
Offline Contextual Bandits with Overparameterized Models

David Brandfonbrener 1 William F. Whitney 1 Rajesh Ranganath 1 Joan Bruna 1

Abstract

Recent results in supervised learning suggest that

while overparameterized models have the capac-

ity to overfit, they in fact generalize quite well.

We ask whether the same phenomenon occurs for

offline contextual bandits. Our results are mixed.

Value-based algorithms benefit from the same gen-

eralization behavior as overparameterized super-

vised learning, but policy-based algorithms do

not. We show that this discrepancy is due to

the action-stability of their objectives. An ob-

jective is action-stable if there exists a prediction

(action-value vector or action distribution) which

is optimal no matter which action is observed.

While value-based objectives are action-stable,

policy-based objectives are unstable. We formally

prove upper bounds on the regret of overparam-

eterized value-based learning and lower bounds

on the regret for policy-based algorithms. In our

experiments with large neural networks, this gap

between action-stable value-based objectives and

unstable policy-based objectives leads to signifi-

cant performance differences.

1. Introduction

The offline contextual bandit problem can be used to model

decision making from logged data in domains as diverse as

recommender systems (Li et al., 2010; Bottou et al., 2013),

healthcare (Prasad et al., 2017; Raghu et al., 2017), and

robotics (Pinto & Gupta, 2016). While there have been

strong theoretical and empirical results in the vibrant litera-

ture on offline contextual bandits, work in this subfield has

centered on underparameterized model classes (Strehl et al.,

2010; Dudík et al., 2011; Swaminathan & Joachims, 2015a).

In contrast, the best performance in modern supervised

learning is often achieved by massively overparameterized

models that are capable of fitting random labels (Zhang

et al., 2016). The massive capacity of popular neural net-

1Courant Institute of Mathematical Sciences, New York Uni-
versity, New York, New York, USA. Correspondence to: David
Brandfonbrener <david.brandfonbrener@nyu.edu>.

Preprint.

work models is often viewed as a feature rather than a bug.

Large models reduce approximation error and allow for eas-

ier optimization (Du et al., 2018) while still being able to

generalize in regression and classification problems (Belkin

et al., 2018; 2019). In this paper, we investigate whether

the strong performance of overparameterized models in su-

pervised learning translates to the offline contextual bandit

setting.

To probe the differences between the supervised learning

and contextual bandit settings, we introduce a novel regret

decomposition. This decomposition shares the approxima-

tion and estimation terms from classic work in supervised

learning (Vapnik, 1982; Bottou & Bousquet, 2008), but adds

a term for “bandit” error which captures the excess risk due

to only receiving partial feedback.

We use this decomposition to address the question: can we

use overparameterized models for offline contextual ban-

dits? We find mixed results. Value-based algorithms benefit

from the same generalization behavior as overparameterized

supervised learning, but policy-based algorithms do not. We

show that this difference is explained by a property of their

objectives called action-stability. An objective is action-

stable if there exists a single prediction which is simultane-

ously optimal for any observed action (where a “prediction”

is a vector of state-action values for a value-based objec-

tive or an action distribution for a policy-based objective).

Action-stable objectives perform well when combined with

overparameterized models since the random actions taken

by the behavior policy do not change the optimal predic-

tion. However, interpolating an unstable objective results

in learning a different function for every sample of actions,

even though the true optimal policy remains unchanged.

On the theory side, we prove that overparameterized value-

based algorithms are action stable and have small bandit

error via reduction to overparameterized regression. Mean-

while we prove that policy-based algorithms are not action-

stable which allows us to prove lower bounds on the “in-

sample” regret and lower bounds on the regret for simple

nonparametric models.

Empirically, we demonstrate the gap in both action stability

and bandit error between policy-based and value-based algo-

rithms when using large neural network models on synthetic

and image-based datasets.

a
rX

iv
:2

0
0
6
.1

5
3
6
8
v
3

[c

s.
L

G
]

 1
0
 F

e
b
 2

0
2
1

Bandit Overfitting in Offline Policy Learning

In summary, our main contributions are:

• We introduce the concept of bandit error, which sepa-

rates contextual bandits from supervised learning.

• We introduce action-stability and show that a lack of

action-stability causes bandit error.

• We show a gap between policy-based and value-based

algorithms based on action-stability and bandit error

both in theory and experiments.

2. Related work

The offline contextual bandit problem has been well stud-

ied under finite and small VC dimension model classes in

the bandit community (Strehl et al., 2010; Swaminathan &

Joachims, 2015a;b; Joachims et al., 2018). Similar work

has also come out of the causal inference community (Bot-

tou et al., 2013; Athey & Wager, 2017; Kallus, 2018; Zhou

et al., 2018). Related work has also come out of the RL

theory community for the more general full RL problem

(Munos & Szepesvári, 2008; Chen & Jiang, 2019). All these

results rely on having a small model class and then applying

standard ideas of uniform convergence. In this work, we in-

stead consider a setting where our overparameterized model

classes render such bounds vacuous.

The idea of “propensity overfitting” raised by Swaminathan

& Joachims (2015b); Joachims et al. (2018) is a specific type

of the “bandit error” that we define in Section 4. Like us,

Joachims et al. (2018) consider a deep learning setting, but

they focus on proposing a specific variant of a policy-based

approach. We show that this policy-based algorithm is not

action-stable in Section 5 and as a result will struggle with

bandit error. We confirm this empirically in Section 7. This

line of prior work does not consider value-based methods

which we find perform better with overparameterization.

3. Setup

3.1. Offline contextual bandit problem

First we will define the contextual bandit problem (Lang-

ford & Zhang, 2008). Let the context space X be infinite

and the action space A be finite with |A| = K < ∞. At

each round, a context x ∈ X and a full feedback reward

vector r ∈ [rmin, rmax]
K are drawn from a joint distribu-

tion D. Note that r can depend on x since they are jointly

distributed. A policy π : X → P(A) maps contexts to dis-

tributions over actions. An action a is sampled according to

π(a|x) and the reward is r(a), the component of the vector

r corresponding to a. We use “bandit feedback” to refer to

only observing r(a). This contrasts with the “full feedback”

problem where at each round the full vector of rewards r is

revealed, independent of the action.

In the offline setting there is a finite dataset of N rounds with

a fixed behavior policy β. Then we denote the dataset as

S = {xi, ri, ai, pi}Ni=1 where pi is the observed propen-

sity pi = β(ai|xi). The tuples in the datasets lie in

X × [rmin, rmax]
K×A× [0, 1] and are drawn i.i.d from the

joint distribution induced by D and β. From S we define the

datasets SB for bandit feedback and SF for full feedback:

SB = {(xi, ri(ai), ai, pi)}Ni=1, SF = {(xi, ri)}Ni=1.

Note that we are assuming access to the behavior probabili-

ties pi = β(ai|xi), so the issues that we raise do not have to

do with estimating propensities. We will further make the

following assumption about the behavior.

Assumption 1 (Strict positivity). We have strict positivity

of τ if β(a|x) ≥ τ > 0 for all a, x. Thus, in any dataset we

will have pi = β(ai|xi) ≥ τ > 0.

There is important work that focuses learning without strict

positivity by making algorithmic modifications like clipping

(Bottou et al., 2013; Strehl et al., 2010; Swaminathan &

Joachims, 2015a) and behavior constraints (Fujimoto et al.,

2018; Laroche et al., 2019). However, these issues are

orthogonal to the main contribution of our paper, so we

focus on the setting with strict positivity.

The goal of an offline contextual bandit algorithm is to take

in a dataset and produce a policy π so as to maximize the

value V (π) defined as

V (π) := Ex,r∼DEa∼π(·|x)[r(a)].

We will use π∗ to denote the deterministic policy that max-

imizes V . Finally, define the Q function at a particular

context, action pair as

Q(x, a) := Er|x[r(a)].

3.2. Model classes

The novelty of our setting comes from the use of overparam-

eterized model classes that are capable of interpolating the

training objective. To define this more formally, all of the al-

gorithms we consider take a model class of either policies Π
or Q functions Q and optimize some objective over the data

with respect to the model class. Following the empirical

work of (Zhang et al., 2016) and theoretical work of (Belkin

et al., 2018) we will call a model class “overparameterized”

or “interpolating” if the model class contains a model that

exactly optimizes the training objective. Formally, if we

have data {xi}Ni=1 and a pointwise loss function ℓ(x, y),
then a model class Π can interpolate the data if

inf
π∈Π

N∑

i=1

ℓ(xi, π(xi)) =

N∑

i=1

inf
y
ℓ(xi, y).

Bandit Overfitting in Offline Policy Learning

This contrasts with traditional statistical learning settings

where we assume that the model class is finite or has low

complexity as measured by something like VC dimension

(Strehl et al., 2010; Swaminathan & Joachims, 2015a).

3.3. Algorithms

Now that we have defined the problem setting, we can define

the algorithms that we will analyze. This is not meant to

be a comprehensive account of all algorithms, but a broad

picture of the “vanilla” versions of the main families of

algorithms. Since we are focusing on statistical issues we

do not consider how the objectives are optimized.

Supervised learning with full feedback. In a full feed-

back problem, empirical value maximization (the analog to

standard empirical risk minimization) is defined by maxi-

mizing the empirical value V̂F :

V̂F (π;SF) :=
1

N

N∑

i=1

〈ri, π(·|xi)〉 (1)

πF := argmax
π∈Π

V̂F (π;SF). (2)

Policy-based learning. Importance weighted or “inverse

propensity weighted” policy optimization directly optimizes

the policy to maximize an estimate of its value. Since we

only observe the rewards of the behavior policy, we use

importance weighting to get an unbiased value estimate to

maximize. Explicitly:

V̂B(π;SB) :=
1

N

N∑

i=1

ri(ai)
π(ai|xi)

pi
(3)

πB := argmax
π∈Π

V̂B(π;SB). (4)

Note that this is the “vanilla” version of the policy-

based algorithm and modifications like regularizers, base-

lines/control variates, clipped importance weights, and self-

normalized importance weights have been proposed (Bottou

et al., 2013; Joachims et al., 2018; Strehl et al., 2010; Swami-

nathan & Joachims, 2015a;b). For our purposes considering

this vanilla version is sufficient since as we show in Section

5, any objective that takes the form π(ai|xi)f(xi, ai, ri, pi)
at each datapoint will have the same sort of problem with

action-stability.

It is important to note that with underparameterized model

classes, this algorithm is guaranteed to return nearly the best

policy in the class. Explicilty, Strehl et al. (2010) prove that

for a finite policy class Π, with high probability the regret

of the learned policy πB is bounded as O(1τ

√
log |Π|

N). This

is elaborated in Appendix F. However, these guarantees no

longer hold in our overparameterized setting.

Value-based learning. Another simple algorithm is to

first learn the Q function and then use a greedy policy with

respect to this estimated Q function. Explicitly:

Q̂SB
:= argmin

f∈Q

N∑

i=1

(f(xi, ai)− ri(ai))
2 (5)

πQ̂SB

(a|x) := ✶

[
a = argmax

a′
Q̂SB

(x, a′)
]
. (6)

This algorithm is sometimes called the “direct method”

(Dudík et al., 2011). The RL literature also often defines

a class of model-based algorithms, but in the contextual

bandit problem there are no state transitions so model-based

algorithms are equivalent to value-based algorithms.

This algorithm also has a guarantee with small model classes.

Explicilty, Chen & Jiang (2019) prove that for a finite and

well specified model class Q, with high probability the regret

of the learned policy πQ̂SB

is bounded as O(1√
τ

√
log |Q|

N).

This is elaborated in Appendix F. Again, these guarantees

no longer hold in our overparameterized setting.

Doubly robust policy optimization. The class of doubly

robust algorithms (Dudík et al., 2011) does not fall cleanly

into the value-based or policy-based bins since it requires

first learning a value function and using that to optimize

a policy. However, with overparamterized models, doubly

robust learning becomes exactly equivalent to our vanilla

value-based algorithm unless we use use crossfitting since

the estimated Q values will coincide with the rewards. We

prove this formally in Appendix D where we also show

some issues that the doubly robust policy objective can

have with overparameterized models and highly stochas-

tic rewards. For our purposes, we will only consider the

policy-based and value-based approaches since the doubly

robust approach collapses to the value-based approach with

overparameterized models.

4. Bandit error

In supervised learning, the standard decomposition of the

excess risk separates the approximation and estimation error

(Bottou & Bousquet, 2008). The approximation error is

due to the limited function class and the estimation error

is due to minimizing the empirical risk rather than the true

risk. Since the full feedback policy learning problem is

equivalent to supervised learning, the same decomposition

applies. Formally, consider a full feedback algorithm AF

Bandit Overfitting in Offline Policy Learning

which takes the dataset SF and produces a policy πF . Then

ES [V (π∗)− V (πF)]︸ ︷︷ ︸
regret

= V (π∗)− sup
π∈Π

V (π)

︸ ︷︷ ︸
approximation error

+ ES [sup
π∈Π

V (π)− V (πF)]

︸ ︷︷ ︸
estimation error

.

We can instead consider a bandit feedback algorithm AB

which takes the dataset SB and produces a policy πB . To

extend the above decomposition to the bandit problem we

add a new term, the bandit error, that results from having

access to SB rather than SF . Now we have:

ES [V (π∗)− V (πB)]︸ ︷︷ ︸
regret

= V (π∗)− sup
π∈Π

V (π)

︸ ︷︷ ︸
approximation error

+ ES [sup
π∈Π

V (π)− V (πF)]

︸ ︷︷ ︸
estimation error

+ES [V (πF)− V (πB)]︸ ︷︷ ︸
bandit error

.

Disentangling sources of error. The approximation er-

ror is the same quantity that we encounter in the supervised

learning problem, measuring how well our function class

can do. The estimation error measures the error due to over-

fitting on finite contexts and noisy rewards. The bandit error

accounts for the error due to only observing the actions

chosen by the behavior policy. This is not quite analogous

to overfitting to noise in the rewards since stochasticity

in the actions is actually required to have the coverage of

context-action pairs needed to learn a policy. While the

standard approximation-estimation decomposition could be

directly extended to the bandit problem, our approximation-

estimation-bandit decomposition is more conceptually use-

ful since it disentangles these two types of error.

Relation to “propensity overfitting”. Swaminathan &

Joachims (2015b) introduce a related issue which they call

“propensity overfitting” whereby policy-based algorithms

overfit to maximize the sum of propensities
∑

i
π(ai|xi)

pi

rather than the value when the rewards are strictly positive.

This can be seen as a description of a particular cause of

bandit error. Bandit error provides a more general and

formal definition of the type of overfitting that occurs in

offline contextual bandits, but not supervised learning.

Can bandit error be negative? Usually, we think about

an error decomposition as a sum of positive terms. This

is not necessarily the case with our decomposition, but we

view this as a feature rather than a bug. Intuitively, the bandit

error term captures the contribution of the actions selected

by the behavior policy. If the behavior policy is nearly

optimal and the rewards are highly stochastic, there may be

more signal in the actions selected by the behavior policy

than the observed rewards. Thus overfitting the actions

chosen by behavior policy can sometimes be beneficial,

causing the bandit error to be negative. The two terms

disentangle the approximation error (due to reward noise)

from bandit error (due to behavior actions).

5. Action-stable objective functions

Consider a simple thought experiment. We collect a con-

textual bandit dataset SB from a two-action environment

using a uniformly random behavior policy. Then we con-

struct a second dataset S̃B by evaluating the outcome of

taking the opposite action at each observed context. Since

nothing about the environment has changed, we know that

the optimal policy remains the same. Therefore we desire

the following property from a bandit objective: there exists

a single model which is optimal (with respect to that ob-

jective) on both SB and S̃B . We say that such an objective

is action-stable because it has an optimal policy which is

stable to re-sampling of the actions in the dataset.

More formally, we define action stability pointwise at a

datapoint z = (x, r, p) where r ∈ [rmin, rmax]
K and p ∈

∆K is the behavior probability vector in the K-dimensional

simplex (recall that K is the number of the actions). Let

z(a) denote the datapoint when action a is sampled so that

z(a) = (x, r(a), p(a), a). The objectives for both policy

and value-based algorithms decompose into sums over the

data of some loss ℓ(z(a), π(a|x)) or ℓ(z(a), Q(x, a)).

Note that the output space of a policy is the simplex so

that π(·|x) ∈ ∆K , while the output of a Q function1 is

Q(x, ·) ∈ R
K . To allow for this difference in our definition,

we will define a generic K-dimensional output space YK

and its corresponding restriction to one dimension as Y . So

for a policy-based algorithm YK = ∆K and Y = [0, 1],
while for a value-based algorithm YK = R

K and Y = R.

Now we can define action-stability.

Definition 1 (Action-stable objective). An objective func-

tion ℓ is action-stable at a datapoint z if there exists

y∗ ∈ YK such that for all a ∈ A:

ℓ(z(a), y∗(a)) = min
y∈Y

ℓ(z(a), y).

If an objective is not action-stable, a function which

minimizes that objective exactly at every datapoint

(x, r(a), p(a), a) does not minimize it for a different choice

of a. As a direct consequence, interpolating an unstable

objective results in learning a different function for every

sample of actions, even though the true optimal policy re-

mains unchanged.

We find that policy-based objectives are not action-stable,

1When using neural networks Q is usually implemented as a
function of x with K outputs (Mnih et al., 2015)

Bandit Overfitting in Offline Policy Learning

while value-based objectives are. In the next section we

will use the instability of policy-based objectives to show

that policy-based algorithms exhibit large bandit error when

used with overparameterized models. Our stability results

are stated in the following two Lemmas, whose proofs can

be found in Appendix A.

Lemma 1 (Value-based stability). Value-based objectives

are action stable since we can let y∗ = r and this minimizes

the square loss at every action.

Lemma 2 (Policy-based instability). All policy-based objec-

tives which take the form ℓ(z(a), π(a|x)) = f(z(a))π(a|x)
are not action-stable at z unless f(z(a)) > 0 for exactly

one action a.

These Lemmas tell us that the stochasticity of the behav-

ior policy can cause instability for policy-based objectives.

This is worrisome since one would hope that more stochas-

tic behavior policies give us more information about all the

actions and should thus yield better policies. Indeed, this is

the case for value-based algorithms as we will see in the next

section. But for policy-based algorithms, stochastic behav-

ior can itself be a cause of overfitting due to the instability

of the objective function.

Stabilizing policy-based algorithms. To avoid this prob-

lem in a policy-based algorithm, the sign of the function

f(z(a)) must indicate the optimal action. This essentially

requires having access to a baseline function b(s) that

separates the optimal action from all the others so that

r(a) > b(s) if and only if a is the optimal action. And

then f(z(a)) = r(a)−b(s)
β(a|s) yields an action-stable algorithm.

This is in general as difficult as learning the full value func-

tion Q. One notable special case is when the bandit problem

is induced by an underlying classification problem, so that

only one action has reward 1 and all others have 0. In this

case, any constant baseline between 0 and 1 will lead to

action stability. This case has often been considered in the

literature, e.g. by Joachims et al. (2018).

Now that we have built up an understanding of the problem

we can prove some formal results that show how value-

based algorithms more effectively leverage overparameter-

ized models by being action-stable.

6. Regret bounds

Recall that as explained in Section 3, both policy-based

and value-based algorithms have regret guarantees when

we use small model classes (Strehl et al., 2010; Chen &

Jiang, 2019). But, when we move to the overparameterized

setting, this is no longer the case. In this section we prove

regret upper bounds for value-based learning by using recent

results in overparameterized regression. Then we prove

lower bounds on the regret of policy-based algorithms due

to their action-instability.

6.1. Value-based learning

In this section we show that value-based algorithms can

provably compete with the optimal policy. The key insight

is to reduce the problem to regression and then leverage

the guarantees on overparameterized regression from the

supervised learning literature. This is formalized by the

following theorem.

Theorem 1 (Reduction to regression). By Assumption 1 we

have β(a|x) ≥ τ for all x, a. Then with Q̂SB
as defined in

(5) we have

V (π∗)− V (πQ̂SB

) ≤ 2√
τ

√
Ex,a∼β [(Q(x, a)− Q̂SB

(x, a))2].

A proof can be found in Appendix B. Similar results are

presented as intermediate results in Chen & Jiang (2019);

Munos & Szepesvári (2008). The implication of this result

that we want to emphasize is that any generalization guaran-

tees for overparameterized regression immediately become

guarantees for value-based learning in offline contextual

bandits. Essentially, Theorem 1 gives us a regret bound

in any problem where overparameterized regression works.

The following results from the overparameterized regression

literature demonstrate a few of these guarantees, which all

require some sort of regularity assumption on the true Q
function to bound the regression error:

• The results of (Bartlett et al., 2020) give finite sam-

ple rates for overparameterized linear regression by

the minimum norm interpolator depending on the co-

variance matrix of the data and assuming that the true

function is realizable.

• The results of (Belkin et al., 2019) imply that under

smoothness assumptions on Q, a particular singular

kernel will interpolate the data and have optimal non-

parametric rates. After applying our reduction, the

rates are no longer optimal for the policy learning prob-

lem due to the square root.

• The results of (Bach, 2017) show how choosing the

minimum norm infinite width neural network in a par-

ticular function space can yield adaptive finite sample

guarantees for many types of underlying structure in

the Q function.

• The results of (Cover, 1968) imply the consistency of

a one nearest neighbor regressor when the rewards are

noiseless and Q is piecewise continuous. This will

contrast nicely with Theorem 3 below.

Each of these guarantees implies a corresponding corollary

to Theorem 1 resulting in a regret bound for that particular

combination of model and assumptions on Q.

Bandit Overfitting in Offline Policy Learning

6.2. Policy-based learning

Now we will show how the policy-based learning algorithms

can provably fail because they lack action-stability. We will

do this in a few ways. First, we will show that on the con-

texts in the dataset an action-unstable algorithm must suffer

regret. This means that we cannot even learn the optimal

policy at the contexts seen during training. Then to deal

with generalization beyond the dataset we will prove a regret

lower bound for a specific overparameterized model, namely

one nearest neighbor. Finally, we discuss a conjecture that

such lower bounds can be extended to richer model classes

like neural networks.

Since we are proving lower bounds, making any more sim-

plifying assumptions only makes the bound stronger. As

such, all of our problem instances that create the lower

bounds have only two actions (K = 2).

Regret on the observed contexts. Before considering

how a policy generalizes off of the data, it is useful to

consider what happens at the contexts in the dataset. This

is especially true for overparameterized models which can

exactly optimize the objective on the dataset. To do this,

we will define the value of a policy π on the contexts in a

dataset S (which we will call the “in-sample” value) by

V (π;S) :=
1

N

N∑

i=1

Er|xi
Ea∼π(·|xi)[r(a)]. (7)

Then the following Theorem shows that the policy πB

learned by the simple policy-based algorithm in Equation

(4) must suffer substantial regret on S.

Theorem 2 (In-sample regret lower bound). Let K = 2
and the policy class be overparameterized. Define ∆r(x) =∣∣Er|x[r(1)− r(2)]

∣∣ as the absolute expected gap in rewards

at x. Define pu(x) to be the probability that the policy-based

objective is action-unstable at x. Recall that β(a|x) ≥ τ by

Assumption 1. Then

ES [V (π∗;S)−V (πB ;S)] ≥ τEx

[
pu(x)∆r(x)

]
.

The full proof is in Appendix C. This Theorem tells us that

as often as the objective is action-unstable, we can suffer

substantial regret even on the contexts in the dataset. We

now offer some brief intuition of the proof. When we have

two actions and an algorithm is not action-stable at x, then

action chosen by the learned policy πB at xi is directly de-

pendent on the observed action ai. Since the behavior β will

choose each action with probability at least τ by Assump-

tion 1, the learned policy πB must choose the suboptimal

action with probability at least τ at xi. This causes unavoid-

able regret for unstable algorithms, as formally stated in

Theorem 2.

Note that Theorem 2 essentially says that action-unstable

algorithms convert noise in the behavior into regret. This is

the essential problem with unstable algorithms. Rather than

using stochasticity in the behavior policy to get estimates of

counterfactual actions, an action-unstable algorithm is sen-

sitive to this stochasticity like it is label noise in supervised

learning.

In Appendix C.2 we present a result that makes this con-

nection between behavior policy noise and action-instability

more direct. Specifically we show a reduction that takes

any classification problem and turns it into a bandit problem

such that optimizing the policy-based objective is equiva-

lent to solving a noisy variant of the classification problem.

On the contrary, optimizing the full-feedback objective is

equivalent to the noiseless classification problem.

The limitation of this result is that it only applies in-sample

and does not rule out that the model class could leverage

its inductive bias to perform well away from the training

data. Next we convert this in-sample regret lower bound

into a standard regret lower bound for a particular simple

interpolating model class, the nearest neighbor policy.

Regret with generalization: nearest neighbor models.

The above result shows what happens at the contexts in

the dataset S. It seems that only pathological combinations

of model class and problem instance could perform poorly

on S but recover strong performance off of the data. How-

ever, it cannot be ruled out a priori if the model class has

strong inductive biases to generalize well. In this section

we will show that at least for a very simple overparameter-

ized model class, the generalization of the model does not

improve performance.

The following theorem shows that the simplest interpolating

model class, a one nearest neighbor rule, fails to recover the

optimal policy even in the limit of infinite data.

Theorem 3 (Regret lower bound for one nearest neighbor).

Let ∆r = rmax − rmin. Then there exist problem instances

with noiseless rewards where

lim sup
N→∞

ES [V (πF)− V (πB)] =
∆r

2
,

but

lim sup
N→∞

ES [V (π∗)− V (πF)] = 0.

The proof is in Appendix C. This result shows that using a

nearest neighbor scheme to generalize based on the signal

provided by the policy-based objective is not sufficient to

learn an optimal policy. Importantly, note that since the

rewards are noiseless, a nearest neighbor policy does recover

the optimal policy with full feedback and Theorem 1 shows

that value-based algorithms also recover the optimal policy

Bandit Overfitting in Offline Policy Learning

in this setting. So, the model class is capable of solving the

problem, it is the action-unstable algorithm that is causing

irreducible error.

More complicated model classes. The above result for

nearest neighbor models is illustrative, but does not apply to

richer model classes like neural networks. While we were

not able to construct such lower bounds, we conjecture that

they do exist and hope that future work can prove them.

We have two reasons to believe that such lower bounds

exist. First, Theorem 2 is agnostic to model class. For a

policy to perform well despite poor performance in-sample

would require strong inductive biases from the model class.

Proving lower bounds requires ruling out such inductive

biases as we have shown for nearest neighbor rules. Second,

our empirical results presented in the next section show that

policy-based algorithms have action-instability and high

bandit error with neural networks. The inductive biases are

not enough to overcome the poor in-sample performance.

7. Experiments

In this section we experimentally verify that the phenom-

ena described by the theory above extend to practical set-

tings that go slightly beyond the assumptions of the theory.

Specifically we want to verify the following with overpa-

rameterized neural network models:

1. Policy-based algorithms are action-unstable while

value-based algorithms are action-stable.

2. This causes high bandit error for policy-based algo-

rithms, but not value-based algorithms.

We will break the section into two parts. First we consider

a synthetic problem using simple feed-forward neural nets

and then we show similar phenomena when the contexts are

high-dimensional images and the models are Resnets (He

et al., 2016).

7.1. Synthetic data

First, we will clearly demonstrate action-stability and bandit

error in a synthetic problem with a linear reward function.

Specifically, we sample some hidden reward matrix θ and

then sample contexts and rewards from isotropic Gaussians:

θ ∼ U([0, 1]K×d), x ∼ N (0, Id), r ∼ N (θx, ǫId).

Actions are sampled according to a uniform behavior:

a ∼ β(·|x) = U({1, . . . ,K}).

For these experiments we set K = 2, d = 10, ǫ = 0.1. We

take N = 100 training points and sample an independent

test set of 500 points. As our models we use MLPs with one

hidden layer of width 512. In our experience, the findings

are robust to all these hyperparameters of the problem so

long as the model is overparameterized. Full details about

the training procedure along with learning curves and further

results are in Appendix E.

Figure 1. We test action-stability by resampling the actions 20

times for a single dataset of contexts. Each pixel corresponds to

the pair of action seeds i, j and the color shows the TV distance

between πi(·|x) and πj(·|x) on a held-out test set sampled from

the data generating distribution. The policy-based algorithms are

highly sensitive to the randomly sampled actions.

To confirm (1) and (2) listed above we conduct two exper-

iments. First, to test the action-stability of an algorithm

with a neural network model, we train 20 different poli-

cies on the same dataset of contexts and rewards, but with

resampled actions. Formally, we sample {xi, ri}Ni=1 from

the Gaussian distributions described above and then sample

ai ∼ β(·|xi) with 20 different seeds. We then train each

algorithm to convergence and compare the resulting policies

by total variation (TV) distance. Results are shown in Figure

1. We find that our results from Section 5 are confirmed:

policy-based algorithms are unstable leading to high TV

distance between policies trained on different seeds while

value-based algorithms are stable.

Second, we estimate the bandit error of each algorithm.

Figure 2. Estimated bandit error by averaging the values calculated

on the held-out test sets for 50 independently sampled datasets.

Error bars show one standard deviation. While policy-based learn-

ing has high bandit error, value-based learning has essentially zero

bandit error.

Bandit Overfitting in Offline Policy Learning

To do this we train policies to convergence for the policy-

based, value-based, and full-feedback objectives 50 inde-

pendently sampled datasets (where now we also resample

the contexts and rewards). For this estimate, we assume

perfect optimization and no approximation error. Each

estimate is calculated on a held out test set. Explicitly,

let πj
B , π

j
Q, π

j
F are the policy-based, value-based, and full-

feedback policies trained on dataset Sj with seed j and

corresponding test set T j . Then we estimate bandit error

as 1
J

∑J
j=1 V (πj

F ;T
j) − V (πj

B ;T
j). Similarly, since we

know θ we can compute π∗ and use this to estimate the

estimation error. The results shown in Figure 2 demonstrate

that the policy-based algorithm suffers from substantially

more bandit error and thus more regret.

7.2. Classification data

Most prior work on offline contextual bandits conducts ex-

periments on classification datasets that are transformed into

bandit problems (Beygelzimer & Langford, 2009; Dudík

et al., 2011; Swaminathan & Joachims, 2015a;b; Joachims

et al., 2018; Chen et al., 2019). This methodology obscures

issues of action-stability because the very particular reward

function used (namely 1 for a correct label and 0 for incor-

rect) makes the policy-based objective action-stable. How-

ever, even minor changes to this reward function can dramat-

ically change the performance of policy-based algorithms

by rendering the objective action-unstable.

To make a clear comparison to prior work that uses deep

neural networks for offline contextual bandits like Joachims

et al. (2018), we will consider the same image based bandit

problem that they do in their work. Namely, we will use the

a bandit version of CIFAR-10 (Krizhevsky, 2009).

To turn CIFAR into an offline bandit problem we view each

possible label as an action and assign reward of 1 for a

correct label/action and 0 for an incorrect label/action. We

use two different behavior policies to generate training data:

(1) a uniformly random behavior policy and (2) the hand-

crafted policy used in (Joachims et al., 2018). We train

Resnet-18 (He et al., 2016) models using Pytorch (Paszke

et al., 2019). Again full details about the training procedure

are in Appendix E.

As explained in Section 5, the policy-based objective is

stable if and only if the sign of the reward minus baseline

is an indicator of the optimal action. To test this insight we

consider two variants of policy-based learning: “unstable”

where we use a baseline of -0.1 so that the effective rewards

are 1.1 for a correct label and 0.1 for incorrect and “stable”

where we use a baseline of 0.1 so that the effective rewards

are of 0.9 and -0.1 to make the objective stable2. Note that

2This corresponds to the optimal value of λ in the experiments
of Joachims et al. (2018). Our “stable” model slightly outperforms

Figure 3. Estimated regret decomposition on CIFAR with uniform

behavior (left) and the hand-crafted behavior of Joachims et al.

(2018) (right). We see that the value-based learning has lowest

bandit error and unstable policy-based learning the most. On the

hand-crafted dataset the stable policy-based algorithm performs as

well as value-based learning.

this “stable” variant of the algorithm only exists because

we are considering a classification problem. In settings

with more rich structure in the rewards, defining such an

algorithm is not possible and only versions of the unstable

algorithm would exist.

We again estimate the regret decomposition as we did with

the synthetic data. The difference is that this time we only

use one seed since we only have one CIFAR-10 dataset. The

results in Figure 3 confirm the results from the synthetic

data. The standard (unstable) policy-based algorithm suffers

from large bandit error. The value-based algorithm has the

best performance across both datasets although the “stable”

policy-based algorithm performs about as well for the hand-

crafted behavior policy.

8. Discussion

We have examined the offline contextual bandit problem

with overparameterized models. We introduced a new regret

decomposition to separate the effects of estimation error and

bandit error. We showed that policy-based algorithms are

not action-stable and thus suffer from high bandit error with

stochastic behavior policies. This is borne out both in the

theory and experiments.

It is important to emphasize that our results may not apply

beyond the setting we consider in this paper. When there is

no strict positivity, there is unobserved confounding, there

are continuous actions, or the model classes are small and

misspecified then policy-based learning may have lower

regret and lower bandit error than value-based learning.

In future work we hope to extend the ideas from the bandit

setting to the full RL problem with longer horizon that

requires temporal credit assignment. We predict that action-

stability and bandit error remain significant issues there. We

theirs, likely due to a slightly better implementation.

Bandit Overfitting in Offline Policy Learning

also hope to investigate action-stable algorithms beyond the

simple value-based algorithms we consider here.

Acknowledgements

We would like to thank Aahlad Puli for thoughtful conversa-

tions and Aaron Zweig, Min Jae Song, and Evgenii Nikishin

for comments on earlier drafts.

This work is partially supported by the Alfred P. Sloan

Foundation, NSF RI-1816753, NSF CAREER CIF 1845360,

NSF CHS-1901091, Samsung Electronics, and the Institute

for Advanced Study. DB is supported by the Department

of Defense (DoD) through the National Defense Science &

Engineering Graduate Fellowship (NDSEG) Program.

References

Athey, S. and Wager, S. Efficient policy learning. arXiv

preprint arXiv:1702.02896, 2017.

Bach, F. Breaking the curse of dimensionality with con-

vex neural networks. The Journal of Machine Learning

Research, 18(1):629–681, 2017.

Bartlett, P. L., Long, P. M., Lugosi, G., and Tsigler, A.

Benign overfitting in linear regression. Proceedings of

the National Academy of Sciences, 2020.

Belkin, M., Hsu, D. J., and Mitra, P. Overfitting or per-

fect fitting? risk bounds for classification and regression

rules that interpolate. In Advances in neural information

processing systems, pp. 2300–2311, 2018.

Belkin, M., Rakhlin, A., and Tsybakov, A. B. Does data

interpolation contradict statistical optimality? In The

22nd International Conference on Artificial Intelligence

and Statistics, pp. 1611–1619. PMLR, 2019.

Beygelzimer, A. and Langford, J. The offset tree for learn-

ing with partial labels. In Proceedings of the 15th ACM

SIGKDD international conference on Knowledge discov-

ery and data mining, pp. 129–138, 2009.

Bottou, L. and Bousquet, O. The tradeoffs of large scale

learning. In Advances in neural information processing

systems, pp. 161–168, 2008.

Bottou, L., Peters, J., Quiñonero-Candela, J., Charles, D. X.,

Chickering, D. M., Portugaly, E., Ray, D., Simard, P.,

and Snelson, E. Counterfactual reasoning and learning

systems: The example of computational advertising. The

Journal of Machine Learning Research, 14(1):3207–3260,

2013.

Chen, J. and Jiang, N. Information-theoretic considera-

tions in batch reinforcement learning. In Proceedings of

the 36th International Conference on Machine Learning.

PMLR, 2019.

Bandit Overfitting in Offline Policy Learning

Chen, M., Gummadi, R., Harris, C., and Schuurmans, D.

Surrogate objectives for batch policy optimization in one-

step decision making. In Advances in Neural Information

Processing Systems, pp. 8825–8835, 2019.

Cover, T. Estimation by the nearest neighbor rule. IEEE

Transactions on Information Theory, 14(1):50–55, 1968.

Cover, T. and Hart, P. Nearest neighbor pattern classification.

IEEE Transactions on Information Theory, 13(1):21–27,

1967.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient

descent provably optimizes over-parameterized neural

networks. arXiv preprint arXiv:1810.02054, 2018.

Dudík, M., Langford, J., and Li, L. Doubly robust policy

evaluation and learning. arXiv preprint arXiv:1103.4601,

2011.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep re-

inforcement learning without exploration. arXiv preprint

arXiv:1812.02900, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp. 770–778, 2016.

Joachims, T., Swaminathan, A., and de Rijke, M.

Deep learning with logged bandit feedback. In In-

ternational Conference on Learning Representations,

2018. URL https://openreview.net/forum?

id=SJaP_-xAb.

Kallus, N. Balanced policy evaluation and learning. In

Advances in Neural Information Processing Systems, pp.

8895–8906, 2018.

Krizhevsky, A. Learning multiple layers of features from

tiny images. Technical report, 2009.

Langford, J. and Zhang, T. The epoch-greedy algorithm for

multi-armed bandits with side information. In Advances

in neural information processing systems, pp. 817–824,

2008.

Laroche, R., Trichelair, P., and Des Combes, R. T. Safe pol-

icy improvement with baseline bootstrapping. In Interna-

tional Conference on Machine Learning, pp. 3652–3661.

PMLR, 2019.

Li, L., Chu, W., Langford, J., and Schapire, R. E. A

contextual-bandit approach to personalized news arti-

cle recommendation. In Proceedings of the 19th Inter-

national Conference on World Wide Web, pp. 661–670,

2010.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,

J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-

land, A. K., Ostrovski, G., et al. Human-level control

through deep reinforcement learning. Nature, 518(7540):

529, 2015.

Munos, R. and Szepesvári, C. Finite-time bounds for fitted

value iteration. Journal of Machine Learning Research, 9

(May):815–857, 2008.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,

Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,

L., et al. Pytorch: An imperative style, high-performance

deep learning library. In Advances in neural information

processing systems, pp. 8026–8037, 2019.

Pinto, L. and Gupta, A. Supersizing self-supervision: Learn-

ing to grasp from 50k tries and 700 robot hours. In 2016

IEEE international conference on robotics and automa-

tion (ICRA), pp. 3406–3413. IEEE, 2016.

Prasad, N., Cheng, L.-F., Chivers, C., Draugelis, M., and

Engelhardt, B. A reinforcement learning approach to

weaning of mechanical ventilation in intensive care units.

ArXiv, abs/1704.06300, 2017.

Raghu, A., Komorowski, M., Ahmed, I., Celi, L. A.,

Szolovits, P., and Ghassemi, M. Deep reinforcement

learning for sepsis treatment. ArXiv, abs/1711.09602,

2017.

Strehl, A., Langford, J., Li, L., and Kakade, S. M. Learning

from logged implicit exploration data. In Advances in

Neural Information Processing Systems, pp. 2217–2225,

2010.

Swaminathan, A. and Joachims, T. Counterfactual risk

minimization: Learning from logged bandit feedback.

In International Conference on Machine Learning, pp.

814–823, 2015a.

Swaminathan, A. and Joachims, T. The self-normalized

estimator for counterfactual learning. In advances in

neural information processing systems, pp. 3231–3239,

2015b.

Vapnik, V. Estimation of Dependences Based on Empirical

Data: Springer Series in Statistics (Springer Series in

Statistics). Springer-Verlag, Berlin, Heidelberg, 1982.

ISBN 0387907335.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.

Understanding deep learning requires rethinking general-

ization. arXiv preprint arXiv:1611.03530, 2016.

Zhou, Z., Athey, S., and Wager, S. Offline multi-action

policy learning: Generalization and optimization. arXiv

preprint arXiv:1810.04778, 2018.

Bandit Overfitting in Offline Policy Learning

Appendix

A. Action-stability

Lemma 1 (Value-based stability). Value-based objectives are action stable since we can let y∗ = r and this minimizes the

square loss at every action.

Proof. Consider a datapoint z = (x, r) which becomes z(a) = (x, a, r(a)) when we sample action a from the behavior. At

this datapoint, the value-based objective for an estimated Q function Q̂ is

ℓ(z(a), Q̂(x, a)) = (r(a)− Q̂(x, a))2 (8)

This is minimized at all a by Q̂(x, a) = r(a). So setting y∗ = Q̂(x, ·) = r, we can exactly minimize ℓ at z. Since such a y∗

exists, the objective is by definition action-stable.

Lemma 2 (Policy-based instability). All policy-based objectives which take the form ℓ(z(a), π(a|x)) = f(z(a))π(a|x) are

not action-stable at z unless f(z(a)) > 0 for exactly one action a.

Proof. Consider a datapoint z = (x, r) which becomes z(a) = (x, a, r(a), p(a)) when we sample action a from the

behavior with probability p(a). At this datapoint, a generic policy-based objective evaluated on a policy π̂ takes the form

ℓ(z(a), π̂(a|x)) = f(z(a))π̂(a|x) (9)

As special examples of the function f we have the generic policy-based objective from Equation (4) when f(z(a)) = r(a)
p(a) .

Moreover we can incorporate any baseline function b(x) so that f(z(a)) = r(a)−b(x)
p(a) . This algorithm covers the one

presented by Joachims et al. (2018).

Now to prove the claim, we have three cases: (1) f(z(a)) < 0 for all a, (2) f(z(a)) > 0 for at least two actions a1, a2, and

(3) f(z(a)) > 0 at exactly one action a1. We will show that in cases 1 and 2 the objective is action-unstable, but in case 3 it

is action-stable.

Case 1. Assume that f(z(a)) < 0 for all a. Now for any given a to maximize the objective f(z(a))π̂(a|x) while ensuring

that π̂(a|x) is a valid probability we must set π̂(a|x) = 0. But, if we set π̂(a|x) = 0 for all a, we no longer have a valid

probability distribution, since 0 6∈ ∆K . Thus, we cannot find y∗ ∈ ∆K that optimizes the loss at z across all actions, so the

objective is action-unstable.

Case 2. Assume that f(z(a)) > 0 for at least two actions a1, a2. Now at a1, a2 the objective f(z(a))π̂(a|x) is maximized

by setting π(a|x) = 1. However, there is no valid element y of ∆K such that y(a1) = 1 and y(a2) = 1. Thus, we cannot

find y∗ ∈ ∆K that optimizes the loss at z across all actions, so the objective is action-unstable.

Case 3. Assume f(z(a)) > 0 at exactly one action a1. Then at action a1 we can maximize f(z(a1))π̂(a1|x) by setting

π̂(a1|x) = 1. And since f(z(a)) ≤ 0 for all other actions a 6= a1, we can maximize f(z(a))π̂(a|x) by setting π̂(a|x) = 0.

Now since ✶[a = a1] ∈ ∆K , there does exist a vector y∗ ∈ Y which exactly optimizes ℓ regardless of which action is

sampled. So, the objective is action-stable if and only if we are in this case.

B. Value-based learning

Theorem 1 (Reduction to regression). By Assumption 1 we have β(a|x) ≥ τ for all x, a. Then with Q̂SB
as defined in (5)

we have

V (π∗)− V (πQ̂SB

) ≤ 2√
τ

√
Ex,a∼β [(Q(x, a)− Q̂SB

(x, a))2].

Bandit Overfitting in Offline Policy Learning

Proof. The proof follows directly from linking the subsequent lemmas with π̂ = πQ̂SB

and Π be the set of all policies in

Lemma 3.

Lemma 3 (Mismatch: from MSE to Regret). Assume strict positivity. Let π̂ be the greedy policy with respect to some Q̂
and let Π be any class of policies to compete against, which contains π̂. Then

sup
π∈Π

V (π)− V (π̂) ≤ 2
√

sup
π∈Π

Ex,a∼D,π[(Q(x, a)− Q̂(x, a))2] (10)

Proof. We can expand the definition of regret and then add and subtract and apply a few inequalities. Let π̄ be the policy in

Π which maximizes V . Then

sup
π∈Π

V (π)− V (π̂) = Ex

[
Ea∼π̄|x[Q(x, a)]− Ea∼π̂|x[Q(x, a)]

]
(11)

= Ex

[
Ea∼π̄|x[Q(x, a)]− Ea∼π̂|x[Q̂(x, a)] + Ea∼π̂|x[Q̂(x, a)]− Ea∼π̂|x[Q(x, a)]

]
(12)

≤ Ex

[
Ea∼π̄|x[|Q(x, a)− Q̂(x, a)|] + Ea∼π̂|x[|Q(x, a)− Q̂(x, a)|]

]
(13)

≤
√
ExEa∼π̄|x[(Q(x, a)− Q̂(x, a))2] +

√
ExEa∼π̂|x[(Q(x, a)− Q̂(x, a))2] (14)

≤ 2
√

sup
π∈Π

Ex

[
Ea∼π|x[(Q(x, a)− Q̂(x, a))2]

]
(15)

The first inequality holds since π̂ maximizes Q̂ and by using the definition of absolute value, the second by Jensen, and the

third by introducing the supremum.

Lemma 4 (Transfer: from β to π). Assume strict positivity and take any Q-function Q̂ and any policy π, then

Ex,a∼D,π[Q(x, a)− Q̂(x, a))2] <
1

τ

(
Ex,a∼D,β [(Q(x, a)− Q̂(x, a))2]

)
. (16)

Proof. Let π be any policy. Then

ExEa∼π|x[(Q(x, a)− Q̂(x, a))2] =

∫

x

p(x)
∑

a

π(a|x)(Q(x, a)− Q̂(x, a))2dx (17)

=

∫

x

∑

a

π(a|x)β(a|x)
β(a|x)p(x)(Q(x, a)− Q̂(x, a))2dx (18)

<
1

τ

∫

x

∑

a

β(a|x)p(x)(Q(x, a)− Q̂(x, a))2dx (19)

=
1

τ
Ex,a∼D,β [(Q(x, a)− Q̂(x, a))2] (20)

where we use a multiply and divide trick and apply the definition of strict positivity to ensure that
π(a|x)
β(a|x) <

1
τ .

C. Policy-based learning

C.1. In-sample regret

Lemma 5. Let Π be an interpolating class and K = 2. Then there exists a πB as defined in Equation (4) such that

1. the behavior of πB at each datapoint xi ∈ S only depends on ai, ri(ai), and pi

2. πB(·|xi) ∈ {(0, 1), (1, 0)}.

Bandit Overfitting in Offline Policy Learning

Proof. We will begin by proving part 2. Note that the objective that πB optimizes takes the form
ri(ai)
pi

π(ai|xi) at each

datapoint. Since probabilities are constrained to [0, 1] this is optimized by π(ai|xi) = 0 if
ri(ai)
pi

< 0 and π(ai|xi) = 1 if
ri(ai)
pi

> 0. Since we have an overparameterized model class, we know that Π contains a πB that can exactly choose the

optimizer at each datapoint. Since K = 2, once we know π(ai|xi) we immediately have π(āi|xi) = 1− π(ai|xi) (where

âi is the action that is not equal to ai). Thus πB(·|xi) ∈ {(0, 1), (1, 0)}.

Now part 1 follows directly since the above reasoning showed that πB(·|xi) is defined precisely by the sign of
ri(ai)
pi

and the

identity of ai.

Theorem 2 (In-sample regret lower bound). Let K = 2 and the policy class be overparameterized. Define ∆r(x) =∣∣Er|x[r(1)− r(2)]
∣∣ as the absolute expected gap in rewards at x. Define pu(x) to be the probability that the policy-based

objective is action-unstable at x. Recall that β(a|x) ≥ τ by Assumption 1. Then

ES [V (π∗;S)−V (πB ;S)] ≥ τEx

[
pu(x)∆r(x)

]
.

Proof. By part 1 of Lemma 5 and linearity of expectation we can decompose the expected in-sample value as

ES [V (π∗;S)− V (πB ;S)] =
1

N

N∑

i=1

Exi,ri,ai

[
Ea∼π∗Er|xi

[r(a)]− Ea∼πB
Er|xi

[r(a)]

]
.

Since the data are iid we further have that

ES [V (π∗;S)− V (πB ;S)] = Exi,ri,ai

[
Ea∼π∗Er|xi

[r(a)]− Ea∼πB
Er|xi

[r(a)]

]
.

Define the event Ux,r to be the event that the policy-based objective is action-unstable at x, r. So pu(x) = Er|x[✶[Ux,r]].

We can split this expectation up into stable and unstable parts by conditioning on either Uxi,ri or Uxi,ri , and lower bound

the regret on the stable datapoints by 0:

ES [V (π∗;S)− V (πB ;S)] = Exi,ri|Uxi,ri

Eai|xi

[
Ea∼π∗Er|xi

[r(a)]− Ea∼πB
Er|xi

[r(a)]

]

+ Exi,ri|Uxi,ri
Eai|xi

[
Ea∼π∗Er|xi

[r(a)]− Ea∼πB
Er|xi

[r(a)]

]

≥ Exi,ri|Uxi,ri
Eai|xi

[
Ea∼π∗Er|xi

[r(a)]− Ea∼πB
Er|xi

[r(a)]

]
.

By part 2 of Lemma 5 we know that πB(·|xi) is either (1, 0) or (0, 1). Conditioned on the objective being unstable at xi

and using the fact that there are only two actions, we know that πB(xi) must be different depending on whether ai = 1
or ai = 2. Define a1i,B to be the action that πB selects at xi when ai = 1 and a2i,B the action when ai = 2. Let a∗i be the

action chosen by the deterministic optimal policy π∗ at xi. Thus we can split the expectation over ai in the above expression

and then plug in definitions to get:

ES [V (π∗;S)− V (πB ;S)] ≥ Exi,ri|Uxi,ri

[
β(ai = 1|xi)Er|xi

[r(a∗i)− r(a1i,B)] + β(ai = 2|xi)Er|xi
[r(a∗i)− r(a2i,B)]

]
.

Since we assumed that β(a|xi) ≥ τ for all a we can lower bound the above by

ES [V (π∗;S)− V (πB ;S)] ≥ τExi,ri

[
✶[Uxi,ri]

(
Er|xi

[r(a∗i)− r(a1i,B)] + Er|xi
[r(a∗i)− r(a2i,B)]

)]
.

Bandit Overfitting in Offline Policy Learning

Finally, we note that since a1i,B 6= a2i,B and there are only 2 actions that the above is precisely

ES [V (π∗;S)− V (πB ;S)] ≥ τExi,ri

[
✶[Exi,ri]Er|xi

[r(a∗i)− r(a 6= a∗i)]

]

= τExi,ri [✶[Exi,ri]∆r(xi)]

= τExi
[Eri|xi

[✶[Uxi,ri]]∆r(xi)]

= τExi
[pu(xi)∆r(xi)]

= τEx[pu(x)∆r(x)].

C.2. Connection to noisy classification

This section states and proves the Theorem referenced in the main text connecting action-unstable policy-based learning

with noisy classification.

Theorem 4 (Noisy classification reduction). Take any noise level η < 1/2 and any binary classification problem C consisting

of a distribution DC over X and a labeling function yC : X → {−1, 1}. There exists an offline contextual bandit problem B
with noiseless rewards such that

1. Maximizing V̂B in B is equivalent to minimizing the 0/1 loss on a training set drawn from C where labels are flipped

with probability η.

2. Maximizing V̂F in B is equivalent to minimizing the 0/1 loss on a training set drawn from C with noiseless training

labels.

Proof. First we will construct the bandit problem B with two actions corresponding to the classification problem C. For any

constant cr > 0 we define B by

x ∼ DC , r|x =

{
cr(1− η, η) yC(x) = 1

cr(η, 1− η) yC(x) = −1
, β(1|x) =

{
1− η yC(x) = 1

η yC(x) = −1
(21)

Now we will show that in this problem, V̂B is equivalent to the 0/1 loss for C with noisy labels. To do this first note that

by construction, for x with yC(x) = 1 we have
r(1)|x
β(1|x) = cr(1−η)

1−η = cr and
r(2)|x
β(2|x) = crη

η = cr, and similarly for x with

yC(x) = −1 we have
r(1)|x
β(1|x) =

crη
η = cr and

r(2)|x
β(2|x) =

cr(1−η)
1−η = cr.

V̂B(π) =
1

N

N∑

i=1

ri(ai)
π(ai|xi)

β(ai|xi)
=

1

N

N∑

i=1

ri(ai)

β(ai|xi)
π(ai|xi) (22)

=
cr
N

N∑

i=1

π(ai|xi) (23)

This is equivalent to 0/1 loss with noisy labels since β generates ai according to yC where the label is flipped with probability

η.

Now we will show that V̂F is equivalent to the 0/1 loss for C with clean labels. Note that by construction r(a)|x =
crη + π∗(a|x)cr(1− 2η). So,

V̂F (π) =
1

N

N∑

i=1

〈ri, π(·|xi)〉 =
cr
N

N∑

i=1

〈η1 + (1− 2η)π∗(·|xi), π(·|xi)〉 (24)

=
crη

N
+

cr(1− 2η)

N

N∑

i=1

〈π∗(·|xi), π(·|xi)〉 (25)

This is equivalent to 0/1 loss with noisy labels since π∗ exactly corresponds to yC .

Bandit Overfitting in Offline Policy Learning

C.3. Nearest Neighbor

Theorem 3 (Regret lower bound for one nearest neighbor). Let ∆r = rmax − rmin. Then there exist problem instances

with noiseless rewards where

lim sup
N→∞

ES [V (πF)− V (πB)] =
∆r

2
,

but

lim sup
N→∞

ES [V (π∗)− V (πF)] = 0.

Proof. First we need to formally define the nearest neighbor rules that interpolate the objectives V̂B and V̂F . These are

simple in the case of two actions. Let i(x) be the index of the nearest neighbor to x in the dataset. Then

πB(a|x) =
{
1

(
a = ai(x) AND ri(x)(ai(x)) > 0

)
OR

(
a 6= ai(x) AND ri(x)(ai(x)) ≤ 0

)

0 otherwise.
(26)

This is saying that πB chooses the same action as the observed nearest neighbor if that reward was positive, and the opposite

action if that was negative. And for the full feedback we just choose the best action from the nearest datapoint.

πF (a|x) =
{
1 a = argmaxa′ ri(x)(a

′)

0 otherwise.
(27)

Now we can construct the problem instances needed for the Theorem. To construct the example, take a bandit problem with

two actions (called 1 and 2):

x ∼ U([−1, 1]), r|x = (1, 1 + ∆r), β(1|x) = β(2|x) = 1/2 ∀ x, a

The true optimal policy has π∗(2|x) = 1 for all x and V (π∗) = 1 + ∆r. The policy with full feedback πF is to always

choose action 2, since every observation will show that action 2 is better.

Now, we will show that in the limit of infinite data, πF has no regret. Since the rewards are noiseless, the maximum

observed reward at a context is exactly the optimal action at that context. Thus, we precisely have a classification problem

with noiseless labels so that the Bayes risk is 0. Since we π∗ is continuous, the class conditional densities (determined by

the indicator of the argmax of Q) are piecewise continuous. This allows us to apply the classic result of (Cover & Hart,

1967) that a nearest neighbor rule has asymptotic risk less twice the Bayes risk, which in this case is zero. This means that

asymptotically P (πF (a|x) 6= π∗(a|x)) = 0 which immediately gives the second desired result of zero regret in the limit of

infinite data under full feedback.

Now we note that since rewards are always positive, we can simplify the definition of πB as

πB(a|x) = ✶[a = ai(x)]. (28)

Then we have that

V (πF)− V (πB) = Ex[Ea∼πF |x[Q(x, a)]− Ea∼πB |x[Q(x, a)]] (29)

= Ex[∆r + 1− (πB(1|x) + πB(2|x)(∆r + 1))]] (30)

= ∆r + 1− Ex[✶[ai(x) = 1] + (∆r + 1)✶[ai(x) = 2]] (31)

Taking expectation over S we get

ES [V (πF)− V (πB)] = ES [∆r + 1− Ex[✶[ai(x) = 1] + (∆r + 1)✶[ai(x) = 2]]] (32)

= ∆r + 1− Ex[PS(ai(x) = 1) + (∆r + 1)PS(ai(x) = 2)]] (33)

= ∆r + 1− Ex[
1

2
+ (∆r + 1)

1

2
]] (34)

=
∆r

2
(35)

This construction did not depend on the size of the dataset, so it is even true as the number of datapoints tends to infinity.

Bandit Overfitting in Offline Policy Learning

D. Discussion of doubly robust algorithms

Before going into the comparison, we will define the doubly robust algorithm (Dudík et al., 2011) in our notation. Specifically,

V̂DR(π) :=

N∑

i=1

[∑

a

π(a|xi)Q̂(xi, a) +
π(ai|xi)

β(ai|xi)
(ri(ai)− Q̂(xi, ai))

]
, π̂DR = argmax

π∈Π
V̂DR(π) (36)

As stated in the main text, when we use overparameterized models and train Q̂ on the same data that we use to optimize

the policy, then doubly robust methods are equivalent to the vanilla value-based algorithm. This is formalized in Lemma 6

below.

This equivalence can be avoided by using crossfitting so that Q̂ is not trained on the same data as π. However, then it is

possible that the doubly robust policy objective becomes action-unstable. This is true even with access to the true Q function,

but requires stochastic rewards. To construct such an example we leverage the stochastic rewards so that instability only

occurs at datapoints where certain reward vectors are sampled. This is shown in Lemma 7 below.

One final point is to consider the motivation for doubly robust methods. Usually it is motivated by concerns about consistency

of the value function estimation or estimation of behavior policy (Dudík et al., 2011). However, in our setting we have (1) an

overparamterized model class which is large enough to contain the true value function, and (2) exact access to the behavior

probabilities. So it is not clear why doubly robust methods would be motivated in our setting.

Lemma 6 (Equivalence of DR and vanilla VB). When we use overparameterized models and do not use crossfitting, doubly

robust learning from Equation (36) is equivalent to vanilla value-based learning from Equation (5).

Proof. When the model for Q̂ is overparameterized and trained on the full dataset, we know that Q̂(xi, ai) = ri(ai). Thus

we get that

V̂DR(π) =

N∑

i=1

[∑

a

π(a|xi)Q̂(xi, a) +
π(ai|xi)

β(ai|xi)
(ri(ai)− Q̂(xi, ai))

]
(37)

=

N∑

i=1

[∑

a

π(a|xi)Q̂(xi, a) +
π(ai|xi)

β(ai|xi)
(0)

]
(38)

=

N∑

i=1

∑

a

π(a|xi)Q̂(xi, a) (39)

With an overparameterized policy class, we can exactly recover the greedy policy relative to Q̂ to optimize this objective.

Lemma 7 (Instability of DR). There exist problems with stochastic rewards where even with access to the exact Q function,

the doubly robust policy objective is action-unstable with probability 1/2.

Proof. We need only consider one datapoint since the action-stability property is defined on a per datapoint basis. To make

this construction we will consider only two actions.

r|x =

{
(0, 1) w.p. 1/2

(0,−2) otherwise
, β(·|x) = (1/2, 1/2) (40)

So, we know that

Q(·|x) = (0,−0.5) (41)

Now we claim that when the sampled datapoint has r = (0, 1) the doubly robust objective is action-unstable (and this

happens with probability 1/2 by construction). We can explicitly expand the DR objective for the policy π at x when action

a is sampled

ℓDR(π, x, a, r) = π(1|x) · 0 + π(2|x) · (−0.5) +
π(a|x)
1/2

(r(a)−Q(x, a)) (42)

Bandit Overfitting in Offline Policy Learning

So when a = 1 we have r(a) = 0 and Q(x, a) = 0 so that

ℓDR(π, x, a, r) = π(2|x) · (−0.5) + 2 · π(1|x)(0− 0) = π(2|x) · (−0.5) (43)

And when a = 2 we have r(a) = 1 (because that was the sampled reward) and Q(x, a) = 0 so that

ℓDR(π, x, a, r) = π(2|x) · (−0.5) + 2 · π(2|x)(1− (−0.5)) = π(2|x) · (2.5) (44)

Now, this is clearly action-unstable since the optimizer when a = 1 is sampled is π(·|x) = (1, 0) while when a = 2 is

sampled we get π(·|x) = (0, 1).

E. Experiments

E.1. Synthetic data

Data. As described in the main text we sample some hidden reward matrix θ and then sample contexts and rewards from

isotropic Gaussians:

θ ∼ U([0, 1]K×d), x ∼ N (0, Id), r ∼ N (θx, ǫId).

Actions are sampled according to a uniform behavior:

a ∼ β(·|x) = U({1, . . . ,K}).
We set K = 2, d = 10, ǫ = 0.1. For each random seed we take N = 100 training points and sample an independent test set

of 500 points. For experiment 1 we sample θ and one dataset of x, r tuples, then we sample 20 independent sets of actions.

For experiment 2 we sample all parameters separately to construct each of the 50 datasets.

Model. For policies and Q functions we use a multilayer perceptron with one hidden layer of width 512 and ReLU

activations. The only difference between policy and Q architecture is that the policy has a softmax layer on the output so

that the output is a probability distribution.

Learning. We train using SGD with momentum. Learning rate is 0.01, momentum is 0.9, batch size is 10, and weight

decay is 0.0001. We train every model for 1000 epochs decreasing the learning rate by a factor of 10 after 200 epochs. This

trains well past the point of convergence in our experience.

Figure 4. We show learning curves across each of the twenty different action resampled datasets.

Extended results. Figure 4 shows learning curves for each of the twenty different action datasets from experiment 1. We

use “train obj” to refer to the training objective which is squared error for value-based learning and V̂B for policy-based

learning. We use “train value” and “test value” to refer to V (π;S) for S being the train and test sets respectively. We can

evaluate the true value at each datapoint since we know the full reward vector at each datapoint.

We see that the policy-based objective is dramatically higher than the highest achievable value due to overfitting of the

noise in the actions. The gap between train and test value is mot likely explained by noise in the contexts sampled in those

respective datasets (by chance the test set has higher value contexts).

Bandit Overfitting in Offline Policy Learning

E.2. CIFAR-10

Data. We use a bandit version of the CIFAR-10 dataset (Krizhevsky, 2009). We split the train set into a train set of the

first 45000 examples and validation set of the last 5000. We normalize the images and use data augmentation of random

flips and crops of size 32. Each of the 10 labels becomes an action. We define rewards to be 1 for a correct prediction and 0

for an incorrect prediction. We use two different behavior policies. One is a uniform behavior that selects each action with

probability 0.1 and the other is the hand-crafted behavior policy from (Joachims et al., 2018).

Model. We use a ResNet-18 (He et al., 2016) from PyTorch (Paszke et al., 2019) for both the policy and the Q function.

The only modification we make to accommodate for the smaller images in CIFAR is to remove the first max-pooling layer.

Learning. We train using SGD with momentum 0.9,a batch size 128, and weight decay of 0.0001 for 1000 epochs.

Training takes about 20 hours for each run on an NVIDIA RTX 2080 Ti GPU. We use a learning rate of 0.1 for the first

200 epochs, 0.01 for the next 200, and 0.001 for the last 600. To improve stability we use gradient clipping and reduce the

learning rate in the very first epoch to 0.01.

Extended results. Figures 5 and 6 show learning curves for each of the three algorithms we consider across each dataset.

The labels refer to the same quantities as they did on the synthetic problem.

One interesting phenomena is that the unstable policy-based algorithm displays a clear overfitting phenomena as we would

predict due to the noise in the actions being transferred into noise in the objective. Since we have strictly positive rewards

here, this is also an instance of “propensity overfitting” (Swaminathan & Joachims, 2015b). As a result, limiting the capacity

of the model class by early stopping could improve performance somewhat. But by limiting capacity in this way we are

exiting the overparameterized/interpolating regime described by Zhang et al. (2016).

Figure 5. Learning curves on the hand-crafted action dataset.

Figure 6. Learning curves on the uniform action dataset.

Bandit Overfitting in Offline Policy Learning

F. Small model classes

In this section we state and prove theorems that bound each term of our regret decomposition for each algorithm we consider

when we use finite model classes. Similar results can be shown for other classical notions of model class complexity. We

include these results for completeness, but the main focus of our paper is the overparameterized regime where such bounds

are vacuous.

Theorem 5 (Policy-based learning with a small model class). Assume strict positivity and a finite policy class Π. Let

εΠ = V (π∗)− supπ∈Π V (π). Denote ∆r = rmax − rmin. Then we have that for any δ > 0 with probability 1− δ each of

the following holds:

Approximation Error = V (π∗)− sup
π∈Π

V (π) ≤ εΠ

Estimation Error = sup
π∈Π

V (π)− V (πF) ≤ 2∆r

√
log(2|Π|/δ)

2N

Bandit Error = V (πF)− V (πB) ≤
2∆r

τ

√
log(2|Π|/δ)

2N

Proof. The bound on approximation error follows directly from the definition of εΠ. The bound on the estimation error

follows from a standard application of a Hoeffding bound on the random variables Xi = 〈ri, π(·|xi)〉 which are bounded by

∆r and a union bound over the policy class.

The bound on bandit error essentially follows Theorem 3.2 of (Strehl et al., 2010), we include a proof for completeness:

V (πF)− V (πB) = V (πF)− V̂B(πB) + V̂B(πB)− V (πB)

≤ V (πF)− V̂B(πF) + V̂B(πB)− V (πB)

≤ 2 sup
π∈Π

|V (π)− V̂B(π)|

≤ 2∆r

τ

√
log(2|Π|/δ)

2N

The first inequality comes from the definition of πB . The second comes since both πF , πB ∈ Π. And the last inequality

follows from an application of a Hoeffding bound on the random variables Xi = ri(ai)
π(ai|xi)

pi
which are bounded by ∆r

τ
and a union bound over the policy class.

Theorem 6 (Value-based learning with a small model class). Assume strict positivity and a finite function class Q which

induces a finite class of greedy policies ΠQ. Let εQ = infQ̂∈Q Ex,a∼D,β [(Q(x, a)−Q̂(x, a))2]. Denote ∆r = rmax−rmin.

Then we have that for any δ > 0 with probability 1− δ each of the following holds:

Approximation Error = V (π∗)− sup
π∈ΠQ

V (π) ≤ 2
√
εQ/τ (45)

Estimation Error = sup
π∈ΠQ

V (π)− V (πF) ≤ 2∆r

√
log(|Q|/δ)

2N
(46)

Bandit Error = V (πF)− V (πQ̂) ≤
10∆r√

τ

√
log(|Q|/δ)

N
+ 6

√
∆r

(
log(|Q|/δ)

τN
εQ

)1/4

+ 2
√

εQ/τ (47)

Proof. To bound the approximation error, we can let π̂ be the greedy policy associated with a Q-function Q̂ and apply

Lemmas 3 and 4. This gives us

V (π∗)− sup
π̂∈ΠQ

V (π̂) = inf
Q̂∈Q

[V (π∗)− V (π̂)] ≤ inf
Q̂∈Q

2√
τ

√
Ex,a∼D,β [(Q(x, a)− Q̂(x, a))2] = 2

√
εQ/τ . (48)

The bound on the estimation error follows the same as before from standard uniform convergence arguments.

Bandit Overfitting in Offline Policy Learning

The bound on the bandit error follows by again applying Lemmas 3 and 4 and then making the concentration argument from

Lemma 16 of (Chen & Jiang, 2019). Explicitly, our Lemmas give us

V (πF)− V (πQ̂) ≤ V (π∗)− V (πQ̂) ≤
2√
τ

√
Ex,a∼D,β [(Q(x, a)− Q̂(x, a))2]. (49)

Then, to bound the squared error term, we can add and subtract:

Ex,a∼D,β [(Q(x, a)− Q̂(x, a))2] = Ex,a∼D,β [(Q(x, a)− Q̂(x, a))2]− inf
Q̄∈Q

Ex,a∼D,β [(Q(x, a)− Q̄(x, a))2] (50)

+ inf
Q̄∈Q

Ex,a∼D,β [(Q(x, a)− Q̄(x, a))2] (51)

≤ Ex,a∼D,β [(Q(x, a)− Q̂(x, a))2]− inf
Q̄∈Q

Ex,a∼D,β [(Q(x, a)− Q̄(x, a))2] (52)

+ εQ. (53)

Now we want to show that the difference in squared error terms concentrates for large N . This is precisely what Lemma 16

from (Chen & Jiang, 2019) does using a one-sided Bernstein inequality. This gives us for any δ > 0 an upper bound with

probability 1− δ of

56∆2
r log(|Q|/δ)
3N

+

√
εQ

32∆2
r log(|Q|/δ)

N
(54)

Plugging this in and simplifying the constants gives the result.

