the movement
between different conformational states is often ignored during
drug discovery and design [12]. When the flexibility of a protein
is acknowledged during drug design, it is often assumed to follow
the induced fit model. The possibility that small molecule or drug
binding may occur through the conformational selection mecha-
nism is usually ignored, which may hinder drug discovery and
development efforts [20]. Understanding the mechanism by
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which a ligand recognizes its target is a crucial prerequisite for
rationally designing novel and effective drugs and therapeutics
[1]. By designing small molecules that target a specific conforma-
tion, it may be possible to design more potent or selective drugs
that bind to the preferred conformer of the target enzyme. This
would in turn shift the equilibrium toward this state, redistributing
the conformational ensemble so that the favored state predomi-
nates in solution [4]. Therefore, the innate flexibility and confor-
mational dynamics of proteins and enzymes may be exploited to
improve the efficacy of rational drug design.

In this paper, we use the enzyme dihydrofolate reductase
(DHFR) to illustrate how the conformational dynamics influence
substrate, cofactor, and inhibitor binding. DHFR has become an
important model system for investigating the link between protein
dynamics and catalytic function for several reasons. As we discuss
the many studies on the link between DHFR structure, motions,
and catalysis, we provide an overview of the methods used in these
studies. DHFR is a known drug target for inhibiting DNA synthesis
in rapidly proliferating cancer cells and microbial infections
[21, 22] and a wealth of enzymological studies that have focused
on DHFR make it a unique system for investigating the role of
dynamics in catalysis [18, 21].

2 Dihydrofolate Reductase

2.1 Kinetic

Mechanism

and Structure

DHFR kinetics have been extensively reviewed [18, 21, 23]. A
notable feature of the catalytic cycle is that hydride transfer, the
chemical step of the reaction, is not immediately followed by the
release of product. Instead, following hydride transfer, the oxidized
NADP+ cofactor is released and NADPH rebinds before product
release. Thus, free enzyme is not generated under physiological
conditions and the enzyme remains “primed” for the next round
of catalysis [18, 23]. The coordination of substrate binding and
product release is maintained via a synergistic interaction between
the substrate and cofactor in the binding site, in which the off-rates
of NADP+ increase in the presence of bound product and the
off-rates of product (THF) increase in the presence of the reduced
cofactor, NADPH [18, 24].

DHFR displays a high degree of structural homology in differ-
ent species, despite low sequence homology [18, 25]. The first
X-ray crystal structure of a DHFR was of the Escherichia coli
enzyme (ecDHFR) and was published almost 40 years ago
[26]. The ecDHFR structure has been extensively discussed else-
where [26, 27]. The major subdomain is dominated by a set of
three flexible loops that are located on the ligand binding face that
surround the active site. The loops are designated Met20 (residues
9-24), F-G (residues 116-132), and G-H (residues 142-150).
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These loop regions serve as a gate, closing over the bound ligands
in the ternary E:DHF:NADPH complex, but are mobile in the
apoenzyme and holoenzyme [27]. The substrate and cofactor
bind in a hydrophobic cleft at the juncture of the two subdomains
and hinge bending motions about residues Lys38 and Val88 allow
the adenosine binding domain to move relative to the major
domain upon ligand binding, closing off the active site cleft to the
surrounding environment (Fig. 2) [18, 27].

2.2 Active Site

Structure and Loop

Conformations

In the ternary complex, the pterin ring of the substrate and the
nicotinamide ring of the cofactor bind in close proximity in the
active site, with the hydride donor atom (C4 of NADPH) and the
hydride acceptor (C6 of the pterin ring) in van der Waals contact
[29]. The DHFR active site contains an invariant carboxylic acid
residue, Asp27 in bacteria and a glutamic acid residue in vertebrates
(Glu30 in humans) [30]. Mutational studies have supported that
Asp27 has a crucial role in the hydride transfer step [30, 31].

The three flexible loops play a critical role in ecDHFR catalysis.
The Met20 loop lies directly over the active site and shields the
reactants from solvent. The F-G and G-H loops impart stability via
hydrogen bonding interactions with the Met20 loop. From X-ray
crystallographic data, it has been demonstrated that the Met20
loop assumes four characteristic conformations in the crystalline

NADP+

Met20 Loop

FG Loop

GH Loop

Folate

Fig. 2 Overview of 3D structure of E. coli DHFR (PDB entry 1RX2). The ternary
complex with NADP+ cofactor and folate substrate in their respective binding
sites. The major subdomain loops are labeled. Met20 loop is illustrated in green.
F-G loop is illustrated in blue. G-H loop is illustrated in red. NADP+ and folate are
displayed in orange and purple, respectively. (This figure was prepared using the
program Chimera [28])
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state, designated the occluded, closed, open, and disordered states
[21]. The occluded and closed conformations have also been
observed in NMR experiments [32]. The open conformation has
only been observed in certain crystal forms. The disordered states
described cases in which motion renders the loop unclear or invisi-
ble in crystallographic experiments. The four loop conformations
are best characterized by their secondary structure, interactions
with nicotinamide-ribose moiety, and hydrogen bonding with the
F-G and G-H loops. The open conformation displays characteris-
tics between those of the closed and occluded conformations. The
disordered conformation displays characteristics of a time-averaged
exchange of closed and occluded conformations [21].

The conformation of the active site loops depends on the
ligands bound in the substrate and cofactor binding sites. If only
the substrate site is occupied, the enzyme adopts the occluded loop
conformation. Binding of the nicotinamide-ribose moiety of
NADPH within its binding site produces the closed conformation,
in which the Met20 loop is packed against the nicotinamide ring of
NADPH, closing the active site off to the surrounding solvent.
Only the closed conformation allows for the proper positioning
of the NADPH and substrate reactive centers, such that they are in
close enough proximity to facilitate the reaction. Thus, it is appar-
ent that movement of the Met20 loop is directly coordinated with
the stages of the catalytic cycle (Fig. 3) [18, 33].

The occluded and closed conformations differ in structure in
the central portion of the Met20 loop and in the pattern of hydro-
gen bonds formed between the Met20 loop and the F-G and G-H
loops. In the occluded state, the central region of the Met20 loop
forms a 310-helix, with residues Met16 and Glu17 projecting into
the active site, where they “occlude” the binding site for the
nicotinamide ring moiety of NADPH. The occluded conformation
is stabilized by hydrogen bonding interactions between Asn23
(backbone CO and NH) in the Met20 loop and Ser148 (NH and
Oγ) in the G-H loop. In the closed conformation, residues 16-19
form a β-hairpin structure. Met16 and Glu17 are flipped out of the
active site, thereby allowing nicotinamide binding, while the side
chains of Asn18 and Met20 pack down over the bound substrate
and cofactor. The Asn23/Ser148 hydrogen bonds are disrupted,
and new hydrogen bonds are formed between the backbone NH
and Oδ of Asp122 in the F-G loop and the backbone CO and NH
of Gly15 and Glu17, respectively [21].

Sawaya et al. proposed a detailed structural model for the
conformational changes that occur during the ecDHFR catalytic
cycle [21]. They based their model on the analysis of isomorphous
crystal structures (P212121) of different ecDHFR complexes to
ensure that the packing interactions are constant between the dif-
ferent structures in the series and that conformational differences
are due to differences in ligand binding. To investigate the
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conformational changes in different crystal packing environments,
the authors also solved some of the ligand-bound structures using
crystals with different space groups. The complexes were analogous
to the five kinetic intermediates and to the transition state for the
hydride transfer reaction. The authors used analogues because
actual intermediates are transient and it takes several hours to
collect data for an X-ray structure. The choice of analogue for
such studies is significant. For example, to mimic the transition
state, the authors used methotrexate. This compound has a unique
binding geometry, which has been found to induce the transition
state protein conformation even though methotrexate does not
resemble a transition state structure. The structures suggest that
the Met20 loop is in the closed conformation in the holoenzyme,
the Michaelis complex, and the transition state and in the occluded
conformation in the three product complexes. In the Michaelis
complex and transition state, the nicotinamide-ribose moiety is

Fig. 3 Conformational changes during the catalytic cycle of ecDHFR. Blue
indicates the conformation of the Met20 loop in the closed conformation. Red
indicates that the Met20 loop is in the occluded conformation. The crystal
structures illustrate the conformational change in the Met20 loop upon the
hydride transfer reaction. (Figure reproduced from ref. 33)
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predicted to occupy its binding pocket within the active site, in
close proximity to the pterin ring of the substrate. However, in the
occluded D:THF:NADP+ and D:THF:NADPH product com-
plexes, this moiety projects into the solvent. Movement of the
adenosine binding domain relative to the major domain during
the catalytic cycle modulates the width of the
p-aminobenzoylglutamate (pABG) binding cleft. From the
Michaelis to the transition state analogue complex, they observed
that rotation between the two domains closes the pABG binding
cleft by approximately 0.5 Å. The resulting enhancement of con-
tacts with the pABG moiety may stabilize puckering of C6 of the
pterin ring in the transition state. The domain rotation is further
adjusted by cofactor induced movements of the αB and αC helices,
producing a larger pABG cleft in the product complexes. The
domain rotations are suggested to play a role in transition state
stabilization and NADPH-assisted product release (Fig. 3)
[18, 21]. In this work function was intimately linked to both
macromolecular structure and dynamics by solving crystal struc-
tures at different stages of the catalytic cycle by using substrate
analogues. The findings showed that regions distal from the active
site play a role and have inspired experiments to investigate these
regions further. Using the isomorphous structures and GIFMerge,
the authors created a movie that illustrates DHFR’s range of
inferred subdomain and loop movements.

2.3 Species-Specific

Structural Features

of DHFR

2.3.1 Human DHFR

and Comparison

to Bacterial DHFR

The structural differences between vertebrate DHFRs and bacterial
DHFRs are important to the specificity of DHFR inhibitors.
Human DHFR (hDHFR) is a monomeric, 186-amino-acid protein
with a molecular weight of approximately 21.5 kDa. Like ecDHFR,
hDHFR has an eight-stranded β-sheet consisting of seven parallel
strands and a carboxy-terminal antiparallel strand. Five α-helices are
packed against the beta-sheet core, denoted αB, αC, αE, αE0, and
αF. The αE0 helix is perpendicular to αE andmay have emerged via a
five-residue insertion mutation in human DHFR relative to bacte-
rial DHFR [34]. In addition, hDHFR has one left-handed, type II
polyproline-like helix, which is not present in ecDHFR. Another
variation from ecDHFR is the presence of a cis-peptide linkage
between residues Arg65 and Pro66. The other cis-peptide linkage
is a conserved structural feature of all DHFRs and is between
residues Gly116 and Gly117, which are located near the nicotin-
amide binding site. Just as in ecDHFR, the active site cleft in
hDHFR is formed at the junction of the two domains. However,
in the case of hDHFR the larger subdomain is the adenosine
binding domain and the second is the smaller loop domain. The
acidic residue, Glu30, is analogous to Asp27 in ecDHFR [34].

The conformation of vertebrate and human DHFRs is more
rigid than ecDHFR [34]. However, the amino acids required for
catalysis and the general secondary structural features, as well as the
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kinetic pathways, are highly conserved (Figs. 4 and 5)
[36, 37]. Comparison of hDHFR and ecDHFR reveals that
hDHFR lacks the Met20 loop subdomain motion that is observed
in ecDHFR. In the human DHFR enzyme, the Met20 loop
remains in the closed conformation throughout the catalytic
cycle. In contrast to ecDHFR, ligand binding in hDHFR occurs
through a hinge opening motion of the adenosine subdomain
relative to the loop subdomain (Fig. 5). Hinge 1 is defined as
residues Thr39-Leu49 and hinge 2 as His127-Leu131. The E:
NADPH complex exists as the “hinge-open” conformation. The
substrate complexes adopt the “hinge-closed” conformation, in
which the active site is tightly packed, thus favoring hydride trans-
fer. The product complexes also exist in the hinge-closed
conformation [36].

In addition to the lack of Met20 loop motions, another signifi-
cant difference between the vertebrate and bacterial DHFRs is that
vertebrate DHFRs are more rigid and conformationally restrained.
There are three key structural differences between vertebrate and
ecDHFR that give rise to the conformational rigidity of hDHFR:
(a) insertion of the left-handed polyproline-type helix in vertebrate
DHFRs loop1; (b) Gly20 in the loop 1 of vertebrate DHFR instead
of an Asn, which creates a stable β-hairpin; and (c) the vertebrate’s
G-H loop is shorter relative to the ecDHFR G-H loop, preventing
the formation of hydrogen bonds with the Met20 loop. These
structural and conformational differences are important to design-
ing therapeutics that target DHFR from a specific disease or patho-
gen specifically and to minimize the off-target effects of
inhibitors [34].

THF

E:NADPH

DHF

98 uM–1 s–1 94 s–1

E:DHF:NADPH
1360 s–1

37 s–1
E:THF:NADP+

84 s–10.7 uM–1 s–1

NADP+

E:THF
225 s–1

14 uM–1 s–1

E:THF:NADPH
4.4 uM–1 s–1

100 s–1

NADPH

Fig. 4 Kinetic scheme of the catalytic cycle of human DHFR. The rate constants for each step are included for
each of the five steps. The most notable difference in the kinetic scheme of hDHFR and ecDHFR is the rate of
the hydride transfer step, about sixfold larger for hDHFR. (This figure was generated using the program
ChemDraw [35])
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Hinge 1

Folate

GH Loop

GH Loop

Hinge 2

Met20 Loop

NADP+

a

b

Fig. 5 (a) Structure of hDHFR complexed with NADP+ and folate (PDB entry
4M6K). The Met20 loop (residues 12-27, displayed in green) remains closed
throughout the entire hDHFR catalytic cycle. The FG loop (residues 139-159) is
colored blue and the GH loop (residues 172-175) is colored red. NADP+ and
folate are displayed in orange and purple, respectively. Hinge 1 is illustrated in
light pink. (b) View rotated 90� relative to panel A structure so that hinge 2 can
be observed (magenta). In the hDHFR:NADPH complex (hinge-open complex),
helix αF slides toward the active site, relative to the hDHFR:DHF:NADPH, hDHFR:
THF:NADP+, and hDHFR:NADPH complexes (hinge-closed complexes). (This
figure was prepared using the program Chimera [28])
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2.3.2 Plasmodial

DHFR-TS

A major difference between protozoal DHFR, such as Plasmodium
falciparum (pfDHFR) and Plasmodium vivax (pvDHFR), and the
DHFRs from other species is that the Plasmodium enzyme exists as
a bifunctional enzyme called dihydrofolate reductase-thymidylate
synthase (DHFR-TS) in which DHFR and TS are two domains of a
single homodimeric protein (Fig. 6). The two subunits are asso-
ciated via extensive contact between the two TS domains
[38, 39]. In humans and bacteria, DHFR and TS exist as two
separate monofunctional proteins [38]. Each polypeptide of the
pfDHFR-TS homodimer is comprised of 608 amino acids, the
first 231 residues of which comprise the DHFR domain of the
polypeptide [40]. The next portion of the sequence is the
89-residue “junction region” connecting the DHFR domain to
the TS domain. The remaining 288 residues constitute the TS
domain of the polypeptide [40]. The key residues in the active
site of the pfDHFR domain are Ile14, Ala16, Trp48, Asp54,
Phe58, Ser108, Ile164, and Thr185, which interact with DHF,
NADPH, and/or inhibitors [41]. The DHFR domain has some
similarities to other DHFRs in that it is comprised of eight central
β-strands (βA-βH) and four α-helices (αB, αC, αE, and αF). In addi-
tion to these structural features, there are three short α-helices in
pfDHFR, which are designated αA, αD, and αD0. Each monomer of
pfDHFR-TS contains two inserts in the DHFR domain: Insert
1 which contains a short 310-helix αi1 (residues 33-36), and Insert
2 which contains a long helix αi2 (residues 67-95) [40]. While
Insert 1 extends away from the domain surface and does not
interfere with the core DHFR subunit structure, part of the moiety

DHFR domain 1 DHFR domain 2

TS domain 1 TS domain 2

Fig. 6 Three-dimensional structure of DHFR-TS from the malaria parasite Plasmodium falciparum (PDB entry
1J3I). The DHFR domains are shown in red and orange. The TS domains are shown in light and dark blue. The
DHFR domains are bound to NADPH (green) and the inhibitor molecule WR99210 (purple). (This figure was
prepared using the program Chimera [28])
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interacts with the TS domain and aids in stabilizing the interdomain
attachment. The junction region contains the aj1 helix which links
the DHFR and TS domains and interacts with the DHFR domain
of the other polypeptide chain [42]. These features and the major
differences in amino acid sequence, structure, and function
between Plasmodial DHFR-TS and bacterial and vertebrate
DHFRs have allowed for the development of species-specific
inhibitors.

3 Ligand-Dependent Conformational Dynamics during DHFR Catalysis

The first indication that conformational dynamics may play a role in
ecDHFR catalysis came from kinetic measurements, which showed
that the apoenzyme exists as two isoforms, E1 and E2 [43–45]. In
these experiments, the authors made stopped-flow measurements
of association and dissociation rates of ligands to and from the
enzyme. They mixed together solutions of the enzyme and ligand
and recorded the resulting tryptophan fluorescence over time using
the excitation wavelength of 290 nm and a 341 nm interference
filter. Alternatively, the authors excited the tryptophans and
recorded the enhancement of coenzyme (NADPH) fluorescence
by energy transfer using an excitation wavelength of 290 nm and a
449 nm interference filter. The data was analyzed to obtain the rates
for formation and dissociation of binary complexes of both forms
of the enzyme. The second isoform was detected as a slow ligand-
independent phase that followed an initial ligand-dependent burst
phase when mixed with NADPH and substrate or inhibitor in a
stopped-flow fluorescence experiment by Dunn et al. [43–45] They
found that NADPH appears to bind rapidly and exclusively to the
E1 isoform and that binding of a ligand or inhibitor to either the
substrate or cofactor sites resolves the ambiguity between confor-
mational states and allows a single conformation that readily binds
further ligands to form ternary complexes to be observed
[18]. This observation highlights the connection between protein
conformation and ligand binding.

In a more recent study, Reddish et al. used tryptophan fluores-
cence probed temperature-jump spectroscopy to observe the kinet-
ics of ligand binding and ligand-induced conformational changes of
three DHFR complexes to attempt to establish the relationship
between conformational changes and catalytic steps along the
DHFR pathway [46]. Temperature-jump spectroscopy can be
used to measure rapid reaction rates in the microsecond timescale,
which is a significant timescale for catalysis and allostery. In this
method, temperature is rapidly increased perturbing the system.
The fluorescence of the system is then observed as the system
reaches equilibrium with a new equilibrium constant. The three
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complexes examined were DHFR:folate, DHFR:NADP+, and
DHFR:NADP+:folate, which are models for the binary product
complex, the holoenzyme, and the Michaelis complex, respectively.
They observed two kinetic events in the temperature-jump transi-
ents of each of the complexes: a fast relaxation event and a slow
relaxation event. The slow off-pathway conformational rearrange-
ment observed can be interpreted as evidence for conformational
selection as a mechanism for ligand binding. The millisecond con-
formational rearrangements observed using Trp fluorescence are
not coupled to a binding event as would be expected for an induced
fit model of ligand binding. The presence of the slow relaxation
event regardless of the ligand state suggests that it corresponds to
fluctuations of the protein that would be necessary for the confor-
mational selection process. In addition, the dependence of the rate
of the slow event on the ligand identity is consistent with a ligand-
dependent population shift to a favored conformation, as is
expected in the conformational selection model [46].

4 Drug Binding

The role of enzyme dynamics in the binding of three DHFR
inhibitors will be discussed here. Methotrexate (MTX), trimetho-
prim (TMP), and pyrimethamine (PYR) were the first DHFR inhi-
bitors in clinical use (Fig. 7) [47]. While MTX is a potent inhibitor
of essentially all DHFRs (most likely due to its similarity to the
natural substrate), TMP and PYR show strong selectivity for bacte-
rial and protozoal enzymes, respectively [48]. For example, TMP
shows 14- and 6000-fold selectivity for ecDHFR over P. berghdi
and rat liver DHFR, respectively. In contrast, PYR displays 1400-
and 5000-fold selectivity for P. berghdi over rat liver DHFR and
ecDHFR, respectively [48]. Studying the differences in binding of
these small molecules to DHFR from different species and the
structural features that drive selectivity can provide insight into
the role of conformational dynamics in inhibitor binding. Further-
more, understanding the role of conformational selection in the
binding of MTX, TMP, and PYR will guide development of novel
DHFR inhibitors with improved potency and selectivity.

4.1 Methotrexate Methotrexate (MTX) was first introduced as an effective treatment
for acute leukemia in 1950 and for other solid tumors during the
1950s and 1960s [49]. It is a folic acid analogue and an extremely
potent competitive inhibitor of all DHFRs, including the human
enzyme. Rapidly proliferating cancer cells need a continuous supply
of THF for nucleic acid synthesis and replication. Inhibition of the
folate pathway eventually results in cell death. In addition to cancer
chemotherapy, MTX has been successfully used to treat rheumatoid
arthritis, juvenile idiopathic arthritis, uveitis, graft vs. host disease
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(GVHD), psoriasis, Crohn’s disease, and other inflammatory con-
ditions [48–51].

The inhibition of DHFR by MTX has been extensively studied.
It has been shown via two-dimensional 1H NMR methods that the
conformation of bound MTX to ecDHFR has the pteridine ring
rotated about the C6-C9 bond by about 180� relative to that of
bound DHF [52]. In this orientation, hydrogen bonds are formed
between the protein and the 2,4-diamino groups on the pyrimidine
ring portion of the molecule. Crystal structures also indicate that a
hydrogen bond between a protonated N1 and Asp27 is present.
This interaction is not present in the DHF complex. The enhanced
affinity of MTX over DHF has been attributed to this charged
interaction [52–54]. MTX also binds hDHFR in the same “non-
productive” orientation (Fig. 8) [56, 57].

Fig. 7 Structures of folate and the antifolate drugs methotrexate, trimethoprim, and pyrimethamine. Metho-
trexate is a structural analogue of the natural substrate for DHFR, folate. The differences in the structures are
highlighted in blue. MTX is a potent inhibitor of human DHFR and used to treat cancer and some other
conditions, including rheumatoid arthritis. TMP is a potent inhibitor of bacterial DHFRs and is therefore used as
an antibacterial agent. PYR is an inhibitor of certain protozoal DHFRs, including Plasmodium falciparum DHFR-
TS and is used as an anti-malarial drug. (This figure was generated using the program ChemDraw [35])
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In addition, the conformation of MTX-bound DHFR has been
studied in numerous species. Using two-dimensional 1H NMR
methods, Falzone et al. found that the binary ecDHFR:MTX com-
plex exists as two slowly interconverting conformers and that this
interconversion does not take place in the DHF binary complex
[52]. Specifically, the authors observed that many of the resonances
in the DHFR-methotrexate complex were broadened or doubled.
The two distinct set of resonances were attributed to the presence
of two protein isomers. The authors collected NOESY spectra at
303 and 323 K and saw no interconversion between the isomers at
the lower temperature but did see exchange cross-peaks in a 700ms
NOESY spectrum at 323 K, indicating interconversion between the
two isomers at the NMR timescale. These observations were sup-
ported by other crystallographic and NMR experiments [58]. It
was also observed that two conformers of DHFR exist in solution
and interconvert slowly prior to methotrexate binding. The exis-
tence of a conformational equilibrium prior to ligand binding may
be evidence to support the conformational selection model. In
addition, the population of each of the conformers of the MTX
complex appears to be pH dependent, with conformation 2 being
preferred at high pH [58]. Interestingly, the opposite situation
appears to exist for the Lactobacillus casei enzyme (lcDHFR). In
contrast to ecDHFR, lcDHFR exists in at least two conformations
in its binary complex with DHF and three conformations in its
ternary complex with DHF and NADP+, but only exists as a single
conformation in the MTX complex [59–61]. The different confor-
mational equilibriums among bacterial species provide insight into
structural differences between the complexes and such information
may eventually assist in the design of more species-specific
inhibitors [59].

Fig. 8 Comparison of the binding orientation of MTX and DHF. MTX is shown in
cyan and DHF in orange. MTX and DHF do not bind DHFR in the same orientation
despite their highly similar structures. (Figure reproduced from ref. 55)
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4.2 Trimethoprim Trimethoprim is a widely used antibacterial drug that is often used
in combination with the antibiotic sulfamethoxazole to treat
numerous bacterial infections including E. coli, Staphylococcus
aureus, Shigella species, Streptococcus pneumoniae, and many more
[62]. TMP is a potent inhibitor of bacterial DHFRs but a much
weaker inhibitor of vertebrate DHFRs. In fact, TMP binds to
ecDHFR about 10,000 times stronger than it does hDHFR (IC50

values against E. coli and human enzymes are approximately
5 � 10�9 M and 3 � 10�4 M, respectively) [63]. The strong
selectivity for the bacterial enzyme is what allows TMP to be an
effective antibiotic, because inhibition leads to cell death in the
pathogenic bacterial cells, but not in the human host cells
[64]. In contrast, MTX is a potent inhibitor of both bacterial and
human DHFR, therefore it is too toxic to be used as an antibiotic
[65]. The main contribution to the selectivity of TMP binding is
the large positive cooperative effect between TMP and the
NADPH cofactor during the formation of the ternary complex
with the bacterial DHFR. TMP binds to bacterial DHFR
135 times more tightly in the presence of NADPH [66]. There is
a large positive cooperative effect because the binding of one ligand
(NADPH) greatly increases the affinity of DHFR for the second
ligand (TMP). This large cooperative binding effect is not observed
in the complex of TMP with human DHFR [67, 68]. Several
explanations have been proposed for the cooperative binding effect
including: direct interaction of the ligands with each other, alloste-
ric effects due to conformation change of the protein upon ligand
binding, resonance effects that strengthen networks of hydrogen
bonds and electrostatic interactions in the ternary complex relative
to the binary complexes, and correlated movements of the ligands
[64]. There is also a direct hydrophobic interaction between TMP
and NADPH in the ternary complex [69]. The analogous interac-
tion in hDHFR is much weaker because there is greater separation
between the ligands [67]. However, it is unlikely that the direct
contact between ligands alone is enough to explain the large coop-
erative effect. The additional free energy change may be due to a
conformational change in the enzyme resulting in a more favorable
interaction of DHFR with both ligands [64].

Another interesting aspect of TMP binding to bacterial DHFR
is the observation of two coexisting conformational states in the
ternary complex of the Lactobacillus casei enzyme [70, 71]. The
complex of lcDHFR with TMP and NADP+ exists in solution as a
mixture of approximately equal amounts of two slowly intercon-
verting conformational states [72, 73]. NMR experiments were
used to characterize the conformational equilibrium of the
L. casei enzyme complexes, which showed that the active site is
clearly involved. There are significant differences in the environ-
ment of the bound ligands between the two conformations but
conformational effects are not restricted to the active site
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[71]. Involvement of six of the seven His residues was observed, yet
only two of these are likely to be in close contact with the bound
ligands. This implies that residues distal to the active site are also
involved in establishing an equilibrium between the two intercon-
verting conformers. In addition, the differences in protein structure
between the two conformations appear to determine the nature of
the difference in ligand environment between the two conforma-
tions. Complexes formed with various structural analogues of TMP
or NADP+ clearly exist in the same two conformations, but the
equilibrium constant between the two varies from less than 0.1 to
2.3 in different complexes [71–73]. Another interesting observa-
tion regarding the conformational dynamics in TMP-bound
DHFR is that, while two conformers are observed for the L. casei
enzyme, only one conformation is observed for the E. coli DHFR
complex [70]. Thus, conformational equilibrium does not only
vary based on the ligands bound, but also varies among species.

4.3 Pyrimethamine Pyrimethamine acts as an anti-malaria agent by selectively inhibit-
ing the DHFR domain of pfDHFR-TS, and other Plasmodium
species (Fig. 9). Important amino acid residues involved in the
binding of PYR to DHFR include Ile14, Cys15, Asp54, Phe58,
Pro113, and Ile164 [40]. PYR is a potent and selective inhibitor of
pfDHFR, with an inhibitory constant of 0.2 � 0.02 nM. It also
inhibits pvDHFR with an inhibitory constant of 0.16 � 0.03 nM

Fig. 9 PYR bound to the active site of the pvDHFR domain of pvDHFR-TS. Interactions between PYR and the
enzyme include electrostatic interactions, shown as dotted lines. The numbers next to the lines are bond
distances in Å. (Figure reproduced from ref. 74)
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[74]. In contrast, human and bacterial DHFRs have a much lower
affinity for PYR. PYR displays a more than 1000-fold decrease in
binding affinity for vertebrate DHFR and a 5000-fold decrease for
ecDHFR [48]. In addition, MTX and TMP show a notable
decrease in inhibitory activity for pfDHFR and pvDHFR compared
to bacterial and human DHFR [75]. While MTX is still a potent
inhibitor of pfDHFR and pvDHFR, the KI values for MTX binding
to these enzymes show a several hundred to several thousand-fold
decrease in inhibitory activity compared to the bacterial and human
enzyme. TMP does not appear to effectively inhibit either pfDHFR
or pvDHFR. This data further illustrates the significance of enzy-
matic differences among species and the opportunity to develop
novel species-specific inhibitors (Table 1).

Despite being a potent inhibitor of PfDHFR, pyrimethamine
resistance is extremely common and problematic. Pyrimethamine-
resistant strains of PfDHFR have been reported as early as the
1950s [78]. Since the emergence of pyrimethamine-resistant
malaria has emerged, many studies have studied these mutants to
determine important residues that confer resistance. A S108N
mutation was determined to be responsible for many different
PYR-resistant strains of P. falciparum [75, 79]. The S108N muta-
tion is seen in single, double, triple, and quadruple PYR-resistant
mutants [75]. S108 is an active site residue. Even though it does
not interact with PYR in the WT enzyme, it clearly is an important
residue since the S108Nmutant is implicated in almost all naturally
occurring PYR-resistant strains of P. falciparum. In addition to
PYR, P. falciparum has developed resistance to other common
inhibitors of the DHFR domain of PfDHFR-TS, including cyclo-
guanil and WR99210. The emergence of antifolate resistance in
malaria parasites highlights the importance of developing novel
small molecule inhibitors that bind PfDHFR selectively.

Table 1
Comparison of inhibitory constants for MTX, TMP, and PYR in bacterial, vertebrate, and plasmodial
DHFRs

Species KI(MTX) (nM) KI(TMP) (nM) KI(PYR) (nM) References

E. coli 0.0010 0.080 NDa [75]

H. sapiens 0.0034 200 120 [75, 76]

P. falciparum 0.24 11 0.2–1.5 [40, 74, 75, 77]

P. vivax 5.2 98 0.16 [74, 75]

The difference in KI values highlights the species-specific nature of different DHFR inhibitors
aNot determined
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5 Effects of Distal Mutations and Evidence for Conformational Selection in DHFR

Over the last 30 years, the effect of mutations distal from the active
site on catalytic activity and inhibitor binding has become the focus
of many studies. The terms distal and allosteric are used to indicate
that an amino acid residue is located away from the active site
[80]. To understand the effects of distal mutations, it is necessary
to recognize the flexible nature of proteins. Enzymes are intrinsi-
cally flexible molecules and undergo conformational changes upon
ligand binding and throughout catalysis. A “network” of amino
acids located in and away from the active site may allosterically
regulate the protein and form “global protein dynamics” that are
crucial to enzyme catalysis [81, 82]. The term “global protein
dynamics” refers to the overall motions exhibited by all atoms in
the protein. Therefore, the effect of a distal mutation on catalysis
and ligand binding is transmitted indirectly, through the network
of amino acids comprising the protein [80]. The wealth of infor-
mation available about DHFRmakes it a great enzyme for studying
global protein dynamics. In this work, research and methods on the
role of distal residues and effect of distal mutations in DHFR are
outlined. We describe the application of these methods to address
several questions: (a) Do allosteric mutations effect the conforma-
tional motions associated with inhibitor binding? (b) Are the con-
formational motions inhibitor specific? (c) Do allosteric mutations
alter the conformational equilibrium of DHFR prior to inhibitor
binding? and (d) What is the significance of these effects on inhibi-
tor binding and specificity?

Numerous DHFR mutagenesis studies have been published
which focus on the effect of distal residues of DHFR catalysis and
inhibitor binding. Several mechanisms have been proposed to
explain how distal mutations change enzyme function. One pro-
poses that the effect is due to changes in the conformational equili-
bria between the different conformers. The equilibrium is
disturbed because some of the intermolecular contacts that stabilize
particular conformers have been altered by the mutation, which
emphasizes the delicate balance of the conformational ensemble
[80]. A second mechanism proposes that changes caused by a distal
mutation result in a different pattern of interactions with the rest of
the protein and that these changes are propagated throughout the
protein [80]. A third mechanism involves changes in protein con-
formational motion. In this case, the functional effect is due to
changes in flexibility and mobility, rather than structural changes in
the protein [80]. In this section, we will review several single and
multiple site mutation studies on the catalytic activity and inhibitor
binding of DHFR.
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5.1 Mutations

in the Adenosine

Binding Subdomain

M42 in ecDHFR is a highly conserved residue located in the
hydrophobic core of the adenosine binding domain, approximately
10 Å from the site of catalysis in bacterial DHFRs (Fig. 10)
[83]. Although M42 is distal to the active site, mutations at this
site have been shown to have a profound effect on catalysis and
ligand affinity. One well-studied mutation is the substitution of
M42 with Trp (M42W) [55, 80, 83–87]. Hydride transfer rates
of this mutant were measured using stopped-flow kinetics using
both single and multiple turnover conditions. The concentrations
in a single turnover experiments are set up such that the enzyme
concentration exceeds the substrate concentration and thus only
one conversion of substrate to product takes place. Single turnover
conditions allow the researchers to isolate particular events in the
catalytic cycle and avoid repeated cycling. The authors recorded the
changes in absorbance and emission of the cofactor NADPH over
time after mixing the enzyme-cofactor complex with the substrate
DHFR. M42W showed a 41-fold reduction in the rate of hydride
transfer, and increases the rate of product dissociation, making
hydride transfer the rate-limiting step of catalysis [80]. In addition,
kinetic studies similar to what is described above revealed that this
mutation introduces a structural rearrangement step into the reac-
tion cycle, which has a significant impact on catalysis [83].

GH Loop

1.28

Folate

S148

Met20 Loop

NADP+

M42

FG Loop

G121

Fig. 10 The structure of DHFR in complex with NADP+ (orange) and DHF (purple).
The Met20 loop (green) is in the closed conformation. The FG loop and GH loops
are illustrated in dark blue and red, respectively. The distal residues L28 (light
blue), M42 (pink), G121 (cyan), and S148 (yellow) are displayed and labeled.
(This figure was generated using the program Chimera [28])

204 Melanie Goldstein and Nina M. Goodey



To gain insight into how the mutations influence activity, Rod
and coworkers employed several long (10 ns) molecular dynamics
simulations of M42W-DHFR and wild type. They simulated the
Michaelis complexes using explicit solvent and the 1RX2 crystal
structure. They examined whether the mutations impact correlated
motions and/or the distribution of conformers sampled by the
enzyme and the resulting effects on hydrogen bonds. The authors
quantitated the coupling between residues by calculating the
covariance between the fluctuations of the two residues. The results
indicate that the dynamics of the closed conformation in theM42W
mutant are altered because the mutation disrupts a network of
coordinated motion that promotes hydride transfer [84, 88].

In a study by Mauldin et al., NMR relaxation data was used to
examine the dynamics of M42W-DHFR in the ternary complex
with THF. The authors used a strategy where they measured the
conformational fluctuations of backbone amide and side-change
methyl groups on multiple timescales. They attributed changes in
picosecond to nanosecond dynamics to mutational effects propa-
gating throughout a network of interacting residues and micro- to
millisecond timescale changes to the mutation resulting in an
increased rate of switching in the catalytic core. They observed
two distinct groups of residues that experience R2 dispersion in
M42W-DHFR: 15 residues within the catalytic core of the protein
and a cluster of 5 residues lining the pABG binding cleft. They
found that conformational switching within the pABG binding
cleft may act to eject THF from M42W-DHFR [83]. In addition,
they proposed that M42 acts as a “dynamic hub” in DHFR by
coordinating motion on multiple timescales and that disrupting
these dynamic interactions may be an effective method of allosteri-
cally modulating DHFR function [83].

5.2 Mutations

in the Met20 Loop

The direct role of the Met20 loop in DHFR catalysis was outlined
in Subheadings 2.2 and 2.3. Although the Met20 loop is directly
implicated in the catalytic cycle, some residues are considered distal
because the side chains are oriented toward the solution and do not
contact cofactor or substrate [80]. An investigation of the contri-
bution of the Met20 loop to DHFR catalysis was performed by
constructing a DHFR deletion mutant of four residues in the
Met20 loop (residues 16-19) [89]. Three of these four residues
are considered distal. However, N18 is not considered distal
because it is within contact distance to the cofactor. The deletion
mutant (DL1) resulted in a 400-fold decrease in the rate of hydride
transfer (950 s�1 for WT enzyme and 1.7 s�1 for DL1). The KM

and Kd values for DHF and NADPH increased, but not drastically.
These observations support Met20 loop acting as an active site gate
that affects the organization of bound substrate and cofactor to
form an active complex [80].
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5.3 Mutations

in the FG Loop

5.3.1 G121V

G121 in ecDHFR is one of the most thoroughly studied distal
residues and has been the subject of numerous kinetic and muta-
genesis studies. It is universally conserved among all prokaryotic
DHFRs, which suggests that it plays a crucial role in the function of
DHFR [55]. G121 is located on the FG loop, 19 Å from the active
site of the enzyme (Fig. 10) [80]. The substitution of Gly with Val
(G121V) has been the subject of numerous studies. Gekko et al.
demonstrated that the G121V mutant decreased the rate of steady-
state catalysis 20-fold, concluding that amino acid substitutions at
position 121 significantly influence its enzymatic function
[55, 90]. The fact that enzyme function is affected by mutations
in residues far from the active site suggests global dynamics of the
protein play an important role in catalysis [90]. In a later study,
Cameron et al. analyzed the full kinetic scheme of G121V DHFR
and determined that the rate of hydride transfer decreased
170-fold. In addition, G121V was found to introduce a catalytically
significant conformational exchange preceding the hydride transfer
step, at a rate of 3.5 s�1 [91]. In contrast to WT DHFR, the closed
conformation is energetically disfavored for G121V DHFR
[92]. As mentioned earlier, the Michaelis complex for ecDHFR is
in the closed conformation. The mutant remains in the occluded
conformation, which interferes with coupled loop movements and
impairs catalysis by destabilizing the closed Michaelis complex and
introducing an extra conformational exchange step into the kinetic
pathway [92].

In a study by Boehr et al. nuclear magnetic resonance relaxation
experiments were used to determine the mechanism by which the
G121V mutation effects DHFR kinetics and dynamics on the
picosecond to nanosecond and microsecond to millisecond time-
scales. The authors recorded the 15 N relaxation data for both wild
type and G121V DHFR with folate bound. They found that the
mutant ternary complex (G121V:NADPH:THF) adopts an
occluded conformation which is very similar to that of the wild-
type ternary complex. However, this mutation causes substantial
changes in dynamics, restricting the amplitude and altering the
timescale of motions of residues in the FG loop and the Met20
loop. The effects of the G121V mutation are transmitted to distal
sites through subtle changes in the accessible conformational space
by molecular fluctuations on the picosecond to nanosecond time-
scales. Therefore, they conclude that their results are consistent
with theoretical experiments that suggest that long-range allostery
in DHFR arises from a redistribution of the conformational ensem-
ble, with significant contributions from perturbations of the pro-
tein dynamics [93].

In another study, Mauldin et al. used NMR to investigate
whether the decrease in catalytic efficacy caused by the G121V
mutant was the result of changes in structure, flexibility, or both
[94]. Since the G121V mutants favor the occluded conformation,
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they used MTX and the reduced cofactor NADPH to create a
model of the transition state. The high affinity of MTX for DHFR
effectively “locks” the enzyme in the closed conformation in WT
ecDHFR; thus, they reasoned that it may do the same for the
mutant enzyme. This allowed them to isolate the mutant in the
closed conformation, which is the catalytically relevant conforma-
tion of DHFR. Using 15H and 2H NMR spin relaxation experi-
ments, they observed that the most dramatic effect of the G121V
mutation involves changes in the dynamics of the FG and Met20
loops on the μs–ms timescale. In the WT DHFR:NADPH:MTX
complex, loop motion is suppressed so that the complex favors the
closed conformation. However, in the mutant complex, the FG and
Met20 loops undergo fluctuations from the closed conformation.
These dynamic fluctuations serve to decrease the population of
conformers having the correct active site conformation for catalysis,
providing an explanation for the decrease in catalytic activity
observed for the G121V mutant [94].

5.3.2 ΔG121 The effect of deletion and insertion mutations in the FG loop has
also been studied to probe the role of distal residues in DHFR
catalysis. Deletion of the G121 residue (ΔG121) results in
decreased binding to NADPH by 20-fold, as well as a 550-fold
decrease in the hydride transfer rate [80, 95]. Additionally, ΔG121
requires conformational changes dependent on the initial binary
complex to attain the Michaelis complex. Insertion mutants also
displayed a significant decrease in substrate and cofactor binding.
However, the insertion of a glycine residue into a modified FG loop
eliminated the conformational changes required to attain the
Michaelis complex seen in the ΔG121 mutant [95]. These observa-
tions suggest that the FG loop plays a role in the formation of
liganded complexes and proper orientation of substrate and cofac-
tor during catalysis. Through a transient interaction with the
Met20 loop, alterations to the FG loop can coordinate proximal
and distal effects on ligand binding and catalysis that implicate a
variety of enzyme conformations involved in the catalytic
cycle [95].

5.4 Mutations

in the GH Loop

5.4.1 S148

S148 is located in the GH loop (residues 142-149) of ecDHFR,
18 Å away from the active site. This residue is involved in hydrogen
bonding interactions that modulate the conformation of theMet20
loop [80, 95]. To gauge the importance of these hydrogen bonding
interactions, S148 was replaced by Asp, Ala, and Lys. These muta-
tions increased the affinity for the NADPH cofactor, but signifi-
cantly decreased the affinity of the enzyme for DHF (Table 2).
Further analysis revealed that these mutations predominantly
effected the ligand release rates. Mutations at residue 148 altered
the preferred catalytic pathway by introducing branches at key
intermediates [80].
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S148 has also been shown to play an important role in the
occluded conformation of ecDHFR through mutational analysis.
The occluded conformation is stabilized via two hydrogen bonds
between Asn23 in the Met20 loop and Ser148. In a study con-
ducted by Behiry et al. S148 was replaced with proline (S148P).
Pro cannot form the hydrogen bond interactions necessary to
stabilize the occluded conformation and the S148P mutant is
useful for investigating the importance of the occluded conforma-
tion in DHFR catalysis. Their results indicated that the occluded
conformation assists in the release of the oxidized cofactor NADP+

and progression through the catalytic cycle [97].

5.5 Mutations

in the DHF

Binding Cleft

The residues in the DHF binding site of ecDHFR are I5, A6, A7,
M20, D27, L28, F31, R52, R57, I94, and T113. Among these
residues, the backbone of I5 and side chains of D27, R52, R57
directly interact with DHF via hydrogen bonding interactions
[98]. The other residues can be considered distal in this context
because they are not directly involved in binding of substrate or the
catalytic reaction. In a recent study by Abdizadeh et al., replace-
ment of L28 with an Arg residue (L28R) was investigated to
structurally and dynamically characterize the WT and L28R
ecDHFR in the presence of DHF and TMP. They used the
NAMD package to model the molecular dynamics of the protein–
water systems to determine the conformational space, loop dynam-
ics, and hydrogen binding interactions for the WT and mutant
enzyme. The protein was soaked in a cubic solvent box with at
least a 10 Å layer of solvent in each direction from any atom of the
protein to the edge of the box and the ionic strength in the
simulations was kept at 150 mM. All systems were subjected to
10,000 steps of energy minimization. The resulting structures were

Table 2
Thermodynamic and kinetic data for WT DHFR and single mutants

DHFR Kd(DHF) (μM) Kd(NADPH) (μM) khyd (s
�1) kcat (s

�1) References

WT 0.22 � 0.06 0.33 � 0.06 220 12 [23]

M42F 0.35 � 0.05 0.22 � 0.04 159 � 17 [85]

M42W 0.43 � 0.1 0.27 � 0.03 5.6 � 0.4 [85]

ΔG121 0.26 � 0.03 3.2 � 0.4 3.7 � 0.4 [95]

G121S 0.39 � 0.05 3.2 � 0.04 3.7 � 0.4 [85]

G121V 0.36 � 0.02 14.2 � 0.8 1.4 � 0.2 [91]

S148A 1.06 � 0.09 0.049 � 0.003 157 � 3 6.6 � 0.8 [96]

S148D 0.18 � 0.02 0.15 � 0.01 319 � 3 4.6 � 0.1 [96]

S148K 0.72 � 0.14 0.16 � 0.01 162 � 2 5.7 � 0.1 [96]
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analyzed at 1 atm and 310 K until volumetric fluctuations were
stabilized and the desired average pressure was maintained. The
DHF-bound WT DHFR structure (PDB code 1rx2) was used in
the molecular dynamics simulations. In addition, experimental
values for kcat, Km, and KI values were measured. Isothermal titra-
tion calorimetry (ITC) measurements were conducted that distin-
guish enthalpic and entropic contributions to TMP binding
[98]. This thorough study provides insight into the binding kinet-
ics and dynamics of TMP to WT DHFR and the L28R mutant,
which confers resistance to TMP [98]. L28R is a common TMP
resistance-conferring mutation [98]. In WT ecDHFR, L28 does
not exhibit any hydrogen bond interactions with DHF (Fig. 11).
However, for the L28R mutant, sample donor–acceptor distances
between the methyl group of R28 and DHF indicate the presence
of hydrogen bonds between the p-aminobenzoyl glutamate tail of
DHF and the α-amino group of R28 (Fig. 11) [98]. This interac-
tion stabilizes the DHF-bound complex and provides a unique
mechanism of resistance. Typically, mutations that confer resistance
to a competitive inhibitor make enzymes more promiscuous and
decrease affinity for both inhibitor and the natural substrate. For
the L28R mutant, an increase in DHF affinity and a decrease in
TMP affinity are observed (Table 3). While this also results in
slower product release and catalytic rate for the L28R mutant, the
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Fig. 11 Comparison of WT DHFR:DHF and L28R:DHF complexes. In the WT
enzyme, L28 does not form hydrogen bond interactions with the substrate. In the
mutant enzyme, R28 interacts with the p-aminobenzoyl glutamate tail via its side
chain further stabilizing the protein–ligand interaction and altering the binding
conformation of DHF in the binding site. (This figure was reproduced from Fig. 4
in ref. 98)
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enzyme is still able to maintain a sufficient rate of production
formation to be catalytically viable (Tables 3 and 4) [98].

The overall structure of the TMP-DHFR complex is essentially
unaltered upon the introduction of the L28R mutation. However,
large differences in thermodynamic and kinetic parameters are
observed between the WT and mutant enzymes (Tables 3 and 4)
[98]. In the WT:DHF complex, there are strong correlations
between different regions throughout the protein. In particular,
the Met20 loop is correlated to residues 47-59, 85-89, 119-126,
and 142-149 [98]. Abdizadeh et al. found that the L28R mutation
suppresses the overall cross correlations between different regions
of DHFR in the presence of substrate compared to theWTenzyme.
Notably, the concerted movements of the GH loop with the rest of
the enzyme essentially disappear [98]. Therefore, the L28R muta-
tion does not only alter DHFR activity via increased hydrogen
bonding with substrate. The effects of the mutation can also be
observed by the altered global protein dynamics.

5.6 Multiple

Mutations

The results discussed in Subheadings 5.1–5.5 show that single
mutations, distant from the active site, are capable of affecting
enzyme activity. These observations prompted work on the effect
of multiple mutations at residues that are distal to the active site and
spatially separated from each other [80]. Some of the most thor-
oughly studied multiple DHFR mutants and their effects on catal-
ysis and ligand binding will be discussed in this section.

Table 4
ITC measurement data for WT and L28R DHFR

DHFR ΔG (kcal mol�1) ΔH (kcal mol�1) ΔS (cal mol�1 k�1) Kd (nM)

WT �11.2 � 0.5 �13.1 � 1.4 �6.5 � 3.0 4.5 � 0.9

L28R �10.8 � 0.2 �6.8 � 0.5 13.4 � 2.6 13.1 � 1.5

Difference +0.4 � 0.5 +6.3 � 1.5 +19.9 � 4.0

Table adapted from Table 2 in ref. 98

Table 3
Kinetic and competitive inhibition measurements for WT and L28R DHFR bound to the substrate, DHF,
and the competitive inhibitor, trimethoprim

DHFR kcat (s
�1) KM (MM) KI (nM)

WT 8.16 � 3.27 1.49 � 0.14 2.39 � 1.06

L28R 1.30 � 0.01 0.62 � 0.01 24.63 � 1.34

Table adapted from Table 2 in ref. 98
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5.6.1 M42-G121 Double

Mutants

Several different M42-G121 mutants have been constructed and
analyzed to determine whether these residues are coupled through
global protein dynamics and to determine why and how distal
mutations affect the hydride transfer step of the DHFR catalytic
cycle [84]. These mutants include M42-G121A, M42F-G121S,
M42W-G121A, M42W-G121S, and M42W-G121V (Table 3)
[85]. These double mutants generally showed little changes in
substrate and cofactor binding bit synergistic decreases in the rate
of hydride transfer rates. For example, the hydride transfer rates of
the double mutants were decreased by 3200- and 7600-fold in
M42W-G121S and M42W-G121V compared to the WT enzyme,
respectively (Table 5) [80]. In addition, kinetic measurements
indicate that double mutants involving these residues are nonaddi-
tive, meaning that the effect of a double mutant is much greater
than the sum of the effects of the single mutations. For example, if
the effect of the M42F-G121A double mutant was additive, khyd
would decrease 8.4-fold (1.4� 6.0¼ 8.4). However, this is not the
case and therefore the effect is nonadditive. The nonadditivity
observed is the factor by which khyd is lowered more than would
be predicted by a simple additive effect. For example, for M42F-
G121A khyd is lowered 21-fold more than predicted by a simple
additive effect (175/8.4 ¼ 21) [81]. The observed nonadditive
effects suggest a coupling of the FG loop to distant regions of the
enzyme [99].

Table 5
Kinetic data and nonadditive mutational effects on hydride transfer rates for M42-G121 DHFR double
mutants

DHFR khyd (s
�1) khyd ratio, WT/Mutant Additivity factora Nonadditivityb Ref.

WT 220 � 8 1.0 [81]

M42F 159 � 17 1.4 [81, 85]

M42W 5.6 � 0.4 41 [81]

G121A 38 � 3 6.0 [81]

G121S 3.7 � 0.4 62 [81]

G121V 1.4 � 0.2 163 [81]

M42F-G121A 1.3 � 0.2 175 8.4 � 1.4 21 � 5 [81]

M42F-G121S 0.46 � 0.08 496 87 � 16 5.7 � 1.5 [81]

M42W-G121A 0.27 � 0.04 844 34 248 [81]

M42W-G121S 0.07 � 0.01 3257 21 155 [81]

M42W-G121V 0.030 � 0.005 7600 7.8 974 [81]

aAdditivity factor is the factor by which khyd would be lowered based on an additive effect of the individual mutations
bThe additive effect of the individual mutations does not match the actual reduction for the double mutant
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5.6.2 M42F-G121S-

S148A Triple Mutant

and Associated Mutants

In a study by Wong et al. a comprehensive analysis of coupled
motions correlated to hydride transfer rates was applied to the triple
M42F-G121S-S148A and the associated single and double
mutants. Because these three residues are all located in different
regions of the enzyme, analysis of the triple mutant may provide
further insight into the coupled interactions and motions between
different regions of DHFR (Fig. 10). The khyd rates of the single
mutants M42F, G121S, and S148A were compared with the dou-
ble mutants G121S-S148A, M42F-S148A, M42F-G121S and the
triple mutant M42F-G121S-S148A. Hydride transfer rates for all
the associated mutants decreased significantly and the triple mutant
displayed an 18-fold decrease in khyd (Table 4). The results illustrate
that each mutant samples a unique set of motions and nonadditivity
was observed for the hydride transfer rates, which may be explained
by nonadditive modulations of the network of coupled motions
involved in the hydride transfer step. In addition, their calculations
indicated that distal mutations can introduce subtle structural per-
turbations that impact the hydride transfer rate by altering the
conformational ensemble of DHFR. Since distal mutations are
coupled to each other through long-range electrostatic and hydro-
gen bonding networks, the introduction of site-specific mutations
alters the motions of the entire enzyme [100, 101] (Table 6).

6 Future Prospects: Protein Dynamics and Conformational Selection in Drug Design

Classically, drug design efforts have ignored protein motion and
flexibility for several reasons, including time constraints and meth-
odology. Thus, protein motions are normally regarded as small

Table 6
Comparison of hydride transfer rates for the M42F-G121S-S148A triple
mutant to associated mutants and WT DHFR

DHFR khyd (s
�1) khyd ratio, WT/Mutant

WT 220 1

M42F 159 1.4

G121S 3.9 56

S148A 157 1.4

G121S-S148A 18 12

M42F-S148A 92 2.4

M42F-G121S 2.9 76

M42F-G121S-S148A 12 18

Table was adapted from ref. 101
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perturbations that can be disregarded and that static models are
sufficient for drug discovery efforts [20]. However, based on what
we now know about the role of protein dynamics in catalysis and
inhibitor binding, assuming that protein motions can be ignored
may be a mistake. Mauldin et al. used 15N and 2H NMR spin
relaxation experiments to investigate how the functional motions
of DHFR respond to MTX and TMP. They profiled the motions of
ecDHFR bound to NADPH in the presence and absence of the two
inhibitors and found that drug binding at the substrate binding site
breaks up the usual μs–ms loop motions of the holoenzyme into
smaller, unproductive clusters of local motion, which they refer to
as “dynamic dysfunction” [102]. Interestingly, they found that
both MTX and TMP cause the same “dysfunction,” which suggests
that these dynamic changes may be important to inhibitory activity.
These results demonstrate that MTX and TMP do not just block
substrate binding. They also cause a breakdown of communication
within the network of collective motions required for DHFR catal-
ysis [20, 102]. The results of this study are supported by the results
of a more recent investigation of TMP binding by Abdizadeh et al.
They also found that TMP effectively “locks” DHFR in the closed
conformation where the closed conformation dominates in the
ensemble. They propose that binding of TMP sends a “signal” for
conformational change on the μs–ms timescale for the drugged
complex to remain locked in the closed conformation. If this is
true for DHFR inhibitors, then it is reasonable to assume that other
drugs may act in a similar fashion.

The study conducted byMauldin et al. highlights several points
relevant for drug discovery. First, flexibility-function studies can
indicate new modes of drug action that would not be observed
using traditional, static model drug discovery and design strategies.
Second, drug action is most likely broader than we originally
thought. Competitive inhibitors may also inhibit functional protein
dynamics in addition to preventing substrate from binding to the
active site. Third, protein functional motions can be distributed
among networks of amino acid residues throughout the protein.
Thus, motions at one site can be inhibited by binding at a distant
site. Although this makes the drug discovery and design process
much more complex, it also widens the range of potential inhibitor
binding sites, facilitating the design of more specific inhibitors.
Finally, protein dynamics studies should be complemented by
studying the dynamics of the ligand. Since drug design entails
modifying the ligand, not the protein target, the conformation of
the ligand when bound to the protein can provide added
insight [20].

In addition, as described earlier, inhibitor binding modulates
the conformational ensemble of a protein by shifting the confor-
mational equilibrium. By studying the conformational motions of a
protein or enzyme, we may be able to identify the ligands preferred
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conformer and design inhibitors accordingly. If inhibitors can be
designed based on the structure of the preferred conformer, these
inhibitors would bind the preferred conformer more selectively.
Binding of inhibitor would then shift the conformational equilib-
rium in favor of that conformer, increasing drug binding to the
target [12]. In summary, incorporation of protein motion and
conformation studies represents a great opportunity for drug dis-
covery design. Despite such research being ill-suited to high-
throughput methods, it may be necessary because we may be over-
looking a realm of novel drug design possibilities.

7 Conclusion

In this work, DHFR was used as a case study for the methods and
approaches to study the role of conformational selection and
motions in ligand binding, the effects of distal mutations on the
conformational motions of DHFR on inhibitor binding, and the
potential implications these findings may have on drug discovery
and design. The studies as a whole show that conformational
motions play a crucial role in ligand binding during the catalytic
cycle and binding of inhibitor molecules such as MTX, TMP, and
PYR. Distal mutations affect ligand binding and the conforma-
tional motions associated with inhibitor binding. Novel methods
are needed to investigate the hypothesis that proteins exist as a
conformational ensemble in a state of dynamic equilibrium and a
network of amino acids located both near and away from the active
site are required for protein function. Distal mutations most likely
exert their effects by modulating conformational motions indirectly
through this network of amino acids that make up the global
protein dynamics and these effects can only in part be captured
through enzyme kinetics and NMR. Finally, these observations may
have useful implications in drug design. Conformational changes
associated with inhibitor binding were shown to be inhibitor spe-
cific, which implies that drug action may be broader than we
originally thought. Inhibitors may exert their effects through dis-
rupting functional protein dynamics instead of simply blocking
substrate binding to the active site. Therefore, methods to study
the conformational motions that may be potential “drug targets”
can reveal opportunities for the design of better and more selective
inhibitors.
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Chapter 13

Investigating Conformational Dynamics and Allostery
in the p53 DNA-Binding Domain Using Molecular
Simulations

Elena Papaleo

Abstract

The p53 tumor suppressor is a multifaceted context-dependent protein, which is involved in multiple
cellular pathways, with the ability to either keep the cells alive or to kill them through mechanisms such as
apoptosis. To complicate this picture, cancer cells that express mutant p53 becomes addicted to the mutant
activity, so that the mutant variant features a myriad of gain-of-function activities, opening different venues
for therapy. This makes essential to think outside the box and apply new approaches to the study of p53
structure–(mis)function relationship to find new critical components of its pathway or to understand how
known parts are interconnected, compete, or cooperate. In this context, I will here illustrate how to
integrate different computational methods to the identification of possible allosteric effects transmitted
from the DNA binding interface of p53 to regions for cofactor recruitment. The protocol can be extended
to any other cases of study. Indeed, it does not necessarily apply only to the study of DNA-induced effects,
but more broadly to the investigation of long-range effects induced by a biological partner that binds to a
biomolecule of interest.

Key words p53, DNA-binding domain, Transcription factor, Molecular dynamics, Protein structure
network, Allostery, Structural communication, Metadynamics

1 Introduction

To appreciate the protocol illustrated here, a general introduction
to p53 complexity is needed. Indeed, the pathways regulated by the
p53 tumor suppressor are extremely complex. Even if p53 has been
under the radar in the last 40 years, the mechanisms in which it is
involved are still elusive at the molecular and atom level [1, 2]. P53
was originally discovered as an oncogene that is overexpressed in
cancer to realize then that it is one of the most important tumor
suppressors and it was named as the guardian of the human
genome [3].

In recent years, it was revised as the “guardian of homeostatis”
[4]. Indeed, recently, the attention is turned again to the fact that in
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certain biological contexts, p53 supports cell survival, even if in this
case the beneficiaries are the cancer cells [4]. A similar dual role has
been emerging in cancer for many other genes and processes,
suggesting that we need a more sophisticated understanding of
what these genes do at different cancer stages and in different
contexts.

Indeed, p53 is known for its role in multiple cellular pathways,
such as response to DNA damage or various cellular stresses, cell
cycle arrest, senescence, autophagy, and cell death [1]. P53 is also
responsible for maintaining homeostasis by repairing or eliminating
cells with a damaged genome [4]. P53 has even more multifaceted
functions, and it is also crucial for cell survival by promoting
autophagy and metabolism in starvation [1]. P53 signaling path-
ways are overall cell type- and context-specific [2].

P53 is mostly known as a transcriptional activator of several
genes through the recognition and binding of specific DNA
sequences [2, 5]. In normal cells, p53 is detectable at very low
levels, whereas it is post-translationally modified and stabilized in
response to stimuli such as DNA damage, ribosomal or metabolic
stress, and other alterations [2, 6]. P53 can then activate the
transcription of multiple genes that determine the cell fate toward
a survival or a death response [1]. P53 not only can initiate autop-
hagy as a prosurvival mechanism but it is also tightly regulated by
autophagy itself, which downregulate p53 functions to prevent cell
damage [7]. In general, p53 can be controlled at multiple levels.
For example, p53 is involved in an elegant feedback loop in which
the protein can signal its destruction via the activation of Mdm2
(murine double minute 2) to restore normal conditions [1]. Mdm2
is an E3 ubiquitin ligase, which ubiquitinates p53 and targets it for
proteasomal degradation [8].

In light of its manifold functions, P53 has often been referred
to as the guardian of the human genome. Indeed, it monitors and
orchestrates the activities or slow down certain processes to main-
tain a properly functioning environment (i.e., the cell) [1]. In this
sense, P53 signaling pathways are overall highly cell type- and
context-specific. It becomes thus crucial to understand how,
where, and when it is activated and regulated in fine details.

P53 is the gene more frequently mutated in human cancers
[9]. In contrast to many other tumor suppressors, the most com-
mon alterations of p53 in cancer are missense mutations that can
result in the loss of transcriptional activity or in gain-of-function
(GOF) that triggers aggressive phenotypes. Indeed, missense muta-
tions account for approximately 75% of all p53 alteration in human
cancers [10]. The fact that most p53 alterations in tumors are
missense mutations suggests that cancer cells expressing mutant
p53 have an advantage over the deletion of p53 [11].

The GOF of mutant p53 could be, in principle, achieved in
various ways, i.e., promoting the expression of different target
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genes or through the binding to different biological partners,
reshaping the network of p53 protein–protein interactions, and
introducing or silencing post-translational modification sites or a
combination of the mechanisms mentioned above. The emerging
mechanisms by which mutant p53 exhibits its GOF when it comes
to different protein-protein interactions are: (a) the formation of
complexes with other proteins that modify their activities (such as
p63 or p73); (b) the interaction with other transcription factors
(mainly VDR, SREBP, and Est2) that allows regulating promoters
that are generally not under wild-type p53 control; and (c) the
remodeling of chromatin through interactions with chromatin-
remodeling proteins (such as SWI-SNF CRC and Pontin) or induc-
ing chromatin regulatory gene expression (for example MLL1,
MLL2, and MOZ). These mechanisms are not mutually exclusive
in the onset of different cancers and are also likely to be context-
dependent [1].

Mutant p53 proteins have been for a long time expected to be
“undruggable” but recent studies suggest the opposite, as recapi-
tulated in a comprehensive review article [12]. These studies pro-
vide important proofs of concept that it is possible to rescue the
structural mutants of p53. However, several efforts are still required
in the direction of cancer therapy and personalized medicine. In
this context, the identification of the complex mechanisms that
trigger mutant p53 GOF activities becomes essential to provide
tailored solutions for new treatments to undermine mutant p53
activities.

It is also essential to understand in detail the spectrum of
protein–protein interactions and how the partners of interaction
modify the p53 structure and dynamics in wild-type and mutant
p53 to properly understand the regulatory mechanism of p53
stability due to the interactions with ubiquitinating enzymes and
chaperones. Indeed, the stabilization of mutant p53 is a prerequi-
site for its oncogenic GOF phenotype [1].

To make the scenario even more complicated, we have to
consider that although it is true that a large number of human
cancers feature p53 mutations or deletions, there is a large number
of other alterations that could indirectly impact on the p53 path-
ways. An example is provided by the amplification of its negative
regulators [13] that can modify p53 function and structure.

As an ideal master regulator of homeostasis, p53 features an
“antagonistic and paradoxical bifunctionality” a term coined in
studies of biological circuits and recently translated to p53
[4]. Indeed, as stated above, it exerts opposing effects on the cell,
including prosurvival activities that might sound contradictory with
its canonical pro-apoptotic functions, as well as it can have oppos-
ing effects on cell migration, metabolism, and differentiation
[4]. This is typical of a cancer gene with a dual role. P53 can indeed
regulate the expression of genes exerting diametrically opposite
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effects on the same process and can thus be envisioned as character-
ized by a dynamic “sliding scale” of functions that go from canoni-
cal tumor suppressor to common oncogenic properties [4].

The molecular mechanisms underpinning these opposing
responses induced by p53 have been linked to the diversity of the
DNA response elements, to a different spectrum of protein confor-
mational changes and/or different chromatin configuration [4]. In
this context, p53 could be described as a transcriptional “super
hub” that dictates cell homeostasis, and ultimately decides the cell
fate by governing other secondary hubs in a tightly orchestrated
manner [4].

A major challenge is to decipher the mechanisms behind its hub
role and how p53 selects which hubs to engage and how its pre-
ferences can be modulated. An intriguing hypothesis is that the
paradoxical effects exerted by p53 could be related to differences in
their protein conformation [4, 14].

1.1 Cytosolic

and Mitochondrial

Functions of p53

P53 is also known for its transcription-independent functions [15–
17] related, for example, to mitochondrial apoptosis
[16, 18]. Indeed, p53 mutants with defects in transcription are
still capable of inducing apoptosis [19]. p53 can translocate to the
mitochondrial outer membrane in response to DNA damage. Here,
p53 binds to Bak/Bax to promote Bak/Bax oligomerization
[20]. As a consequence, mitochondrial outer membrane permea-
bilization (MOMP) is promoted, along with cytochrome c release,
caspase activation, and consequent apoptosis [21]. P53 can physi-
cally interact with pro- and anti-apoptotic members of the Bcl-2
family, i.e., not only Bak but also Bcl-2 and Bcl-xL, for example.

Different mechanisms could retain p53 in the cytosol and
prevent its mitochondrial translocation to restrict apoptosis under
normal conditions. Bcl-2, Bcl-xL and, Mcl-1 are known to directly
sequester the cytosolic p53 [22]. Moreover, K63-linked ubiquiti-
nation is associated with protein trafficking, and the cytosolic pool
of p53 is ubiquitinated through the K63 linkage, but such modifi-
cation was not detected for the mitochondrial p53. Screening a
panel of E3 ligases, TRAF6 emerged as critical to control p53
mitochondrial translocation. TRAF6 indeed triggers p53
K63-linked ubiquitination in the cytoplasm, and it can reduce the
interaction between p53 and Mcl-1/Bak preventing localization at
the mitochondria and mediating activation of Bak. This mechanism
is prevented in genotoxic stress condition, in which TRAF6 can also
move to the nucleus where mediates the ubiquitination of p53 and
promotes, in this case, its acetylation and gene expression induction
of genes for cell survival under stress conditions [23].

Recently, another mechanism of p53-mediated transcription-
independent functions has been proposed [24] that cytoplasmatic
p53 can stimulate the accumulation of Ca2+ ions within the endo-
plasmic reticulum (ER) by physically interacting with the ATPase
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Ca2+ transporting fast twitch 1 (ATP2A or SERCA). As a conse-
quence, the efficiency of the transfer of the calcium ions between
ER and mitochondria increases, as well as the propensity to
apoptosis.

It becomes now essential to link all these emerging mechan-
isms. Indeed, for example, anti-apoptotic members of the Bcl-2
protein family can also localize at the ER and modulate Ca2+
homeostasis, but their role in the p53-SERCA-mediated process
is unknown, along with the structural domain of p53 for
p53-SERCA interaction [25].

1.2 p53 Protein

Architecture

and DNA-Binding

Domain (DBD)

P53 forms a homotetramer with a dimer-of-dimers topology,
where each monomer accounts for 393 amino acids and include
multiple domains. In particular, a p53 monomer is composed of: an
intrinsically disordered N-terminal transactivation domain (TAD,
residues 1-42), a proline (Pro)-rich region with multiple copies of
the PXXP sequence (residues 61-94), a core DNA-binding domain
(DBD, residues 101-292), a tetramerization domain (324-355)
connected via a flexible linker, and an intrinsically disordered
C-terminal regulatory domain (356-393) [12, 26]. P53 modular
structure is typical of signaling proteins, and it provides conforma-
tional plasticity to adapt to the interaction with a myriad of different
partners and be modulated by a diverse range of PTMs [27].

A recent review article focused on the property and function of
the tetramer [12], whereas this protocol focuses on the
DNA-binding domain in the context of conformational ensemble
and long-range communication, as well as transcription-dependent
and -independent functions.

The p53 DBD folds into an immunoglobulin-like β-sandwich
architecture with an extended DNA-binding surface (Fig. 1), which
is formed by a loop-sheet-helix motif (including loop L1, F113 to
T123) and two large loops (L2, i.e., K164-C176 and L3, i.e.,
M237-P250) that are held together by zinc coordination
[29]. The L1 loop can adopt an extended conformation and inter-
acts directly with DNA via lysine (Lys) 120 [28]. The L1 loop
conformations can also explore recessed conformations without
direct DNA contacts [28] (Fig. 1).

Compelling evidence suggests that p53 DBDs evolved to be
only marginally stable, and there is a clear correlation between their
thermodynamic stability and the corresponding optimum temper-
ature of the organism of origin [30].

Most cancer-associated mutations are located in the DBD
[10]. All but seven residues of p53 have been the target of at least
one mutation in human cancer [10, 31, 32].

The effects at the structural and functional levels of p53 cancer
mutations, as stated above, can be very different. Some of them are
likely to remove important DNA interaction sites, and other can
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perturb the structure of the DBD with consequent effects on its
stability [12].

Nevertheless, a detailed investigation in the context of p53
conformational ensemble and its interfaces for cofactor recruitment
is still missing for the mutant variants. We cannot rule out, for some
of them, that apart from the major well-known local effects elicited
by the mutations, more complex and long-range mechanisms are in
act. Moreover, some of the “structural mutations” might still
induce local changes that impair the p53 functions such as DNA
binding or protein-protein interactions in the folded state. Even in
these cases, more detailed studies in light of transcription-
dependent and -independent functions need to be carried out to
reach a complete overview on the effects of the p53 mutations.

1.3 Computational

Framework

Several recent computational studies have been carried out to
model the full-length p53 and its tetramer form and its interaction
with DNA [33–36], which are beyond the scope of this protocol,
which focuses on the study of long-range effects and the structural
ensemble of the DBD. Moreover, we refer to the recent review by
Saha et al. [37] for more details on the computational studies of
p53.

Several molecular dynamics (MD) studies have explored the
local conformational changes of the p53 DBD in the presence and

Fig. 1 p53 DBD in complex with DNA. The PDB entry 3Q06 [28] is used to
illustrate the L1 in extended (blue, Chain B) and recessed (gold yellow, Chain A)
states. The zinc ion is depicted as a grey sphere, the p53 DBD and DNA as
cartoons in Pymol
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absence of the DNA [37–41] and identified loops L1 and L3 as the
most critical regions undergoing conformational changes (see
Notes 1 and 2). In other studies, the local consequences of phos-
phorylation have also been addressed, such as the phosphorylation
at S269 and S215, which also feature more distal effects, reducing
the affinity and specificity for DNA [42].

It is nowadays well established that despite the static view that
X-crystallography or the average ensembles of tens of conformation
that are deposited upon NMR structural determination, proteins
are highly dynamic entities that can undergo multiple conforma-
tional changes. Those changes can take place also on a broad range
of time scales [43–46]. They can account for small structural
changes in side-chain dihedrals and conformations or involve
more pronounced changes in loop conformations or even con-
certed motions of large regions or domains of a protein structure
[46]. The different states might be important for biological func-
tions, and they can also be observed with different populations and
kinetics in both unbound/unmodified and bound/modified states
of a protein.

Of particular interest to understand the function of proteins so
complex as the super-hub p53 are those conformational changes
that are promoted long-range and that could unveil allosteric
mechanisms [46–49], i.e., those changes that occur at sites distal
from the modification or ligand-binding site. Allostery can manifest
in the form of both large conformational changes [50] but also
subtle localized changes in protein dynamics or structure [51].

In this view, it becomes crucial to understand how a biological
partner can exert its effect over long distances in p53, as well as
where the distal site interested by the distal communication is and
what is its function. Moreover, in the view of pre-existing minor
populated states of biological relevance, it is also important to
describe with accuracy if any of these conformational changes
induced long range are pre-existing in the free protein in solution
and how the population shift occurs.

An accurate understanding at the atom level could be achieved
by all-atom explicit solvent (see Note 1) MD simulations [52–54]
also coupled to NMR or other biophysical data that accounts for
the structural propensity over different time scales [45, 55–
57]. Indeed, all-atom MD, especially when coupled with enhanced
sampling techniques [58–60] provide information on protein
dynamics on timescales that go from the femto to the milliseconds.
In several applications of these methods, we are witnessing high
accuracy on the estimates of the different conformational states of
proteins and how mutations or post-translational modifications can
affect them [14, 61–65] and we finally have the tools to achieve a
detailed view of the free energy landscape associated with protein
conformational transitions (see Note 3).
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Moreover, many methods for analyses of MD conformational
ensembles provide information on paths of long-range communi-
cations [46, 54, 66–74], such as the ones based on network the-
ory (see Note 4). Recently, their robustness to different force field
descriptions for MD has been shown in proteins of different size
and fold [75, 76].

Despite p53 DBD importance, few studies have been devoted
to unraveling the long-range communication in p53 DBD in its
free, modified or DNA-bound state. However, in recent years,
progress has been made in this field, and the results are promising
[14, 77–79].

We know fromNMR and structural studies that p53 DBD does
not appear to undergo significant conformational changes either
upon binding with other proteins or DNA, but a slow conforma-
tional exchange in the proximity of the disordered N-terminal
region has been identified by NMR [80]. This NMR study together
with our enhanced sampling and classical MD simulations [14] also
pointed out the need of including at least part of the disordered
region, which is N-terminal to the p53 DBD in the structural
experimental and computational studies of p53 DBD since these
residues tightly modulate p53 DBD conformational propensities.
In other structures of p53 DBD in complex with protein interactors
[22, 81], we are also observing conformational changes that are not
in the shape of the domain but often interest specific residues or
loop regions. These changes should not be underestimated since it
is known, in many protein systems, that rearrangements of short
loops or even cascade of rearrangements in side-chain conforma-
tion can have a major impact on the protein activity and function
and that allostery can occur without changes in shape [46, 82].

Recently, my group and coworkers developed a suitable plat-
form to understand long-range effects at distal sites in transcription
factors such as p53 integrating analyses of classical MD and an
enhanced sampling approach, based on metadynamics
[14]. Indeed, classical MD conformational ensembles can be ana-
lyzed with dimensionality reduction [83–87] or higher-order sta-
tistics techniques [88–90] to generate working hypotheses on
protein regions that are distantly coupled and could be interested
in long-range communication or allostery. Metadynamics [58] can
be then used to test these hypotheses and to unveil with high
accuracy the changes in the free energy landscape of the protein
due to binding, mutations or modifications. Protein Structure
Network approaches can also complement the overall picture sug-
gesting at the atom level the structural pathways from which one
site communicates with the distal one [46, 54, 66–74]. Moreover,
if available, NMR-derived parameters that are probes of protein
dynamics on different time scales can be used for cross-validation,
as we did [14] using backbone chemical shifts of p53 DBD
previously published [22]. Indeed, different and accurate chemical
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shifts predictors from structural ensembles have been developed
[91–94].

It is important to emphasize that unbiased MD simulations of
some hundreds of nanoseconds or even microseconds are unlikely
to provide enough statistical power to be used to sample confor-
mational changes that are related to long timescale dynamics like
the one revealed by the p53 NMR experiments. Indeed, in classical
MD even using multiple replicate approaches, only a few transitions
could be observed among different states, whereas a proper inves-
tigation would require the sampling for multiple times of the same
event. When we simulated p53 DBD without the N-terminal tail,
we observed higher flexibility of the S6-S7 loop in the ns timescale.
This observation raises serious concerns for the usage of a DBD
construct lacking the N-terminal disordered residues to study the
properties of the DBD regions that can be modulated by intramo-
lecular interaction with the tail [14]. Indeed, such fast motions
were not expected. Supporting this notion, classical unbiased MD
simulations of the construct including the tail (91–289) did not
show any substantial differences between the DNA-bound and
-unbound forms of the loop [14], indicating that different techni-
ques for conformational sampling needed to be applied.

In our study [14], we applied the framework above to the study
of p53 DBD in its unbound, DNA-bound, and phosphorylated
state and on a specific region of the protein (S6-S7 loop). The work
can be envisaged as a proof of concept for future applications to
unveil the complexity of the p53 signaling function. Indeed, the
novelty of our work is not so much about the fact that we identified
a coupling between conformational rearrangements at the interface
for DNA-binding and changes in a loop (S6-S7 loop, residues
207–213). Other previous works already suggested a long-range
coupling in the proximity of the S6-S7 loop using classical MD only
and techniques such as principal component analyses [39]. More
importantly, we showed that the conformational changes in the L1
loop at the DNA-binding interface are tightly coupled to changes
in the S6-S7 loop, which in turn is in proximity to the N-terminal
disordered tail, which is also involved in the mechanism (Fig. 2).
We showed with high accuracy that DNAmodulates the conforma-
tional ensemble of the S6-S7 loop conformational ensemble. We
also identified key residues that are involved in the paths of struc-
tural communication between the two distal sites and that also
include the N-terminal disordered region. The proposed mecha-
nism still holds in the context of the p53 tetramer, as shown by a
comparison of the structure samples by the p53 DBD simulations
with the known experimental structures of the p53 quaternary
assembly [14]. Indeed, the different S6-S7 conformations fit into
the tetramer without clashes and with most of the residues solved
exposed and available for interaction in S6-S7 more “open” states.
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What is intriguing is that these changes are at the base of
different states of DBD p53 with different functional and biological
implications and a population shift among the states is observed
upon DNA binding. Indeed, our study proposed a new regulatory
mechanism for p53 functions, which is tightly embedded in the
conformational propensities of the protein structure.
DNA-binding causes a population shifts toward states in which
the residues of the S6-S7 loop lose most of the interaction with
the disordered N-terminal region and are recruited for interactions
with other protein regions that causes an “occluded” conformation
of the S6-S7 loop, in turn affecting the possibility to recruit
biological partners such as Ku70, Ark1, and Nb139. Our predic-
tions suggest that these interactions are favored in the p53 DBD
unbound states [14].

Of particular interest, the Ku70 interaction with p53 is neces-
sary to release and activate Bax to initiate the apoptosis pathway
[16]. It will become interesting to validate the interaction between
p53 DBD and Ku70 experimentally, also considering that another
crucial regulator of p53 nontranscriptional function as Bcl-xL and
Bcl-2 also binds to the p53 DBD at a different region, i.e., compet-
ing with the DNA-binding interface directly [22].

Our results suggest that a conformational selection is in play so
that p53 DBD is protected by interactions that are essential to
mediate transcription-independent functions, such as the p53 apo-
ptotic cytosolic functions, as long as the DNA is bound to the
protein and p53 needs to act as a transcriptional activator. We also
observed that Aurora kinases-mediated phosphorylation at Ser215
[96, 97] is another modulator of the p53 S6-S7 loop state and it is

Fig. 2 p53 DBD main components of a new regulatory mechanism to select for
transcription-dependent and -independent functions of p53. The PDB entry
2XWR [95] is used and the DNA has been superimposed from the PDB entry
1TSR [29]. The three main players of the mechanism that we predicted using the
protocol here described are shown in green (N-terminal residues), red (S6-S7
loop), and yellow (L1 loop), respectively
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likely to be only the tip of the iceberg of other complex and
interconnected layers of regulation.

The long-range communication from DNA binding loops to
distal regions of the protein that act as cofactor recruitment hot-
spots can be a broader mechanism, as we recently showed also in
the DBD of the ARID family of transcription factors [98]. Also,
p53 is not the unique case of known transcription factors for which
transcription-independent cytosolic or membrane-associated func-
tions have been identified [99] so that the conformational selection
mechanisms proposed for p53 could be an example of a more
general scenario.

More in general, the methodology illustrated here can be
extended to other proteins to understand how long-range commu-
nication occurs from distal sites and which regions interested by the
allosteric effects can act as cofactor recruitment interface. As an
example, we recently applied the same tools to the study of the
MZF1 SCAN domain [76].

2 Materials

The software and tools listed below are needed with a Linux/Unix
working environment and access to HPC resources is recom-
mended for the classical and metadynamics simulations.

1. Pymol (www.pymol.org) or similar software for structure visu-
alization, superimposition, and manipulation.

2. Gromacs version 4 or higher to run unbiased MD simulations
[100–102].

3. Gromacs version 4 or higher patched with Plumed 1.3 or 2 to
perform the metadynamics simulations [103, 104].

4. PyInteraph [68] orWordom [105] to calculate the PSN and the
paths of long-range communication.

5. Xpyder plugin [106] for Pymol for visualization of the PSN
results and PyKnife to assess convergence of the PSN proper-
ties or automatize the collection of the network [75].

6. PRISM [107, 108] to predict the protein-protein complexes.

3 Methods

For the sake of clarity, we will illustrate the example of the analyses
for p53 DBD in its wild-type variant comparing DNA-bound and
DNA-unbound states, inspired by our recent work [14]. The pro-
tocol can be translated and adjusted to any other case of study and
also not necessarily to study DNA-induced effects, but more
broadly long-range effects induced by a biological partner that
binds to a biomolecule of interest.
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3.1 Structure

Selection

and Preparation

It is essential in any MD study, to accurately select the starting
structure for simulations. In the case of the p53 DBD, through
the comparison of different PDB structures available in an MD
framework, we realized the importance of including the residues
of the N-terminal disordered extremity, as explained in the para-
graphs above. In this example, it is suggested to use the X-ray
structure of the p53 DBD in the PDB entry 2XWR (chain A,
residues 91–289) [95]. This is a structure of the unbound p53
DBD including four residues from the N-terminal tail. To model
the p53 DBD DNA-bound state, we could use the PDB structure
1TSR (chains B 95-289 of p53 DBD, E and F, [109]) and carry out
a structural alignment of the two p53 DBDs, and then retain in the
PDB file for simulations only the chain A of 2XWR and remove
chain B from 1TSR. As an alternative, the missing residues could be
modeled into the 1TSR structure using 2XWR as a template. We
suggest using the chain B of 1TSR in the modelling since it is
centrally placed with respect to the DNA molecule in the crystal
structure.

To define the protonation state of the histidine, we used the
Propka server [110], whereas the cysteine and histidine residues for
Zn2+ coordination were kept in their unprotonated state. The
N-terminus and C-terminus were also modeled at pH ¼ 7 as
positively and negatively charged moieties, respectively.

3.2 Preparatory

Steps for Classical MD

and Metadynamics

A force field has to be selected for the simulations, and we recom-
mend to carefully read the literature with force field benchmarking
and to use those force fields that would be more suitable as a
combination to model both a protein and a DNA molecule. In
our previous publication, we tested both CHARMM22-CMAP
[111] or CHARMM22* [112] and CHARMM27 DNA para-
meters [113]. Nevertheless, MD force fields are continuously
adjusted or developed so that in new applications, for example, a
more recent force field could be used [114].

The systems have to be solvated in a dodecahedral box of water
molecules at 150 mM NaCl using periodic boundary conditions
with a minimum distance of at least 1.3 nm between the protein
and the box edges. In the case of the CHARMM family of force
fields, the usage of the TIP3P solvent model [115, 116] is recom-
mended. Topology and box preparation, as well as solvation of the
system, can be carried out using the pdb2gmx, editconf, and genbox
tools from Gromacs. respectively.

Each system needs to be initially relaxed by 10,000 steps of
energy minimization with the steepest descent algorithm. The
optimization step was followed by 0.5 ns or one ns of solvent
equilibration at 300 K while restraining the protein atomic posi-
tions using a harmonic potential. Each system can be then equili-
brated to the target temperature (300 K) and pressure (1 bar)
through thermalization and pressurization simulations in the
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NVT or NPT ensemble, respectively for some nanoseconds. The
final step before the production run is an equilibration in the NVT
ensemble of at least 5 ns. We suggest to perform the productive
MD simulations using LINCS algorithm [117] to constrain heavy-
atom bonds, allowing for a 2 fs time-step. Long-range electrostatic
interactions can be described by the Particle-mesh Ewald summa-
tion Scheme [118]. Van der Waals and Coulomb interactions can
be truncated at 0.9 nm.

3.3 Classical MD

Simulations

Classical MD simulations should be carried out for some hundreds
of ns up to microseconds if possible, for the first exploration of
distal coupling between different protein regions. They can be
carried out at 300 K using, for example, a velocity-rescale
thermostat [119].

We suggest evaluating the radius of gyration and the secondary
structure content to ensure that they do not dramatically deviate
from the corresponding values in the known experimental struc-
tures used as starting structures for the simulations. These are best
practices and common sense in the field. It is also important to
monitor the main-chain Root Mean Square Deviation (RMSD) of
the folded regions of the protein with respect to the initial struc-
ture, and if some ns are required to reach convergence of this
property, the first part of the simulation can be discarded from
further analyses. In a case such as p53, where a metal ion is bound
to the structure, it is also important to evaluate the distances
between the metal atom and its coordinating groups over the
simulation time, as well as the coordination geometry. In a case
such as the one published by us, we carried out multiple MD
replicates of each p53 variant to better explore the conformational
space. This can be achieved, for example, using different random
initial velocities associated with the atoms at the beginning of each
simulation. If multiple replicates are used, the equilibrated portions
of each trajectory can then be concatenated in a unique macro-
trajectory for the analyses.

3.4 Dimensionality

Reduction Methods

In this example, we will illustrate the usage of Principal Component
Analysis (PCA) [120], but also other methods can be used for the
same purpose such as higher-order statistics methods, or other
metrics for ensemble comparison that have been cited in the para-
graphs above. The Gromacstools for PCA such as g_covar and
g_anaeig can be applied for this step. The PCA of MD trajectories
allows to identify the eigenvectors (also called principal compo-
nents) of the mass-weighted covariance matrix of the atomic posi-
tional fluctuations, and it is generally carried out using the Cα
atoms. If different variants are under comparison, it is important
to concatenate the trajectories of the different system so that the
comparison can be made in the same PCA subspace. With a proper
MD sampling, the first three PCs generally accounts alone for more
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than 50% of the fluctuations of the system. They can be used as
“reaction coordinates” to generate two-dimensional
(2D) probability distribution plots and identify putative conforma-
tional substates of different regions of the protein that need to be
predefined on the base of the structural knowledge on the system,
the question to be addressed or also a first visual exploration of the
MD trajectory. It is also useful to carry out all-atom PCA for a
specific region of interest upon fitting on the main-chain or CA of
the protein, to better appreciate the different states that these
regions can assume. The PCA results can also be mapped on the
3D structure of the protein, and they allow to identify a potential
coupling between different sites, as we observed for the conforma-
tion of the DNA-binding loop L1 (and its K120 residue especially)
and the distal loop S6-S7 [14].

3.5 Paths

of Communications

between Distal Sites

To further verify the coupling between the distal regions of interest,
i.e., the L1 and S6-S7 loops in our example, we can apply graph
theory to the MD structural ensembles. There are multiple solu-
tions to achieve this goal available. Our group recently implemen-
ted a Python suite of tools that can handle different MD trajectory
formats, i.e., PyInteraph [68]. We also provided a plugin for Pymol
to handle PyInteraph output formats for graphical visualization of
the analyses [106]. As an alternative, theWordom package could be
used which also allow integrating the PSN with information from
correlated motions [105]. PSN approaches such as the ones
provided by PyInteraph and Wordom can be used not only for
calculations of shortest communication pathways between two
residues but also to calculate other important properties of a net-
work (such as hubs, connected components, cliques, etc.). We here
focus only on the path analyses since it is the suitable one for the
processes that this protocol aims at dissecting (i.e., communication
among distal sites).

We will here enter into the details of the PyInteraph approach,
which is currently used in our group. At first, we need to generate a
PSN based on contact between the centers of mass of residues side
chains using the pyinteraph tool of the package. A distance cutoff of
5 Å has been recently shown as the best solution for this kind of
network in a benchmarking of different proteins simulated with
different force fields [75]. A Python tool, PyKnife, is also available to
identify the cutoffs and monitor the properties of the network with
a JackKnife resampling method [75]. The distance is calculated
between the center of mass of the residues side chains, expect for
glycines. To obtain the PSN, it is also recommended to retain those
edges that are only populated in the 20% of the simulation frames
[68, 73, 121] to remove noise in the final network. For each pair of
nodes of interest in the PSN graph (which could be, for example,
residues of L1 and residues of the S6-S7 loop), a variant of the
depth-first search algorithm is used in the current PyInteraph
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implementation to identify the shortest paths of communication
between two sites. Indeed, communication in PSN is expected to
work more efficiently through the shortest paths between two distal
sites [122]. The PSN analysis sheds light on the atomic details
behind the distal communication and also identifies the most
important components in the mechanism. In the p53 example, it
allowed identifying the residues in the N-terminal tail as important
in modulating the conformation of the S6-S7 loop together with
the DNA binding loops. An example of a script for PyInteraph is
provided in Fig. 3.

3.6 Metadynamics

Simulations

Once the first exploration of classical MD trajectories is carried out,
and the regions of interest have been identified, it is essential to
design collective variables for the metadynamics step which better
describe the mechanism of interest or the working hypothesis. In
the case of the S6-S7 loop, we monitored over the MD simulations
more than 50 parameters in terms of side-chain and backbone
dihedral angles, distances between different residues and angles
formed by the loop motions. This allowed us to identify which
variables could better describe the different states of the loop that
we wanted to explore and calculate in more details with metady-
namics. It is also fundamental that for the process of interest, the
slowest degrees of freedom are identified and included in the
metadynamics collective variables to have a proper and accurate
exploration of the free energy landscape and avoid artificial results
or phenomena such as hysteresis [58].

Fig. 3 A bash wrapper to run the PyInteraph pipeline for contact-based PSN. The tools pyinteraph, filter_graph,
and graph_analysis need to be used sequentially. For details on each option of the command lines, we
recommend to refer to the PyInteraph official documentation
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Once the collective variables of interest are identified, multiple
metadynamics-based solutions can be explored. Indeed, the meth-
odological metadynamics-oriented research evolved so much in the
last 10 years and with so many fruitful contributions that it could be
now seen as a field on its own. The one here provided is just one
example to give a first guidance and also suitable if the HPC
computational resources available are rather limited or to run
with GPU support.

The approach is the metadynamics coupled with parallel tem-
pering (PT, i.e., a sort of replica exchange in the temperature space)
[123] in the well-tempered ensemble (WTE) [124] to overcome
the usage of many close temperatures in the PT simulations when
systems with a large number of atoms need to be used. Indeed, it is
critical in a PT-metadynamics to achieve a sufficient energy overlap
between adjacent replicas and sufficient exchange rates, which need
to be carefully checked on short exploratory runs before even
moving further in the sampling or analyses of the results. In the
WTE approach, a constant bias on the energy is added to each
replica to increase the width of the energy distribution so that a
suitable exchange rate is ensured even when a lower number of
replicas are used and the separation in the temperature space is
larger.

To give a practical example, in the case of p53 DBD, after the
classical MD exploratory analyses a working hypothesis that can be
generated is that upon DNA binding or phosphorylation at Ser215
the conformational state of a distal loop, i.e., the S6-S7 loop
(residues 207-213), can be conformationally modulated
[14]. After exploring different reaction coordinates in the available
unbiased MD runs, we concluded that the combination of at least
four Cα-Cα key distances between residues of the S6-S7 loop and
its surroundings is descriptive of the conformations that the loop
assumes: Asp208-Arg156 (CV 1), Arg158-Phe212 (CV 2),
Arg209-Glu221 (CV 3), and Arg209-Glu258 (CV 4). In contrast,
CVs such as the radius of gyration are not of interest for this specific
process since there is no remarkable change in the shape of the
molecule upon opening and closing of the loop. Such as CV could
become relevant for larger conformational rearrangements when
more extended and disordered loops or entire domains change
their reciprocal orientation.

Once the CVs are selected, we also need a proper definition of
the temperatures for each replica, which should reasonably span
from low to high temperatures but where the highest temperature
should not encounter the risk to unfold our protein in the simula-
tion time needed to reach convergence. Indeed, we want to simu-
late a conformational change occurring in a folded protein and not
its unfolding/folding mechanism. We can thus run unbiased simu-
lations at high temperatures of at least some hundreds of ns to
monitor the stability of the protein architecture and identify the
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minimum highest temperature to employ. In the case of our p53
example, a good scheme could have eight replicas (at 296,
298, 300, 308, 320, 332, 345, and 358 K) where the width of
the energy distribution of all the replicas was increased except for a
“neutral” 298 K replica [62].

All replicas are further subjected to an additional biasing force
through metadynamics in which a Gaussian of width 0.1 nm in all
the CV dimensions (i.e., the four distances in our example) is
deposited in the collective variable space every 4 ps with an initial
height of 0.12 kcal/mol and a bias factor of 6. All these parameters,
i.e., the deposition time, the initial height of the Gaussian and the
bias factor could be tuned according to the process of interest. We
used quite mild biases since the changes in free energy among the
minor and major states were not expected to be high, and we aimed
to reproduce them accurately.

In our example (Fig. 4), the simulations were run for at least
300 ns per replica, checking the evolution of the monodimensional
free energy surface (FES) along each collective variable and also the
evolution of two-dimensional FES over the simulation time using
the sumhills preprocessing tool of Plumed. In an ideal scenario, we
could interrupt the simulation when we are confident that we are
sampling the changes in the collective variable space multiple times
(i.e., we observe multiple events of opening/closing of the loop).
This is required to achieve the sufficient statistical power. Another
criterion is to verify that the FES does not change remarkably over
time, and the relevant minima have been explored.

3.7 Identification

of Biological Partners

Recruited

at the Long-Range

DNA- Modulated Sites

Once the structural mechanism behind long-range communication
or allostery has been unveiled, in a case as p53, it becomes crucial to
give a biological rationale to it. Does this conformational change
have any meaning from the biological point of view? Alternatively, it
is just an unrelated event to protein function?

In the p53 case, which needs to interact with multiple partners,
an obvious working hypothesis could be that the distal region acts
as an interface for recruitment of other biological partners and that
the conformational change can either “activate” or “inactivate” this
function.

Thus, we can first retrieve the available information on p53
partners using databases where experimental (or predicted but to
be taken with caution) protein-protein interactions are annotated.
For example, the I2D database can be used since it acts as a
“metaserver” integrating annotations from different sources,
included the literature. The pool can always be enriched by manual
annotation from recent literature or other databases. The target list
can also be pruned according to the CRAPome definition from hits
that are likely to be artifacts in proteomics [125]. Once the target
proteins have been identified, it becomes crucial to retain only
those for which at least one experimental structure is available in
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the PDB. Then, we can use the PRISM approach, also including if
possible a benchmarking against known complexes of the protein of
interest and other proteins to define a suitable docking energy
threshold, as we did in the p53 case [14]. PRISM is a template-
based approach to predict protein-protein interactions. PRISM
uses a rigid-body structural comparison of target proteins to
known templates of protein-protein interfaces and a refinement
using flexible docking. Moreover, it is useful also to calculate the
Interface Similarity Score to assess models of protein complexes
[126, 127] as an additional quantitative parameter.

Fig. 4 An example of the Plumed input file for PT/WTE metadynamics. An
example is shown for inspiration and it refers to the Plumed 1.3 syntax that
we used in our publication on p53 [14]
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In our example, since the interest is to understand the function
of different states of the S6-S7 loop of p53, we can use the p53
experimental structures of the DBD but also conformations of it
from out MD simulations with the loop in occluded or open states
(subjected to energy minimization before the PRISM analyses). We
identified a group of p53 interactors that are selectively bound to
the DBD with the S6-S7 loop in its open solvent accessible state, as
stated above and that have intriguing functional implication related
to transcription-independent function activities [14].

In summary, the protocol here suggested provides a rich port-
folio of information that can be used for the design of experiments
to validate the modeling, and to disclose the mechanisms better. To
cite a few examples, the interactions predicted by PRISM could be
validated in vitro for example using chemical shift NMR perturba-
tion experiments on the isolated domain of the protein or other
biophysical techniques suitable for studying protein complexes.
Moreover, the exchange by minor and major states that are modu-
lated by DNA, PTMs, or mutations (such as the occluded and open
states of the S6-S7 loop) can be explored using NMR relaxation
dispersion measurements, also estimating from the exchange rate
the population of the states and directly comparing them to the
calculated ones. We could also exploit the protocol to design var-
iants that can entrap one of the two states and experimentally test
our structural hypotheses.

4 Notes

1. In the case a CHARMM force field is used in Gromacs, it has to
be paid attention to the solvent model to select. The TIP3P
tailored for the CHARMM family [116] of the force field is not
necessarily the recommended option in some of the releases
and, it is the one labeled as “TIPS3P”. The simulations can
become slower, but if one is interested in solvent accessible
regions of the protein, the solvation is treated in a more suitable
way for the CHARMM family.

2. It is also always important to verify that there are very transient
or virtually none contacts between the periodic images, a suit-
able tool in this context is the g_mindist Gromacs tool.

3. If PCA is carried out using all atoms of the system, the covari-
ance matrix of atomic fluctuations needs to be correctly mass-
weighted.

4. A PyInteraph mass database compatible with the force field of
interest needs to be selected since different MD force fields
have different mass definitions.

Dynamics of p53 239



Acknowledgements

This work was supported by the ISCRA-CINECA HPC Grants
(HP10BLFPW4 and HP10C8LO8N) and the EU-PRACE DECI
project DyNet. I would like to thankMatteo Lambrughi for fruitful
inputs in the writing of this protocol.

References

1. Zhang Y, Lozano G (2017) p53: multiple
facets of a rubik’s cube. Annu Rev Cancer
Biol 1:185–201. https://doi.org/10.1146/
annurev-cancerbio-050216-121926

2. Vousden KH, Prives C (2009) Blinded by the
light: the growing complexity of p53. Cell
137:413–431

3. Vogelstein B, Lane D, Levine AJ (2000) Surf-
ing the p53 network. Nature 408:307–310

4. Aylon Y, Oren M (2016) The paradox of p53:
what, how, and why? Cold Spring Harb Per-
spect Med 6(10):a026328

5. Fischer M (2017) Census and evaluation of
p53 target genes. Oncogene 36:3943–3956

6. Luo Q, Beaver JM, Liu Y et al (2017) Dynam-
ics of p53: a master decider of cell fate. Genes
8:66

7. White E (2016) Autophagy and p53. Cold
Spring Harb Perspect Med 6:1–10

8. Pant V, Lozano G (2014) Limiting the power
of p53 through the ubiquitin proteasome
pathway. Genes Dev 28:1739–1751

9. Kandoth C, McLellan MD, Vandin F et al
(2013) Mutational landscape and significance
across 12 major cancer types. Nature
502:333–339

10. Leroy B, Anderson M, Soussi T (2014) TP53
mutations in human cancer: database reassess-
ment and prospects for the next decade. Hum
Mutat 35:672–688

11. Brosh R, Rotter V (2009) When mutants gain
new powers: news from the mutant p53 field.
Nat Rev Cancer 9:701–713

12. Joerger AC, Fersht AR (2016) The p53 path-
way: origins, inactivation in cancer, and
emerging therapeutic approaches. Annu Rev
Biochem 85:375–404. https://doi.org/10.
1146/annurev-biochem-060815-014710

13. Wasylishen AR, Lozano G (2016) Attenuat-
ing the p53 pathway in human cancers: many
means to the same end. Cold Spring Harb
Perspect Med 6(8):a026211

14. Lambrughi M, De Gioia L, Gervasio FL et al
(2016) DNA-binding protects p53 from
interactions with cofactors involved in

transcription-independent functions. Nucleic
Acids Res 44:9096–9109

15. Green DR, Kroemer G (2009) Cytoplasmic
functions of the tumour suppressor p53.
Nature 458:1127–1130

16. Speidel D (2010) Transcription-independent
p53 apoptosis: an alternative route to death.
Trends Cell Biol 20:14–24

17. Tasdemir E, Maiuri MC, Galluzzi L et al
(2008) Regulation of autophagy by cytoplas-
mic p53. Nat Cell Biol 10:676–687

18. Vaseva AV, Moll UM (2009) The mitochon-
drial p53 pathway. Biochim Biophys Acta
Bioenerg 1787:414–420

19. Kokontis JM, Wagner AJ, O’Leary M et al
(2001) A transcriptional activation function
of p53 is dispensable for and inhibitory of its
apoptotic function. Oncogene 20:659–668

20. Leu JI-J, Dumont P, Hafey M et al (2004)
Mitochondrial p53 activates Bak and causes
disruption of a Bak–Mcl1 complex. Nat Cell
Biol 6:443–450

21. Chipuk JE, Green DR (2008) How do BCL-2
proteins induce mitochondrial outer mem-
brane permeabilization? Trends Cell Biol
18:157–164

22. Follis AV, Llambi F, Ou L et al (2014) The
DNA-binding domain mediates both nuclear
and cytosolic functions of p53. Nat Struct
Mol Biol 21:535–543

23. Zhang X, Li CF, Zhang L et al (2016) TRAF6
restricts p53 mitochondrial translocation,
apoptosis, and tumor suppression. Mol Cell
64:803–814

24. Giorgi C, Bonora M, Sorrentino G et al
(2015) p53 at the endoplasmic reticulum reg-
ulates apoptosis in a Ca 2+ �dependent man-
ner. Proc Natl Acad Sci 112:1779–1784

25. Kroemer G, Bravo-San Pedro JM, Galluzzi L
(2015) Novel function of cytoplasmic p53 at
the interface between mitochondria and the
endoplasmic reticulum. Cell Death Dis 6:
e1698

26. Joerger AC, Fersht AR (2007) Structural
biology of the tumor suppressor p53 and

240 Elena Papaleo

https://doi.org/10.1146/annurev-cancerbio-050216-121926
https://doi.org/10.1146/annurev-cancerbio-050216-121926
https://doi.org/10.1146/annurev-biochem-060815-014710
https://doi.org/10.1146/annurev-biochem-060815-014710


cancer-associated mutants. Adv Cancer Res
97:1–23

27. Dai C, Gu W (2010) P53 post-translational
modification: deregulated in tumorigenesis.
Trends Mol Med 16:528–536

28. Petty TJ, Emamzadah S, Costantino L et al
(2011) An induced fit mechanism regulates
p53 DNA binding kinetics to confer sequence
specificity. EMBO J 30:2167–2176

29. Cho Y, Gorina S, Jeffrey PD et al (1994)
Crystal structure of a p53 tumor suppressor-
DNA complex: understanding tumorigenic
mutations. Science 265:346–355

30. Khoo KH, Andreeva A, Fersht AR (2009)
Adaptive evolution of p53 thermodynamic
stability. J Mol Biol 393:161–175

31. Soussi T, Curie M (2014) The TP53 gene
network in a postgenomic era. Hum Mutat
35(6):641–642

32. Soussi T, Wiman KG (2015) TP53: an onco-
gene in disguise. Cell Death Differ
22:1239–1249

33. Abramo MD, Besker N, Desideri A et al
(2015) The p53 tetramer shows an induced-
fit interaction of the C-terminal domain with
the DNA-binding domain. Oncogene
35:3272–3281

34. Chillemi G, Davidovich P, D’Abramo M et al
(2013) Molecular dynamics of the full-length
p53 monomer. Cell Cycle 12:3098–3108

35. Terakawa T, Takada S (2015) p53 dynamics
upon response element recognition explored
by molecular simulations. Sci Rep 5:17107
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Chapter 14

Molecular Dynamics Simulation Techniques as Tools in Drug
Discovery and Pharmacology: A Focus on Allosteric Drugs

Chiara Bianca Maria Platania and Claudio Bucolo

Abstract

Allosteric drugs are ligands that when bound to an allosteric site modify the conformational state of the
pharmacological target, leading then to a modification of functional response upon binding of the
endogenous ligand. Pharmacological targets are defined as biological entities, to which a ligand/drug
binds and leads to a functional effect. Pharmacological targets can be proteins or nucleic acids. Computa-
tional approaches such as molecular dynamics (MD) sped up discovery and identification of allosteric
binding sites and allosteric ligands. Classical all-atom and hybrid classical/quantum MD simulations can
be generalized as simulation techniques aimed at analysis of atoms and molecular motion. Main limitations
of MD simulations are related to high computational costs, that in turn limit the conformational sampling
of biological systems. Indeed, other techniques have been developed to overcome limitations of MD,
such as enhanced sampling MD simulations. In this chapter, classical MD and enhanced sampling MD
simulations will be described, along with their application to drug discovery, with a focus on allosteric
drugs.

Key words Allosteric drugs, Molecular dynamics, Drug discovery, Pharmacology

1 Introduction

1.1 Allosteric Drugs Pharmacological target function could be modulated by drugs that
bind to an orthosteric pocket or an allosteric pocket. Orthosteric
drugs competitively bind to the same pocket of the endogenous
ligand, working as competitive agonists or antagonists; while allo-
steric drugs bind to a pocket different from the orthosteric one,
leading to conformational changes and positive or negative modu-
lation of receptor activity, upon binding of the endogenous ligand.
Positive allosteric modulators (PAM) increase the receptor func-
tional response or decrease the EC50 of agonists or endogenous
ligand (increased endogenous ligand efficiency) (Fig. 1). The nega-
tive allosteric modulators (NAM) decrease receptor functional
response and increase agonists or endogenous ligand EC50
(decreased endogenous ligand efficiency) (Fig. 1). Russinov &

Luisa Di Paola and Alessandro Giuliani (eds.), Allostery: Methods and Protocols, Methods in Molecular Biology, vol. 2253,
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Tsai in 2013 reviewed the impact of allosteric drugs in the field of
drug discovery; this review highlighted that most of the allosteric
drugs work through non-covalent mechanisms; e.g., positive allo-
steric modulators of the γ-aminobutyric acid receptor A (GABA-A)
[1]. GABA-A is an ubiquitous receptor in the central nervous
system (CNS) and orthosteric ligands of GABA-A are not used in
therapy, because of their poor pharmacodynamic and safety profile.
In fact, GABA-A competitive agonists, such as muscimol, are
potent psychoactive drugs (sedative-hypnotic, depressant, and allu-
cinogen), while GABA-A antagonists such as bicucullin and picro-
toxin are convulsivant drugs. Bicucullin is used as pharmacological
tool, while picrotoxin was used for treatment of barbiturate acute
toxicity. First developed positive allosteric modulators of GABA-A
were barbiturates, used as anxiolytic and hypnotic drugs, but due to
their narrow therapeutic index (low safety), they were largely sub-
stituted by benzodiazepines, that bear a good therapeutic index and
are also positive allosteric modulators of GABA-A [2] (seeNote 1).
Similarly to the GABA-A receptor, the impact of allosteric modula-
tion of the N-methyl-D-aspartate receptors (NMDARs) would be
huge, since NMDAR drugs showed poor clinical outcome and
serious side-effects [3]. Additionally, allosteric ligands have been
found to modulate the activity of G protein-coupled receptors,
such as the cannabinoid type 1 receptor [4].

Fig. 1 Allosteric drugs
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1.2 Classical

All-Atom MD, Elastic

Network Model,

and Enhanced

Sampling MD

Protein conformational energy landscapes are characterized by a
series of local minima (Fig. 1) [5], and transition between one
minimum to another corresponds to a high-energy transition
state. In a classical MD simulation, several minimization steps are
required to reach a local minimum; after that MD production runs
are started. However, given the characteristics of their energy land-
scape, proteins can be trapped in non-relevant local minima, even
during long molecular dynamics simulations [6, 7]. These findings
do not mean that classical MD simulations are meaningless, but
MD simulations need to be addressed to specific aims, such as:
minimization of protein models (e.g., membrane proteins) [8],
normal mode analysis of protein motions [9], Molecular Mechan-
ics—Poisson Boltzmann Surface Area calculations [9, 10], and
protein contact network analysis [11]. The protein contact network
(PCN) formalism could be addressed to identification of hotspot
residues involved, for example, in ligand binding, protein–protein
interactions, or allosteric modulation of protein motion [12–
15]. However, PCN analysis of classical all-atom MD frames, for
example, belonging to an energy minimum (equilibrated MD), can
be characterized by non-relevant correlations of PCN metrics para-
meters vs time (e.g., degree, average shortest path, closeness cen-
trality, betweenness centrality etc.,) [9]. Thus, PCN analysis can be
applied to two different protein conformations or to protein nor-
mal modes generated with Gaussian Network Model (GNM) [16]
or Anisotropic Network Model (ANM) [11]. GNM and ANM are
both based on Elastic Network Model (ENM) formalism, in which
the macromolecule is treated as a network (coarse-grained model),
where nodes are atoms, nucleotides or amino acids, that are linked
by edges treated as harmonic restraints on displacement from the
structure at equilibrium. ENM provides a fast calculation of
low-frequency normal modes [17]. Indeed, considering that the
ENM results are comparable to MD simulation analysis, ENM
approaches can provide valuable structural information at low
computational costs (minutes vs days) [17]. However, enhanced
sampling MD simulations are commonly used when large protein
motions with high-energy barriers (Fig. 2) are studied [18]. Addi-
tionally, enhanced sampling approaches are particularly suited for
search and identification of putative allosteric pockets that can be
hidden in an apo crystal structure [19]. In this perspective, large-
scale biased MD simulations can explore low-populated conforma-
tions, where hidden allosteric pockets might be unveiled
[20]. Accelerated MD simulations are characterized by application
of a positive potential in the protein potential energy surface,
leading to overcoming of high-energy barriers; with this approach,
novel allosteric pockets were identified in the IL-1R1 receptor
[21]. A technique closely related to accelerated MD is metady-
namics, where a bias potential enforces the exploration of novel
unexplored conformations [22], this technique recently
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characterized the binding of a negative allosteric modulator of the
purinergic P2X3 receptor [22]. Moreover, the Monte Carlo simu-
lation technique (Forced-Biased Metropolis Monte Carlo
simulated annealing) was aimed at identification of allosteric bind-
ing site of pregnenolone, an allosteric modulator of the cannabi-
noid 1 receptor (CB1) [4].

2 Methods and Applications

2.1 Case Studies

“Protein Contact

Network” Analysis

2.1.1 Anti-VEGF Agents

PCN analysis has been applied in order to study equilibrium struc-
tures of VEGF-A, anti-VEGF agents (bevacizumab, ranibizumab,
and aflibercept), and related VEGF-A/anti-VEGF complexes
[9]. The correlation analysis between topological descriptors and
time for three independent replicas of simulated complexes was
carried out. The dGsolv (delta of solvation free energy) did not
change over the time, given that the correlation dGsolv vs. time was
not significant. Few topological descriptors showed correlations
with time and/or with each other; for example, the average short-
est path (asp) positively correlated with time. Clustering of PCN
was also carried out and then complexes were represented as func-
tional models. After partitioning of the protein contact network
into clusters, the structure of the complexes was represented as
functional modules [9]. The VEGFA dimer was divided into two
clusters that were found to be highly interconnected (Fig. 3).
VEGFR1d2_R2d3 (aflibercept binding domain)/VEGFA was
divided into four clusters; this cluster partitioning of the afliber-
cept/VEGFA complex revealed a conserved network for VEGFA
and two distinct domains corresponding to R1d2 and R2d3, form-
ing long-range interactions with VEGFA. The partition into four
clusters of Fab-bevacizumab/VEGFA and ranibizumab/VEGFA
revealed for bound VEGFA a different cluster patterning,

Fig. 2 Protein conformational energy landscape and simulation time-frame
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compared to unbound VEGFA. Furthermore, some whiskers pro-
jected from VEGFA to Fab-bevacizumab and ranibizumab mod-
ules. PCN analysis has shown a greater number of long-range
interactions between ranibizumab and VEGFA in comparison to
the Fab-bevacizumab/VEGFA complex. In conclusion, PCN anal-
ysis was found to be a helpful integrative tool for analysis of MD
simulations of protein-protein complexes [9].

2.1.2 P2X7 Receptor The P2X7 receptor is a purinergic homotrimeric channel receptor.
PCN analysis was carried out in order to highlight hot-spot alloste-
ric residues involved in channel opening [11]. PCN was not carried
out on MD snapshots; because channel opening was simulated by
access to the ANM Pathway server, which uses a two-state aniso-
tropic network model [23]. ANMpathway generates snapshots (.
pdb files) of transition between two structural endpoints, a
two-state potential is built from two elastic network models
(ENMs), which are representative of the endpoint structures:
closed (apo-P2X7) and open conformation (ATP-bound P2X7).

PCN analysis has been applied after conversion of each snap-
shot into an indirect, unweighted graph, whose nodes are the
α-carbons and edges, linking two residues, describe long-range
interactions [11]. Calculation of centrality metrics (closeness and
betweenness) was used for identification and characterization of
residues belonging to orthosteric or to allosteric sites. Correlation
analysis of closeness and betweenness centrality upon channel
opening revealed that both parameters anticorrelated with residue
(node) displacement, an index of protein flexibility. During P2X7
channel opening, the betweenness centrality correlated less with
displacement, compared to the closeness centrality, suggesting that
residues with high betweenness are involved in signal transmission
upon channel opening, indeed high betweenness centrality residues
were considered as allosteric residues [11]. In particular, high
closeness residues were located in the core of the extracellular

Fig. 3 Cluster partitioning of the VEGFA dimer (red and cyan clusters)
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region, while high betweenness residues (Fig. 4) were in the inner
part of the channel, including the extracellular and transmembrane
domains of the trimer. The allosteric region, as defined by protein
contact network analysis, corresponded to a pocket recognized by
the SiteMap tool of Schrödinger, as well as to data reported by
Karasawa & Kawate (2016) [24].

2.2 Case Studies

“Enhanced Sampling

Approaches”

As described above, PCN analysis is a simple still valid method to
identify and validate topological and functional properties of pro-
tein residues. However, other molecular modeling approaches,
with high demanding computational resources, can unveil details
of allosteric pockets, especially if few structural information is avail-
able, such as open and closed (or active and inactive) receptor
conformations.

2.2.1 Monte Carlo

Simulations

In 2014, Vallée et. al’s paper unveiled the pharmacological proper-
ties and binding site of pregnenolone, a precursor of a series of
neurosteroids, that are synthetized in the brain and exert several
neuromodulatory functions (Fig. 5).

For a long-time, pregnenolone was considered as an inactive
precursor, till findings of Vallée et al. [4]. In particular, pregneno-
lone levels were found to be increased in the rat brain after tetrahy-
drocannabinol (THC) treatment; therefore, a negative feedback for
THC-induced pregnenolone synthesis was proven. In fact, preg-
nenolone counteracted hypolocomotion, hypothermia, catalepsy,
and analgesia induced by THC administration. Additionally, preg-
nenolone decreased food intake and memory impairment induced
by THC. Pregnenolone was able to decrease cannabinoid agonist
self-administration in CD1 mice. Given that pregnenolone has
been shown to decrease levels of p-ERK1/2MAPK and

Fig. 4 Closeness centrality and betweenness centrality values mapped onto the P2X7 structure model [11]

250 Chiara Bianca Maria Platania and Claudio Bucolo



mitochondrial respiration, negative allosteric modulation of CB1
was investigated and identification of binding pocket was carried
out with Forced-Biased Metropolis Monte Carlo simulated anneal-
ing calculation [4]. The binding pocket of pregnenolone was loca-
lized at the CB1 receptor lipid interface and this pocket faces the
TMH1/TMH7/Hx8 region of the receptor (Fig. 6). Because
E1.49 was identified as the key residue for pregnenolone by
Monte Carlo simulations, the pregnenolone pocket was validated
using a mutant hCB1 receptor where an aspartate residue in the
helix 1 (E1.49) was mutated. Then, pregnenolone lost its effects as
NAM of CB1, when cells expressing hCB1 mutant receptors were
treated with THC [4] (see Note 2).

2.2.2 Metadynamics In the recent paper of Wang et al. [22] a new allosteric pocket was
identified in the purinergic channel receptor P2X3, which is differ-
ent from the one identified in the P2X7 receptor [24]. Figure 7
shows the superimposition of the P2X3 receptor bound to a nega-
tive allosteric ligand, AF-219 (magenta cartoon and sticks), with
the P2X7 receptor model [11]. In Fig. 7, the P2X7 receptor is
represented as a ribbon and residues are colored as function of

H

H H

O

HO

Fig. 5 Pregnenolone (pregn-5-en-3β-ol-20-one) structure

Fig. 6 Binding pocket of pregnenolone in the CB1 receptor
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betweenness values, as calculated and reported in Fig. 4. Hot-spot
allosteric residues of the P2X7 receptor are located in the extracel-
lular and intracellular region of the channel cavity (Fig. 4). Figure 7
shows that whenever high-betweenness residues would be con-
served in the P2X3 and P2X7 receptors, the AF-219 pocket could
be identified also in the P2X7 receptor. Therefore, further studies
on the P2X7 receptor will be carried out on the basis of experimen-
tal evidence, recently reported by Wang et al. [22].

Wang et al. reported that only the x-ray structure of the P2X3/
AF-219 complex was solved, but authors have also proven with
metadynamics that the NAM AF-353 binds to P2X3, with a pose
similar to AF-219 [22]. In conclusion, the recent experimental data
on allosteric modulation of P2X3 will burst research of allosteric
modulators of P2X receptors, considering that allosteric pocket of
the P2X3 receptor should not be excluded also in the P2X7 recep-
tor (Fig. 7). However, further studies with Monte Carlo simulation
or metadynamics should be carried out on other P2X receptors
(see Note 3).

3 Notes

1. Allosteric ligands are valuable pharmacological tools, and
approved allosteric drugs changed the landscape of CNS dis-
eases treatments.

2. Identification of the allosteric pockets and, indeed, design and
discovery of the allosteric ligands is challenging.

Fig. 7 Allosteric binding pocket (black arrow) in the P2X3 receptor (magenta
cartoon) and structure superimposition with P2X7 receptor (ribbon, residues
colored on basis of betweennes centrality)
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3. Protein contact network analysis, along with classical MD
simulations or enhanced sampling methods, can burst the
identification of allosteric pockets and design of allosteric
modulators.
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Chapter 15

Cooperativity and Allostery in RNA Systems

Alla Peselis and Alexander Serganov

Abstract

Allostery is among the most basic biological principles employed by biological macromolecules to achieve a
biologically active state in response to chemical cues. Although initially used to describe the impact of small
molecules on the conformation and activity of protein enzymes, the definition of this term has been
significantly broadened to describe long-range conformational change of macromolecules in response to
small or large effectors. Such a broad definition could be applied to RNA molecules, which do not typically
serve as protein-free cellular enzymes but fold and formmacromolecular assemblies with the help of various
ligand molecules, including ions and proteins. Ligand-induced allosteric changes in RNA molecules are
often accompanied by cooperative interactions between RNA and its ligand, thus streamlining the folding
and assembly pathways. This chapter provides an overview of the interplay between cooperativity and
allostery in RNA systems and outlines methods to study these two biological principles.

Key words RNA cooperativity, Thermodynamics, Conformational change

1 Introduction

The vast majority of functional macromolecules are a result of
primary sequences properly folded into secondary, tertiary, and
quaternary structures. In order to achieve functional conforma-
tions, biopolymers such as proteins and nucleic acids must proceed
through a folding pathway(s), which could initially yield a large
pool of partially folded conformations and nonfunctional states.
Often times, in order to adopt the active state, macromolecules
have to sample a broad number of possible states and finalize their
conformation by making a proper set of intermolecular interactions
or binding to specific ligands [1]. Interactions with ligands can
depend on their presence in the cells and environment, and, there-
fore, can impose a regulatory effect on the function of a macromol-
ecule. A structural change of a molecule in response to ligand
binding has been defined as an allosteric modulation.

Like proteins, some RNA needs to fold into three-dimensional
structures and undergo structural transitions to carry out biological
function [2]. RNA does not have many functional groups and is,
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therefore, a poorer catalyst than proteins. As a result, only a handful
of protein-free RNA-based enzymes have evolved [3], which most
often cleave the RNA backbone without the regulatory input of
other molecules. Interestingly, these enzymes, called ribozymes, do
not typically display allosteric changes as a result of binding an
effector molecule outside of the active site; rather, they are able to
act independently of interacting partners or ligands. However,
conformational transitions accompany the assembly of practically
all RNA-ligand complexes, and since they involve ligand-induced
changes, they can be broadly defined as allosteric changes. In
contrast to proteins, RNA folding involves many structural adapta-
tions upon binding to Mg2+ cations, which are essential for neu-
tralizing the negative charge of phosphate moieties in the RNA
backbone and which make possible formation of secondary and
tertiary RNA structures. Each of these cation-mediated folding
transitions could also be considered as allosteric modulations of
the RNA structure.

Many researchers focus their efforts on studying the interplay
between RNA structure transitions and ligand binding, providing
an enormous number of examples of allosteric modulations in RNA
(reviewed in [4, 5]). However, one aspect closely related to allo-
stery remains poorly understood due to methodological difficulties
and the complexity of studied systems. This aspect pertains to
coordination of molecular events in order to overcome the time
constraints imposed by sampling the vast number of various con-
formations and quickly narrowing down the options to the final
functional state. Such a coordination can involve interdependence
of molecular events, a phenomenon observed in many biological
systems and defined by the thermodynamic term “cooperativity”
[5]. In RNA systems, cooperative binding is often based on alloste-
ric changes introduced by initial ligand binding and is therefore of
high importance for understanding the functions of many
RNA-containing assemblies.

Cooperativity and allostery have long been known to research-
ers as the most basic biological principles. Cooperativity was first
described as the change in ligand-binding affinity observed upon
the binding of another, identical ligand (reviewed in [6]). One of
the earliest examples of this phenomenon was the tetrameric hemo-
globin molecules [7] composed of four identical monomers each
capable of binding to a single oxygen molecule. Upon the binding
of the first oxygen molecule, the protein undergoes an allosteric
change that increases the binding affinity for oxygen in the other
monomers, allowing each subsequent oxygen molecule to bind
more easily, represented by a sigmoidal binding curve. Over the
years, the meaning of the term cooperativity has broadened from
the classical description of ligands binding to multiple sites of an
oligomeric protein, as in hemoglobin, to interdependent
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conformational transitions in folding and function of proteins and
nucleic acids, resulting in the formation of multicomponent
complexes [8].

In this review, we primarily focus on various manifestations of
cooperativity and accompanying allosteric modulations in RNA.
We provide a brief explanation of thermodynamics related to coop-
erativity, and outline some helpful methods for interrogating RNA
folding and cooperativity. We further provide examples of coopera-
tivity and allostery in RNA, including formation of secondary and
tertiary interactions, multiple binding of small ligands, and assem-
bly of RNA-protein complexes.

2 Methods of Studying Cooperativity and Allosteric Modulations

2.1 Thermodynamic

Basis of Cooperativity

Despite the variety of instances of cooperativity, they all have a
thermodynamic quality, which actually defines the term coopera-
tivity. The simplest system to explain cooperativity is a binding
reaction with 3 components, the RNA (R), ligand (L), and either
an identical or different ligand molecule (M), to yield a ternary
complex R:L:M from individual components (Fig. 1a) [8]. The
reaction could proceed through two pathways involving initial
interactions between R and L followed by addition of M, or with
initial binding of R to M followed by interactions with
L. Cooperativity is observed when the binding of L and M to R
depends on each other. The thermodynamic construction that
illustrates this principle is known as a thermodynamic cycle. Each
binary binding reaction is described by its own equilibrium con-
stants K1 and K2, while formation of ternary complexes gives
additional constants K3 and K4. All reactions have their own free
energy terms ΔG�

1, ΔG�
2, ΔG�

3, and ΔG�
4. The overall thermody-

namics of forming the ternary complex does not depend on the
assembly pathway, therefore K1K3 ¼ K2K4 and
ΔG�

1 + ΔG�
3 ¼ ΔG�

2 + ΔG�
4. If binding of L does not stimulate

binding of M to the R:L complex, each binding event is indepen-
dent, the free energy of the formation of binary and ternary com-
plexes is identical, ΔG�

1 ¼ ΔG�
4, and the system does not display

cooperativity. However, if binding of L enhances binding of M to
the R:L complex, ΔG�

1 > ΔG�
4, and the system has positive coop-

erative binding. If binding of M is hindered by binding of L, then
ΔG�

1 < ΔG�
4 and the binding of L and M has negative coopera-

tivity. Similar statements can be made for vertical reactions in
Fig. 1a. Thermodynamically, the extent of cooperativity could be
expressed by the coupling free energy,
ΔΔG ¼ ΔG�

1 � ΔG�
4 ¼ ΔG�

2 � ΔG�
3. The system has positive

and negative cooperativity if ΔΔG > 0 and ΔΔG < 0, respectively.
Thus, in order to dissect cooperativity in the biological system that
involves interactions between RNA and small ligands such as
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metabolites or ions, one has to determine free energies of the
binding reactions and calculate ΔΔG.

The same principle of breaking a complex reaction into a series
of smaller, experimentally accessible reactions whose sum leads to a
final reaction product could be applied to dissect the mechanisms of
cooperativity in areas such as the assembly of RNA-protein com-
plexes and RNA folding. Dissection of mechanisms of cooperativity
often requires special tricks, typically aimed at disrupting one inter-
action and probing the thermodynamic worth of another. This
approach is applicable to study large multicomponent systems as
well as to reveal fine structural features, for example determining
whether two functional groups are involved in hydrogen bonding
that stabilizes a secondary structure element.

Illustration of the approach is given by a thermodynamic box in
Fig. 1b, which shows four related molecules, each located at a
corner of the box [10]. The first molecule is the wild-type
(WT) construct (depicted as W), the two molecules adjacent to
the WT are the single mutants of the functional groups of interest,
MA and MB, and across from the WT is the double mutant (MAB).
If A and B indeed form a hydrogen bond to each other, thermody-
namic stability of the double mutant should decrease andmutations
in the functional groups should show strong interdependence or
positive cooperativity. In practical terms, the conclusion can be
drawn after experimental determination of thermodynamic stability
of all four molecules (values at each corner of the box) by, for
example, the UV-melting method. These values are then used to

Fig. 1 Thermodynamic cycles illustrating cooperativity. (a) Hypothetical
thermodynamic cycle for binding RNA (R) to two ligands (L and M) through two
different pathways [8]. Formation of each complex is described by the
equilibrium constant (K ) and free energy (ΔG�). (b) Thermodynamic cycle for
probing hydrogen bonding in a GCA triloop hairpin [9]. All values are in kcal/mol.
Corners depict a wild-type (W), single mutants (MA and MB) and a double-mutant
(MAB) constructs of the molecule with thermodynamic stability values measured
by UV melting studies. Values next to arrows indicate free energy of structural
transition associated with each mutation and calculated by subtraction of values
from appropriate corners of the box
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calculate the free energy of transition to each state (values along the
arrows) and subsequent calculations of ΔΔG. The results of these
calculations indicate that the first change along either pathway has
significant thermodynamic worth, the second change has essentially
no thermodynamic worth, and the coupling free energy indicates
positive cooperativity. Thus, these data suggest that functional
groups A and B participate in the same hydrogen bonding, since
their individual mutations remove the hydrogen bond, and once
the bond is removed it can no longer be used by the second
functional group.

2.2 Methods

to Determine

Cooperativity

and Detect Allosteric

Modulations

Over 100 years of research has expanded methodology to study
cooperativity and allostery, from measuring hemoglobin saturation
with oxygen as a function of the partial pressure of oxygen to many
more approaches, including detailed structural studies. However,
spectroscopy techniques remain the oldest and most popular meth-
ods for determining nucleic acid thermodynamics because of sim-
plicity and low cost. In RNA spectroscopy, the signal is
proportional to the advance of the reaction as the molecules
undergo structural transitions brought on by either ligand binding
or changes in temperature. Conformational rearrangements are
accompanied by changes in intrinsic UVabsorbance, which depend
on the formation of base pairs [11]. Another method for spectro-
scopically detecting conformational changes is through fluores-
cence [12, 13], for example, by internally incorporating
fluorescent nucleotide analog 2-aminopurine [14]. As an RNA
molecule folds upon ligand binding, the attached chromophore is
exposed to a different microenvironment, which alters fluorescence
intensity and the emission spectrum. Fluorescent assays typically
have high sensitivity since the chromophore’s properties strongly
depend on the microenvironment. A more sophisticated spectro-
scopic method to study conformational transitions in RNA is
nuclear magnetic resonance (NMR) (reviewed in [15]). Since
NMR signals depend on the microenvironment of atoms, they
can provide information about protonation, interactions, and
local structure, and thus they can be effectively used to study a
complex behavior such as cooperativity [16] .

While spectroscopy is extremely useful, technological advances
over the last several decades have given rise to the use of isothermal
titration calorimetry (ITC) as a means to measure the heat asso-
ciated with interactions between biological molecules [17]. In this
technique, the solution of a macromolecule is located inside the
sample cell directly adjacent to a reference cell and the ligand
solution in the injector syringe. The ligand solution is injected
periodically into the sample cell, and each injection triggers the
binding reaction and formation of the complex. As the sequence
of injections proceeds, the heat associated with each injection is
proportional to the increase in complex concentration.
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Applying the appropriate model and nonlinear regression in
data analysis, ITC can determine the association constant or bind-
ing affinity,Ka, the binding enthalpy, ΔH, the stoichiometry, n, the
entropy change, ΔS, and the Gibbs free energy of binding, ΔG, in a
single experiment. In contrast, spectroscopy experiments must be
performed at various temperatures to determine the enthalpy and
entropy of the reaction. It should be noted that the heat measured
upon RNA-ligand binding does not result only from the formation
of the direct RNA-ligand interactions but also includes heat gener-
ated from other binding-associated events, such as allosteric struc-
tural transitions and desolvation of the molecules. While several
methodological advances allowed ITC to be used for determining
cooperativity in protein systems [18, 19], the use of calorimetry to
directly determine cooperativity of ligand binding to RNA is diffi-
cult [20], which makes ITC more appropriate for studying the
mechanisms of RNA folding [21] and macromolecular assemblies
[22, 23].

Spectroscopic and ITC methods typically provide bulk mea-
surements and are invaluable for determining macroscopic charac-
teristics of RNA systems but cannot directly visualize
conformational transitions in RNA folding. The allosteric modula-
tions can, however, be traced at the level of individual molecules by
the so-called single-molecule techniques such as single-molecule
fluorescence resonance energy transfer (smFRET) [24]. This
method involves visualization of fluorescently labeled individual
RNA molecules under the microscope. Special fluorescent labels
attached to different regions of RNA induce FRET when coming in
close proximity upon ligand binding [25]. Analysis of individual
traces of molecules provides a comprehensive picture of allosteric
re-arrangements in the RNA.

2.3 Determination

of Cooperative Ligand

Binding “On the Fly”

Throughout the twentieth century, researchers have developed
various models to describe the binding of multiple ligands to
oligomeric proteins, and many such models are applicable to man-
ifestations of cooperativity in RNA. One of the most used models
describing cooperative binding of ligands was developed by Hill
and named after him [26]. The equation produces a “Hill coeffi-
cient” n, which is more than 1 when the system exhibits positive
cooperativity and less than 1 if the system exhibits negative coop-
erativity, with the total number of ligand-binding sites being an
upper limit for the coefficient. Although not ideal for evaluation of
cooperativity [27, 28], the Hill coefficient is broadly used by bio-
chemists for detecting cooperativity in the systems that involve
binding of multiple ligands to RNA molecules. For example, the
Hill coefficient value of 1.6 was the basis for conclusions about
positive cooperativity in the truncated version of the dual glycine-
sensing RNA [29].
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Determination of the Hill coefficient relies on measuring bind-
ing affinity between RNA and ligands and does not require deep
knowledge of the system’s thermodynamics or special knowledge
from the experimenter beyond the ability to employ a binding
technique. The Hill coefficient can be determined by a variety of
approaches including both the techniques used for studying
protein-ligand interactions and the methods that exploit unique
chemical and structural properties of RNA. The former includes
various spectroscopic methods and ITC, as discussed earlier.
Among the latter, it is worth mentioning techniques developed to
probe ligand-induced changes in the conformation and stability of
RNA molecules, such as in-line probing [29], nuclease cleavage
[20], and chemical probing [30, 31]. Although all techniques aim
to detect ligand-induced allosteric changes in RNA, in-line probing
is probably the most robust and easiest method that does not
require incubation with specific probes (nucleases or chemicals)
and special treatments to stop the cleavage or modification reac-
tion. In-line probing specifically exploits inherent instability of
RNA in water solutions, which is more pronounced in flexible
regions and greatly accelerated by divalent Mg2+ cations and ele-
vated pH [32]. The method involves incubation of end-labeled
RNA molecules in the absence of the ligand and at various ligand
concentrations, and detection of changes in the RNA cleavage
pattern after separating RNA fragments electrophoretically on a
denaturing polyacrylamide gel. The extent of changes upon ligand
titration can be used as a measure of binding affinity and the Hill
coefficient. The method is naturally restricted to probe the RNA
regions that change stability by binding to a ligand or becoming
involved in intermolecular interactions as a result of ligand binding.

3 Folding of RNA into Its Secondary Structure

Although RNA is capable of forming intricate tertiary structures
paralleled to those formed by proteins, the folding of both macro-
molecules involves different forces and results in dissimilar struc-
tural features. In contrast to proteins that have twenty amino acids,
RNA is composed of only four similar chemical blocks with 50%
more atoms than a protein having the same number of residues.
Along with a larger size, RNA contains more dihedral bonds where
rotations that introduce a greater potential for alternative confor-
mations can occur. Unlike proteins, which are mostly composed of
α-helices and β-sheets merged into a compact structure by hydro-
phobic interactions of side chains, RNA predominantly adopts a
single secondary structure element, the double-stranded helix. This
structural element contains many negative charges made up of
phosphate groups on its periphery, thereby restricting the assembly
of a hydrophobic core. Formation of helices in RNA is mostly
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driven by stacking interactions between nucleobases and by the
formation of complementary base pairs within a single RNA mole-
cule when the RNA chain folds back on itself. In this case, the
resulting double-stranded structure contains a loop that links the
oppositely directed strands. If the loop is small, the structure is
called a hairpin; when the double-stranded region is closed by a
large loop, it is known as a stem-loop.

Significant negative charges along the RNA phosphodiester
backbone and base stacking stiffen RNA helices and restrict the
ability of RNA to form complex structures. Disruptions within the
helix and neutralization of negative charges by counter ions relieve
stiffness and facilitate formation of tertiary structure and adaptation
of unique functional conformations [33]. Fundamental RNA prop-
erties such as favorable thermodynamics of stacking and hydrogen
bonding, rapid kinetics of secondary, relative to tertiary, structure
formation, and directional in vivo folding [34, 35] dictate a hierar-
chical manner by which RNA adopts its complex structure. This
hierarchical folding, initiated by the formation of secondary struc-
ture elements from consecutively transcribed regions, proceeds by
joining independently formed elements to form tertiary structures.

The hairpin is the most common secondary structural elements
in RNA, which can function on its own as a ligand-binding region
or nucleate formation of a complex RNA structure through
RNA-RNA interactions [34, 36]. The stem of a hairpin is com-
prised mainly of Watson-Crick base pairs formed between two
antiparallel stretches of RNA, and ranges in length from 1 base
pair (bp) to more than 10, with an average length of 3–4 bp
[37]. Due to steric repulsion, a loop connecting the strands con-
tains a minimum of three nucleotides. RNA hairpin folding can
often be described as a cooperative event, especially for short hair-
pins in which the thermodynamic worth of each base pair is more
significant and the formation of a loop brings more disorder than in
hairpins with longer helices [38].

To gain a better understanding of hairpin folding, RNA loops
and their closing base pairs have been thermodynamically dissected
for various systems, including for most prevalent four-nucleotide
loops called tetraloops [39, 40]. Atomic resolution structures of
phylogenetically common tetraloops UNCG, GNRA, and CUUG
(where N represents any nucleotide, and R represents A or G) [41–
43] have shown that these motifs undergo base stacking and exten-
sive hydrogen bonding that make them extremely stable. Thermal
studies revealed that some tetraloops undergo a two-state all-or-
none folding, indicative of high cooperativity in the system
[38]. Other studies have pointed out that in relationship to DNA,
RNA is less cooperative in its folding, reflecting a smaller thermo-
dynamic effect upon mutating 1–3 nucleotides of a loop [44]. This
may be a beneficial feature of RNA allowing for a diverse primary
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sequence while maintaining the secondary structure stability and
function.

To understand the basic concepts in folding of more complex
structures that contain more than one structural element, several
studies interrogated folding of the P5abc stem-loop structure from
the Tetrahymena thermophila ribozyme [45–47]. P5abc is a long
stem-loop structure that contains three irregularities: a nucleotide
bulge, an A-rich internal loop, and an additional hairpin, P5c,
branching off of the stem (Fig. 2a). Elimination of the internal
loop and the junctional hairpin in the P5ab construct showed a
two-state formation of P5ab, indicative of a highly cooperative
mechanism of the hairpin folding. Addition of the P5c hairpin in
P5abcΔA retained two-state folding although folding and unfold-
ing rates decreased. This reduction in transition between states
likely results from nucleation of two hairpins instead of one; there-
fore, kinetic barriers for each substructure must be crossed prior to
completion of folding. Finally, in the presence of both the P5c
hairpin and A-rich bulge, the construct P5abc folds and unfolds
with intermediates. Thus, introduction of irregularities into the
regular stem-loop structure changes kinetics of folding and breaks
highly cooperative formation of the helix providing the structural
and kinetic foundation for tertiary interactions in the functional
domain.

4 RNA Tertiary Structure Formation

Despite its fundamental importance, cooperativity does not neces-
sarily contribute to all aspects of protein folding as some regions of
proteins can fold and unfold as independent units. RNA molecules,
like proteins, must fold into three-dimensional structures to carry
out biological functions. However, RNA can form stable secondary
structures in the absence of tertiary structure, thus posing a ques-
tion of whether cooperativity needs to be employed in tertiary RNA
folding. The P4-P6 domain of the Tetrahymena group I ribozyme
represents a model RNA system that has been extensively studied to
determine the extent of cooperativity in tertiary RNA folding [48–
51]. The crystal structure of the P4-P6 domain [41] revealed the
side-by-side packing of two helical structures (Fig. 2b) connected
by the J5/5a turn and stabilized by two long-distance tertiary
contacts involving the metal core/metal core receptor and the
tetraloop/tetraloop receptor [41, 52, 53]. Thus, P4-P6 domain
folding may require cooperativity between two tertiary contacts.

To gain insight into the cooperative folding mechanism, the
P4-P6 domain folding was studied using a thermodynamic box
similar to the one we described for the study of hairpin folding
[48]. Each of the tertiary contacts was disrupted by mutations, one
site at a time, and each RNA was internally labeled by two
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fluorophores, Cy3 and Cy5, which produce FRET, when coming in
close proximity. Measuring FRET at the single-molecule level
allowed detection of the folded state and determination of equilib-
rium constants for structural transitions in the wild-type and two
mutant RNAs. Quantification of tertiary cooperativity from these
measurements revealed that in each case the tertiary contact forma-
tion is 240-fold more favorable subsequent to formation of the
other tertiary contact. Therefore, RNA folding may involve coop-
erative formation of tertiary contacts, at least in the systems with
close positioning of such contacts.

5 RNA-Ligand Interactions

5.1 Cooperativity

and Allostery

in Binding of Ligands

to Riboswitches

Cooperativity in RNA interactions occurs beyond folding of sec-
ondary and tertiary structures. Many RNAs interact with various
cations and some RNAs bind small molecules or macromolecules in
a cooperative manner. Examples of such RNAs include ribos-
witches, noncoding RNA regions which are capable of undergoing
large allosteric transitions to modulate expression of the adjacent
genes in response to specific binding to cellular metabolites and
ions (reviewed in [54]). Evolutionarily conserved metabolite-
sensing domains of riboswitches adopt intricate three-dimensional
structures that specifically recognize cognate metabolites and reject
similar compounds.

The cognate ligands of theM-box riboswitch, found in Bacillus
subtilis mgtE gene, are multiple Mg2+ cations [55]. Mg2+ cations
are among the most abundant divalent cations in cells and are

Fig. 2 Cooperative interactions in folding of the P4-P6 domain of the Tetrahymena group I ribozyme. (a)
Folding of the P5 stem-loop structure [45]. Molecular constructs used for assessing the folding of the RNA are
on the left and the entire domain is on the right. (b) Molecular construct used to determine cooperativity of
tertiary contact formation [48, 49]. Tertiary contacts are depicted in colors and connected by arrows. Internal
fluorescent labels and FRET are shown with stars and a green arrow, respectively
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Fig. 3 Cooperativity and allosteric modulations in the assembly of RNA-ligand
complexes. (a) Schematic of alternative folding of the M-box riboswitch
[55]. Schematic depicts ligand-free active conformation of the riboswitch on
the left and ligand-bound, repressed conformation on the right. Several Mg2+

cations predominantly bind RNA in core 2 and 3 regions and induce allosteric
transition that brings the RNA structure, depicted in blue, closer to the 50 end of
the RNA. This conformational change induces tertiary RNA interactions,
mediated by cations in the core 1 regions, and facilitates formation of the
transcription terminator. This aborts transcription elongation and switches the
gene off. Pairing interactions essential for switching the conformations are
shown with thin black lines. (b) Schematic of alternative folding of the THF
riboswitch. Cooperative binding of two ligands to the metabolite-sensing domain
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extensively used for RNA folding to neutralize negative charges of
the RNA backbone [33] and promote close contacts between RNA
regions. The M-box riboswitch contains several Mg2+-binding
pockets, which facilitate the formation of the riboswitch structure.
Three of these regions are particularly important for forming ter-
tiary long-distance interactions and allosteric transitions that cause
alternative folding of the riboswitch [56, 57] (Fig. 3a). Structural
and biochemical studies suggest that two of these sites (cores 2 and
3) initially bind several Mg2+ ligands and induce a conformational
change that brings together two RNA regions that form the third
Mg2+ binding region, core 1, thus allowing for long-distance ter-
tiary interactions to form. These interactions induce formation of
the regulatory helix P1 of the riboswitch, thereby preventing for-
mation of the transcription antiterminator hairpin and facilitating
folding of the transcription terminator in the downstream region.
Thus, Mg2+ binding to the riboswitch modulates transcription of
the downstream gene, which is related to Mg2+ transport, and
ensures an adequate amount of the Mg2+ transporter in the cell.
Although cooperative binding has not been explicitly demonstrated
for the M-box riboswitch, allosteric modulations upon Mg2+ bind-
ing undoubtedly indicate involvement of cooperativity in the for-
mation of the ligand-bound state of this RNA.

Recent studies revealed that riboswitches can specifically recog-
nize metals aside from Mg2+ cations. One of the most interesting
metal-binding riboswitches resides upstream of a manganese (Mn2+)
efflux pump gene [59, 60]. This RNA forms two distant cation-
binding sites, one for a Mg2+ cation and another for a Mn2+ cation.
Since the concentration of Mg2+ cations in cells is high, the ribos-
witch initially binds a Mg2+ cation. This interaction induces an
allosteric change in the RNA structure and facilitates binding of a
Mn2+ cation, if the concentration of Mn2+ in the cell exceeds the
threshold. Cooperative binding of two metals directs RNA folding
such that the riboswitch adopts a conformation that precludes for-
mation of the transcription terminator and allows transcription of
the gene.

Metal cations are not the only ligands that are able to bind
riboswitches in a cooperative fashion and induce large allosteric
changes. Tetrahydrofolate (THF)-sensing riboswitch recognizes
two THF molecules in a single domain using two very similar
ligand-binding sites [58]. Although the two sites are separated by

�

Fig. 3 (continued) is required to form an adjacent transcription terminator
instead of an antiterminator [58]. (c) Thermodynamic cycle for formation of the
S15-S6-S18-rRNA complex in the central domain of the 30S ribosomal subunit
[8]. The rRNA fragment is shown in black lines and proteins are shown in color.
The schematic depicts structural transitions in RNA upon protein binding and
these transitions are the basis for cooperativity in the system
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a large distance, ligands bind to the RNA in cooperative manner
under physiological concentrations of Mg2+ cations (Fig. 3b).
Binding of both ligands is required for stabilization of tertiary
interactions which ensure large allosteric changes resulting in the
formation of a transcription terminator instead of an antiterminator
in the downstream regions. Ablation of binding by mutagenesis in
one site decreases binding affinity to the second site, thus suggest-
ing that binding to one site facilitates ligand interactions with the
other. Mutation analyses further indicates that one site is more
important for genetic control than the other. High Mg2+ concen-
trations apparently provide extra stabilization to the structure and
diminish cooperativity between ligand-binding sites.

The c-di-AMP riboswitch [61–63] is another example of dou-
ble ligand binding to a single RNA domain. Interestingly, the
riboswitch adopts a twofold pseudosymmetrical square that binds
two molecules of c-di-AMP along opposite sides of the square in
almost identical fashion. Although cooperativity has not been
directly determined, mutagenesis studies have shown that tertiary
structure formation requires binding of both ligands [61]. Elimina-
tion of one ligand-binding site reduces ligand binding to the sec-
ond ligand, suggesting that formation of one binding pocket is
required for long-distance allosteric change that causes the
subsequent folding of the other pocket. These data further suggest
cooperative binding of two ligands, a hypothesis awaiting confir-
mation by further biochemical and biophysical studies.

5.2 Allosteric

Changes Define

Cooperative Assembly

of RNA-Protein

Complexes

RNA participates in the formation of many ribonucleoprotein
(RNP) complexes involved in mRNA processing, localization,
transport, translation, and other cellular processes. One of the
best studied RNPs is the ribosome, which consists of two subunits,
30S and 50S, formed by several dozen proteins and a few RNA
molecules. The 30S subunit can be assembled from purified pro-
teins and RNA; however, the reconstitution of the functional sub-
unit requires a specific order for protein binding, suggestive of
multiple allosteric modulations and a cooperative manner of assem-
bly [64]. The central domain of the ribosome initially forms sepa-
rately from the rest of the subunit and, therefore, represents an
excellent model system to study cooperativity and associated allo-
steric modulations. Structural and biochemical studies revealed that
the domain assembly involves highly cooperative binding of ribo-
somal proteins [22, 65–68]. The process is initiated by binding of
the ribosomal protein S15 to a ~200 nt region of 16S rRNA
(Fig. 3c). The binding re-arranges and stabilizes conformations of
two three-helix junctions. The top junction constitutes the binding
site for the dimer of proteins S6 and S18; therefore, S15 binding
facilitates further binding of the S6:S18 complex [22, 68]. Thermo-
dynamic studies showed that binding of S15 and S6:S18 hetero-
dimer is highly cooperative, with coupling free energy of
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�3.7 kcal mol�1. Since S15 does not interact with S6:S18, the basis
for cooperativity is allosteric changes in the rRNA structure upon
S15 binding. Formation of the central domain is an example that
highlights complex allosteric transitions in RNA andmultiple coop-
erative binding events that lead to binding of over 20 proteins to a
~1500 nt RNA in the assembly of the 30S subunit and the entire
ribosome.

6 Concluding Remarks

The role of allostery and cooperativity in RNA systems is difficult to
underestimate. Virtually all structured RNAs and their macromo-
lecular assemblies employ both of these biological principles for
adopting functional conformations. RNA folding critically depends
on interactions with metal cations, especially Mg2+ cations, which
facilitate the formation of secondary structure elements. Allosteric
modulations further define folding pathways for the formation of a
tertiary structure and various complexes. The folding pathway is
further assisted by allosteric modulations induced by binding of
other ligands, small molecules or proteins, and most often involves
cooperative effects, either in RNA folding or in ligand binding.
Despite the essential contribution of cooperativity and allostery for
the timely formation of biologically relevant RNA structures and
their various activities, determination of the mechanism of coop-
erativity and extent of allosteric changes remains a difficult task and
is limited to several well-behaving systems. The major setbacks in
these studies are the lack of sufficient structural information for
various states of RNA molecules and difficulties in conducting
detailed thermodynamic analysis of the conformational transitions
in complexly folded RNAs. Although we begin to understand
folding and macromolecular interactions in small systems, progress
in studies of large RNPs is mostly limited to the ribosome, whose
structures are available in various states and in complex with various
effectors. The mechanisms of many large RNPs, such as the spliceo-
some, are still poorly understood, despite tremendous structural
and biochemical efforts. Developments in single-molecule
approaches and structural methods, especially in cryogenic electron
microscopy, will hopefully address these deficiencies in the near
future.
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