
A Functional Perspective on Learning Symmetric Functions
with Neural Networks

Aaron Zweiga and Joan Bruna ∗a,b

aCourant Institute of Mathematical Sciences, New York University, New York
bCenter for Data Science, New York University

October 28, 2020

Abstract

Symmetric functions, which take as input an unordered, fixed-size set, are known to be universally
representable by neural networks that enforce permutation invariance. These architectures only give
guarantees for fixed input sizes, yet in many practical applications, including point clouds and particle
physics, a relevant notion of generalization should include varying the input size. In this work we treat
symmetric functions (of any size) as functions over probability measures, and study the learning and
representation of neural networks defined on measures. By focusing on shallow architectures, we establish
approximation and generalization bounds under different choices of regularization (such as RKHS and
variation norms), that capture a hierarchy of functional spaces with increasing degree of non-linear learning.
The resulting models can be learned efficiently and enjoy generalization guarantees that extend across input
sizes, as we verify empirically.

1 Introduction

Deep learning becomes far more efficient with prior knowledge of function invariants. This knowledge under-
lies architectural choices that enforce the invariance or equivariance in the network, including Convolutional
Neural Networks [LeC+98] which encode translation symmetries, and Graph Neural Networks [Sca+08]
which encode permutation symmetries, to name a few. An important class concerns functions defined over
inputs of the form {x1 . . . xN}, with each xi belonging to a base space I, that are invariant to permutations of
the input elements. Several architectures explicitly encode this invariance by viewing the input as a set, while
remaining universal [Zah+17; Qi+17]. However, these formulations assume a constant input size, which
precludes learning an entire family of symmetric functions.

Such symmetric functions appear naturally across several domains, including particle physics, computer
graphics, population statistics and cosmology. Yet, in most of these applications, the input size corresponds to
a sampling parameter that is independent of the underlying symmetric function of interest. As a motivating
example, consider the function family induced by the max function, where for varying N , fN ({x1 . . . xN}) =
maxi≤N xi. It is natural to ask if a network can simultaneously learn all these functions.

In this work, we interpret such input sets in terms of an empirical measure defined over I, and develop
simple families of neural networks defined over the space of probability measures of I, as initially suggested
in [PK19; DPC19]. We identify functional spaces implementable with neural architectures and provide
generalization bounds that showcase a natural hierarchy among spaces of symmetric functions. In particular,
our framework allows us to understand the question of generalizing across input sizes as a corollary. Our
constructions heavily rely on the theory of infinitely wide neural networks [Ben+06; Ros+07; Bac17a], and
provide a novel instance of depth separation that leverages the symmetric structure of the input.

∗This work is partially supported by the Alfred P. Sloan Foundation, NSF RI-1816753, NSF CAREER CIF 1845360, and the Institute
for Advanced Study.

1

a
rX

iv
:2

0
0
8
.0

6
9
5
2
v
2

[c

s.
L

G
]

 2
7
 O

c
t

2
0
2
0

Summary of Contributions: We consider the infinite-width limit of neural networks taking as domain the
space of probability measures in order to formalize learning of symmetric function families. We prove a
necessary and sufficient condition for which symmetric functions can be learned. By controlling the amount
of non-linear learning, we partition the space of networks on measures into several function classes, proving
a separation result among the classes as well as proving a generalization result and empirically studying the
performance of these classes to learn symmetric functions on synthetic and real-world data.

Related Work Several works consider representing symmetric functions of fixed input size with invariant
neural networks, and in particular there are two main universal architectures, DeepSets [Zah+17] and Point-
Net [Qi+17]. These models primarily differ in their choice of pooling function. An alternative generalization
of DeepSets is given in [Mar+19], which proves the universality of tensor networks invariant to any subgroup
of the symmetric group, rather than the symmetric group itself. Regarding variable input size, the work
from [Wag+19] proves lower bounds on representation of the max function in the DeepSets architecture
with a dependency on input size.

The work most similar to ours are [PK19; DPC19], which also normalize the DeepSets architecture to
define a function on measures. However, they only prove the universality of this model, while we further
justify the model by classifying symmetric families that are representable and recovering generalization
results. Although we motivate our work from symmetric functions on finite sets, there are applications in
multi-label learning [Fro+15] and evolving population dynamics [HGJ16] that directly require functions on
measures.

Our results also borrow heavily from the framework given by [Bac17a], which introduces function classes
to characterize neural networks in the wide limit, and proves statistical generalization bounds to demonstrate
the advantage of non-linear learning.

2 Preliminaries

2.1 Problem Setup

Let I ⊆ R
d be a convex domain, and N ∈ N. A symmetric function f : IN → R is such that f(x1, . . . xN) =

f(xπ(1), . . . xπ(N)) for any x ∈ I
N and any permutation π ∈ SN . In this work, we are interested in learning

symmetric functions defined independently ofN . Let I =
⋃∞

N=1 I
N , then f : I → R is symmetric if f restricted

to I
N is symmetric for each N ∈ N. Denote by Fsym the space of symmetric functions defined on I. This

setting is motivated by applications in statistical mechanics, particle physics, or computer graphics, where N
is associated with a sampling parameter.

We focus on the realizable regression setting, where we observe a dataset {(xi, f
∗(xi)) ∈ I× R}i=1,...n of

n samples from an unknown symmetric function f∗, and xi are drawn iid from a distribution D on I. The

goal is to find a proper estimator f̂ ∈ Fsym such that the population error Ex∼Dℓ(f∗(x), f̂(x)) is low, where ℓ
is a convex loss.

Following a standard Empirical Risk Minimisation setup [SB14; Bac17a], we will construct hypothesis
classes F ⊂ Fsym endowed with a metric ‖f‖F , and consider

f̂ ∈ argminf∈F ;‖f‖F≤δ

1

n

n∑

i=1

ℓ(f∗(xi), f(xi)) , (1)

where δ is a regularization parameter that is optimised using e.g. cross-validation. We focus on the approx-
imation and statistical aspects of this estimator for different choices of F ; how to solve the optimization
problem (1) is not the focus of the present work and will be briefly discussed in Section 7.

2.2 Symmetric Polynomials

Arguably the simplest way to approximate symmetric functions is with polynomials having appropriate
symmetry. Combining Weierstrass approximation theory with a symmetrization argument, it can be seen
that assuming d = 1, any symmetric continuous function f : IN → R can be uniformly approximated by

2

symmetric polynomials (see [Yar18] for a proof). There are several canonical bases over the ring of symmetric

polynomials, but we will consider the one given by the power sum polynomials, given by pk(x) =
∑N

i=1 x
k
i ,

with x ∈ I
N .

Theorem 2.1 ((2.12) in [Mac98]). For any symmetric polynomial f on N inputs, there exists a polynomial q such
that f(x) = q(p1(x), . . . , pN (x)).

If q is linear, this theorem suggests a simple predictor for symmetric functions across varyingN . If x ∈ I
M ,

we can consider x 7→∑N
i=1 ci

(
1
M pi(x)

)
=
∑N

i=1 ciEy∼µ(y
i) where µ = 1

M

∑M
j=1 δxj

. The truncated moments
of the empirical distribution given by x act as linear features, which yield an estimator over any input sizeM .
We will ultimately consider a generalization of this decomposition, by moving beyond the polynomial kernel
to a general RKHS (see Section 3.1).

2.3 Convex Shallow Neural Networks

By considering the limit of infinitely many neurons [Ben+06; Ros+07], [Bac17a] introduces two norms on
shallow neural representation of functions φ defined over Rd. For a constant R ∈ R, a fixed probability
measure κ ∈ P(Sd) with full support, a signed Radon measure ν ∈ M(Sd), a density p ∈ L2(dκ), and the
notation that x̃ = [x,R]T , define:

γ1(φ) = inf

{
‖ν‖TV; φ(x) =

ˆ

Sd

σ(〈w, x̃〉)ν(dw)
}

, and (2)

γ2(φ) = inf

{
‖p‖L2(dκ); φ(x) =

ˆ

Sd

σ(〈w, x̃〉)p(w)κ(dw)
}

, (3)

where ‖ν‖TV := sup|g|≤1

´

gdν is the Total Variation of ν and σ(t) = max(0, t) is the ReLU activation 1.
These norms measure the minimal representation of φ, using either a Radon measure ν over neuron weights,
or a density p over the fixed probability measure κ. The norms induce function classes:

F1 = {φ ∈ C0(I) : γ1(φ) < ∞} ,

F2 = {φ ∈ C0(I) : γ2(φ) < ∞} .

We also assume that the input domain I is bounded with supx∈I ‖x‖2 ≤ R.
These two functional spaces are fundamental for the theoretical study of shallow neural networks

and capture two distinct regimes of overparametrisation: whereas the so-called lazy or kernel regime
corresponds to learning in the space F2 [CB18; JGH18], which is in fact an RKHS with kernel given by
k(x, y) = Ew∼κ [σ(〈w, x̃〉)σ(〈w, ỹ〉)] [Bac17a] 2, the mean-field regime captures learning in F1, which satisfies
F2 ⊂ F1 from Jensen’s inequality, and can efficiently approximate functions with hidden low-dimensional
structure, as opposed to F2 [Bac17a].

Finally, one can leverage the fact that the kernel above is an expectation over features to define a finite-

dimensional random feature kernel km(x, y) = 1
m

∑m
j=1 σ(〈wj , x̃〉)σ(〈wj , ỹ〉) with wj

i.i.d.∼ κ, which defines
a (random) RKHS F2,m converging to F2 as m increases [Bac17b; RR08]. The empirical norm γ2,m can
be defined similarly to γ2, where the density p is replaced by coefficients over the sampled basis functions
σ(〈wj , ·〉).

2.4 Symmetric Neural Networks

A universal approximator for symmetric functions was proposed by [Zah+17], which proved that for any
fixed N and fN ∈ FN

sym there must exist Φ : I → R
L and ρ : RL → R such that

fN (x) = ρ

(
1

N

N∑

n=1

Φ(xn)

)
. (4)

1For concreteness of exposition, we will focus this work on the ReLU activation, but the essence of our results can be extended to
more general families of activation functions.

2Or a modified NTK kernel that also includes gradients with respect to first-layer weights [JGH18]

3

However, universality is only proven for fixed N . Given a symmetric function f ∈ Fsym we might hope
to learn ρ and Φ such that this equation holds for all N . Note that the fraction 1

N is not present in their
formulation, but is necessary for generalization across N to be feasible (as otherwise the effective domain of
ρ could grow arbitrarily large as N → ∞).

Treating the input to ρ as an average motivates moving from sets to measures as inputs, as proposed

in [PK19; DPC19]. Given x ∈ I
N , let µ(N) = 1

N

∑N
i=1 δxi

denote the empirical measure in the space P(I) of

probability measures over I. Then (4) can be written as fN (x) = ρ
(´

I
Φ(u)µ(N)(du)

)
.

3 From Set to Measure Functions

3.1 Neural Functional Spaces for Learning over Measures

Equipped with the perspective of (4) acting on an empirical measure, we consider shallow neural networks
that take probability measures as inputs, with test functions as weights. We will discuss in Section 3.2 which
functions defined over sets admit an extension to functions over measures.

Let A be a subset of C0(I), equipped with its Borel sigma algebra. For µ ∈ P(I), and a signed Radon
measure χ ∈ M(A), define f : P(I) → R as

f(µ;χ) =

ˆ

A
σ̃(〈φ, µ〉)χ(dφ) . (5)

where σ̃ is again a scalar activation function, such as the ReLU, and 〈φ, µ〉 :=
´

I
φ(x)µ(dx). Crucially, the

space of functions given by f(·;χ)were proven to be dense in the space of real-valued continuous (in the
weak topology) functions on P(I) in [PK19; DPC19], and so this network exhibits universality.

Keeping in mind the functional norms defined on test functions in Section 2.3, we can introduce analogous
norms for neural networks on measures. For a fixed probability measure τ ∈ P(A), define

‖f‖1,A = inf

{
‖χ‖TV; χ ∈ M(A), f(µ) =

ˆ

A
σ̃(〈φ, µ〉)χ(dφ)

}
and (6)

‖f‖2,A = inf

{
‖q‖L2(dτ); q ∈ L2(dτ), f(µ) =

ˆ

A
σ̃(〈φ, µ〉)q(φ)τ(dφ)

}
. (7)

where we take the infima over Radon measures χ ∈ M(A) and densities q ∈ L2(dτ). Analogously these
norms also induce the respective function classes G1(A) = {f : ‖f‖1,A < ∞}, G2(A) = {f : ‖f‖2,A < ∞}.
The argument in Appendix A of [Bac17a] implies G2(A) is an RKHS, with associated kernel kG(µ, µ′) =
´

A σ̃(〈φ, µ〉)σ̃(〈φ, µ′〉)τ(dφ).
Moving from vector-valued weights to function-valued weights presents an immediate issue. The space

C0(I) is infinite-dimensional, and it is not obvious how to learn a measure χ over this entire space. Moreover,
our ultimate goal is to understand finite-width symmetric networks, so we would prefer the function-valued
weights be efficiently calculable rather than pathological. To that end, we choose the set of test functions A to
be representable as regular neural networks.

Explicitly, using the function norms of Section 2.3, define

A1,m :=



φ; φ(x) =

m∑

j=1

αjσ(〈wj , x̃〉) , ‖wj‖2 ≤ 1, ‖α‖1 ≤ 1



 ⊂ {φ ∈ F1; γ1(φ) ≤ 1}),

A2,m := {φ ∈ F2,m : γ2,m(φ) ≤ 1} , (8)

A1,m thus contains functions in the unit ball of F1 that can be expressed with m neurons, and A2,m

contains functions in the (random) RKHS F2,m obtained by sampling m neurons from κ. By definition
A2,m ⊂ A1,m for allm. Representational power grows withm, and observe that the approximation rate in
the unit ball of F1 or F2 is inm−1/2, obtained for instance with Monte-Carlo estimators [Bac17a; MWE19].
Hence we can also consider the setting wherem = ∞, with the notationA{i,∞} = {φ ∈ Fi : γi(φ) ≤ 1}. Note

4

First Layer Second Layer Third Layer
S1 Trained Trained Trained
S2 Frozen Trained Trained
S3 Frozen Frozen Trained

Table 1: Training for finite function approximation

also that there is no loss of generality in choosing the radius to be 1, as by homogeneity of σ any φ with
γi(φ) < ∞ can be scaled into its respective norm ball.

We now examine the combinations of Gi with Ai:

• S1,m := G1(A1,m); the measure χ is supported on test functions in A1,m.

• S2,m := G1(A2,m); χ is supported on test functions in A2,m.

• S3,m := G2(A2,m); χ has a density with regards to τ , which is supported on A2,m.

• The remaining class G2(A1,m) requires defining a probability measure τ over A1,m that sufficiently
spreads mass outside of any RKHS ball. Due to the difficulty in defining this measure in finite setting,
we omit this class.

Note that from Jensen’s inequality and the inclusion A2,m ⊂ A1,m for all m, we have the inclusions
S3,m ⊂ S2,m ⊂ S1,m. And S3,m is clearly an RKHS, since it is a particular instantiation of G2(A). In the sequel
we will drop the subscriptm and simply write Ai and Si.

These functional spaces provide an increasing level of adaptivity: while S2 is able to adapt by selecting
‘useful’ test functions φ, it is limited to smooth test functions that lie on the RKHS, whereas S1 is able to also
adapt to more irregular test functions that themselves depend on low-dimensional structures from the input
domain. We let ‖f‖Si

denote the associated norm, i.e. ‖f‖S1
:= ‖f‖1,A1

.

Finite-Width Implementation: For anym, these classes admit a particularly simple interpretation when
implemented in practice. On the one hand, from (8), the spaces of test functions are implemented as a single
hidden-layer neural network of width m. On the other hand, the integral representations in (6) and (7) are
instantiated by a finite-sum using m′ neurons, leading to the finite

For any m, these classes admit a particularly simple interpretation when implemented in practice. On the
one hand, the spaces of test functions are implemented as a single hidden-layer neural network of width
m. On the other hand, the integral representations in (6) and (7) are instantiated by a finite-sum usingm′

neurons, leading to the finite analogues of our function classes given in Table 1. Specifically,

f(µ) =
1

m′

m′∑

j′=1

bj′ σ̃


 1

m

m∑

j=1

cj′,j

ˆ

σ(〈wj′,j , x̃〉)µ(dx)




One can verify [NTS15] that the finite-width proxy for the variation norm is given by

‖f‖1 =
1

m′

∑

j′

|bj′ |‖φj′‖1 ≤ 1

mm′

∑

j′,j

|bj′ ||cj′,j |‖wj′,j‖ ,

which in our case corresponds to the so-called path norm [NTS14]. In particular, under the practical
assumption that the test functions φj′ are parameterized by two-layer networks with shared first layer, the
weight vectors wj′,j only depend on j and this norm may be easily calculated as a matrix product of the
network weights. We can control this term by constraining the weights of the first two layers to obey our
theoretical assumptions (of bounded weights and test functions in respective RKHS balls), and regularize
the final network weights. See Section 6 and the Appendix for practical relaxations of the constraints for our
experiments.

RKHS over P(I):

Km(µ, µ′) =

ˆ

A2,m

σ̃(〈φ, µ〉)σ̃(〈φ, µ′〉)dτ(φ)

= Eφ∼τ

[
σ̃(〈φ, km[µ]〉F2,m

)σ̃(〈φ, km[µ′]〉F2,m
)
]
,

5

The kernel associated with our space S3 with finite m is of the form

Km(µ, µ′) =

ˆ

A2,m

σ̃(〈φ, µ〉)σ̃(〈φ, µ′〉)dτ(φ)

= Eφ∼τ

[
σ̃(〈φ, km[µ]〉F2,m

)σ̃(〈φ, km[µ′]〉F2,m
)
]
,

where k[µ] :=
´

k(x, ·)µ(dx) is the RKHS embedding of a probability measure [BT11; Sri+10]. It is thus
a compositional kernel, akin to the hierarchical construction of Convolutional Kernel Networks [Mai+14].
When σ̃(t) = t, the kernelKm becomesKm = Eφ∼τ 〈km⊗km, φ⊗φ〉 = 〈km⊗km,Σ〉, whereΣ is the covariance
of τ . Thus choosing k in F2 as a polynomial kernel amounts to a linear approximation of the underlying
symmetric function in terms of finite-order moments of the measure.

3.2 Continuous Extension

In general, the functions we want to represent don’t take in measures µ ∈ P(I) as inputs. In this section, we
want to understand when a function f defined on the power set f : I → R can be extended to a continuous
map f̄ : P(I) → R in the weak topology, in the sense that for all N ∈ N and all (x1, . . . xN) ∈ I

N ,

f̄

(
1

N

N∑

i=1

δxi

)
= f(x1, . . . , xN) .

Observe that by construction f̄ captures the permutation symmetry of the original f . Define the mapping

D : I → P(I) by D(x1, . . . , xN) = 1
N

∑N
i=1 δxi

. Let P̂N (I) := D(IN) and P̂(I) =
⋃∞

N=1 P̂N (I), so that P̂(I)

is the set of all finite discrete measures. For µ ∈ P̂(I), let N(µ) be the smallest dimension of a point in

D−1(µ), and let x be this point (which is unique up to permutation). Then define f̂ : P̂(I) → R such that

f̂(µ) = fN (x).
We alsowriteW1(µ, µ

′) as theWasserstein 1-metric under the ‖·‖2 norm [Vil08]. The following proposition
establishes a necessary and sufficient condition for continuous extension of f :

Proposition 3.1. There exists a continuous extension f̄ iff f̂ is uniformly continuous with regard to the W1 metric on
its domain.

This result formalises the intuition that in order to extend a symmetric function from sets to measures,
one needs a minimal amount of regularity across sizes. We next show examples of eligible symmetric families
that can be extended to P(I).

3.3 Examples of Eligible Symmetric Families

Moment-based Functions: Functions based on finite-range interactions across input elements

f(x) = ρ


 1

N

N∑

i=1

φ1(xi),
1

N2

N∑

i1,i2=1

φ2(xi1 , xi2), . . . ,
1

NK

N∑

i1,...,iK=1

φK(xi1 , . . . , xiK)




admit a continuous extension, by observing that

1

Nk

N∑

i1,...,ik=1

φk(xi1 , . . . , xik) =

ˆ

Ik

φk(u1, . . . , uk)µ(du1) . . . µ(duk) = 〈φk, µ
⊗k〉 ,

where µ = D(x) and µ⊗k is the k-th product measure, thus f̄(µ) = ρ
(
〈φ1, µ〉, . . . , 〈φk, µ

⊗k〉
)
.

6

Ranking: Suppose that I ⊆ R. The max function fN (x) = maxi≤N xi cannot be lifted to a function on
measures due to discontinuity in the weak topology. Specifically, consider µ = δ0 and νN = N−1

N δ0 +
1
N δ1.

Then νN ⇀ µ, but for f̂ as in Proposition 3.1, f̂(νN) = 1 6= 0 = f̂(µ).
Nevertheless, we can define an extension on a smooth approximation via the softmax, namely gλN (x) =

1
λ log 1

N

∑N
i=1 exp(λxi). This formulation, which is the softmax up to an additive term, can clearly be lifted

to a function on measures, with the bound ‖gλN − fN‖∞ ≤ logN
λ . Although we cannot learn the max family

across all N , we can approximate arbitrarily well for bounded N .

Counterexamples: Define the map ∆k : RN → R
kN such that ∆k(x) is a vector of k copies of x. Then

a necessary condition for the function f̂ introduced in Proposition 3.1 to be uniformly continuous is that
fN (x) = fkN (∆k(x)) for any k. Intuitively, if fN can distinguish the input set beyond the amount of mass on
each point, it cannot be lifted to measures. This fact implies any continuous approximation to the family
fN (x) = x[2], the second largest value of x, in our formulation will incur constant error.

4 Approximation and Function Class Separation

The functional spaces Si introduced in the previous section capture distinct overparameterized limits of
simple neural networks for symmetric functions. This section establishes separations between these spaces in
terms of approximation rates, in a similar spirit of [Bac17a], and relates a broad class of variational symmetric
families to these spaces via the Laplace principle.

4.1 Approximation of single ‘neurons’

In the same spirit as the “separations” between F1 and F2, we characterise prototypical functions that belong
to Si but have poor approximation rates in Si+1 for i = {1, 2} in terms of the relevant parameters of the
problem, the input dimensionality d and the bandwidth parameterm. Such functions are given by single
neurons in a spherical input regime (details for this setting are given in the Appendix):

Theorem 4.1 (informal). Let σ̃ = σ be the ReLU activation, and assume m = ∞. For appropriate choices of the
kernel base measures κ and τ , there exist f2 with ‖f2‖S2

≤ 1 and f3 with ‖f3‖S3
≤ 1 such that:

inf
‖f‖S3

≤δ
‖f − f2‖∞ & d−1δ−3/(d−1) ,

inf
‖f‖S2

≤δ
‖f − f1‖∞ & |d−1 − δ2−d/2| .

These separations use the infinity norm rather than an appropriate L2 norm, and therefore hold in a
weaker norm than separation betweenF1 andF2 proven in [Bac17a]. Nevertheless, these separations confirm
that symmetric network expressiveness is graded by the degree of non-linear learning.

Both results hold in the domainm = ∞, so from the concentration of the empirical kernel km → k, with
high probability these approximation lower bounds will still hold for sufficiently large m. In finite-width
implementations, however,mmay be sufficiently small that the random kernel more explicitly determines
the expressiveness of Si,m. We experimentally test the presence of these depth separations with finitem in
Section 6.

4.2 Approximation of variational symmetric function via Laplace method

Consider any symmetric family fN (x) = argmint∈T 〈µ̂x, φt〉 where µ̂x is the empirical measure of x, ie,
µ̂x = 1

N

∑
i δxi

, T is a Euclidean subset, and t 7→ φt is measurable. For example T = R and φt(x) = |t− x|
yields fN as the median.

Although this function family isn’t necessarily uniformly continuous in the weak topology, we highlight
the option of a Laplace approximation. Define Eµ(t) := 〈µ, φt〉 and introduce the density pβ(t) =

1
Z e−βEµ(t)

where Z =
´

T
e−βEµ(t)dt is the partition function. Then consider the Gibbs approximation:

7

gβ(µ) := Epβ
[t] =

1

Z

ˆ

T

te−βEµ(t)dt .

One can verify (e.g. [RRT17]) that gβ → g pointwise at a rate ∼ d log(β+1)
β . As gβ is continuous, by

universality it can be represented in Si for all i = {1, 2, 3}. An approximation of gβ can be implemented as a

ratio of two shallow networks gβ(µ) =
´

T
tσ1(〈µ,φt〉)dt

´

T
σ1(〈µ,φt〉)dt , with σ1(u) = e−βu. However, the approximation rates

blow-up as β → ∞with an exponential dependency on the dimension of T .

5 Generalization and Concentration

In this section we establish generalisation guarantees for learning symmetric functions in S1, and provide
quantitative results that control the sampling fluctuations in S1 (and therefore also in S2, S3).

5.1 Generalization Bounds

Despite being a larger function class than F2, the class F1 enjoys a nice generalization bound [Bac17a].
Crucially, this property is inherited when we lift to functions on measures, controlling the generalization of
functions in S1:

Proposition 5.1. Assume for given δ, for all y the loss function ℓ(y, ·) isG-Lipschitz onB0(
√
2Rδ), and l(y, 0) ≤ RGδ.

Then with probability at least 1− t,

sup
‖f‖S1

≤δ

∣∣∣∣∣Eµ∼Dℓ(f
∗(µ), f(µ))− 1

n

n∑

i=1

ℓ(f∗(µi), f(µi))

∣∣∣∣∣ ≤
(2 + 4max(R,R2))Gδ√

n

(
2 +

√
log 2/t

2

)
.

This proposition demonstrates that learning in S1 is not cursed by the dimension of the underlying input
space I. In other words, the main price for learning in S1 is not in generalization, despite the size of this class
relative to S2 and S3. In the absence of a lower bound on generalization error for the RKHS function classes,
our experiments investigate the generalization of these models in practice.

Although d andN do not appear in this bound, these parameters nevertheless impact the generalization of
our function classes Si. The input dimension controls the separation of the classes according to Theorem 4.1,
and therefore larger d weakens the generalization of S2 and S3; compare Figure 1 and Figure 5 (in the
Appendix) for how RKHS methods suffer in higher dimensions. Whereas large N and a natural choice of D
make generalization for S1, and hence all three classes, nearly trivial, as discussed in section 5.2.

5.2 Concentration across Input Size

Consider the data distribution from which we sample, namely a measure from P
(
Ī
)
to sample finite sets. A

natural way to draw data is to consider the following sampling procedure: given ξ ∈ P(P(I)) and Ω ∈ P(N),
draw µ ∼ ξ and N ∼ Ω, sample N independent points xi ∼ µ, and return {x1, . . . , xN}. If ξ is too peaked,
this sampling process will concentrate very rapidly:

Proposition 5.2. For ξ = δµ∗ , the Rademacher complexity Rn(Bδ(S1)) . δR(n−1/2 + EN∼Ω[N
−1/d]) where

Bδ(S1) = {f ∈ S1 : ‖f‖S1
≤ δ}.

Hence, the question of generalization across differently sized sets becomes trivial if N is large and d is
small. In our experiments, N ≈ d, so we will nevertheless choose ξ = δµ for some µ ∈ P(I). We consider
more exotic data distributions over measures as ample territory for future work.

8

Figure 1: Test Error for d = 10 andm = 100 on the neural architectures of Section 3.1

Error (N = 100) Error (N = 200)
S1 4.96± 0.50 3.27± 0.12
S2 7.28± 1.45 5.19± 0.85
S3 11.96± 0.41 8.79± 0.17

5-Layers 2.83± 0.12 1.49± 0.06

Table 2: Classification test error on MNIST in percent, after images are compressed into sets of size N , trained with
N = 200.

6 Experiments

Experimental Setup: We instantiate our three function classes in the finite network setting, as outlined in
Table 1. To ensure a fair comparison, we choose the same architecture for all function classes, changing only
which weights are frozen and which functional norm is used for regularization.

We use dimension d = 10, and m = 100 random kernel features to as a basis over test functions. Each
network is trained on a batch of 100 input sets. For our data distribution we consider two settings: narrow,
where I = [−1, 1]d and ξ places all its mass on the uniform distribution U([−1, 1]d); and wide, where
I = [−3, 3]d and ξ places its mass on the uniform distribution U([−3, 3]d).

Our aim is to practically study the approximation bounds of Theorem 4.1, as well as the generalization
result of Proposition 5.1. Towards the second point, we choose Ω = δ4, i.e. all networks train on sets of size 4,
and test on sets of varying size. From the results we can measure out-of-distribution generalization of finite
sets.

We consider several common symmetric functions as objectives (see Figure 1). The one-dimensional
symmetric functions are defined on sets of vectors by first applying norms, i.e. fN (x) = max1≤i≤N ‖xi‖2.
The only exceptions are the planted neuron and smooth neuron, given as networks with weight initializations
distinct from the learned models. Further implementation details are given in the Appendix.

We also consider an applied experiment on MNIST to observe how the finite-width implementations
perform on real-world data. This first requires mapping MNIST images to sets / point clouds, as described in
the Appendix. Again, in order to study generalization, the training sets are of different size than the testing
sets.

Discussion: We observe in Figure 1 that S3 performs substantially worse in several cases, consistent with
this function class being the smallest of those considered. The classes S2 and S1 are competitive for some
functions. In particular, for the smooth neuron function f(µ) = σ(〈φ∗, µ〉), we explicitly initialize our S2

network so that f is exactly representable, and hence observe almost identical performance of S1 and S2 in
that setting.

9

Figure 2: Planted neurons form = 100 (left two) andm = 200 (right two). The smooth neuron has weights sampled
consistently with F2,m while regular neuron has weights sampled out-of-distribution.

The essential takeaway is the performance of the three models on the planted neuron. By using a distinct
weight initialization for the planted neuron, its first layer will have little mass under κ, and its first two layers
will have little mass under τ , and therefore random features will not suffice to approximate this neuron.
Because all function classes are only trained on a single input size, the median function oscillates based on
parity because its behavior is slightly different depending on the input parity. The second-largest-element
function generalizes extremely poorly, consistent with the observation in Section 3.3 that this function family
cannot be approximated without constant error. All function classes more effectively generalize across
different N on the softmax than the max, following from the former’s uniform continuity in measure space.

Figure 3: Test error for S1 versus unnormalized DeepSets
architecture.

Figure 2 compares the effect of the smoothness in
the planted neuron learning task: the smooth neuron
is parameterized by a test function with low norm
in the RKHS F2, while the regular neuron is param-
eterized by an arbitrary test function. On increasing
m, S1 still achieves the best approximation on the
neuron, but the gap between S1 and S2 shrinks as S2

will sometimes be fortunate with the sampled kernel
features. For the smooth neuron, S1 and S2 performs
comparably, but S3 improves with increasing m. In
Figure 3 we confirm the necessity of taking averages
rather than sums in the DeepSets architecture, as the
unnormalized model cannot generalize outside of
the value of N = 4where it was trained.

The results on MNIST, across differently-sized
set representations of images, are given in Table 2.
Unsurprisingly, because we compress images by mapping to small point clouds, and use the shallowest
symmetric network architecture that possesses universality, the test errors are not competitive with regular
applications on MNIST. Indeed, all shallow architectures are outperformed by a 5-layer symmetric network
baseline. Nevertheless, we still observe the expected ordering of our functional spaces. When testing on
smaller sets than training, the generalization error increases faster for S2 and S3 than for S1.

10

7 Conclusion

In this work, we have analyzed learning and generalization of symmetric functions through the lens of
neural networks defined over probability measures, which formalizes the learning of symmetric function
families across varying input size. Our experimental data confirms the theoretical insights distinguishing
tiers of non-linear learning, and suggests that symmetries in the input might be a natural device to study the
functional spaces defined by deeper neural networks. Specifically, and by focusing on shallow architectures,
our analysis extends the fundamental separation between adaptive and non-adaptive neural networks from
[Bac17a] to symmetric functions, leading to a hierarchy of functional spaces S3 ⊂ S2 ⊂ S1, in which nonlinear
learning is added into the parametrization of the network weights (S2), and into the parametrization of test
functions (S1) respectively. Our results from Section 4 establish a formal separation between these spaces,
and those from Section 5 provide strong statistical guarantees for learning in such non-linear spaces.

A crucial aspect we have not addressed, though, is the computational cost of learning in S1 through
gradient-based algorithms. An important direction of future work is to build on recent advances inmean-field
theory for learning shallow neural networks [CB20; MWE19; MW+20; DB20] to study learning dynamics on
these symmetric function spaces, including recent studies into deeper models [Woj+20]. Another interesting
question is to study the role of spiked Wasserstein models [NR19] into separating S1 and S2.

A consideration of the particular distributions over empirical measures that exist in practice, in points
clouds and particle systems, motivates another exciting direction for future work in symmetric function
learning. Finally, a last direction of future research is to relax the permutation invariance to smaller (discrete)
symmetry groups determined from input adjacency matrices, thus providing a mean-field view on graph
neural networks.

References

[Bac17a] Francis Bach. “Breaking the curse of dimensionality with convex neural networks”. In: The
Journal of Machine Learning Research 18.1 (2017), pp. 629–681.

[Bac17b] Francis Bach. “On the equivalence between kernel quadrature rules and random feature expan-
sions”. In: The Journal of Machine Learning Research 18.1 (2017), pp. 714–751.

[Ben+06] Yoshua Bengio et al. “Convex neural networks”. In: Advances in neural information processing
systems. 2006, pp. 123–130.

[BT11] Alain Berlinet and Christine Thomas-Agnan. Reproducing kernel Hilbert spaces in probability and
statistics. Springer Science & Business Media, 2011.

[CB18] Lenaic Chizat and Francis Bach. “A note on lazy training in supervised differentiable program-
ming”. In: arXiv preprint arXiv:1812.07956 (2018).

[CB20] Lenaic Chizat and Francis Bach. “Implicit Bias of Gradient Descent for Wide Two-layer Neural
Networks Trained with the Logistic Loss”. In: arXiv preprint arXiv:2002.04486 (2020).

[DB20] Jaume de Dios and Joan Bruna. “On Sparsity in Overparametrised Shallow ReLU Networks”. In:
arXiv preprint arXiv:2006.10225 (2020).

[DPC19] Gwendoline De Bie, Gabriel Peyré, and Marco Cuturi. “Stochastic deep networks”. In: Interna-
tional Conference on Machine Learning. 2019, pp. 1556–1565.

[FG15] Nicolas Fournier and Arnaud Guillin. “On the rate of convergence in Wasserstein distance of
the empirical measure”. In: Probability Theory and Related Fields 162.3-4 (2015), pp. 707–738.

[Fro+15] Charlie Frogner et al. “Learning with a Wasserstein loss”. In: Advances in neural information
processing systems. 2015, pp. 2053–2061.

[He+15] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level performance on ima-
genet classification”. In: Proceedings of the IEEE international conference on computer vision. 2015,
pp. 1026–1034.

[HGJ16] Tatsunori Hashimoto, David Gifford, and Tommi Jaakkola. “Learning population-level diffusions
with generative RNNs”. In: International Conference on Machine Learning. 2016, pp. 2417–2426.

11

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural tangent kernel: Convergence and
generalization in neural networks”. In: Advances in neural information processing systems. 2018,
pp. 8571–8580.

[KB14] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980 (2014).

[LeC+98] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In: Proceedings of
the IEEE 86.11 (1998), pp. 2278–2324.

[Mac98] Ian Grant Macdonald. Symmetric functions and Hall polynomials. Oxford university press, 1998.

[Mai+14] Julien Mairal et al. “Convolutional kernel networks”. In: Advances in neural information processing
systems. 2014, pp. 2627–2635.

[Mar+19] Haggai Maron et al. “On the Universality of Invariant Networks”. In: International Conference on
Machine Learning. 2019, pp. 4363–4371.

[MW+20] Chao Ma, Lei Wu, et al. “The Quenching-Activation Behavior of the Gradient Descent Dynamics
for Two-layer Neural Network Models”. In: arXiv preprint arXiv:2006.14450 (2020).

[MWE19] Chao Ma, Lei Wu, and Weinan E. “Barron spaces and the compositional function spaces for
neural network models”. In: arXiv preprint arXiv:1906.08039 (2019).

[NR19] Jonathan Niles-Weed and Philippe Rigollet. “Estimation of wasserstein distances in the spiked
transport model”. In: arXiv preprint arXiv:1909.07513 (2019).

[NTS14] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. “In search of the real inductive bias:
On the role of implicit regularization in deep learning”. In: arXiv preprint arXiv:1412.6614 (2014).

[NTS15] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. “Norm-Based Capacity Control in
Neural Networks”. In: arXiv:1503.00036 [cs, stat] (Apr. 2015). arXiv: 1503.00036. url: http:
//arxiv.org/abs/1503.00036 (visited on 12/18/2019).

[PK19] Tomas Pevny and Vojtech Kovarik. “Approximation capability of neural networks on spaces of
probability measures and tree-structured domains”. In: arXiv preprint arXiv:1906.00764 (2019).

[Qi+17] Charles R Qi et al. “Pointnet: Deep learning on point sets for 3d classification and segmentation”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, pp. 652–660.

[Ros+07] Saharon Rosset et al. “ℓ1 regularization in infinite dimensional feature spaces”. In: International
Conference on Computational Learning Theory. Springer. 2007, pp. 544–558.

[RR08] Ali Rahimi and Benjamin Recht. “Random features for large-scale kernel machines”. In:Advances
in neural information processing systems. 2008, pp. 1177–1184.

[RRT17] Maxim Raginsky, Alexander Rakhlin, andMatus Telgarsky. “Non-convex learning via stochastic
gradient Langevin dynamics: a nonasymptotic analysis”. In: arXiv preprint arXiv:1702.03849
(2017).

[SB14] Shai Shalev-Shwartz and Shai Ben-David.Understandingmachine learning: From theory to algorithms.
Cambridge university press, 2014.

[Sca+08] Franco Scarselli et al. “The graph neural networkmodel”. In: IEEE Transactions on Neural Networks
20.1 (2008), pp. 61–80.

[Sri+10] Bharath K Sriperumbudur et al. “Hilbert space embeddings and metrics on probability mea-
sures”. In: Journal of Machine Learning Research 11.Apr (2010), pp. 1517–1561.

[Sri+14] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from overfitting”. In:
The journal of machine learning research 15.1 (2014), pp. 1929–1958.

[Vil08] Cédric Villani. Optimal transport: old and new. Vol. 338. Springer Science & Business Media, 2008.

[Wag+19] Edward Wagstaff et al. “On the Limitations of Representing Functions on Sets”. In: International
Conference on Machine Learning. 2019, pp. 6487–6494.

[Woj+20] Stephan Wojtowytsch et al. “On the Banach spaces associated with multi-layer ReLU networks:
Function representation, approximation theory and gradient descent dynamics”. In: arXiv
preprint arXiv:2007.15623 (2020).

12

[Yar18] Dmitry Yarotsky. “Universal approximations of invariant maps by neural networks”. In: arXiv
preprint arXiv:1804.10306 (2018).

[Zah+17] Manzil Zaheer et al. “Deep sets”. In: Advances in neural information processing systems. 2017,
pp. 3391–3401.

13

A Omitted Proofs

A.1 Proof of Proposition 3.1

Proof. For the forward implication, if f̄ is a continuous extension, then clearly f̄ = f̂ restricted to P̂(I).

Furthermore, continuity of f̄ and compactness of P(I) implies f̄ is uniformly continuous, and therefore f̂
is as well.

For the backward implication, we introduce f̂ǫ(µ) = supν∈Bǫ(µ)∩P̂(I) f̂(ν) where the ball Bǫ(µ) is defined

with the Wasserstein metric, and define f̄(µ) = infǫ>0 f̂ǫ(µ). Density of the discrete measures and uniform

continuity of f̂ guarantees that f̄ is well-defined and finite.

Uniform continuity implies if µ ∈ P̂(I) then f̄(µ) = f̂(µ). Furthermore, let (x,N) realize the definition of f̂

for µ, i.e. f̂(µ) = fN (x). Consider any y ∈ I
M such that µ = D(y), and define a sequence yi = (zi, y2, . . . , yM)

where zi → y1 and all zi are distinct from elements of y. Every point yi ∈ I
M has a unique coordinate and

therefore f̂(D(yi)) = fM (yi). Because D(yi) ⇀ D(y), continuity implies f̂(D(y)) = fM (y). Thus, for any
y ∈ I

M , f̄(D(y)) = fM (y), which implies f̄ is an extension.

Suppose µn ⇀ µ. By the density of discretemeasures, we can define sequences µm
n ⇀ µn where µm

n ∈ P̂(I).
In particular, we may choose these sequences such that for all n, W1(µ

m
n , µn) ≤ 1

m . Then for any ǫ > 0,

|f̄(µ)− f̄(µn)| ≤ |f̄(µ)− f̂ǫ(µ)|+ |f̂ǫ(µ)− f̂(µn
n)|+ |f̂(µn

n)− f̂ǫ(µn)|+ |f̂ǫ(µn)− f̄(µn)| . (9)

Consider the simultaneous limit as n → ∞ and ǫ → 0. On the RHS, the first term vanishes by definition,

and the fourth by uniform continuity. For any ν ∈ Bǫ(µ) ∩ P̂(I), W1(ν, µ
n
n) ≤ W1(ν, µ) + W1(µ, µn) +

W1(µn, µ
n
n) → 0 in the limit. So the second term vanishes as well by uniform continuity of f̂ . Similarly, for

any ν ∈ Bǫ(µn) ∩ P̂(I), W1(ν, µ
n
n) ≤ W1(ν, µn) +W1(µn, µ

n
n) → 0, and the third term vanishes by uniform

continuity. This proves continuity of f̄ .

A.2 Proof of Proposition 5.1

Proof. We can decompose the generalization error:

E sup
‖f‖S1

≤δ

∣∣∣∣∣Eµ∼Dℓ(f
∗(µ), f(µ))− 1

n

n∑

i=1

ℓ(f∗(µi), f(µi))

∣∣∣∣∣

≤ 2E sup
‖f‖S1

≤δ

∣∣∣∣∣
1

n

n∑

i=1

ǫiℓ(f
∗(µi), f(µi))

∣∣∣∣∣

≤ 2E sup
‖f‖S1

≤δ

∣∣∣∣∣
1

n

n∑

i=1

ǫiℓ(f
∗(µi), 0)

∣∣∣∣∣+ 2E sup
‖f‖S1

≤δ

∣∣∣∣∣
1

n

n∑

i=1

ǫi(ℓ(f
∗(µi), 0)− ℓ(f∗(µi), f(µi)))

∣∣∣∣∣

≤ 2RGδ√
n

+ 2
√
2RGE sup

‖f‖S1
≤δ

∣∣∣∣∣
1

n

n∑

i=1

ǫif(µi)

∣∣∣∣∣ ,

where the second step uses symmetrization through the Rademacher random variable ǫ, and the fourth is by
assumption on the loss function ℓ, from the fact that ‖f‖S1

≤ δ implies ‖f‖∞ ≤
√
2Rδ. We decompose the

14

Rademacher complexity (removing the absolute value by symmetry):

E

[
sup

‖f‖S1
≤δ

1

n

n∑

i=1

ǫif(µi)

]
= E


 sup

χ∈M(A)
‖χ‖TV ≤δ

1

n

n∑

i=1

ǫi

ˆ

σ(〈φ, µi〉)χ(dφ)




= δE

[
sup

γ1(φ)≤1

1

n

n∑

i=1

ǫiσ(〈φ, µi〉)
]

≤ δE

[
sup

γ1(φ)≤1

1

n

n∑

i=1

ǫi〈φ, µi〉
]
,

where the last step uses the contraction lemma and that σ is 1-Lipschitz.
Now, using the neural network representation of φ:

E

[
sup

‖f‖S1
≤δ

1

n

n∑

i=1

ǫif(µi)

]
≤ δE

[
sup

‖ν‖TV ≤1

1

n

n∑

i=1

ǫi

ˆ

Rd

ˆ

Sd

σ(〈w, x̃i〉)ν(dw)µi(dxi)

]

≤ δE

[
sup

‖w‖2≤1

1

n

n∑

i=1

ǫiEµi
[σ(〈w, x̃i〉)]

]

≤ δEµ1,...,µn

[
E

[
sup

‖w‖2≤1

1

n

n∑

i=1

ǫiσ(〈w, x̃i〉)
∣∣∣∣∣x1, . . . , xn

]]
,

where the last step uses Jensen’s inequality and Fubini’s theorem. The conditional expectation is itself a
Rademacher complexity, so after again peeling the σ activation and using the variational definition of the l2
norm we have the bound:

E

[
sup

‖f‖S1
≤δ

1

n

n∑

i=1

ǫif(µi)

]
≤ δ

√
2R√
n

.

The high probability bound then follows from McDiarmid’s inequality.

A.3 Proof of Proposition 5.2

Proof. We appeal to the following concentration inequality for empirical measures under the Wasserstein
metric:

Theorem A.1 (Theorem 1 in [FG15]). Let µ̂N = 1
N

∑N
j=1 δXj

where Xi ∼ µ ∈ P(I) iid. Then E[W1(µ̂N , µ)] .

N−1/d where d > 2 is the dimension of I.

It’s easy to see that any φ ∈ A2 has Lipschitz constant bounded above by 1, and therefore supφ∈A2
|〈φ, µ−

µ∗〉| ≤ W1(µ, µ
∗). Therefore

E

[
sup
φ∈A

1

n

n∑

i=1

ǫi 〈φ, µi〉
]
≤ E

[
sup
φ∈A

1

n

n∑

i=1

ǫi 〈φ, µ∗〉
]
+ E

[
sup
φ∈A

1

n

n∑

i=1

ǫi 〈φ, (µ∗ − µi)〉
]

≤
√
2RE

[∣∣∣∣∣
1

n

n∑

i=1

ǫi

∣∣∣∣∣

]
+ E[W1(µi, µ

∗)]

. R(n−1/2 + EN∼Ω[N
−1/d]) .

The conclusion then follows from the same Rademacher decomposition as in Proposition 5.1.

15

A.4 Proof of Theorem 4.1

Recall the definitions of planted neurons: As in the vector setting, such functions are given by single neurons:
fi(µ) = σ̃(〈φ∗

i , µ〉), where φ∗
1(x) = σ(〈w∗, x〉) and φ∗

2 ∈ A2. Let σ̃(t) = σ(t) = max(0, t).
For simplicity, we consider spherical inputs rather than Euclidean inputs, so we consider k(x, y) =

´

Sd
σ(〈w, x〉)σ(〈w, y〉)κ(dw) without the x̃ bias terms, and assume x ∈ S

d. Note that the Euclidean inputs
may be seen as a restriction of the spherical inputs to an appropriate spherical cap, see [Bac17a] for details of
this construction.

In order to define S3 when m = ∞, it’s necessary to define the base measure τ over test functions φ ∈ A2.
Since we are only interested in lower bounds, it will suffice to assume that our input measures µ ∈ P(I) are
restricted to the convex hullConvHull(δe1

, . . . , δed+1
), where {ei}d+1

i=1 are the standard basis inR
d+1. Therefore

we can consider τ as a measure that only depends on the function evaluations αφ := (φ(e1), . . . , φ(ei+1)).
Let Ψ : S

d → F2 be any measureable map such that for all i, Ψ(α)(ei) = αi. As long as the base
kernel measure κ has full support on S

d, we can always define some such Ψ. Then we will define τ as the
pushforward of the uniform distribution on S

d by Ψ.

A.4.1 Part I

Theorem A.2. Consider m = ∞. Let κ have full support on S
d and τ be as above. Then inf‖f‖S3

≤δ ‖f − f2‖∞ &

d−1δ−3/(d−1).

Proof. For any f ∈ S3, let us remind the form of our functions:

f2(µ) = σ(〈φ∗, µ〉)

f(µ) =

ˆ

A2

σ(〈φ, µ〉)q(φ)τ(dφ)

Let α∗ = (φ∗(e1), . . . , φ∗(ed+1), and consider µz =
∑d+1

i=1 ziδei
for some z in the simplex ∆d+1. Then from

our choice of τ , we may simplify:

f2(µz) = σ(〈α∗, z〉)

f(µz) =

ˆ

F2

σ(〈αφ, z〉)q(φ)τ(dφ)

=

ˆ

Sd

σ(〈α, z〉)q′(α)τ ′(dα)

where by definition of the push-forward, τ ′ is uniform on S
d, and q′ is a density such that ‖q′‖L2(dτ ′) =

‖q‖L2(dτ). We will omit the prime notation below.

If z could span all of Sd, we’d be finished (by the separation result cited at the end of the proof). However,
we only have that z ∈ ∆d+1. It remains then to restrict the inputs to a lower dimensional sphere, and prove
that f and f2 retain similar structure. So suppose ‖f − f2‖∞ < ǫ for some fixed ǫ. Below, we will use x ≈ y
to indicate |x− y| . ǫ, i.e. that |x− y| ≤ Cǫ where C is some universal constant independent of the problem
parameters.

We may write g(z) := f(µz) and g2(z) := f2(µz), defined only for z ∈ ∆d+1. Let Q be an orthogonal
matrix such thatQ(1

d+11) = β := 1√
d+1

e1. Then by renaming α∗ 7→ Qα∗ and q 7→ q ◦Q, we may equivalently

assume z ∈ Q∆d+1. Note that this operation will not change the L2 norm of q, nor the infinity norm between
g and g2, due to the rotation invariance of τ .

We take a preparatory step to control the density q. Define a truncated density q̂γ such that for α ∈ Sd,
q̂γ(α) = q(α) when |α1| > γ and 0 otherwise. Then clearly ‖q̂γ‖L2

≤ ‖q‖L2
, and by Cauchy-Schwartz:

∣∣∣∣
ˆ

Sd

σ(〈α, z〉)q(α)− σ(〈α, z〉)q̂γ(α)
∣∣∣∣ τ(dα) ≤

ˆ

Sd

‖z‖|q(α)− q̂γ(α)|τ(dα)

= ‖z‖
ˆ

|α1|≤γ

q(α)τ(dα)

≤ ‖z‖
√

τ({α : |α1| ≤ γ})‖q‖L2

16

Because τ({α : |α1| ≤ γ}) → 0 as γ → 0, we can choose γ depending on ǫ and q such that the difference
above is bounded by ǫ. Thus, it only introduces another additive ǫ error term to assume that q is zero on this
narrow band around the equator some sufficiently small γ.

Let B ⊂ Q∆d+1 be the d − 1 sphere centered at β of radius 1
d+1 . Further let B0 = B − β be the shifted

sphere centered at the origin, such that B0 = {0} × 1
d+1S

d−1. Then for y ∈ B0, we have y + β as a valid input

to g and g2. Finally, we choose α∗ ∈ {0} × S
d−1.

We now exploit the homogeniety of σ. For any y ∈ B0, because B0 is a centered ball, it follows y/c ∈ B0

for any c ≥ 1. Thus, from the assumption of small infinity norm:

g(y + β) ≈ g2(y + β) = σ(〈α∗, y + β〉)
= cσ(〈α∗, y/c+ β〉)
= cg2(y/c+ β) ≈ cg(y/c+ β)

where we use in the second line that α∗ ⊥ β. Therefore we must have g(y + β) ≈ cg(y/c+ β) for all c ≥ 1.
We will use this fact to characterize the density q. Explicitly,

cg(y/c+ β) = c

ˆ

Sd

σ(〈α, y/c+ β〉)q(α)τ(dα)

=

ˆ

Sd

σ(〈α, y〉+ c〈α, β〉)q(α)τ(dα)

To simplify further, wemay rewrite in spherical coordinates. Let α = (cos θ, ᾱ sin θ) for ᾱ ∈ S
d−1 and θ ∈ [0, π].

Then 〈α, β〉 = 1√
d+1

cos θ, and 〈α, y〉 = 〈ᾱ, ȳ〉 sin θ where ȳ = (y2, . . . , yd+1) ∈ 1
d+1S

d−1. Thus, letting τ̄ be

uniform on S
d−1, we have:

cg(y/c+ β) =

ˆ

Sd−1

ˆ π

0

σ

(
〈ᾱ, ȳ〉 sin θ + c√

d+ 1
cos θ

)
q(α)dθτ̄(dᾱ)

= H1 +H2 +H3

where eachHi integrates over the corresponding set in the following partition: P1 = {(ᾱ, θ) : θ ∈ [π/2, π]},
P2 = {(ᾱ, θ) : 〈ᾱ, ȳ〉 ≤ 0, θ ∈ [0, π/2]} and P3 = {(ᾱ, θ) : 〈ᾱ, ȳ〉 ≥ 0, θ ∈ [0, π/2]}. Finally, we introduce
Ac = {(ᾱ, θ) : 〈ᾱ, ȳ〉 sin θ+ c√

d+1
cos θ ≥ 0} as the set where the neuron is active. We consider theseHi terms

as c → ∞. The term sin θ is always positive in the range [0, π], so we focus on the signs of the other terms:

Bounding H1: On P1, cos θ ≤ 0. Letting λ denote the Lebesgue measure on R, we have (τ̄ × λ)(Ac) → 0
as c → ∞. Furthermore, because |〈ᾱ, ȳ〉| ≤ 1, this convergence is uniform over all y ∈ B0. So by Cauchy-
Schwartz:

H1 ≤
√

(τ̄ × λ)(Ac)‖q‖L2
→ 0

Bounding H2: On P2, cos θ ≥ 0 but 〈ᾱ, ȳ〉 ≤ 0. From the fact that 〈ᾱ, ȳ〉 ≥ −1, Ac ⊆ {(ᾱ, θ) : θ ∈
[π/2− arctan(c/

√
d+ 1), π/2]}. By choosing c large enough, it follows Ac ⊆ {(ᾱ, θ) : | cos θ| ≤ γ} where γ is

the truncation threshold we defined for the density q. The neuron only activates in this region where the
density is zero, so we have H2 = 0.

Bounding H3: On P3, the neuron is always active, so in fact we may write:

17

H3 =

ˆ

〈ᾱ,ȳ〉≥0

ˆ π/2

0

(
〈ᾱ, ȳ〉 sin θ + c√

d+ 1
cos θ

)
q(α)dθτ̄(dᾱ)

=

ˆ

〈ᾱ,ȳ〉≥0

ˆ π/2

0

〈ᾱ, ȳ〉 sin θ q(α)dθτ̄(dᾱ) + c

ˆ

〈ᾱ,ȳ〉≥0

ˆ π/2

0

1√
d+ 1

cos θ q(α)dθτ̄(dᾱ)

The second integral either limits to ±∞ or exactly equals 0, because the former would contradict the
infinity norm approximation the latter must hold. Rewriting the first yields:

H3 =

ˆ

Sd−1

σ(〈ᾱ, ȳ〉)
(
ˆ π/2

0

sin θ q(α)dθ

)
τ̄(dᾱ)

=

ˆ

Sd−1

σ(〈ᾱ, ȳ〉)t(ᾱ)τ̄(dᾱ)

where we’ve introduced a density t over Sd−1. Putting everything together yields the following for all
ȳ ∈ 1

d+1S
d−1:

σ(〈ᾱ∗, ȳ〉) = σ(〈α∗, y〉) = g(y + β) ≈ g2(y + β) =

ˆ

Sd−1

σ(〈ᾱ, ȳ〉)t(ᾱ)τ̄(dᾱ)

Finally, we bound the norm of the density t using Cauchy-Schwartz:

ˆ

Sd−1

t(ᾱ)2τ̄(ᾱ) =

ˆ

Sd−1

(
ˆ π/2

0

sin θ q(α)dθ

)2

τ̄(ᾱ)

≤
ˆ

Sd−1

π

2

ˆ π/2

0

(sin θ)2 q(α)2dθτ̄(ᾱ)

. ‖q‖2

We’ve arrived at the conclusion that there exists a density t of controlled norm which approximate a
neuron on S

d−1 in the infinity norm to withinO(ǫ). By the approximation bound of Appendix D.5 in [Bac17a],

supȳ∈ 1
d+1

Sd−1 |σ(〈ᾱ∗, ȳ〉)−
´

Sd−1 σ(〈ᾱ, ȳ〉)t(ᾱ)τ̄(dᾱ)| & 1
d+1‖t‖

−3/(d−1)
L2

for any density t. We therefore derive a

contradiction if ǫ . 1
d+1‖q‖

−3/(d−1)
L2

. Equivalently stated via the functional norms and rounding the fractional

term, we conclude inf‖f‖S3
≤δ ‖f − f2‖∞ & d−1δ−3/(d−1).

A.4.2 Part II

We let κ be the uniform distribution on S
d. We will make frequent use of the identity 2

´

Sd
x1σ(x1)κ(dx) =

´

Sd
x2
1κ(dx) =

1
d .

For a fixed w∗ ∈ S
d, we define K0 ∈ R as

K0 =

ˆ

Sd

σ(〈w∗, x〉)κ(dx)

We may calculate the first spherical harmonic of σ(〈w∗, x〉), let Q be orthogonal such that Qw∗ = e1, then

18

d

ˆ

Sd

xσ(〈w∗, x〉)κ(dx) = dQ−1

ˆ

Sd

xσ(x1)κ(dx) =
1

2
w∗

We then define φ∗
1(x) = σ(〈w∗, x〉)− 1

2 〈w∗, x〉. Note that γ1(φ∗
1) ≤ 2.

Theorem A.3. Considerm = ∞. Let f1(µ) = σ(〈φ∗
1, µ〉), then for sufficiently large d,

inf
‖f‖S2

≤δ
‖f − f1‖∞ & |d−1 − δ2−d/2| ,

Proof. From [Bac17a], Appendix D.5, we verify that φ∗
1 −K0 has no zeroth or first spherical harmonic, and

any φ with γ2(φ) ≤ δ will have a correlation 〈φ, φ∗
1 −K0〉L2 of at most ≃ δ2−d/2.

We introduce the input measure with density:

µ∗(dx) =
2φ∗

1(x) + 1

2K0 + 1
κ(dx) .

We verify that µ∗ is a probability measure, following from the fact that
ˆ

φ∗
1(x)κ(dx) = K0 and sup

x
|φ∗

1(x)| =
1

2
.

We will use µ∗ and κ as inputs to distinguish f1 from any f ∈ S2 with bounded norm. First, note that

f1(µ
∗) = σ(〈φ∗

1, µ
∗〉) = 2‖φ∗

1‖2L2
+K0

2K0 + 1
,

f1(κ) = σ(〈φ∗
1, κ〉) = K0 .

We calculate by rotation invariance

‖φ∗
1‖2L2

=

ˆ

Sd

(
σ(〈w∗, x〉)− 1

2
〈w∗, x〉

)2

κ(dx)

=

ˆ

Sd

(
σ(x1)−

x1

2

)2
κ(dx)

=

ˆ

Sd

σ(x1)
2 − x1σ(x1) +

x2
1

4
κ(dx)

=
1

4d
,

By rotation invariance and Lemma A.4,K0 ∼ 1√
2πd

. Therefore for sufficiently large d, we can lower bound

the distance between the test points under the planted neuron, |f1(κ)− f1(µ
∗)| & |‖φ∗

1‖2L2
−K2

0‖ & d−1.
Meanwhile,

f(µ∗) =

ˆ

σ

(
2

2K0 + 1
〈φ, φ∗

1 −K0〉L2
+ 〈φ, κ〉

)
χ(dφ)

f(κ) =

ˆ

σ(〈φ, κ〉)χ(dφ) .

By definition, χ is only supported on φ such that γ2(φ) ≤ 1, so it follows |〈φ, φ∗
1 −K0〉L2

| . 2−d/2, hence
because σ is Lipschitz it follows |f(µ∗)− f(κ)| . ‖f‖S2

2−d/2.
Finally, we conclude from the triangle inequality that inf‖f‖S2

≤δ supµ |f(µ)− f1(µ)| & |d−1 − δ2−d/2|.
We also note that the same lower bound holds for φ∗

1(x) = σ(〈w∗, x〉). Suppose not, then f ∈ S2

could efficiently approximate σ(〈w∗, x〉) and σ(〈−w∗, x〉) (following from rotational symmetry on S
d). But

σ(〈w∗, x〉) − 1
2 〈w∗, x〉 = σ(〈w∗, x〉) − 1

2 (σ(〈w∗, x〉) − σ(〈−w∗, x〉)), which would imply this function is also
well approximated by S2.

19

Lemma A.4. Let κ be the uniform distribution on S
d and w ∼ κ, then E[σ(w1)] scales asymptotically as 1√

2πd
.

Proof. Introducing a Gaussian random variable g ∼ N (0, Id+1), we have:

E[σ(w1)] =
1

2
E[|w1|]

=
1

2
E

[∣∣∣∣
g1
‖g‖

∣∣∣∣
]
.

One can verify that the probability density function for
∣∣∣ g1
‖g‖

∣∣∣ is

p(x) =
2(1− x2)

d−2

2

B(d2 ,
1
2)

,

where B denotes the Beta function. Then integrating yields

E[σ(w1)] =
1

2

ˆ 1

0

2x(1− x2)
d−2

2

B(d2 ,
1
2)

=
1

B(d2 ,
1
2)d

=
Γ(d+1

2)

Γ(d2)Γ(
1
2)d

The gamma function satisfies Γ(12) =
√
π and

Γ(d+1

2
)

Γ(d
2
)

∼
√

d
2 so the asymptotic bound follows.

B Experimental Details and Additional Data

Synthetic Details: For all experiments we use the same architecture. Namely, for an input set x =

(x1, . . . , xN), the network is defined as fN (x) = wT
3 σ(W2

1
N

∑N
i=1 σ(W1x̃i)), where we choose the archi-

tecture as W1 ∈ R
h1×d, W2 ∈ R

h2×h1 , and w3 ∈ R
h2 where h1, h2 = 100. The weights are initialized with the

uniform Kaiming initialization [He+15] and frozen as described in Table 1.
We relax the functional norm constraints to penalties, by introducing regularizers of the form λ‖fN‖Si

for λ a hyperparameter. Let K(·) map a matrix to the vector of row-wise norms, and let | · | denote the
element-wise absolute value of a matrix. Then we calculate the functional norms via the path norm as
follows:

• For S1, ‖fN‖S1
= |w3|T |W2|K(W1)

• For S2, we explicitly normalize the frozen matrix W1 to have all row-wise norms equal to 1, then
‖fN‖S2

= |w3|TK(W2)

• For S3, we normalize the rows of W1 andW2, which simply implies ‖fN‖S3
= ‖w3‖2

We optimized via Adam [KB14] with an initial learning rate of 0.003, for 5000 iterations. Under this
architecture, all S1 and S2 functions achieved less than 10−7 mini-batch training error without regularization
on all objective functions (listed below) on training sets of 100 samples. The S3 functions achieved less than
10−2 training error, although we note that without exponentially large width, this error is lower bounded
following from Theorem 4.1.

We use the following symmetric functions for our experiments:

• f∗
N (x) = maxi(‖xi‖2)

• f∗
N (x) = λ log

(∑N
i=1 exp(‖xi‖2/λ)

)
for λ = 0.1

20

• f∗
N (x) = median({‖xi‖2}Ni=1)

• f∗
N (x) = secondi(‖xi‖2) i.e. the second largest value in a given set

• f∗
N (x) = 1

N

∑N
i=1(‖xi‖2)

• f∗
N (x) is an individual neuron, parameterized the same as fN but with h1 = 100, h2 = 1. Addition-
ally, for the “neuron" we initialize W1 elementwise from the distribution U(−5.0, 5.0), and for the
“smooth_neuron" we initialize W2 from U(−0.3, 0.3).

Note that in order to guarantee the “smooth_neuron" is representable by our finite-width networks, we
explicitly set W1 in the S2 and S3 models to equal the W1 matrix of the “smooth_neuron".

For eachmodel in each experiment, λwasdetermined through cross validation overλ ∈ [0, 10−6, 10−4, 10−2]
using fresh samples of training data, and choosing the value of λwith lowest generalization error, which was
calculated from another 1000 sampled points.

Then, with determined λ, each model was trained from scratch over 10 runs with independent random
initializations. The mean and standard deviation of the generalization error, testing on varying values of N ,
are plotted in Figure 1.

Application Details: For the MNIST experiment, we follow a similar setup to [DPC19]. From an image
in R

28×28, we produce a point cloud by considering a set of tuples of the form (r, c, t), which are the row,
column and intensity respectively for each pixel. We restrict to pixels where t > 0.5, and select the pixels
with the top 200 intensities to comprise the point cloud (if there are fewer than 200 pixels remaining after
thresholding, we resample among them). Furthermore, we normalize the row and column values among all
the points in the cloud. This process maps an image to a set S ⊆ R

3 such that |S| = 200.
For this dataset we consider h1 = 500 and h2 = 1000 for our Si finite-width architectures. For the

5-layer network baseline, we use the architecture fN (x) = ρ
(

1
N

∑N
i=1 Φ(xi)

)
where Φ(xi) = σ(W2σ(W1x̃))

and ρ(z) = wTσ(W4σ(W3z)), where the hidden layers have width 500 in Φ and 1000 in ρ. We also apply
Dropout [Sri+14] after the activations in ρ with probability 0.6.

We perform cross-validation by setting aside 10% of the data as a validation set, and calculate the mean
and standard deviation of the generalization error over five runs. In order to study generalization in this
setting, we test on point clouds of different size, 100 and 200, and show the results in Table 2. The starting
learning rate is 0.001. Otherwise, all other experimental details are the same as above.

Additional Experiments In Figure 4 we plot all the symmetric objectives over both the narrow and wide
distribution.In Figure 5 we consider higher dimensional vectors for our set inputs to the symmetric models.

21

Figure 4: Test Error for d = 10 andm = 100 on the neural architectures of Section 3.1

Figure 5: Test Error for d = 20 and m = 100

22

	1 Introduction
	2 Preliminaries
	2.1 Problem Setup
	2.2 Symmetric Polynomials
	2.3 Convex Shallow Neural Networks
	2.4 Symmetric Neural Networks

	3 From Set to Measure Functions
	3.1 Neural Functional Spaces for Learning over Measures
	3.2 Continuous Extension
	3.3 Examples of Eligible Symmetric Families

	4 Approximation and Function Class Separation
	4.1 Approximation of single `neurons'
	4.2 Approximation of variational symmetric function via Laplace method

	5 Generalization and Concentration
	5.1 Generalization Bounds
	5.2 Concentration across Input Size

	6 Experiments
	7 Conclusion
	A Omitted Proofs
	A.1 Proof of Proposition 3.1
	A.2 Proof of Proposition 5.1
	A.3 Proof of Proposition 5.2
	A.4 Proof of Theorem 4.1
	A.4.1 Part I
	A.4.2 Part II

	B Experimental Details and Additional Data

