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ABSTRACT

Focusing on graph-structured prediction tasks, we demon-
strate the ability of neural networks to provide both strong
predictive performance and easy interpretability, two proper-
ties often at odds in modern deep architectures. We formulate
the latter by the ability to extract the relevant substructures
for a given task, inspired by biology and chemistry appli-
cations. To do so, we utilize the Local Relational Pooling
(LRP) model, which is recently introduced with motivations
from substructure counting. In this work, we demonstrate that
LRP models can be used on challenging graph classification
tasks to provide both state-of-the-art performance and inter-
pretability, through the detection of the relevant substructures
used by the network to make its decisions. Besides their broad
applications (biology, chemistry, fraud detection, etc.), these
models also raise new theoretical questions related to com-
pressed sensing and to computational thresholds on random
graphs.

Index Terms— Graph, pooling, substructure

1. INTRODUCTION

In data analysis, strong predictive performance is important,
as is the ability to interpret the predictions made by the al-
gorithm. In modern deep learning architectures, these two as-
pects are often in tension. In typical DL application domains —
such as computer vision or natural language processing — the
quest for stronger performances has often overpowered the
need to provide interpretable decisions, despite considerable
research to provide meaningful interpretation of pre-trained
large neural networks.

Graph-structured prediction tasks offer a new opportu-
nity to re-evaluate this tradeoff. Graph Neural Networks [1]
(GNN) are a class of neural architectures that encode the
symmetries of the graph-structured inputs by design, such
as permutation invariance. A powerful paradigm to provide
both predictive power and interpretability is based on spar-
sity: a high-dimensional observation is expressed as a sparse
combination of features out of a (possibly very large) dictio-
nary of elements. In the context of graph-structured tasks, a
natural candidate for providing such dictionaries are graph
substructures, defined as attributed subgraphs contained in a
given input graph.
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While GNNs based on the Weisfeler-Lehman (WL)
framework are amongst the most popular nowadays (such
as Message-Passing Neural Networks [2], or Graph Attention
Network [3]), they are provably unable to detect or count
attributed graph substructures of more than 2 nodes [4], and
are therefore unable to be interpreted in terms of relevant
substructures. An alternative GNN framework based on Lo-
cal Relational Pooling [5, 4] uses instead generic non-linear
representations of local egonets, that are symmetrised to en-
sure the resulting model to be permutation-invariant. While
WL-based networks cannot count substructures, LRP models
are by design able to identify substructures contained in the
local egonets, leading to improved empirical performances
[4].

In this work, we demonstrate another benefit of LRPs by
introducing an algorithm to extract task-specific relevant sub-
structures, similar in spirit to Class Activation Mapping [6].
This algorithm is tested empirically on a challenging molec-
ular prediction task, and connections to random graph theory
and compressed sensing are discussed informally.

2. LOCAL RELATIONAL POOLING (LRP)

We consider an attributed graph G = (V, E, xz,¢e) € G, where
typically V' = [n] := {1,...,n} is the vertex set, E C V x
V is the edge set, z; € X represents the node feature (or
attribute) of node 4, and e; ; € &£ represents the edge feature
of edge (¢, 7) if (4, j) € E. We define the node degree vector
D e N™ with D; being the degree of node i. For convenience
of tensor formulation, we assume that X’ and £ are subsets
of R%. For simplicity, we only consider undirected graphs
without self loops. Note that an unattributed graph can be
viewed as an attributed graph with identical node and edge
features.

Relational Pooling [5] generates a permutation-invariant
model by symmetrizing a model that is not necessarily
permutation-invariant. Let B € R™*"*(¢+1) be the node-
ordering-dependent representation of the graph G defined
as

B:,:,1 - A, (1)
B2 =x;, Vi€ [n], 2
Bij2 =eij, V(i j)€E, 3)
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where A € {0,1}"*" is the unweighted adjacency matrix of
G. Then the Relational Pooling model is defined as

fre(G 3" flroB), )

|S | TESy
where f is some function that can be permutation-sensitive
and S, is the permutation group of n elements, and 7 acts on
B by permuting the first two dimensions of the B. Assum-
ing X and £ are finite sets, the set of all such frp is proven
to be a universal approximator of permutation-invariant func-
tions [5].

Local Relational Pooling [4] simplifies the permutation
on the entire graph in (4) to permutations on egonets [7].
Since egonets are rooted graphs, they further reduce the sym-
metrization over all permutations in S, to within a subset
SBES C G, or SPFS C S, which consist of the permuta-
tions compatible with breath-first-search (BFS) or depth-first-
search (DFS), respectively, to further reduce the complexity.
Below we focus on the latter version, LRP-DFS, which is
more aligned with our target.

Similar to (4), we formulate a one-layer LRP-DFS-£ as

fire(G,9) 5P| Z fp 5
pESD"g
fLRP ZfLRP G, Z (6)
|V| eV

where f is some permutation-sensitive function and SP} is a
bag of sequences that is generated by k-Truncated DFS from
node 7 in G, to be defined below.

We define k-Truncated DFS from node 7 as a procedure
that returns all depth-k acyclic paths starting from node ¢ in
the graph G. Thus, all paths that it returns have length at most
(k + 1). Note that a path p in SPFS has length I < k + 1 if
and only if all neighbors of the last node of p already appear
in p before the last node. Formally, this can be written as

where A/(-) denotes the neighboring set. For example, in a
graph G with 4 nodes and £ = {(1,2), (1, 3),(2,3),(3,4)},
the bags of sequences from node 1 are
SDIiS = {[17 2]’ [173]}7
v = {[1,2,3],[1,3,2], [1,3,4]},
5113,1;9823 = {[17 2,3, 4]5 [L 3, 2]’ [17 3, 4]}

In our implementation, we chose the the permutation-

sensitive function f to be

where p ® p is a Cartesian product of p and itself that returns
a 2-dimensional list, and f7, f> are two learnable MLPs. We
use zero padding when |p| < k + 1 in (9). [4] designs a
multi-layer LRP with initialization B(®). = B and iteration
fLRP(G, ) : B(t) — B(t+1).

3. UNDERSTANDING THE RELEVANT
SUBSTRUCTURES USING LRP

We consider a graph classification task with training data D =
{(Gi,y:)}i, Where y; € [c] is a classification label with ¢ as
the number of classes. For simplicity, we omit ¢ for most no-
tations in this section. Assuming we have a trained model
fure with a choice of f that is capable of fitting the training
data, our next step is to interpret the output of f to extract
substructures that make large contributions to the prediction.
Specifically, we are interested in two tasks in a pipeline: lo-
cating and summarizing.

3.1. Locating Relevant Substructures

Given a trained model figrp and a grpah G, we define the lo-
cating task as looking for elements in the power set of V,
denoted as P(V), that make significant contributions to the
graph label y. We define a function H : SP(V) — P(V),
where SP(V) is a power set with ordering induced by per-
mutation. H(-) maps an ordered sequence p in (5) to its
permutation-invariant node subset. Moreover, we can define

equivalence between sequences, induced by H(-), as p; ~
p2 <= H(p1) = H(p2). _

Given a graph G, a label y and a trained function f,we
define the Locating contribution function Cr, as

0 Gy H=—R 45,3 S 1 Ly f)

eV p’GSRFkS

CL(H

(1)

where R(-,
tion. Our next step to sort the support of C.(-; (G,y), f) ac-
cording the function values in an descending order. The lead-
ing node subsets are the locations of significant substructures
in a certain graph G with label y for the model ]?

-) is cross entropy loss and 1[] is indicator func-

3.2. Summarizing Relevant Substructures

We define the summarizing task as looking for small graphs in
the space G that contributes the most in each class. Compared
with the locating tasks, this task is in a larger scale than the
locating task in two senses: 1) it is across graphs in the same

]? (p) = ﬁ(Bp) ©) fz(Dp), (8)  class, and 2) it is across different trained models to return
_ (k4+1)2xd reliable substructures.
By = Bpop, € R ’ ©) Similar to H(-,-) in Section 3.1, we define another func-
[Dyi = Dpja, (10 tion K : SP(V) — Q(G), where (G) is orbits in the space
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G with respect to graph isomorphism. We say p; X P2 =
K(p1) = K(p2), which means subgraphs induced by these
two sequences are isomorphic. Therefore, the summarizing
task is to find elements in 2(G) that contribute the most in
each class. R

Given a graph G, a label y and a trained function f, we
define the Summarizing contribution function C'g as

Cs(K(p); (Goy). /) =—R (4. 3 1 Lpl- f()
i€V presPrs

(12)

Then, we sort the support Cs(+; (G, y), ) et top-m sub-

structures, and build a query function r(-; (G, y), ) that re-
turns the substruture’s ranking in Cs(+; (G, y), f). If a graph
G is not among the top-m, we set r(G (G Y), A) m+ 1.
Finally, we obtain a summary, denoted as I, of a substructure
G, in D; across models in { f}, as

H(Gyij) = average 1(Gy;(Goy) f),  (13)

(Gw)eD,
fre{srt

where j denotes a class and D; is a subset of D corresponding
to class j. Hence, I(-;j) summarizes the top substructures
contributing in class j.

3.3. Additional Remarks

The pipeline we proposed for locating and summarizing is
analogous to Class Activation Mapping (CAM) [6] that fo-
cuses on locating active regions on images, while our meth-
ods manage to locate “active” regions (node sequences) on
graphs.

In (11) and (12) we set R(,-) as cross entropy loss
for classification tasks. In practice, we would like to di-
vide the model outputs by a constant factor v > 1 to ob-
serve loss differences more obviously, otherwise top supports
might always have zero losses. In our experiments, we set
v = 100. On the other hand, we would like to point out
that R(-, -) is also compatible with regression tasks, with

R(y,0) = Hy *D icy |SDFS| - OH , where the multiplier

diev |SDF S| is due to two average operations in (5) and (6).

We would like to point out some future directions: 1) to
get richer bags of sequences, we can involve more general
search algorithms, such as search with early stopping, hy-
brid search combining BFS and DFS; 2) for larger-scale tasks,
sampling is a promising way to alleviate the computation cost;
3) it might help the community understand the hierarchy of
graph structures through developing a pipeline with a multi-
layer LRP model.

4. EXPERIMENTS

Before we conduct tasks of locating and summarizing, we im-
plement a one-layer LRP-DFS-5 on the graph classification
task for MUTAG, which is a 2-class dataset of 188 muta-
genic aromatic and heteroaromatic nitro compounds with 7
node categories [8]. We follow the setting in [9] that tests the
model with 10 folds, which also gives us 10 trained models
to summarize substructures. The graph classification results
on MUTAG is shown in Table 1. It turns out the 1-layer LRP-

" DFS-5 outperforms the baselines. Hence, it justifies the as-

sumption that the trained LRP model captures task-relevant
information in the dataset to a reasonable extent.

LRP-DFS-5F
90.0+6.8

Model GIN [9] PPGN [10]

89.4+5.6 89.44+8.05

Ring-GNN [11]
86.8£6.4

Test acc.

Table 1. Graph Classificaiton Results on the dataset MUTAG.
: LRP-DFS-5 is a 1-layer model run by us.

4.1. Locating Substructures

We randomly pick two graph with different labels in MUTAG
and, following the approach described in Section 3.1, locate
their top-9 significant substructures given a trained model f,
as shown in Figure 1. It turns out that the leading locations
in the graph with label 0 form some 2-paths, 3-paths and 6-
paths with subtle differences in losses R, while the leading
locations in the graph with label 1 form 6-cycles with larger
differences in R. Therefore, we can conclude that among our
bags of sequences, 6-cycle makes the most significant contri-
bution to the label 1 for the graph in Figure 1(b).

4.2. Summarizing Substructures

We set the 10 trained modgls, whose results are reported in
Table 1, as our model set {f}. We split D into Dy and D, ac-
cording to the labels, as described in Section 3.2, with |Dg| =
125 and |D;| = 63. We set m = 9. Following the approach
described in Section 3.2, we summarize important substruc-
tures for each class across 10 models, as shown in Table 2. It
turns out that, among our bags of sequences, the most signifi-
cant substructure in graphs of class 0 is a 6-carbon path while
that in graphs of class 1 is a 6-carbon cycle, or a benzene ring.
Another important pattern in graphs of class 0 is NO group.
The observations of the benzene ring and the N O group co-
incide with results from [12].

5. DISCUSSION

We have introduced a method based on Local Relational Pool-
ing to extract class-specific relevant substructures, while pro-
viding state-of-the-art prediction results. In addition to the
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pattern r pattern r

{A\ 2.00 \ 3.94

Class 0
/ 487 / 5.36
Class 1 & 1.91 \\\ 553
/C/C/N/O Moot
c 4.82 821

Table 2. Summarizing significant substructures for different
classes in MUTAG. Smaller r indicates more significance.

broad class of applications where such method could be use-
ful in practice, we raise the following theoretical questions for
future work:

* Compressed sensing of substructures: In the current
version presented, substructures are matched greedily
(eq.- 11). An interesting alternative is to group can-
didate substructures together, in order to improve the
computational efficiency of the localization algorithm.
Individual substructures could afterwards be identified
by further relying on incoherence assumptions of the
groups, similarly as in compressed censing.

* Hierarchical substructures and Deep LRP: In some
applications, such as computer graphics or particle
physics, graph structures have an important multi-
scale signature, which limits the efficiency of single-
resolution LRP. An important direction of future im-
provement is to consider Deep LRP models [4] and
study whether they can detect multiscale substructures.

* Random graphs and computational thresholds: Count-
ing substructures on random graphs, such as cliques,
is a canonical problem in theoretical computer science
and statistical physics that showcases the so-called
statistics-to-computation thresholds. LRP provides a
computationally tractable method for a generalised
setup, with attributed random graphs and non-linear
mappings defining a positive count. An interesting
question for future study is thus to first understand
relevant statistical limits for such tasks, and whether
models like LRP are able to attain those limits.
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(a) a graph with label O

0169 .0205 3832

ey

.4417

4513

(b) a graph with label 1

Fig. 1. Locating relevant substructures on two graphs be-
longing to different classes given a trained model. Each up-
per right corners have three numbers: cross entropy loss R,
predicted label, true label. Smaller R indicates more signifi-
cance. Node colors stand for node categories.
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