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ABSTRACT

Parameter estimation with non-Gaussian stochastic fields is a common challenge in astrophysics and cosmology. In this paper, we

advocate performing this task using the scattering transform, a statistical tool sharing ideas with convolutional neural networks

(CNNs) but requiring neither training nor tuning. It generates a compact set of coefficients, which can be used as robust summary

statistics for non-Gaussian information. It is especially suited for fields presenting localized structures and hierarchical clustering,

such as the cosmological density field. To demonstrate its power, we apply this estimator to a cosmological parameter inference

problem in the context of weak lensing. On simulated convergence maps with realistic noise, the scattering transform outperforms

classic estimators and is on a par with the state-of-the-art CNN. It retains advantages of traditional statistical descriptors, has

provable stability properties, allows to check for systematics, and importantly, the scattering coefficients are interpretable. It is

a powerful and attractive estimator for observational cosmology and the study of physical fields in general.

Key words: gravitational lensing: weak – methods: statistical – cosmological parameters – large-scale structure of Universe.

1 IN T RO D U C T I O N

Non-Gaussian fields are ubiquitous in astrophysics. Analysing them

is challenging, as the dimensionality of their description can be

arbitrarily high. In addition, there is usually little guidance on

which statistical estimator will be most appropriate for parameter

inference. In this paper, we advocate using a novel approach, called

the scattering transform (Mallat 2012), for the analysis of such fields

and, in particular, the matter distribution in the Universe, a highly

studied non-Gaussian field.

In many areas of astrophysics and, in particular, in cosmology,

extracting non-Gaussian information has been attempted through

N-point correlation functions (see e.g. Bernardeau, Mellier & van

Waerbeke 2002; Takada & Jain 2003; Semboloni et al. 2011; Fu et al.

2014, for weak lensing applications) and polyspectra, their Fourier

equivalents (see e.g. Sefusatti et al. 2006). Correlation functions are

convenient for theoretical predictions and for measuring weak de-

partures from Gaussianity. However, being high powers of the input

field, these statistics suffer from an increasing variance and are not

robust to outliers in real data, making them gradually less informative

(Welling 2005). If the distribution of field intensity has a long tail, the

amount of information accessible to N-point functions will quickly

decrease (Carron 2011). In addition, the number of configurations to

consider for N-point functions explodes with the number of points

used. As a result, information is highly diluted among coefficients,

and it becomes a challenge to efficiently extract information with N-

⋆ E-mail: s.cheng@jhu.edu

point functions. Other methods, including performing a non-linear

transformation before calculating correlation functions (Neyrinck,

Szapudi & Szalay 2011; Simpson et al. 2011; Carron & Szapudi

2013; Giblin et al. 2018), using topological properties such as

Minkowski functionals (Mecke, Buchert & Wagner 1994; Hikage

et al. 2003; Kratochvil et al. 2012; Shirasaki & Yoshida 2014),

and using biasing properties such as counts of clusters, peaks, and

voids (Jain & Van Waerbeke 2000; Marian, Smith & Bernstein 2009;

Kratochvil, Haiman & May 2010; Liu et al. 2015a, b; Pisani et al.

2019), have also been considered. However, in the cosmological

context, these excursions into non-Gaussian signal analyses have

had limited impact in improving existing constraints on cosmological

parameters so far.

Recently, convolutional neural networks (CNNs; e.g. Lecun et al.

1998) have claimed supremacy in a wide variety of applications

aimed at extracting information from complex data. They have also

shown promises to efficiently retrieve cosmological information well

beyond second-order statistics (see e.g. Gupta et al. 2018; Ribli,

Pataki & Csabai 2019a; Ribli et al. 2019b). While the potential

of this method is enormous, it also comes with a number of

issues. To precisely and robustly estimate cosmological parameters,

CNNs require a large training set. In addition, when applied to

real data, systematic errors not included in the training process of

CNN can hardly get checked and controlled, whereas for traditional

statistics, a simple χ2 test can do so. As such, the use of CNNs

in real data comes with limitations regarding interpretability and

validity.

In this paper, we advocate using a different approach called

the scattering transform to efficiently and robustly extract statis-
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Cosmology with scattering transform 5903

tical information from non-Gaussian fields.1 The operations and

structure of the scattering transform have close similarities with

those built in CNNs, but the scattering transform does not require

any training, and like traditional statistics, it generates coefficients

with proved properties. It can therefore hopefully overcome the

aforementioned limitations encountered with CNNs. In Section 2, we

introduce the scattering transform, present intuitive understanding of

its coefficients, and visualize its key properties. In Sections 3 and

4, we demonstrate the power of the scattering transform to infer

cosmological parameters (�m and σ 8) in the context of weak lensing

using simulated convergence maps. As we will show, it outperforms

the power spectrum and peak counts, and is on a par with the state-

of-the-art CNN. Finally, we comment on the attractive properties of

the scattering transform in Section 5 and conclude in Section 6.

2 TH E S C AT T E R I N G TR A N S F O R M

In this section, we present the scattering transform and intuitive

interpretations of its coefficients. The scattering transform generates

a compact set of coefficients that captures substantial non-Gaussian

information beyond the power spectrum. In contrast to N-point func-

tions, the scattering coefficients are all proportional to the input data,

and do not suffer from the increasing variance issue. Thus, the scat-

tering coefficients, which form a representation of the input field, can

be used to extract non-Gaussian information efficiently and robustly.

This is particularly attractive from a data analysis point of view.

2.1 Motivation

The scattering transform was originally proposed by Mallat (2012)

as a tool for signal processing to extract information from high-

dimensional data. In contrast to neural networks, it comes with

attractive provable properties, including translational invariance,

non-expanding variance, and Lipschitz continuous to spatial defor-

mation (Mallat 2012). Interestingly, the scattering transform has also

provided key insights into deciphering the remarkable behaviour

and performance of CNNs (Bruna & Mallat 2013). A perhaps

counter-intuitive feature of CNNs is that the convolution, though

restricting the flexibility of the neural network, dramatically boosts

its performance on many types of data. In addition, a successful

CNN architecture can often be re-purposed for very different tasks.

These facts suggest that a certain mathematical structure enables

efficient information extraction from a wide range of complex data.

Understanding this structure may dramatically simplify the costly

training process required when using neural networks.

The scattering transform has been successfully used in many

areas, including audio signal processing (Andén & Mallat 2014),

image classification (Bruna & Mallat 2013), texture classification

(Sifre & Mallat 2013), materials science (Hirn, Mallat & Poilvert

2017; Eickenberg et al. 2018; Sinz et al. 2020), multifractal analysis

in turbulence and finance (Bruna et al. 2015), and graph-structured

data (Gama, Ribeiro & Bruna 2018). Several of these examples

reached state-of-the-art performance compared to the CNNs in use at

the time. In astrophysics, a pioneer application has been performed

by Allys et al. (2019) to analyse the interstellar medium.

The scattering transform can be used with two possible goals

in mind: representing a specific realization of a field (with a

1This work was done simultaneously and independently of that presented in

Allys et al. (2020), where the authors apply a different but related technique,

the wavelet phase harmonic, to slices of the matter density field.

classification goal) or characterizing the global statistical properties

of a field. The narratives in these two regimes are slightly different

(Mallat 2012; Bruna & Mallat 2013). We will focus on the latter one,

which is relevant to cosmological applications.

2.2 Formulation

Here, we present the formulation of the scattering transform in the

context of characterizing random fields (Mallat 2012). We focus on

the 2D case in this study, but it can be directly generalized to any

other dimensionality. For clarity, we will attach the notation (x, y)

for the spatial dependence of a field only when it is first introduced.

To extract information from an input field, the scattering transform

first generates a group of new fields by recursively applying two

operations: a wavelet convolution and a modulus. Then, the expected

values of these fields are defined as the scattering coefficients and

used to characterize statistical properties of the original field (see

Fig. 1 for an illustration). This hierarchical structure, the use of

localized convolution kernels, and the use of non-expansive non-

linear operator are all elements found in the architecture of CNNs.

Formally, given an input field I0(x, y), the scattering transform

generates a set of first-order fields I1(x, y) by convolving it with a

family of wavelets ψ j, l(x, y) and then taking the modulus:

I1 ≡
∣∣I0 ⋆ ψ j1,l1

∣∣ , (1)

where I1 represents a group of fields labelled by the wavelet index

j1, l1. Wavelets are localized oscillations and band-pass filters. Fig. 2

shows the profiles of Morlet wavelets in real and Fourier spaces.

Morlet wavelets are used in our study and described in Appendix A.

In general, a family of wavelets covers the whole Fourier space. They

all have the same shape but different sizes and orientations, labelled

by j and l, respectively. They can all be generated through dilating

and rotating a prototype wavelet. In the scattering transform, the

convention is to use a dilation factor of 2, such that for a pixelized

field, the size of a wavelet ψ j, l in the real space is roughly 2j pixels.

Having created the first-order fields, one can then iterate the same

process to create second-order fields I2(x, y)

I2 ≡
∣∣I1 ⋆ ψ j2,l2

∣∣
=

∣∣|I0 ⋆ ψ j1,l1 | ⋆ ψ j2,l2
∣∣ , (2)

where I2 represents a group of fields labelled by the two sets of

wavelet index j1, l1 and j2, l2. An illustration of these first two orders of

scattering transform is shown in Fig. 1. Higher order scattering fields

can be created with further iterations. We note that the iterations are

not commutative, so maintaining the order of wavelets is important.

In this paper, we will only show the scattering transform up to the

second order, because we find that in our particular data set, little

cosmological information is stored in the third order.

If the input field I0 is homogeneous, then all the generated fields

In remain homogeneous. Therefore, the expected values of their

intensity can be used as translation-invariant descriptors of the input

field

S0 ≡ 〈I0〉 (3)

S
j1,l1
1 ≡ 〈I j1,l1

1 〉 = 〈
∣∣I0 ⋆ ψ j1,l1

∣∣〉 (4)

S
j1,l1,j2,l2
2 ≡ 〈I j1,l1,j2,l2

2 〉 = 〈
∣∣|I0 ⋆ ψ j1,l1 | ⋆ ψ j2,l2

∣∣〉 . (5)

These expected values Sn are called the nth-order scattering co-

efficients. Due to homogeneity, these expected scattering coeffi-

cients can be estimated by taking the spatial average of a single

MNRAS 499, 5902–5914 (2020)
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5904 S. Cheng et al.

Figure 1. Illustration of the scattering transform on a weak lensing map. The azimuthal resolution is set to be L = 4. For clarity, we only show results using

wavelets with orientation indices l1 = 1 and l2 = 1, and several selected scale indices j1 and j2. In the top left corner of each panel, we show the mean value of

that field. They are the scattering coefficients (S0, S1, S2) of the input field. For a convenient display, the blue numbers are 104 times the coefficients derived from

the lensing map. For example, the S0 coefficient of this lensing map is actually 0.002 67. The colour bar ranges for I0, I1, and I2 fields are adjusted separately

for better visualization.

realization

Ŝn = 〈In〉x,y , (6)

where Ŝn is an unbiased estimator of Sn and 〈 · 〉x, y represents the

spatial average of a field.2

The number of scattering coefficients Sn is determined by the

number of wavelets used. Setting J different scales (2J cannot exceed

the side length of the field) and L different orientations results in J ×
L different wavelets used in total. If all combinations of wavelets are

used, then the number of coefficients at the nth-order will be JnLn.

2To follow the convention in cosmology, we use slightly different notations

from Mallat (2012): we use Sn to represent the expected values, which

characterize properties of a random field and which Mallat denotes as Sn;

we use Ŝn to represent Sn’s estimators calculated from spatial average, which

Mallat directly denotes as Sn.

When considering an isotropic field, which is the case of interest in

cosmology, the scattering coefficients Sn can be further reduced. To

construct isotropic statistics, we simply average over all orientation

indices, which reduces the number of coefficients by an order of Ln

and creates a more compact and robust set of statistical descriptors.

We thus define our reduced scattering coefficients as

s0 ≡ S0 (7)

s
j1

1 ≡ 〈Sj1,l1
1 〉l1 (8)

s
j1,j2

2 ≡ 〈Sj1,l1,j2,l2
2 〉l1,l2 , (9)

where Sn represent the standard scattering coefficients, sn represent

our reduced coefficients, and 〈〉 l denotes an average over orientation

indices. The reduced coefficients sn can also be understood as the

expected value of some ‘reduced’ fields 〈In〉l1,..,ln , which are ‘stacks’

of the In with same scale indices j but different orientation indices

MNRAS 499, 5902–5914 (2020)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
9
9
/4

/5
9
0
2
/5

9
2
4
4
6
1
 b

y
 N

Y
U

 S
c
h
o
o
l o

f M
e
d
ic

in
e
 L

ib
ra

ry
 u

s
e
r o

n
 0

2
 J

u
n
e
 2

0
2
1



Cosmology with scattering transform 5905

Figure 2. Upper panel: profile of a Morlet wavelet (j = 6, l = 0, image size

512 × 512 pixels) in the real space and another one (j = 1, l = 1) in Fourier

space. The centre of the Fourier space represents zero frequency. Lower

panel: radial frequency profiles of a family of wavelets. Dilating/contracting

(by factor of 2) and rotating (by π /L) one wavelet give the whole family of

wavelets used in the scattering transform.

l1, .., ln. We show several examples of second-order ‘reduced’ fields

in Fig. 3, where information is condensed, so features look clearer

than in Fig. 1. Our reduction is similar to the first group of isotropic

coefficients used by Allys et al. (2019). Up to the second order, our

reduced set includes 1 + J + J2 coefficients. As a result, probing

the full range of scales for an image with 512 × 512 pixels (J = 8)

yields in total 73 reduced scattering coefficients.

In general, performing azimuthal averages over both l1 and l2

leads to information loss. To preserve more isotropic information,

one could keep l2 − l1 as an index of the reduced second-order

scattering coefficients (Bruna & Mallat 2013; Allys et al. 2019) or

apply the ‘scattering strategy’ again to rotation (Sifre & Mallat 2013).

In the weak lensing study presented below, however, we checked

that this additional information does not improve the performance

of our analysis, probably due to the lack of anisotropic structures

in the weak lensing maps we use. So, we do not take it into

account.

Having introduced the mathematical formulation of the scattering

transform, we will present in the next section some intuitive under-

standing of its key operations.

2.3 The role of wavelet convolution and modulus

The core operation I → |I⋆ψ j, l| employed by the scattering transform

comprises two steps: a convolution by a complex-valued wavelet and

a modulus operation. In short, the wavelet convolution selects scales,

and the modulus converts fluctuations into their local strength.

Let us discuss the wavelet convolution first. As a wavelet is

a band-pass filter, the wavelet convolution selects Fourier modes

around a central frequency and coarsely separates information of

different scales (see Fig. 2). Due to the locality of wavelets in real

space, which is related to their logarithmic spacing and widths in

Fourier space, the scattering coefficients are Lipschitz continuous

to deformation, meaning that similar fields differing by a small

deformation (including a small dilation) are also similar in the

representation formed by scattering coefficients (Mallat 2012), and

therefore the scattering characterization is a stable one. Fourier coef-

ficients (without binning), in contrast, are not stable to deformation

at high frequencies.

One key idea of the scattering transform is to generate ‘first-order’

statistics, in contrast to higher order moments, which multiply an

increasing number of field intensities and cause instability to outliers.

Being a linear operator, the wavelet convolution certainly keeps the

‘first-order’ property. However, for a homogeneous random field,

convolution alone cannot extract information beyond the mean of

the original field 〈I〉, because the expected value operator commutes

with all linear transformations. Extracting more information requires

non-linear operations. For example, in N-point functions, the multi-

plication of field intensities plays the role. The scattering transform,

on the other hand, employs the modulus operation, which is a natural

choice to preserve the desired property of working with first-order

statistics (Mallat 2012).

As the modulus is taken in the real space and is non-linear, its

behaviour in Fourier space is not simple. Nevertheless, we collect

some intuitive understandings and present them in Appendix B for

interested readers.

2.4 Information extraction beyond the power spectrum

There are a number of similarities between the power spectrum

and each single iteration of the scattering transform. Indeed, the

power spectrum can be defined using the formalism of the first-order

scattering coefficients S1 = 〈| I0⋆ψ |〉 :

P (k) ∝ 〈|I0 ⋆ ψ ′|2〉 with ψ ′ = e−ik·x . (10)

The differences between the two estimators S1 and P(k) are the

choice of convolution kernels (wavelets ψ or Fourier modes ψ
′
) and

that of the norm (L1 versus L2). Therefore, the first-order scattering

coefficients have similarity to the power spectrum. Both of them

characterize the strength of fluctuations (or clustering) as a function

of scale.

However, in the case of the power spectrum, the convolution

kernel (ψ
′ = e−ik·x) is completely de-localized in real space. Thus,

the power spectrum’s version of I1 fields (|I0⋆ψ
′ |2) lose all spatial

information. In contrast, the use of localized wavelets in the scattering

transform allows I1 to preserve spatial information, as shown in

Figs 1 and 3. According to the analogy with the power spectrum, the

mean of an I1 field characterizes the average amplitude of Fourier

modes selected by the wavelets, whereas the spatial distribution of

fluctuations in I1, missing in the power spectrum analogue, in turn

encodes the phase interaction between those Fourier modes. This

information can be extracted by applying the scattering operations

once again, I1 → I2 = |I1⋆ψ2| = ||I0⋆ψ1|⋆ψ2|, and then measuring

the mean of I2, i.e. second-order scattering coefficients S2.

According to the power spectrum analogy, S2 coefficients resemble

the power spectrum of I1 fields and measure clustering properties on

I1. Because I1 fields highlight the regions where fluctuations around

a scale are stronger, the second-order coefficients can be understood

as measuring the clustering of structures highlighted in I1, i.e. the

‘clustering of (clustered) structures’.

This leads to an interesting intuition: we need two points to

describe the scale of one structure and an additional two points for

another one. Therefore, the second-order scattering coefficients S2,

which measure the clustering of sized structures, include information

up to about 4-point. In general, an nth-order scattering coefficient

Sn will contain information up to about 2n-point function of the

input field. By this ‘hierarchical clustering’ design, the scattering-

MNRAS 499, 5902–5914 (2020)
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5906 S. Cheng et al.

Figure 3. The scattering transform of three fields (I0) with indistinguishable power spectra. Row 1 shows a realization of convergence maps in cosmology (�m,

σ 8) = (0.292, 0.835), row 2 shows cosmology (�m, σ 8) = (0.566, 0.520), and row 3 is for a Gaussian random field with the same (2D) power spectrum as row

1. It can be seen by eye that the average intensity of the second-order scattering fields (the last column), which corresponds to an s2 coefficient and measures the

clustering strength of structures highlighted by I1, is significantly different from each other, while their power spectra (the first column) are indistinguishable.

transform expansion quickly includes information from higher order

statistics.

However, it should be noted that there is still a fundamental

difference between the scattering transform and N-point functions.

There are mainly two difficulties associated with N-point functions to

characterize a random field: the failure to describe distribution tails

and the huge number of configurations. The first difficulty, related

to the multiplication of multiple random variables, leads to high

variances and also prevents the extraction of information from fields

whose pdf has a tail (Carron 2011). The scattering transform, which

uses modulus and does not enhance the tail, can significantly alleviate

this problem. We will discuss it further in another paper (Cheng

et al. in preparation). The second difficulty may be alleviated by an

efficient binning. For example, the hierarchical wavelet transform

used in the scattering transform is a binning strategy that can also be

applied to N-point functions (see Appendix B).

3 A PPLICATION IN W EAK LENSING

C O S M O L O G Y

We now show that the scattering transform can be a powerful tool

in observational cosmology to extract non-Gaussian information

from the matter density field. To illustrate this point, we consider

an application with two-dimensional fields: we show how well

cosmological parameters can be constrained using the scattering

coefficients of weak lensing convergence maps κ(	θ ) or, equivalently,

measurements of cosmic shear. Being projections of the density field

along the line of sight, these maps present an appreciable level of non-

Gaussianities on scales smaller than a few degrees, reflecting the non-

linear growth of matter fluctuations. For the necessary background on

cosmology with gravitational lensing, we refer the reader to reviews

(Kilbinger 2015; Mandelbaum 2018).

We explore the use of our reduced scattering coefficients on

simulated weak lensing convergence maps to infer �m and σ 8 and

compare their performance with that of the power spectrum. We also

compare our results with that of a state-of-the-art CNNs by Ribli

et al. (2019b) and peak count statistics.

3.1 Simulated convergence maps

We use mock convergence maps in the ‘Dark Matter’ dataset

generated by the Columbia Lensing team3 and described in Zorrilla

Matilla et al. (2016) and Gupta et al. (2018). The maps are produced

through ray-tracing to redshift z = 1 in the output of dark matter-only

N-body simulations for a set of 
CDM cosmologies. Each simulation

is run in a 240 h−1 Mpc box with 5123 particles. The cosmologies

differ only in two parameters: the present matter density relative to the

critical density �m, and a normalization of the power spectrum σ 8.

Other cosmological parameters are fixed: baryon density �b = 0.046,

Hubble constant h = 0.72, scalar spectral index ns = 0.96, effective

number of relativistic degrees of freedom neff = 3.04, and neutrino

masses mν = 0.0. The dark energy density is set so that the universe

is spatially flat, i.e. �
 = 1 − �m. For each cosmology, 512

3http://columbialensing.org

MNRAS 499, 5902–5914 (2020)
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convergence maps with 3.5 × 3.5 deg2 field of view are generated

from the simulations, allowing us to sample cosmic variance. The

corresponding scales are well suited to probing the non-Gaussianities

of the convergence field (Kilbinger 2015). These maps were also used

by Ribli et al. (2019b). To compare our results to Ribli et al. (2019b),

we use the same resolution as theirs, down-sampling the original

10242 pixel maps to a 5122 resolution with 0.41 arcmin per pixel.

3.2 Galaxy shape noise and smoothing

In practice, convergence or shear estimates are obtained from

measurements of galaxy shapes, with a level of noise that depends

on the galaxy ellipticity distribution and their number density on the

sky. To first order, background galaxies used for shear measurements

have a wide range of redshifts and are not correlated. The noise can

be well approximated as Gaussian white noise. Its contribution to the

convergence maps can be modelled (van Waerbeke 2000) as

σ 2
noise = σ 2

ǫ

2ngApix

, (11)

where σ 2
ǫ is the intrinsic variance of ellipticity of galaxies, which is

taken to be 0.42, ng is the number density of background galaxies,

Apix is the area per pixel, which is 0.1682 arcmin2. For some existing

and on-going surveys such as CFHTLenS, KiDS,4 and DES,5 ng is

around 10 arcmin−2 (Kilbinger et al. 2013; Abbott et al. 2018); for

some upcoming surveys we expect substantially higher densities:

ng ∼ 25 arcmin−2 for the survey at Vera C. Rubin Observatory

(LSST) ,6 ng > 30 arcmin−2 for Euclid,7 and ng ∼ 50–75 arcmin−2

for the planned survey with Nancy Grace Roman Space Telescope

(WFIRST).8

After adding noise, we also smooth the maps. As the power

of Gaussian white noise is distributed mostly at high frequencies,

smoothing the convergence maps can help to increase the signal-

to-noise of specific estimators. By default, we do not smooth the

noiseless maps, and we perform a σ = 1 arcmin (2.44 pixel) Gaussian

smoothing on noisy maps.

3.3 Statistical descriptors

Scattering coefficients: For each 3.5 × 3.5 deg2 convergence field

in each cosmology, we apply the scattering transform up to second

order using the ‘kymatio’ PYTHON package9 (Andreux et al. 2020)

and then calculate the reduced coefficients (s0, s1, s2) as defined in

Section 2.2. To probe the available range of scales, we set J = 8

and L = 4 in the scattering transform, i.e. we use 8 scales spaced

logarithmically with central wavelengths between 1.2 and 75 arcmin

and 4 azimuthal orientations, resulting in 32 different wavelets used

in total.

By default, the ‘kymatio’ package only calculate the second-order

coefficients with j2 > j1, because the coefficients with j2 ≤ j1 is

mainly determined by the property of wavelets but not the input field,

as illustrated by the upper-right sketch of Fig. 4. Intuitively, this is

because structures of a particular size, say j1, do not have meaningful

clustering at scales smaller than their own size. A mathematical

4 http://kids.strw.leidenuniv.nl
5https://www.darkenergysurvey.org
6https://www.lsst.org
7https://sci.esa.int/euclid
8https://roman.gsfc.nasa.gov
9https://www.kymat.io

reasoning for this property can also be found in Appendix B. To

demonstrate these coefficients’ behaviour, we modified the ‘kymatio’

code to calculate them, and show them together with the coefficients

with j2 > j1 in Fig. 4. Nevertheless, we checked that they do not

contribute to constraining cosmological parameters, and therefore in

our inference analysis, we only use second-order coefficients with j2

> j1, which yields an even more compact set of 1 + 8 + 28 = 37

scattering coefficients used for our cosmological inference.

Power spectrum: For the same set of input fields, we also compute

the power spectrum and peak count statistics using the publicly

available ‘LensTools’ PYTHON package10 (Petri 2016). The power

spectrum is calculated within 20 bins in the range 100 ≤l ≤ 37 500

(corresponding to 0.58–216 arcmin) with logarithmic spacing, fol-

lowing the setting adopted in Ribli et al. (2019b).

Peak count: In our analysis, a peak is defined as a pixel with

higher convergence (κ) than its eight neighbours. Then, peaks are

binned by their κ values and counted in each bin. We adopt a binning

similar to that in Liu et al. (2015a). We use 20 bins in total, including

18 bins linearly spaced between κ = –0.02 and 0.12, one bin for

peaks below –0.02, and one bin above 0.12. For reference, κ = 0.12

corresponds to a significance of peak ν ≡ κ/σ noise around 7 when

ng = 30. Although using more bins for very high peaks (κ > 0.12)

may enhance the constraining power of the peak count method, we

do not use them in this study, because the count distribution of these

rare peaks can no longer be approximated by Gaussian distribution

(see e.g. Lin & Kilbinger 2015).

To obtain constraints on the cosmological parameters, we use

the Fisher inference framework (Fisher 1935; Tegmark, Taylor &

Heavens 1997), in which we assume the probability distribution of

statistical descriptors is a multivariate Gaussian distribution for a

given cosmology. The mean vector and covariance matrix of this

Gaussian distribution are dependent on cosmological parameters

and estimated from the 512 realizations of each cosmology in

simulations. Details of our cosmological inference framework are

described in Appendix C. Because s1, s2, and power spectra must

be positive for a non-trivial field, we consider their logarithm to

better satisfy a multivariate Gaussian likelihood. To perform the

cosmological inference analysis with the three methods introduced

above, we use

(i) 37 scattering coefficients.

(ii) 20 power spectrum coefficients.

(iii) 20 peak count coefficients.

4 R ESULTS

In this section, we examine the distribution and cosmological

sensitivity of scattering coefficients, and present their constraining

power for two cosmological parameters, �m and σ 8. We show that

the scattering coefficients provide substantially more information

than the power spectrum and is on a par with CNN.

4.1 Cosmological sensitivity of the scattering coefficients

In Fig. 4, we present the distributions of reduce scattering transform

in the noiseless case together with the power spectrum. In the first

row, we show the values for a fiducial cosmology that has the Planck

cosmology of �m = 0.309 and σ 8 = 0.816 (Planck Collaboration

et al. 2016). The expected values of these descriptors are estimated by

10https://lenstools.readthedocs.io
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5908 S. Cheng et al.

Figure 4. Upper-left panel: The fiducial cosmology (black) and two other cosmologies on the (�m, σ 8) plane. Upper-right panel: Illustration of reduced

scattering coefficients s1(j1) and s2(j1, j2) for a single j1 scale. Lower panel: The power spectrum and scattering coefficients for the three cosmologies in

noiseless case. The first row presents coefficients of the fiducial cosmology and of Gaussian random fields with the same power spectrum, and the second

row shows changes of coefficients (
 coef.) when we move from the fiducial cosmology to the other two. Error bars and grey shaded regions show cosmic

variance, i.e. the variability among realizations. The first-order scattering coefficients behave similarly to the power spectrum, while the second-order scattering

coefficients can break the �8 degeneracy, along which non-Gaussianity of weak lensing field changes.

averaging over different realizations of a given cosmology. Error bars,

which are the sample standard deviations of realizations, represent

the cosmic variance in this noiseless case. We can see the similarity

between the power spectrum and s1 coefficients, as they have similar

physical meanings (Section 2.4). We can also see the different

behaviours of s2 coefficients for j2 < j1 and j2 > j1, as discussed

in Section 3.3.

Then, we investigate the cosmological sensitivity of the power

spectrum and scattering coefficients. The power spectrum is known

to be mostly sensitive to one combination of the cosmological

parameters, namely

�8 ≡ σ8

(
�m

0.3

)a

, (12)

with a around 0.6 (see e.g. Kilbinger 2015), but can hardly distinguish

cosmologies with the same �8, as illustrated in the upper-left panel

of Fig. 4. Breaking this degeneracy requires the extraction of non-

Gaussian information from lensing maps.

In the second row of Fig. 4, we show the response of coefficients

as cosmological parameters move along (orange curves) and across

(blue curves) the �8 degeneracy. Grey areas indicate cosmic variance

of the fiducial cosmology. As expected, the first-order scattering

coefficients show a cosmological sensitivity similar to that of the

power spectrum, because both of them measure the strength of

fluctuations as a function of scale.

The second-order scattering coefficients, on the other hand, char-

acterize the spatial distribution of sized fluctuations. To make the

second-order scattering coefficients less correlated with the first-

order ones, here we present de-correlated second-order coefficients

s2/s1, as each s2(j1, j2) is proportional to the corresponding s1(j1)

according to their definitions (Bruna et al. 2015). These s2/s1 exhibit

particularly high sensitivity to cosmological change along the �8

degeneracy. In addition, they are indifferent to the other direction

of cosmological change, which means they provide a piece of

information roughly orthogonal to that carried by the first-order

coefficients s1 or the power spectrum. In noisy cases, though the

information from s2/s1 is not orthogonal to s1 anymore, we have

MNRAS 499, 5902–5914 (2020)
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Cosmology with scattering transform 5909

Figure 5. The 1σ Fisher forecast of cosmological parameters from a

noiseless convergence map (3.5 × 3.5 deg2, with 0.41 arcmin per pixel

resolution). The de-correlated first-order scattering coefficients s2/s1 provide

critical information to break the �8 degeneracy along which the power

spectrum cannot distinguish, therefore drastically improve the constraint.

checked that they still provide substantial sensitivity along the �8

degeneracy. Due to this additional sensitivity, the scattering transform

can be used to better constrain cosmological parameters than the

power spectrum.

4.2 Constraining cosmological parameters

We now present the cosmological constraints set by the scattering

coefficients measured from a single 3.5 × 3.5 deg2 field. For

reference, we note that LSST will generate about 2,000 times more

data, leading to constraints about 40 times tighter than the numbers

presented below. In this study, we only probe the constraints on �m

and σ 8 and leave the work of using scattering coefficients to constrain

the dark energy equation of state parameter w or neutrino mass

mν to future study. Cosmological inference is just another aspect

of the cosmological sensitivity problem examined in the previous

subsection. The Fisher inference formalism we use in this study is

described in Appendix C.

We first present results in the noiseless case. In Fig. 5, we

demonstrate the 1σ Fisher forecast of �m and σ 8 using all scattering

coefficients (red ellipse) and power spectrum (grey ellipse). The

scattering coefficients provide a dramatically tighter constraint than

the power spectrum. We also show a break-down of this constraining

power into contributions from first-order (blue ellipse) and second-

order (orange ellipse) coefficients alone. As expected, the first-

order coefficients (s1) and power spectrum set similar constraints.

The slight difference of ellipse orientation originates from the

difference between the L1 and L2 norms used by the scattering

transform and the power spectrum. The de-correlated second-order

scattering coefficients (s2/s1) provide a strong constraint along the �8

degeneracy, consistent with our cosmological sensitivity discussion

in Section 4.1.

The zeroth-order coefficient s0 is the mean of the 3.5 × 3.5 deg2

field. While its expectation value over the sky is zero, it does

carry relevant information on those scales by capturing larger

scale modulations of the convergence field. We also note that it

has strong correlations with other scattering coefficients (and the

power spectrum), which is a sign of being in the non-linear regime

of cosmology (see e.g. Li, Dodelson & Croft 2020). Therefore,

although the expected value of s0 is identically zero in all cosmology,

combining s0 with other coefficients helps to substantially tighten

the constraints on cosmological parameters. However, this piece of

information may not scale as fast with the increasing field of view

as the small-scale information, because in real data each patch of

3.5 × 3.5 deg2 fields on the sky are not independent. The mass sheet

degeneracy (see e.g. Bradač, Lombardi & Schneider 2004) is another

problem for using s0, though the s0 of small patches may be obtained

by inheriting the zero-point solution of the whole survey. We find

that including s0 only improves the constraint of �8, consistent with

the understanding that it is a leakage of larger scale fluctuation.

Similar improvement is also found when combining s0 with the

power spectrum.

To be more quantitative, we compare different methods using the

reciprocal of the area of their 1σ Fisher forecast ellipses on the

(�m, σ 8) plane as the figure of merit (FoM). In the noiseless case,

combining all scattering coefficients (s0, s1, s2) leads to a constraint

that is 14 times tighter than that of the power spectrum, 5 times

tighter than peak count statistics, and 3.3 times tighter than the joint

constraint from power spectrum and peak count.

We then compare the performance of the scattering transform to

a state-of-the-art CNN analysis by Ribli et al. (2019b). To perform

a meaningful comparison, we follow Ribli et al. (2019b) to use

noiseless convergence maps smoothed with a σ = 1 arcmin Gaussian

filter. Interestingly, we find that the scattering coefficients extract a

similar amount of cosmological information to the CNN trained in

Ribli et al. (2019b). The corresponding figures of merit are shown in

Table 1.11

We now consider convergence fields in the presence of galaxy

shape noise. As the noise level increases, small-scale structures,

which carry plenty of cosmological information, get erased. As a

result, the constraining power of the scattering coefficients (as well

as other methods) degrades. In Fig. 6, we show the Fisher forecast

of �m and σ 8 from a 3.5 × 3.5 deg2 convergence map under three

noise levels, using the scattering coefficients and the power spectrum.

We also show the posterior constraints from CNNs trained by Ribli

et al. (2019b) on the same simulations. The figures of merit for these

methods, together with the peak count method, are listed in Table 1.

Again, we find that the scattering transform not only outperforms

the power spectrum and peak count, but also provides cosmological

constraints on a par with the state-of-the-art CNNs.

To summarize, we have demonstrated the power of the scattering

transform for cosmological parameter inference with weak lensing

data. For simplicity, we focused on the convergence field but a

similar analysis can also be performed on the shear field. In Fig. 7,

we present quantitative comparisons between the four techniques

discussed in our study. It shows the high performance of the

scattering transform over a wide range of noise levels. We therefore

advocate using this new estimator in the analysis of existing and

upcoming weak lensing surveys, in observational cosmology, and

11We note that Ribli et al. (2019b) do include the field mean information in

their CNN training. So, a fair comparison would be s1 + s2 versus power

spectrum, and s0 + s1 + s2 versus CNN.
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5910 S. Cheng et al.

Table 1. Comparison of the constraining power for (�m, σ 8) between different methods, with a single 3.5 × 3.5 deg2 convergence map. The FoM is

defined as the reciprocal of the 1σ confident area based on Fisher matrix (or the 68 per cent posterior contour, in parentheses) on the (�m, σ 8) plane.

The convergence maps are smoothed with σ = 1 arcmin Gaussian filter except for the case shown in the last column with no smoothing.

Methods �m–σ 8 FoM

ng = 10 arcmin−2 ng = 30 arcmin−2 ng = 100 arcmin−2 Noiseless Noiseless (no smoothing)

Scattering transform: s0 + s1 + s2 50 140 329 1053 3367

Scattering transform: s0 + s1 21 55 133 492 565

Scattering transform: s1 + s2 39 91 181 446 1720

Power spectrum P(l) 20 40 67 104 253

Peak count 30 89 162 170 667

CNN (Ribli et al. 2019b) (44) (121) (292) (1201) (-)

Figure 6. Comparison of different estimators in noisy cases. Ellipses are 1σ Fisher forecast (or posterior, in the CNN case) of cosmological parameters (�m

and σ 8) from noisy 3.5 × 3.5 deg2 convergence maps smoothed with σ = 1 arcmin Gaussian filter. The scattering coefficients have comparable performance as

a state-of-the-art CNN (Ribli et al. 2019b) at all noise levels, and 3–5 times better than the power spectrum depending on the noise level.

more generally, in the analysis of stochastic fields encountered in

physics.

5 D ISCUSSION

5.1 Inference for non-Gaussian fields

In physics, many inference problems concern estimating physical

parameters from realizations of random fields. Ideally, one would

like to use the likelihood function of the field itself, but this is

often out of reach except for several simple cases such as some

Gaussian random fields. Therefore, for the inference problem to

be feasible, a statistical representation of the data is often used.

Statistical descriptors reduce the dimensionality of the data vector

and they tend to Gaussianize according to the central limit theorem.

Both of these properties help to regularize the likelihood. However, it

is still challenging to find a proper representation because in general

a random field can be random in too many different ways. In these

cases, a useful characterization must be one that makes use of known

properties of the field.

Viewed in this direction, traditional statistical approaches with

their own representation framework may or may not suit the prop-

erties of particular fields. For example, the peak count statistic used

in weak lensing cosmology suits the presence of distinct haloes in

convergence maps. N-point functions, closely related to perturbation

theory and convenient for analytical prediction, represent the field

with a series expansion, which makes them good descriptors for

fields slightly deviating from a Gaussian one. A highly non-Gaussian

field, however, requires using larger N. As the number of coefficients

and the complexity of configurations increase rapidly with N,

N-point functions quickly become an inefficient and non-robust

representation of the input field. On the other hand, CNNs try to

learn the field properties and search for informative representation

through a training optimization.

Fortunately, the non-Gaussian fields that originate from physical

interactions do often have common properties. Such fields typically

display localized, coherent structures in multiscales, and smaller

structures often act as building blocks of larger structures. These

properties can be used as the ‘domain knowledge’ to guide our design

or choice of the statistical representation in a general sense. As we

will explain in the next section, the design and operations of the

scattering transform lead to an efficient and robust representation for

such fields, because they are tailored for these properties.

5.2 Attractive properties of the scattering transform

Efficiency: All the three elements (wavelet convolution, modulus,

and the hierarchical design) play essential roles to make the scattering

transform efficient. The use of wavelets balances the resolution in

real and frequency domain. As a result, the scattering transform can

capture localized information from a large range of scales with only a

few coefficients, at each order. After selecting structures of scale jn in

MNRAS 499, 5902–5914 (2020)
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Cosmology with scattering transform 5911

Figure 7. Noise dependence of the (�m, σ 8) constraints with different

methods. The FoM is defined as the 1σ confident area on the (�m, σ 8)

plane. Note that the CNN result (Ribli et al. 2019b) is reported in terms

of posterior, while others are Fisher forecast. For noisy cases, the difference

between scattering transform and CNN is not intrinsic but due to the difference

between posterior and Fisher forecast. Peak count’s performance does not

increase as fast because it is more sensitive to smoothing scale than the other

methods.

one order, the scattering transform then selects structures ‘assembled’

by these jn-scale structures in the next order. This hierarchical

design allows the nth order scattering coefficients to quickly access

configurations described by about 2n points. Moreover, the ‘low-

order’ non-linear operator, modulus, helps to collect information

even beyond the access of 2n point functions. We will discuss it

further in another paper (Cheng et al. in preparation).

These strategies concentrate relevant information to a limited set

of statistical descriptors, which is desirable in terms of compactness

of the representation and the signal-to-noise ratio of each estimator.

For example, in our case, the scattering transform compresses weak

lensing information into 37 coefficients, a number that is much

smaller than typical bi-spectrum descriptors, while achieving CNN-

like constraint on cosmological parameters.

Robustness: All scattering coefficients are ‘first-order’ statistics

in the sense that they are proportional to the input field, and it

is proved that the scattering representation is non-expansive, i.e.

the distance between two vectors in the scattering representation

never exceeds their distance in the original pixel-based representation

(Mallat 2012; Bruna & Mallat 2013). Therefore, it does not amplify

the process variability. This is in contrast to the N-point correlation

function approach, which requires multiplying an increasing number

of field fluctuations and causes high variability. As a result, the

scattering coefficients are low variance descriptors and insensitive to

outliers.

The locality of wavelets, which is related to their logarithmic

spacing and widths in frequency space, also introduces stability to

deformations (Mallat 2012), which is a desired property of robust

descriptors that classical N-point functions do not have.

Interpretability: As discussed in Section 2.4, the scattering

coefficients have a simple and intuitive interpretation. They describe

clustering properties of the field in the following way:

The first-order scattering coefficients are similar to a coarsely

binned power spectrum, which characterize the clustering strength

at different scales j1. As the scattering transform uses an L1 norm

as opposed to an L2 norm, the ratio between s1 coefficients and the

power spectrum provides a measure of sparsity of the field. This

explains why in Fig. 5 the constraints from first-order coefficients

and the power spectrum are slightly different, and just combining

these two can also provide a stronger constraint on cosmology than

using power spectrum alone.

The second-order scattering coefficients characterize the clus-

tering strength of j1-scale structures separated by j2-scales. In

other words, these coefficients characterize the clustering of struc-

tures selected over a given frequency range, or the ‘clustering of

clustering’. Their departure from their Gaussian counterparts is a

robust measure of the strength of non-Gaussianities. The nth-order

scattering coefficients, though not shown explicitly in this study,

can in turn be understood as the strengths of nth-order hierarchy of

clustering of the field at all different combinations of scales.

5.3 Comparison to CNNs

The scattering transform and CNNs share a number of properties.

Both of them have hierarchical layers with localized convolution ker-

nels and use a simple non-expansive non-linear operation. Although

CNNs are usually trained to directly map a field to physical param-

eters, their inside can be considered as composed of a convolutional

part that extracts spatial features and a second part that learns the

mapping from these features to physical parameters. Both parts are

trainable and trained together. The scattering transform, on the other

hand, uses preset wavelets as convolutional kernels and just a few

layers (in our case two layers). So it can be viewed as a non-trainable

mini-CNN playing the role of the first part of trainable CNNs. In the

scattering transform’s approach, the second part of trainable CNNs

is supplanted by using traditional regression techniques.

The trainable kernels make CNNs more flexible and may lead

to a higher performance for finer classification problems such as

classifying different types of rabbits, but in the mean time this

overparametrization defines a much more brittle statistical model

(Szegedy et al. 2013; Bruna & Mallat 2019). Our results imply that

compared to CNNs, the scattering transform has enough expres-

siveness to characterize the matter density field in the cosmological

context while holding provable stability properties. Indeed, as shown

by Ribli et al. (2019b), a CNN trained on convergence maps internally

generates kernels similar to (azimuthally averaged) Morlet wavelets.

Our results also imply that much of the power of CNNs may be

detached from its trainable nature.

Overparametrized models tend to overfit, i.e. to ‘remember’ single

realizations instead of comprehending the overall property of the

whole training set. Thus the overparametrized CNNs require a large

number of simulations as training set to alleviate the overfitting

problem. In contrast, the scattering transform uses preset kernels,

thus has no parametrization in the kernels. In addition, the choice of

CNN architecture can modify the results substantially, as can be seen

in the comparison between results of Ribli et al. (2019b) and Gupta

et al. (2018). As such, CNNs usually require much, and often ad hoc,

fine-tuning. The scattering transform, on the other hand, is not subject

to these sources of variability. It requires the use of simulations only

to probe the cosmic variance of the descriptors. Without learning the
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5912 S. Cheng et al.

kernels, the scattering transform also significantly save calculation

time.

Another view on the overfitting problem is given by the framework

of maximum-entropy regularized estimation, which looks for the

most ‘non-committal’ statistical model under the constraints of

a ‘feature vector’ of sufficient statistics (Jaynes 1957). There is

thus a tension in the design of such vector of sufficient statistics

(Bruna & Mallat 2019): On the one hand, the features should be

descriptive enough so that they introduce enough constraints, i.e.

typical samples from the estimated model should also be typical

in the true distribution; On the other hand, one would like the

features to be efficiently estimated from the available samples, so

that the corresponding statistical model is robust under resampling.

In other words, typical samples from the true distribution should

remain typical under the estimated statistical model.

Finally, when applied to observational data, the scattering trans-

form holds another advantage over CNNs, namely the possibility

to investigate systematic effects. As traditional statistics, the scat-

tering coefficients can be used to derive not only the best-fitting

cosmological parameters, but also an evaluation of the goodness of

fit and therefore a sanity check of the result. In contrast, although the

internal machinery of CNNs can be roughly divided into a feature

extraction part and a regression one, the CNNs are trained as a whole

to learn a direct mapping from the data to the physical parameters.

Due to the overparametrization nature, outputs from intermediate

layers (i.e. the intermediate abstraction of CNN) do not typically

have good statistical properties. Therefore, when using CNN, it is

challenging to check for systematic error in real data.

5.4 Relation to peak count method

The non-linear gravitational evolution of density fluctuations in

the universe gives rise to haloes, which are virialized systems

locally bound by gravity. As highlighted by Ribli et al. (2019b)

in their fig. 10, a substantial amount of non-Gaussian cosmological

information can be extracted from these features. The peak count

method directly captures information in the abundance of haloes.

However, it does not characterize the spatial information including

profiles and positions of these haloes, which is also sensitive to

cosmological parameters. The scattering transform implicitly ex-

tracts a comprehensive information of the abundance, profile, and

distribution of haloes by first highlighting structures of particular

scales and then characterizing their clustering at other scales, as

described in Section 2.4. In the limit of small j1 and large j2, the

second-order scattering coefficients can be understood as a measure

of the ‘two-halo term’ in the halo model at scale j2, weighted by the

halo response to the first wavelet with scale j1. This response is related

to halo profiles. In general, the scattering transform provides a non-

parametric description of the one-halo, two-halo, and transitional

regime where haloes overlap and form larger haloes.

6 C O N C L U S I O N

Characterizing arbitrary non-Gaussian fields is challenging as the

dimensionality of their description can be arbitrarily high. The

subset of fields relevant in physics, however, tends to be more

constrained as they typically display localized, coherent structures.

In the cosmological context, the matter density field presents another

characteristic property, namely hierarchical clustering. An efficient

statistical descriptor of the cosmological density field would ideally

make use of these properties.

In this paper, we advocate the use of the scattering transform

(Mallat 2012; Bruna & Mallat 2013), which generates statistics

designed to extract information from complex fields with provable

stability properties. It involves operations similar to those found in

CNNs: it uses wavelet convolution, which is particularly suitable for

characterizing localized structures; it uses modulus as the non-linear

operation; and it iterates these operations. However, in contrast to

CNNs, the scattering transform does not require training. It generates

a compact set of robust coefficients, which forms a representation

of the input field and can be used as efficient summary statistics for

non-Gaussian information.

We applied the scattering transform to a parameter inference

problem in the context of weak lensing cosmology. For simplicity,

we focused on the convergence field but a similar analysis can also

be performed on the shear field. We used simulated convergence

maps generated by ray-tracing N-body simulation results (Zorrilla

Matilla et al. 2016; Gupta et al. 2018) and measured their scattering

coefficients to infer the cosmological parameters �m and σ 8. On

maps with and without galaxy shape noise, the scattering transform

outperforms the power spectrum and peak counts, and is on a par

with the state-of-the-art CNNs.

As described in Section 5.2, the scattering transform possesses a

series of attractive properties for parameter estimation. It is efficient,

robust, and interpretable. Obtained by iteratively applying wavelet

convolution and modulus and finally taking the expectation value,

the scattering coefficients can be interpreted as the strength of a

hierarchy of clustering at various combinations of scales. Different

from N-point functions, all scattering coefficients have the welcome

property that they remain proportional to the input field, thus

avoid instability problems and extract much more information when

the field distribution has a long tail. Similar to classic statistical

estimators, the scattering transform requires no training or tuning

and offers the possibility to investigate systematic errors potentially

present with real data.

In this paper we demonstrated applications of the scattering

transform in weak lensing data. Using it with existing and upcoming

surveys (see e.g. DES, LSST, Euclid, WFIRST) can be of great

interest to improve constraints and provide consistency checks. Based

on its properties and design, the scattering transform can also be an

attractive approach for many other applications: in observational

cosmology, astrophysics, and beyond.
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APPENDI X A : MORLET WAVELETS

Wavelets are localized oscillations in real space and band-pass filters

in Fourier space. If we simply use a Gaussian envelope to modulate

a plane wave, then we obtain a Gabor function

G(x) = 1√|�| e−x
T �−1

x/2eik0·x , (A1)

where � is the covariance matrix describing the size and shape

of the Gaussian envelope, and k0 determines the frequency of the

modulated oscillation. To keep maximum symmetry, usually � is

selected to have only 1 eigen-value different from the others, and

k0 to be along that eigen direction. Thus, we denote the eigen value

along k0 by σ 2 and the other eigen value by σ 2/s2. The parameter s

is also the ratio of transverse to radial width of the wavelet in Fourier

space.

The Fourier transform of a Gabor function is simply a Gaussian

filter centred at k0,

G̃(k) = e−(k−k0)T �(k−k0)/2 . (A2)

Wider envelope in real space makes narrower filter in Fourier space.

Note that the product k0σ determines the number of oscillations

within ±π ≈ 3 standard deviation of the Gaussian envelope and

allows for a trade off between spatial and frequency resolution.

Unfortunately, a Gaussian profile in Fourier space does not go to

zero at 0 frequency. This contradicts the admissibility of wavelet

which requires wavelets to strictly be band-pass filters, not low-pass

filters. Therefore, a small correction is required. A simple solution is

to introduce an offset, β, before the Gaussian modulation. In Fourier

space this is equivalent to subtracting another Gaussian profile

centred at 0 to cancel out the 0-frequency contribution. Families

of wavelets created in this way are called Morlet wavelets. Formally

ψ(x) = 1√|�| e−x
T �−1

x/2
(
eik0·x − β

)
, (A3)

where β = e−k
T
0

�k0/2 is determined by the admissibility criterion. Its

Fourier transform is

ψ̃(k) = G̃(k) − βe−k
T �k/2 . (A4)

In our study, which is a 2D case, we follow the settings used in the

‘kymatio’ package mentioned in Section 3.3

σ = 0.8 × 2j

k0 = 3π

4 × 2j

s = 4/L , (A5)

where σ is in unit of pixels, j is an integer starting from 0, and k0

is always between 0 and 1. This choice allow a family of Morlet

wavelets best covers the whole Fourier space with a dyadic sequence

of scales (2j). Examples of the Morlet wavelets we use are shown

in Fig. 2. Within the wavelet envelope, there are about 2 cycles of

oscillations, because k0σ ≈ 2.
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APPENDIX B: SC ATTERING TRANSFORM I N

FOURIER SPAC E

It is enlightening to collect some intuition of the scattering transform

in the Fourier domain. In general, as a non-linear operator, a modulus

in real space will mix Fourier modes and scatter information among

different frequencies. In particular, taking the modulus of I⋆ψ , where

ψ has a single peak in Fourier space, will re-express I’s information

around ψ’s frequency in forms of lower frequencies. In other words,

the typical frequency of |I⋆ψ | is lower than I⋆ψ .

Intuitively, this is because the modulus is converting complex-

valued oscillations into its local strength, namely its envelope. For-

mally, this can be revealed by first writing |I⋆ψ | as
√

(I ⋆ ψ)(I ⋆ ψ)∗,

where ∗ stands for complex conjugate, and then Taylor expanding

the square root in terms of (I⋆ψ)(I⋆ψ)∗ − C, where C is the

mean of (I⋆ψ)(I⋆ψ)∗ over all pixels (Mallat 2010). The leading

term of the Taylor expansion is proportional to (I⋆ψ)(I⋆ψ)∗ − C

itself, which corresponds to I⋆ψ’s autocorrelation in Fourier space.

When the power spectrum of I is a smooth function, the frequency

distribution of I⋆ψ is similar to ψ . For the Morlet wavelets used

in the scattering transform, the central wavenumber of the wavelet

ψ is roughly k0 (as defined in Appendix A), and its half-width in

Fourier space around 1/σ . So, its autocorrelation will have an half-

width around
√

2/σ and a centroid at 0. As
√

2/σ ≈ 0.75k0 < k0

(equation A5), this means that the typical frequency of |I⋆ψ | is

lower than I⋆ψ . Therefore, the core operation I → |I⋆ψ | re-

expresses high-frequency information of In in terms of lower fre-

quency modes including the 0-frequency component in the next-order

fields In + 1. As the 0-frequency component is translation invariant,

it can be directly used as a statistical descriptor of the original

field.

Writing the modulus |x| as
√

|x|2 =
√

x · x∗ brings an inter-

esting question: what happens if we replace each modulus by

modulus squared? It can be shown that, in this case, the nth-

order scattering coefficients will exactly become some averaged

2n-point-spectra weighted (binned) by wavelets. Nevertheless, they

are not equivalent to any degenerate case of 2n-point functions in

either real or Fourier domain. For example, at the second order,

these ‘pseudo’ scattering coefficients become

•
Ĩ0(k1)Ĩ0(−k

′
1 −

k2)Ĩ0(k′
1)Ĩ0(−k

′
1 + k2) · W · dk1dk

′
1dk2, where the weight is deter-

mined by the wavelets: W = ψ̃1(k1)ψ̃1(k1 + k2)ψ̃1(−k
′
1)ψ̃1(−k

′
1 +

k2)ψ̃2
2
(k2), and the tilde sign denotes Fourier conjugate. Although

these ‘pseudo’ coefficients may help us understand the connection

between scattering transform and N-point functions in terms of

how they organize spatial configurations, the genuine scattering

transform is fundamentally different from N-point functions, because

it generates ‘first-order’ estimators, which alleviates the problem

of classic moments described in Carron (2011) when dealing with

tailed probability distribution. Indeed, we find that the constraining

power of genuine scattering coefficients is about 4 times stronger

than these ‘pseudo’ ones (in the noiseless, unsmoothed case).

We will discuss this further in another paper (Cheng et al. in

preparation).

A P P E N D I X C : C O S M O L O G I C A L IN F E R E N C E

F R A M E WO R K

In this appendix, we describe the Fisher forecast formalism used to

infer the cosmological parameters in this study. According to the

Cramér–Rao inequality, the variance of any unbiased estimator θ̂ for

model parameters θ cannot be smaller than the inverse of the Fisher

information matrix I(θ) of the model

cov(θ̂ ) ≥ I(θ )−1. (C1)

Elements of the Fisher matrix is defined as

Im,n(θ) ≡
〈

∂ln p(x|θ )

∂θm

∂ln p(x|θ )

∂θn

〉
, (C2)

where x is the observable, p is the likelihood function, and 〈 · 〉 is

the expectation over x. In our cosmological case, θ represents cos-

mological parameters, θ = (�m, σ8), and x represents the statistical

descriptors such as the scattering coefficients. The function p(x|θ ) is

called the likelihood of θ when x is fixed, and is called the probability

density function (PDF) of x when θ is fixed.

In our study, we assume that given any cosmology θ , the PDF of

statistical descriptors x is Gaussian

p(x|θ ) ∝ 1√|C| exp[−1

2
(x − µ)T C−1(x − µ)] , (C3)

where C(θ) and µ(θ ) are the mean and covariance matrix depending

on the cosmological parameters θ . Thus, elements of the Fisher

matrix can be written as

Im,n = ∂µT

∂θm

C
−1 ∂µ

∂θn

+ 1

2
tr(C−1 ∂C

∂θm

C
−1 ∂C

∂θn

) , (C4)

where the first and second items describe the information from

cosmological dependence of µ and C, respectively. To obtain these

items for arbitrary cosmology, we first calculate the sample mean

and covariance matrix of the 512 realizations of each cosmology

in the simulations (Section 3.1). The sample mean is an unbiased

estimator of the real mean vector, but to unbiasly estimate the inverse

of covariance matrix, C−1, a correction factor is needed (Hartlap,

Simon & Schneider 2007):

Ĉ−1 = N − D − 2

N − 1
Ĉ

−1
, (C5)

where Ĉ−1 is the unbiased estimator in the inverse, N is the number

of independent sample used for the estimation, D is the dimension

of each data vector, and Ĉ is the sample covariance before Bessel’s

correction. Then, with a further assumption that µ andC have smooth

cosmological dependence, we use third-order polynomials to fit for

the cosmological dependence of µ’s elements and use 2nd-order

polynomials for C’s elements.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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