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ABSTRACT

Focusing on graph-structured prediction tasks, we demon-

strate the ability of neural networks to provide both strong

predictive performance and easy interpretability, two proper-

ties often at odds in modern deep architectures. We formulate

the latter by the ability to extract the relevant substructures

for a given task, inspired by biology and chemistry appli-

cations. To do so, we utilize the Local Relational Pooling

(LRP) model, which is recently introduced with motivations

from substructure counting. In this work, we demonstrate that

LRP models can be used on challenging graph classification

tasks to provide both state-of-the-art performance and inter-

pretability, through the detection of the relevant substructures

used by the network to make its decisions. Besides their broad

applications (biology, chemistry, fraud detection, etc.), these

models also raise new theoretical questions related to com-

pressed sensing and to computational thresholds on random

graphs.

Index Terms— Graph, pooling, substructure

1. INTRODUCTION

In data analysis, strong predictive performance is important,

as is the ability to interpret the predictions made by the al-

gorithm. In modern deep learning architectures, these two as-

pects are often in tension. In typical DL application domains –

such as computer vision or natural language processing – the

quest for stronger performances has often overpowered the

need to provide interpretable decisions, despite considerable

research to provide meaningful interpretation of pre-trained

large neural networks.

Graph-structured prediction tasks offer a new opportu-

nity to re-evaluate this tradeoff. Graph Neural Networks [1]

(GNN) are a class of neural architectures that encode the

symmetries of the graph-structured inputs by design, such

as permutation invariance. A powerful paradigm to provide

both predictive power and interpretability is based on spar-

sity: a high-dimensional observation is expressed as a sparse

combination of features out of a (possibly very large) dictio-

nary of elements. In the context of graph-structured tasks, a

natural candidate for providing such dictionaries are graph

substructures, defined as attributed subgraphs contained in a

given input graph.

While GNNs based on the Weisfeler-Lehman (WL)

framework are amongst the most popular nowadays (such

as Message-Passing Neural Networks [2], or Graph Attention

Network [3]), they are provably unable to detect or count

attributed graph substructures of more than 2 nodes [4], and

are therefore unable to be interpreted in terms of relevant

substructures. An alternative GNN framework based on Lo-

cal Relational Pooling [5, 4] uses instead generic non-linear

representations of local egonets, that are symmetrised to en-

sure the resulting model to be permutation-invariant. While

WL-based networks cannot count substructures, LRP models

are by design able to identify substructures contained in the

local egonets, leading to improved empirical performances

[4].

In this work, we demonstrate another benefit of LRPs by

introducing an algorithm to extract task-specific relevant sub-

structures, similar in spirit to Class Activation Mapping [6].

This algorithm is tested empirically on a challenging molec-

ular prediction task, and connections to random graph theory

and compressed sensing are discussed informally.

2. LOCAL RELATIONAL POOLING (LRP)

We consider an attributed graph G = (V,E, x, e) ∈ G, where

typically V = [n] := {1, . . . , n} is the vertex set, E ⊂ V ×
V is the edge set, xi ∈ X represents the node feature (or

attribute) of node i, and ei,j ∈ E represents the edge feature

of edge (i, j) if (i, j) ∈ E. We define the node degree vector

D ∈ N
n with Di being the degree of node i. For convenience

of tensor formulation, we assume that X and E are subsets

of R
d. For simplicity, we only consider undirected graphs

without self loops. Note that an unattributed graph can be

viewed as an attributed graph with identical node and edge

features.

Relational Pooling [5] generates a permutation-invariant

model by symmetrizing a model that is not necessarily

permutation-invariant. Let B ∈ R
n×n×(d+1) be the node-

ordering-dependent representation of the graph G defined

as

B:,:,1 = A, (1)

Bi,i,2: = xi, ∀i ∈ [n], (2)

Bi,j,2: = ei,j , ∀(i, j) ∈ E, (3)
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where A ∈ {0, 1}n×n is the unweighted adjacency matrix of

G. Then the Relational Pooling model is defined as

fRP(G) =
1

|Sn|

∑

π∈Sn

⇀

f(π ◦B), (4)

where
⇀

f is some function that can be permutation-sensitive

and Sn is the permutation group of n elements, and π acts on

B by permuting the first two dimensions of the B. Assum-

ing X and E are finite sets, the set of all such fRP is proven

to be a universal approximator of permutation-invariant func-

tions [5].

Local Relational Pooling [4] simplifies the permutation

on the entire graph in (4) to permutations on egonets [7].

Since egonets are rooted graphs, they further reduce the sym-

metrization over all permutations in Sn to within a subset

SBFS
n ⊆ Sn or SDFS

n ⊆ Sn, which consist of the permuta-

tions compatible with breath-first-search (BFS) or depth-first-

search (DFS), respectively, to further reduce the complexity.

Below we focus on the latter version, LRP-DFS, which is

more aligned with our target.

Similar to (4), we formulate a one-layer LRP-DFS-k as

f̂LRP(G, i) =
1

|SDFS
i,k |

∑

p∈SDFS
i

⇀

f(p), (5)

fLRP(G) =
1

|V |

∑

i∈V

f̂LRP(G, i), (6)

where
⇀

f is some permutation-sensitive function and SDFS
i,k is a

bag of sequences that is generated by k-Truncated DFS from

node i in G, to be defined below.

We define k-Truncated DFS from node i as a procedure

that returns all depth-k acyclic paths starting from node i in

the graph G. Thus, all paths that it returns have length at most

(k + 1). Note that a path p in SDFS
i,k has length l < k + 1 if

and only if all neighbors of the last node of p already appear

in p before the last node. Formally, this can be written as

N (p[l]) \ p[1, . . . , l − 1] = ∅, (7)

where N (·) denotes the neighboring set. For example, in a

graph G with 4 nodes and E = {(1, 2), (1, 3), (2, 3), (3, 4)},

the bags of sequences from node 1 are

SDFS
1,1 = {[1, 2], [1, 3]},

SDFS
1,2 = {[1, 2, 3], [1, 3, 2], [1, 3, 4]},

SDFS
1,k≥3 = {[1, 2, 3, 4], [1, 3, 2], [1, 3, 4]}.

In our implementation, we chose the the permutation-

sensitive function
⇀

f to be

⇀

f(p) =
⇀

f1(Bp)⊙
⇀

f2(Dp), (8)

Bp = Bp⊗p,: ∈ R
(k+1)2×d, (9)

[Dp]i = Dp[i], (10)

where p⊗ p is a Cartesian product of p and itself that returns

a 2-dimensional list, and
⇀

f1,
⇀

f2 are two learnable MLPs. We

use zero padding when |p| < k + 1 in (9). [4] designs a

multi-layer LRP with initialization B
(0) = B and iteration

f̂LRP(G, ·) : B(t) 7→ B
(t+1).

3. UNDERSTANDING THE RELEVANT

SUBSTRUCTURES USING LRP

We consider a graph classification task with training data D =
{(Gi, yi)}i, where yi ∈ [c] is a classification label with c as

the number of classes. For simplicity, we omit i for most no-

tations in this section. Assuming we have a trained model

fLRP with a choice of
⇀

f that is capable of fitting the training

data, our next step is to interpret the output of
⇀

f to extract

substructures that make large contributions to the prediction.

Specifically, we are interested in two tasks in a pipeline: lo-

cating and summarizing.

3.1. Locating Relevant Substructures

Given a trained model fLRP and a grpah G, we define the lo-

cating task as looking for elements in the power set of V ,

denoted as P(V ), that make significant contributions to the

graph label y. We define a function H : SP(V ) → P(V ),
where SP(V ) is a power set with ordering induced by per-

mutation. H(·) maps an ordered sequence p in (5) to its

permutation-invariant node subset. Moreover, we can define

equivalence between sequences, induced by H(·), as p1
H
∼

p2 ⇐⇒ H(p1) = H(p2).

Given a graph G, a label y and a trained function
⇀

f ,we

define the Locating contribution function CL as

CL(H(p); (G, y),
⇀

f) = −R



y,
∑

i∈V

∑

p′∈SDFS
i,k

1[p′
H
∼ p] ·

⇀

f(p′)



 ,

(11)

where R(·, ·) is cross entropy loss and 1[·] is indicator func-

tion. Our next step to sort the support of CL(·; (G, y),
⇀

f) ac-

cording the function values in an descending order. The lead-

ing node subsets are the locations of significant substructures

in a certain graph G with label y for the model
⇀

f .

3.2. Summarizing Relevant Substructures

We define the summarizing task as looking for small graphs in

the space G that contributes the most in each class. Compared

with the locating tasks, this task is in a larger scale than the

locating task in two senses: 1) it is across graphs in the same

class, and 2) it is across different trained models to return

reliable substructures.

Similar to H(·, ·) in Section 3.1, we define another func-

tion K : SP(V ) → Ω(G), where Ω(G) is orbits in the space
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G with respect to graph isomorphism. We say p1
K
∼ p2 ⇐⇒

K(p1) = K(p2), which means subgraphs induced by these

two sequences are isomorphic. Therefore, the summarizing

task is to find elements in Ω(G) that contribute the most in

each class.

Given a graph G, a label y and a trained function
⇀

f , we

define the Summarizing contribution function CS as

CS(K(p); (G, y),
⇀

f) = −R



y,
∑

i∈V

∑

p′∈SDFS
i,k

1[p′
K
∼ p] ·

⇀

f(p′)



 .

(12)

Then, we sort the support CS(·; (G, y),
⇀

f), get top-m sub-

structures, and build a query function r(·; (G, y),
⇀

f) that re-

turns the substruture’s ranking in CS(·; (G, y),
⇀

f). If a graph

Gs is not among the top-m, we set r(Gs; (G, y),
⇀

f) = m+1.

Finally, we obtain a summary, denoted as r̄, of a substructure

Gs in Dj across models in {
⇀

f}, as

r̄(Gs; j) = average
(G,y)∈Dj

⇀

f∈{
⇀

f}

r(Gs; (G, y),
⇀

f), (13)

where j denotes a class and Dj is a subset of D corresponding

to class j. Hence, r̄(·; j) summarizes the top substructures

contributing in class j.

3.3. Additional Remarks

The pipeline we proposed for locating and summarizing is

analogous to Class Activation Mapping (CAM) [6] that fo-

cuses on locating active regions on images, while our meth-

ods manage to locate “active” regions (node sequences) on

graphs.

In (11) and (12) we set R(·, ·) as cross entropy loss

for classification tasks. In practice, we would like to di-

vide the model outputs by a constant factor γ > 1 to ob-

serve loss differences more obviously, otherwise top supports

might always have zero losses. In our experiments, we set

γ = 100. On the other hand, we would like to point out

that R(·, ·) is also compatible with regression tasks, with

R(y,O) =
∥

∥

∥
y ∗

∑

i∈V |SDFS
i,k | −O

∥

∥

∥

2
, where the multiplier

∑

i∈V |SDFS
i,k | is due to two average operations in (5) and (6).

We would like to point out some future directions: 1) to

get richer bags of sequences, we can involve more general

search algorithms, such as search with early stopping, hy-

brid search combining BFS and DFS; 2) for larger-scale tasks,

sampling is a promising way to alleviate the computation cost;

3) it might help the community understand the hierarchy of

graph structures through developing a pipeline with a multi-

layer LRP model.

4. EXPERIMENTS

Before we conduct tasks of locating and summarizing, we im-

plement a one-layer LRP-DFS-5 on the graph classification

task for MUTAG, which is a 2-class dataset of 188 muta-

genic aromatic and heteroaromatic nitro compounds with 7

node categories [8]. We follow the setting in [9] that tests the

model with 10 folds, which also gives us 10 trained models

to summarize substructures. The graph classification results

on MUTAG is shown in Table 1. It turns out the 1-layer LRP-

DFS-5 outperforms the baselines. Hence, it justifies the as-

sumption that the trained LRP model captures task-relevant

information in the dataset to a reasonable extent.

Model GIN [9] PPGN [10] Ring-GNN [11] LRP-DFS-5†

Test acc. 89.4±5.6 89.44±8.05 86.8±6.4 90.0±6.8

Table 1. Graph Classificaiton Results on the dataset MUTAG.
†: LRP-DFS-5 is a 1-layer model run by us.

4.1. Locating Substructures

We randomly pick two graph with different labels in MUTAG

and, following the approach described in Section 3.1, locate

their top-9 significant substructures given a trained model
⇀

f ,

as shown in Figure 1. It turns out that the leading locations

in the graph with label 0 form some 2-paths, 3-paths and 6-

paths with subtle differences in losses R, while the leading

locations in the graph with label 1 form 6-cycles with larger

differences in R. Therefore, we can conclude that among our

bags of sequences, 6-cycle makes the most significant contri-

bution to the label 1 for the graph in Figure 1(b).

4.2. Summarizing Substructures

We set the 10 trained models, whose results are reported in

Table 1, as our model set {
⇀

f}. We split D into D0 and D1 ac-

cording to the labels, as described in Section 3.2, with |D0| =
125 and |D1| = 63. We set m = 9. Following the approach

described in Section 3.2, we summarize important substruc-

tures for each class across 10 models, as shown in Table 2. It

turns out that, among our bags of sequences, the most signifi-

cant substructure in graphs of class 0 is a 6-carbon path while

that in graphs of class 1 is a 6-carbon cycle, or a benzene ring.

Another important pattern in graphs of class 0 is NO2 group.

The observations of the benzene ring and the NO2 group co-

incide with results from [12].

5. DISCUSSION

We have introduced a method based on Local Relational Pool-

ing to extract class-specific relevant substructures, while pro-

viding state-of-the-art prediction results. In addition to the
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pattern r̄ pattern r̄

Class 0
C

C
C C C

C

2.00
N

O

O

3.94
C

N

O 4.87 N

O

5.36

Class 1

C
C

CC
C

C

1.91 C
C

N
O

5.53

C
C

C
N

O

4.82

CCCCCN

8.21

Table 2. Summarizing significant substructures for different

classes in MUTAG. Smaller r̄ indicates more significance.

broad class of applications where such method could be use-

ful in practice, we raise the following theoretical questions for

future work:

• Compressed sensing of substructures: In the current

version presented, substructures are matched greedily

(eq. 11). An interesting alternative is to group can-

didate substructures together, in order to improve the

computational efficiency of the localization algorithm.

Individual substructures could afterwards be identified

by further relying on incoherence assumptions of the

groups, similarly as in compressed censing.

• Hierarchical substructures and Deep LRP: In some

applications, such as computer graphics or particle

physics, graph structures have an important multi-

scale signature, which limits the efficiency of single-

resolution LRP. An important direction of future im-

provement is to consider Deep LRP models [4] and

study whether they can detect multiscale substructures.

• Random graphs and computational thresholds: Count-

ing substructures on random graphs, such as cliques,

is a canonical problem in theoretical computer science

and statistical physics that showcases the so-called

statistics-to-computation thresholds. LRP provides a

computationally tractable method for a generalised

setup, with attributed random graphs and non-linear

mappings defining a positive count. An interesting

question for future study is thus to first understand

relevant statistical limits for such tasks, and whether

models like LRP are able to attain those limits.

0.4026
0
0

0.4078
0
0

0.4078
0
0

0.4325
0
0

0.4325
0
0

0.4709
0
0

0.4786
0
0

0.4786
0
0

0.4786
0
0

(a) a graph with label 0

0.0169
1
1

0.0205
1
1

0.3832
1
1

0.4007
1
1

0.4192
1
1

0.4417
1
1

0.4417
1
1

0.4431
1
1

0.4513
1
1

(b) a graph with label 1

Fig. 1. Locating relevant substructures on two graphs be-

longing to different classes given a trained model. Each up-

per right corners have three numbers: cross entropy loss R,

predicted label, true label. Smaller R indicates more signifi-

cance. Node colors stand for node categories.
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[3] Petar Veličković, Guillem Cucurull, Arantxa Casanova,

Adriana Romero, Pietro Lio, and Yoshua Ben-

gio, “Graph attention networks,” arXiv preprint

arXiv:1710.10903, 2017.

[4] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan

Bruna, “Can graph neural networks count substruc-

tures?,” arXiv preprint arXiv:2002.04025, 2020.

[5] Ryan Murphy, Balasubramaniam Srinivasan, Vinayak

Rao, and Bruno Ribeiro, “Relational pooling for graph

representations,” in International Conference on Ma-

chine Learning, 2019, pp. 4663–4673.

[6] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude

Oliva, and Antonio Torralba, “Learning deep features

for discriminative localization,” in Proceedings of the

IEEE conference on computer vision and pattern recog-

nition, 2016, pp. 2921–2929.

[7] Victor M Preciado, Moez Draief, and Ali Jadbabaie,

“Structural analysis of viral spreading processes in so-

cial and communication networks using egonets,” arXiv

preprint arXiv:1209.0341, 2012.

[8] Pinar Yanardag and SVN Vishwanathan, “Deep graph

kernels,” in Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and

Data Mining, 2015, pp. 1365–1374.

[9] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie

Jegelka, “How powerful are graph neural networks?,” in

International Conference on Learning Representations,

2018.

[10] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and

Yaron Lipman, “Provably powerful graph networks,”

in Advances in Neural Information Processing Systems,

2019, pp. 2156–2167.

[11] Zhengdao Chen, Soledad Villar, Lei Chen, and Joan

Bruna, “On the equivalence between graph isomor-

phism testing and function approximation with gnns,”

in Advances in Neural Information Processing Systems,

2019, pp. 15894–15902.

[12] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka

Zitnik, and Jure Leskovec, “Gnnexplainer: Generating

explanations for graph neural networks,” in Advances in

neural information processing systems, 2019, pp. 9244–

9255.

8532

Authorized licensed use limited to: New York University. Downloaded on June 02,2021 at 20:42:44 UTC from IEEE Xplore.  Restrictions apply. 


