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ABSTRACT

Parameter estimation with non-Gaussian stochastic fields is a common challenge in astrophysics and cosmology. In this paper, we
advocate performing this task using the scattering transform, a statistical tool sharing ideas with convolutional neural networks
(CNNs) but requiring neither training nor tuning. It generates a compact set of coefficients, which can be used as robust summary
statistics for non-Gaussian information. It is especially suited for fields presenting localized structures and hierarchical clustering,
such as the cosmological density field. To demonstrate its power, we apply this estimator to a cosmological parameter inference
problem in the context of weak lensing. On simulated convergence maps with realistic noise, the scattering transform outperforms
classic estimators and is on a par with the state-of-the-art CNN. It retains advantages of traditional statistical descriptors, has
provable stability properties, allows to check for systematics, and importantly, the scattering coefficients are interpretable. It is
a powerful and attractive estimator for observational cosmology and the study of physical fields in general.

Key words: gravitational lensing: weak —methods: statistical —cosmological parameters —large-scale structure of Universe.

1 INTRODUCTION

Non-Gaussian fields are ubiquitous in astrophysics. Analysing them
is challenging, as the dimensionality of their description can be
arbitrarily high. In addition, there is usually little guidance on
which statistical estimator will be most appropriate for parameter
inference. In this paper, we advocate using a novel approach, called
the scattering transform (Mallat 2012), for the analysis of such fields
and, in particular, the matter distribution in the Universe, a highly
studied non-Gaussian field.

In many areas of astrophysics and, in particular, in cosmology,
extracting non-Gaussian information has been attempted through
N-point correlation functions (see e.g. Bernardeau, Mellier & van
Waerbeke 2002; Takada & Jain 2003; Semboloni et al. 2011; Fu et al.
2014, for weak lensing applications) and polyspectra, their Fourier
equivalents (see e.g. Sefusatti et al. 2006). Correlation functions are
convenient for theoretical predictions and for measuring weak de-
partures from Gaussianity. However, being high powers of the input
field, these statistics suffer from an increasing variance and are not
robust to outliers in real data, making them gradually less informative
(Welling 2005). If the distribution of field intensity has a long tail, the
amount of information accessible to N-point functions will quickly
decrease (Carron 2011). In addition, the number of configurations to
consider for N-point functions explodes with the number of points
used. As a result, information is highly diluted among coefficients,
and it becomes a challenge to efficiently extract information with N-
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point functions. Other methods, including performing a non-linear
transformation before calculating correlation functions (Neyrinck,
Szapudi & Szalay 2011; Simpson et al. 2011; Carron & Szapudi
2013; Giblin et al. 2018), using topological properties such as
Minkowski functionals (Mecke, Buchert & Wagner 1994; Hikage
et al. 2003; Kratochvil et al. 2012; Shirasaki & Yoshida 2014),
and using biasing properties such as counts of clusters, peaks, and
voids (Jain & Van Waerbeke 2000; Marian, Smith & Bernstein 2009;
Kratochvil, Haiman & May 2010; Liu et al. 2015a, b; Pisani et al.
2019), have also been considered. However, in the cosmological
context, these excursions into non-Gaussian signal analyses have
had limited impact in improving existing constraints on cosmological
parameters so far.

Recently, convolutional neural networks (CNNs; e.g. Lecun et al.
1998) have claimed supremacy in a wide variety of applications
aimed at extracting information from complex data. They have also
shown promises to efficiently retrieve cosmological information well
beyond second-order statistics (see e.g. Gupta et al. 2018; Ribli,
Pataki & Csabai 2019a; Ribli et al. 2019b). While the potential
of this method is enormous, it also comes with a number of
issues. To precisely and robustly estimate cosmological parameters,
CNNs require a large training set. In addition, when applied to
real data, systematic errors not included in the training process of
CNN can hardly get checked and controlled, whereas for traditional
statistics, a simple x? test can do so. As such, the use of CNNs
in real data comes with limitations regarding interpretability and
validity.

In this paper, we advocate using a different approach called
the scattering transform to efficiently and robustly extract statis-

© 2020 The Author(s)

Published by Oxford University Press on behalf of the Royal Astronomical Society

120z @unp Z0 U Jasn Aleuqr suiIpal JO [004oS NAN Ad LOTHZ6S/2065/7/661/0101e/SBIuW/WO0D"dNO"0ILSPEDE//:SARY WOI) PAPEOJUMOQ



tical information from non-Gaussian fields.! The operations and
structure of the scattering transform have close similarities with
those built in CNNSs, but the scattering transform does not require
any training, and like traditional statistics, it generates coefficients
with proved properties. It can therefore hopefully overcome the
aforementioned limitations encountered with CNNs. In Section 2, we
introduce the scattering transform, present intuitive understanding of
its coefficients, and visualize its key properties. In Sections 3 and
4, we demonstrate the power of the scattering transform to infer
cosmological parameters (€2, and og) in the context of weak lensing
using simulated convergence maps. As we will show, it outperforms
the power spectrum and peak counts, and is on a par with the state-
of-the-art CNN. Finally, we comment on the attractive properties of
the scattering transform in Section 5 and conclude in Section 6.

2 THE SCATTERING TRANSFORM

In this section, we present the scattering transform and intuitive
interpretations of its coefficients. The scattering transform generates
a compact set of coefficients that captures substantial non-Gaussian
information beyond the power spectrum. In contrast to N-point func-
tions, the scattering coefficients are all proportional to the input data,
and do not suffer from the increasing variance issue. Thus, the scat-
tering coefficients, which form a representation of the input field, can
be used to extract non-Gaussian information efficiently and robustly.
This is particularly attractive from a data analysis point of view.

2.1 Motivation

The scattering transform was originally proposed by Mallat (2012)
as a tool for signal processing to extract information from high-
dimensional data. In contrast to neural networks, it comes with
attractive provable properties, including translational invariance,
non-expanding variance, and Lipschitz continuous to spatial defor-
mation (Mallat 2012). Interestingly, the scattering transform has also
provided key insights into deciphering the remarkable behaviour
and performance of CNNs (Bruna & Mallat 2013). A perhaps
counter-intuitive feature of CNNs is that the convolution, though
restricting the flexibility of the neural network, dramatically boosts
its performance on many types of data. In addition, a successful
CNN architecture can often be re-purposed for very different tasks.
These facts suggest that a certain mathematical structure enables
efficient information extraction from a wide range of complex data.
Understanding this structure may dramatically simplify the costly
training process required when using neural networks.

The scattering transform has been successfully used in many
areas, including audio signal processing (Andén & Mallat 2014),
image classification (Bruna & Mallat 2013), texture classification
(Sifre & Mallat 2013), materials science (Hirn, Mallat & Poilvert
2017; Eickenberg et al. 2018; Sinz et al. 2020), multifractal analysis
in turbulence and finance (Bruna et al. 2015), and graph-structured
data (Gama, Ribeiro & Bruna 2018). Several of these examples
reached state-of-the-art performance compared to the CNNs in use at
the time. In astrophysics, a pioneer application has been performed
by Allys et al. (2019) to analyse the interstellar medium.

The scattering transform can be used with two possible goals
in mind: representing a specific realization of a field (with a

I'This work was done simultaneously and independently of that presented in
Allys et al. (2020), where the authors apply a different but related technique,
the wavelet phase harmonic, to slices of the matter density field.
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classification goal) or characterizing the global statistical properties
of a field. The narratives in these two regimes are slightly different
(Mallat 2012; Bruna & Mallat 2013). We will focus on the latter one,
which is relevant to cosmological applications.

2.2 Formulation

Here, we present the formulation of the scattering transform in the
context of characterizing random fields (Mallat 2012). We focus on
the 2D case in this study, but it can be directly generalized to any
other dimensionality. For clarity, we will attach the notation (x, y)
for the spatial dependence of a field only when it is first introduced.

To extract information from an input field, the scattering transform
first generates a group of new fields by recursively applying two
operations: a wavelet convolution and a modulus. Then, the expected
values of these fields are defined as the scattering coefficients and
used to characterize statistical properties of the original field (see
Fig. 1 for an illustration). This hierarchical structure, the use of
localized convolution kernels, and the use of non-expansive non-
linear operator are all elements found in the architecture of CNNs.

Formally, given an input field Iy(x, y), the scattering transform
generates a set of first-order fields /;(x, y) by convolving it with a
family of wavelets ¥+ /(x, y) and then taking the modulus:

L= Iyt (1)

where [, represents a group of fields labelled by the wavelet index
Ji, 1. Wavelets are localized oscillations and band-pass filters. Fig. 2
shows the profiles of Morlet wavelets in real and Fourier spaces.
Morlet wavelets are used in our study and described in Appendix A.
In general, a family of wavelets covers the whole Fourier space. They
all have the same shape but different sizes and orientations, labelled
by j and [, respectively. They can all be generated through dilating
and rotating a prototype wavelet. In the scattering transform, the
convention is to use a dilation factor of 2, such that for a pixelized
field, the size of a wavelet ¥/ in the real space is roughly 2/ pixels.

Having created the first-order fields, one can then iterate the same
process to create second-order fields /> (x, y)

L= |l » g2k
=[xy x gt (@)

where I, represents a group of fields labelled by the two sets of
waveletindex j, [ andj, [,. Anillustration of these first two orders of
scattering transform is shown in Fig. 1. Higher order scattering fields
can be created with further iterations. We note that the iterations are
not commutative, so maintaining the order of wavelets is important.
In this paper, we will only show the scattering transform up to the
second order, because we find that in our particular data set, little
cosmological information is stored in the third order.

If the input field /; is homogeneous, then all the generated fields
I, remain homogeneous. Therefore, the expected values of their
intensity can be used as translation-invariant descriptors of the input
field

So = (Io) ®
S{l,ll - <11j1,l| ) = (‘10 > Yt ’> )
Sglvllv.vaIZ = <12jlvllvj2v12) — (“10 * 1/,1'14,11 | % 1'[,/'2,12 |> . %)

These expected values S, are called the nth-order scattering co-
efficients. Due to homogeneity, these expected scattering coeffi-
cients can be estimated by taking the spatial average of a single
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Input field 1,
Coefficients: Sy = (1)

Fields Iy = | Io % s |

Coefficients: S; = (I;)

Ji=4)j2=2

Fields I, = I [ Iy * y | *‘l’z‘

Coefficients: S, = (L)

j1=0, jo=4

0.67

j1=0, j>=6

1=2, j>=6 j1=4, j2=6

Figure 1. Tllustration of the scattering transform on a weak lensing map. The azimuthal resolution is set to be L = 4. For clarity, we only show results using
wavelets with orientation indices /; = 1 and [, = 1, and several selected scale indices j; and j,. In the top left corner of each panel, we show the mean value of
that field. They are the scattering coefficients (So, S1, S2) of the input field. For a convenient display, the blue numbers are 10* times the coefficients derived from
the lensing map. For example, the Sy coefficient of this lensing map is actually 0.002 67. The colour bar ranges for Iy, I1, and I, fields are adjusted separately

for better visualization.

realization
Sn = <In>x.y ’ (6)

where §n is an unbiased estimator of S, and ( - ), , represents the
spatial average of a field.?

The number of scattering coefficients S, is determined by the
number of wavelets used. Setting J different scales (2/ cannot exceed
the side length of the field) and L different orientations results in J x
L different wavelets used in total. If all combinations of wavelets are
used, then the number of coefficients at the nth-order will be J"L".

2To follow the convention in cosmology, we use slightly different notations
from Mallat (2012): we use S, to represent the expected values, which
characterize properties of a random field and which Mallat denotes as S,;
we use S, to represent S,,’s estimators calculated from spatial average, which
Mallat directly denotes as S,,.

MNRAS 499, 5902-5914 (2020)

‘When considering an isotropic field, which is the case of interest in
cosmology, the scattering coefficients S, can be further reduced. To
construct isotropic statistics, we simply average over all orientation
indices, which reduces the number of coefficients by an order of L"
and creates a more compact and robust set of statistical descriptors.
We thus define our reduced scattering coefficients as

S0 = SO (7)
st = (s, @®)
S;lvfz = <S§1111J2JZ>11,12 R (9)

where S, represent the standard scattering coefficients, s, represent
our reduced coefficients, and () ; denotes an average over orientation
indices. The reduced coefficients s, can also be understood as the
expected value of some ‘reduced’ fields (/,);, .. ;,, which are ‘stacks’
of the I, with same scale indices j but different orientation indices
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Figure 2. Upper panel: profile of a Morlet wavelet (j = 6,/ = 0, image size
512 x 512 pixels) in the real space and another one (j =1,/ = 1) in Fourier
space. The centre of the Fourier space represents zero frequency. Lower
panel: radial frequency profiles of a family of wavelets. Dilating/contracting
(by factor of 2) and rotating (by /L) one wavelet give the whole family of
wavelets used in the scattering transform.

ly, .., I,. We show several examples of second-order ‘reduced’ fields
in Fig. 3, where information is condensed, so features look clearer
than in Fig. 1. Our reduction is similar to the first group of isotropic
coefficients used by Allys et al. (2019). Up to the second order, our
reduced set includes 1 + J + J? coefficients. As a result, probing
the full range of scales for an image with 512 x 512 pixels (/ = 8)
yields in total 73 reduced scattering coefficients.

In general, performing azimuthal averages over both /; and /,
leads to information loss. To preserve more isotropic information,
one could keep /, — [; as an index of the reduced second-order
scattering coefficients (Bruna & Mallat 2013; Allys et al. 2019) or
apply the ‘scattering strategy’ again to rotation (Sifre & Mallat 2013).
In the weak lensing study presented below, however, we checked
that this additional information does not improve the performance
of our analysis, probably due to the lack of anisotropic structures
in the weak lensing maps we use. So, we do not take it into
account.

Having introduced the mathematical formulation of the scattering
transform, we will present in the next section some intuitive under-
standing of its key operations.

2.3 The role of wavelet convolution and modulus

The core operation I — |Ixy//!| employed by the scattering transform
comprises two steps: a convolution by a complex-valued wavelet and
amodulus operation. In short, the wavelet convolution selects scales,
and the modulus converts fluctuations into their local strength.

Let us discuss the wavelet convolution first. As a wavelet is
a band-pass filter, the wavelet convolution selects Fourier modes
around a central frequency and coarsely separates information of
different scales (see Fig. 2). Due to the locality of wavelets in real
space, which is related to their logarithmic spacing and widths in
Fourier space, the scattering coefficients are Lipschitz continuous
to deformation, meaning that similar fields differing by a small
deformation (including a small dilation) are also similar in the
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representation formed by scattering coefficients (Mallat 2012), and
therefore the scattering characterization is a stable one. Fourier coef-
ficients (without binning), in contrast, are not stable to deformation
at high frequencies.

One key idea of the scattering transform is to generate ‘first-order’
statistics, in contrast to higher order moments, which multiply an
increasing number of field intensities and cause instability to outliers.
Being a linear operator, the wavelet convolution certainly keeps the
“first-order’ property. However, for a homogeneous random field,
convolution alone cannot extract information beyond the mean of
the original field (/), because the expected value operator commutes
with all linear transformations. Extracting more information requires
non-linear operations. For example, in N-point functions, the multi-
plication of field intensities plays the role. The scattering transform,
on the other hand, employs the modulus operation, which is a natural
choice to preserve the desired property of working with first-order
statistics (Mallat 2012).

As the modulus is taken in the real space and is non-linear, its
behaviour in Fourier space is not simple. Nevertheless, we collect
some intuitive understandings and present them in Appendix B for
interested readers.

2.4 Information extraction beyond the power spectrum

There are a number of similarities between the power spectrum
and each single iteration of the scattering transform. Indeed, the
power spectrum can be defined using the formalism of the first-order
scattering coefficients §; = (| Ioxy]) :

P(k) o (|Io * ¥/ |?) with ' = e~ k> (10)

The differences between the two estimators S; and P(k) are the
choice of convolution kernels (wavelets ¥ or Fourier modes ') and
that of the norm (L' versus L?). Therefore, the first-order scattering
coefficients have similarity to the power spectrum. Both of them
characterize the strength of fluctuations (or clustering) as a function
of scale.

However, in the case of the power spectrum, the convolution
kernel (' = e ***) is completely de-localized in real space. Thus,
the power spectrum’s version of I; fields ([Ipxy'|?) lose all spatial
information. In contrast, the use of localized wavelets in the scattering
transform allows I, to preserve spatial information, as shown in
Figs 1 and 3. According to the analogy with the power spectrum, the
mean of an /; field characterizes the average amplitude of Fourier
modes selected by the wavelets, whereas the spatial distribution of
fluctuations in /;, missing in the power spectrum analogue, in turn
encodes the phase interaction between those Fourier modes. This
information can be extracted by applying the scattering operations
once again, [} — I, = |[}xY¥;| = ||Ip*{1|*r,|, and then measuring
the mean of /,, i.e. second-order scattering coefficients S,.

According to the power spectrum analogy, S, coefficients resemble
the power spectrum of /; fields and measure clustering properties on
1,. Because [ fields highlight the regions where fluctuations around
a scale are stronger, the second-order coefficients can be understood
as measuring the clustering of structures highlighted in /;, i.e. the
‘clustering of (clustered) structures’.

This leads to an interesting intuition: we need two points to
describe the scale of one structure and an additional two points for
another one. Therefore, the second-order scattering coefficients S5,
which measure the clustering of sized structures, include information
up to about 4-point. In general, an nth-order scattering coefficient
S, will contain information up to about 2"-point function of the
input field. By this ‘hierarchical clustering” design, the scattering-
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power spectrum
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log k%P (k)
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log k™! I,

.

=1, j»=3,

non-Gaussianity increases

j1=1, =3
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Figure 3. The scattering transform of three fields (Ip) with indistinguishable power spectra. Row 1 shows a realization of convergence maps in cosmology (2,
og) =(0.292, 0.835), row 2 shows cosmology (2, 0g) = (0.566, 0.520), and row 3 is for a Gaussian random field with the same (2D) power spectrum as row
1. It can be seen by eye that the average intensity of the second-order scattering fields (the last column), which corresponds to an s, coefficient and measures the
clustering strength of structures highlighted by /1, is significantly different from each other, while their power spectra (the first column) are indistinguishable.

transform expansion quickly includes information from higher order
statistics.

However, it should be noted that there is still a fundamental
difference between the scattering transform and N-point functions.
There are mainly two difficulties associated with N-point functions to
characterize a random field: the failure to describe distribution tails
and the huge number of configurations. The first difficulty, related
to the multiplication of multiple random variables, leads to high
variances and also prevents the extraction of information from fields
whose pdf has a tail (Carron 2011). The scattering transform, which
uses modulus and does not enhance the tail, can significantly alleviate
this problem. We will discuss it further in another paper (Cheng
et al. in preparation). The second difficulty may be alleviated by an
efficient binning. For example, the hierarchical wavelet transform
used in the scattering transform is a binning strategy that can also be
applied to N-point functions (see Appendix B).

3 APPLICATION IN WEAK LENSING
COSMOLOGY

We now show that the scattering transform can be a powerful tool
in observational cosmology to extract non-Gaussian information
from the matter density field. To illustrate this point, we consider
an application with two-dimensional fields: we show how well
cosmological parameters can be constrained using the scattering
coefficients of weak lensing convergence maps (0 ) or, equivalently,
measurements of cosmic shear. Being projections of the density field
along the line of sight, these maps present an appreciable level of non-
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Gaussianities on scales smaller than a few degrees, reflecting the non-
linear growth of matter fluctuations. For the necessary background on
cosmology with gravitational lensing, we refer the reader to reviews
(Kilbinger 2015; Mandelbaum 2018).

We explore the use of our reduced scattering coefficients on
simulated weak lensing convergence maps to infer 2, and og and
compare their performance with that of the power spectrum. We also
compare our results with that of a state-of-the-art CNNs by Ribli
et al. (2019b) and peak count statistics.

3.1 Simulated convergence maps

We use mock convergence maps in the ‘Dark Matter’ dataset
generated by the Columbia Lensing team® and described in Zorrilla
Matilla et al. (2016) and Gupta et al. (2018). The maps are produced
through ray-tracing to redshift z = 1 in the output of dark matter-only
N-body simulations for a set of ACDM cosmologies. Each simulation
is run in a 240 A~' Mpc box with 5123 particles. The cosmologies
differ only in two parameters: the present matter density relative to the
critical density €2, and a normalization of the power spectrum og.
Other cosmological parameters are fixed: baryon density €2, = 0.046,
Hubble constant & = 0.72, scalar spectral index ny = 0.96, effective
number of relativistic degrees of freedom 7 = 3.04, and neutrino
masses m, = 0.0. The dark energy density is set so that the universe
is spatially flat, i.e. 2y = 1 — . For each cosmology, 512

3http://columbialensing.org
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convergence maps with 3.5 x 3.5 deg? field of view are generated
from the simulations, allowing us to sample cosmic variance. The
corresponding scales are well suited to probing the non-Gaussianities
of the convergence field (Kilbinger 2015). These maps were also used
by Ribli et al. (2019b). To compare our results to Ribli et al. (2019b),
we use the same resolution as theirs, down-sampling the original
10242 pixel maps to a 5122 resolution with 0.41 arcmin per pixel.

3.2 Galaxy shape noise and smoothing

In practice, convergence or shear estimates are obtained from
measurements of galaxy shapes, with a level of noise that depends
on the galaxy ellipticity distribution and their number density on the
sky. To first order, background galaxies used for shear measurements
have a wide range of redshifts and are not correlated. The noise can
be well approximated as Gaussian white noise. Its contribution to the
convergence maps can be modelled (van Waerbeke 2000) as

2
2 O (11)

oS =
noise ’
anApiX

where o is the intrinsic variance of ellipticity of galaxies, which is
taken to be 0.42, n, is the number density of background galaxies,
Ayix is the area per pixel, which is 0.1682 arcmin?. For some existing
and on-going surveys such as CFHTLenS, KiDS,* and DES.’ n, is
around 10 arcmin~2 (Kilbinger et al. 2013; Abbott et al. 2018); for
some upcoming surveys we expect substantially higher densities:
ng ~ 25 arcmin™2 for the survey at Vera C. Rubin Observatory
(LSST) .5 ny > 30 aremin™ for Euclid,” and ng ~ 50~75 arcmin™2
for the planned survey with Nancy Grace Roman Space Telescope
(WFIRST).2

After adding noise, we also smooth the maps. As the power
of Gaussian white noise is distributed mostly at high frequencies,
smoothing the convergence maps can help to increase the signal-
to-noise of specific estimators. By default, we do not smooth the
noiseless maps, and we perform a o = 1 arcmin (2.44 pixel) Gaussian
smoothing on noisy maps.

3.3 Statistical descriptors

Scattering coefficients: For each 3.5 x 3.5 deg® convergence field
in each cosmology, we apply the scattering transform up to second
order using the ‘kymatio’ PYTHON package’ (Andreux et al. 2020)
and then calculate the reduced coefficients (sg, 51, 52) as defined in
Section 2.2. To probe the available range of scales, we set J = 8
and L = 4 in the scattering transform, i.e. we use 8 scales spaced
logarithmically with central wavelengths between 1.2 and 75 arcmin
and 4 azimuthal orientations, resulting in 32 different wavelets used
in total.

By default, the ‘kymatio’ package only calculate the second-order
coefficients with j, > j;, because the coefficients with j, < j; is
mainly determined by the property of wavelets but not the input field,
as illustrated by the upper-right sketch of Fig. 4. Intuitively, this is
because structures of a particular size, say j;, do not have meaningful
clustering at scales smaller than their own size. A mathematical

4 http://kids.strw.leidenuniv.nl
Shttps://www.darkenergysurvey.org
Shttps://www.lsst.org
"https://sci.esa.int/euclid
8https:/roman.gsfc.nasa.gov
https://www.kymat.io
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reasoning for this property can also be found in Appendix B. To
demonstrate these coefficients’ behaviour, we modified the ‘kymatio’
code to calculate them, and show them together with the coefficients
with j, > j; in Fig. 4. Nevertheless, we checked that they do not
contribute to constraining cosmological parameters, and therefore in
our inference analysis, we only use second-order coefficients with j,
> ji, which yields an even more compact set of 1 + 8 + 28 = 37
scattering coefficients used for our cosmological inference.

Power spectrum: For the same set of input fields, we also compute
the power spectrum and peak count statistics using the publicly
available ‘LensTools’ PYTHON package'® (Petri 2016). The power
spectrum is calculated within 20 bins in the range 100 </ < 37 500
(corresponding to 0.58-216 arcmin) with logarithmic spacing, fol-
lowing the setting adopted in Ribli et al. (2019b).

Peak count: In our analysis, a peak is defined as a pixel with
higher convergence («) than its eight neighbours. Then, peaks are
binned by their « values and counted in each bin. We adopt a binning
similar to that in Liu et al. (2015a). We use 20 bins in total, including
18 bins linearly spaced between ¥ = —0.02 and 0.12, one bin for
peaks below —0.02, and one bin above 0.12. For reference, k = 0.12
corresponds to a significance of peak v = k/0 i around 7 when
ng = 30. Although using more bins for very high peaks (« > 0.12)
may enhance the constraining power of the peak count method, we
do not use them in this study, because the count distribution of these
rare peaks can no longer be approximated by Gaussian distribution
(see e.g. Lin & Kilbinger 2015).

To obtain constraints on the cosmological parameters, we use
the Fisher inference framework (Fisher 1935; Tegmark, Taylor &
Heavens 1997), in which we assume the probability distribution of
statistical descriptors is a multivariate Gaussian distribution for a
given cosmology. The mean vector and covariance matrix of this
Gaussian distribution are dependent on cosmological parameters
and estimated from the 512 realizations of each cosmology in
simulations. Details of our cosmological inference framework are
described in Appendix C. Because s;, 52, and power spectra must
be positive for a non-trivial field, we consider their logarithm to
better satisfy a multivariate Gaussian likelihood. To perform the
cosmological inference analysis with the three methods introduced
above, we use

(i) 37 scattering coefficients.
(ii) 20 power spectrum coefficients.
(iii) 20 peak count coefficients.

4 RESULTS

In this section, we examine the distribution and cosmological
sensitivity of scattering coefficients, and present their constraining
power for two cosmological parameters, 2, and og. We show that
the scattering coefficients provide substantially more information
than the power spectrum and is on a par with CNN.

4.1 Cosmological sensitivity of the scattering coefficients

In Fig. 4, we present the distributions of reduce scattering transform
in the noiseless case together with the power spectrum. In the first
row, we show the values for a fiducial cosmology that has the Planck
cosmology of 2, = 0.309 and o3 = 0.816 (Planck Collaboration
etal. 2016). The expected values of these descriptors are estimated by

1%https://lenstools.readthedocs.io
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Figure 4. Upper-left panel: The fiducial cosmology (black) and two other cosmologies on the (2, o'g) plane. Upper-right panel: Illustration of reduced
scattering coefficients s1(ji) and s2(ji, j2) for a single j; scale. Lower panel: The power spectrum and scattering coefficients for the three cosmologies in
noiseless case. The first row presents coefficients of the fiducial cosmology and of Gaussian random fields with the same power spectrum, and the second
row shows changes of coefficients (A coef.) when we move from the fiducial cosmology to the other two. Error bars and grey shaded regions show cosmic
variance, i.e. the variability among realizations. The first-order scattering coefficients behave similarly to the power spectrum, while the second-order scattering
coefficients can break the Xg degeneracy, along which non-Gaussianity of weak lensing field changes.

averaging over different realizations of a given cosmology. Error bars,
which are the sample standard deviations of realizations, represent
the cosmic variance in this noiseless case. We can see the similarity
between the power spectrum and s; coefficients, as they have similar
physical meanings (Section 2.4). We can also see the different
behaviours of s, coefficients for j, < j; and j, > jj, as discussed
in Section 3.3.

Then, we investigate the cosmological sensitivity of the power
spectrum and scattering coefficients. The power spectrum is known
to be mostly sensitive to one combination of the cosmological
parameters, namely

g = oy <&> , (12)

with a around 0.6 (see e.g. Kilbinger 2015), but can hardly distinguish
cosmologies with the same Xg, as illustrated in the upper-left panel
of Fig. 4. Breaking this degeneracy requires the extraction of non-
Gaussian information from lensing maps.

MNRAS 499, 5902-5914 (2020)

In the second row of Fig. 4, we show the response of coefficients
as cosmological parameters move along (orange curves) and across
(blue curves) the X g degeneracy. Grey areas indicate cosmic variance
of the fiducial cosmology. As expected, the first-order scattering
coefficients show a cosmological sensitivity similar to that of the
power spectrum, because both of them measure the strength of
fluctuations as a function of scale.

The second-order scattering coefficients, on the other hand, char-
acterize the spatial distribution of sized fluctuations. To make the
second-order scattering coefficients less correlated with the first-
order ones, here we present de-correlated second-order coefficients
so/s1, as each $,(jy, jo) is proportional to the corresponding s;(j;)
according to their definitions (Bruna et al. 2015). These s,/s; exhibit
particularly high sensitivity to cosmological change along the Xg
degeneracy. In addition, they are indifferent to the other direction
of cosmological change, which means they provide a piece of
information roughly orthogonal to that carried by the first-order
coefficients s, or the power spectrum. In noisy cases, though the
information from s,/s; is not orthogonal to s; anymore, we have
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Figure 5. The lo Fisher forecast of cosmological parameters from a
noiseless convergence map (3.5 x 3.5 deg?, with 0.41 arcmin per pixel
resolution). The de-correlated first-order scattering coefficients s2/s provide
critical information to break the ¥g degeneracy along which the power
spectrum cannot distinguish, therefore drastically improve the constraint.

checked that they still provide substantial sensitivity along the Xg
degeneracy. Due to this additional sensitivity, the scattering transform
can be used to better constrain cosmological parameters than the
power spectrum.

4.2 Constraining cosmological parameters

We now present the cosmological constraints set by the scattering
coefficients measured from a single 3.5 x 3.5 deg® field. For
reference, we note that LSST will generate about 2,000 times more
data, leading to constraints about 40 times tighter than the numbers
presented below. In this study, we only probe the constraints on 2y,
and o and leave the work of using scattering coefficients to constrain
the dark energy equation of state parameter w or neutrino mass
m, to future study. Cosmological inference is just another aspect
of the cosmological sensitivity problem examined in the previous
subsection. The Fisher inference formalism we use in this study is
described in Appendix C.

We first present results in the noiseless case. In Fig. 5, we
demonstrate the 1o Fisher forecast of 2, and o'g using all scattering
coefficients (red ellipse) and power spectrum (grey ellipse). The
scattering coefficients provide a dramatically tighter constraint than
the power spectrum. We also show a break-down of this constraining
power into contributions from first-order (blue ellipse) and second-
order (orange ellipse) coefficients alone. As expected, the first-
order coefficients (s;) and power spectrum set similar constraints.
The slight difference of ellipse orientation originates from the
difference between the L' and L? norms used by the scattering
transform and the power spectrum. The de-correlated second-order
scattering coefficients (s,/s1) provide a strong constraint along the ¥g
degeneracy, consistent with our cosmological sensitivity discussion
in Section 4.1.

Cosmology with scattering transform 5909

The zeroth-order coefficient sy is the mean of the 3.5 x 3.5 deg”
field. While its expectation value over the sky is zero, it does
carry relevant information on those scales by capturing larger
scale modulations of the convergence field. We also note that it
has strong correlations with other scattering coefficients (and the
power spectrum), which is a sign of being in the non-linear regime
of cosmology (see e.g. Li, Dodelson & Croft 2020). Therefore,
although the expected value of s is identically zero in all cosmology,
combining sy with other coefficients helps to substantially tighten
the constraints on cosmological parameters. However, this piece of
information may not scale as fast with the increasing field of view
as the small-scale information, because in real data each patch of
3.5 x 3.5 deg? fields on the sky are not independent. The mass sheet
degeneracy (see e.g. Brada¢, Lombardi & Schneider 2004) is another
problem for using s, though the sy of small patches may be obtained
by inheriting the zero-point solution of the whole survey. We find
that including sy only improves the constraint of Xg, consistent with
the understanding that it is a leakage of larger scale fluctuation.
Similar improvement is also found when combining sy with the
power spectrum.

To be more quantitative, we compare different methods using the
reciprocal of the area of their 1o Fisher forecast ellipses on the
(2, og) plane as the figure of merit (FoM). In the noiseless case,
combining all scattering coefficients (so, 51, s2) leads to a constraint
that is 14 times tighter than that of the power spectrum, 5 times
tighter than peak count statistics, and 3.3 times tighter than the joint
constraint from power spectrum and peak count.

We then compare the performance of the scattering transform to
a state-of-the-art CNN analysis by Ribli et al. (2019b). To perform
a meaningful comparison, we follow Ribli et al. (2019b) to use
noiseless convergence maps smoothed with a o = 1 arcmin Gaussian
filter. Interestingly, we find that the scattering coefficients extract a
similar amount of cosmological information to the CNN trained in
Ribli et al. (2019b). The corresponding figures of merit are shown in
Table 1.1

We now consider convergence fields in the presence of galaxy
shape noise. As the noise level increases, small-scale structures,
which carry plenty of cosmological information, get erased. As a
result, the constraining power of the scattering coefficients (as well
as other methods) degrades. In Fig. 6, we show the Fisher forecast
of Q, and o'g from a 3.5 x 3.5 deg® convergence map under three
noise levels, using the scattering coefficients and the power spectrum.
We also show the posterior constraints from CNNs trained by Ribli
et al. (2019b) on the same simulations. The figures of merit for these
methods, together with the peak count method, are listed in Table 1.
Again, we find that the scattering transform not only outperforms
the power spectrum and peak count, but also provides cosmological
constraints on a par with the state-of-the-art CNNs.

To summarize, we have demonstrated the power of the scattering
transform for cosmological parameter inference with weak lensing
data. For simplicity, we focused on the convergence field but a
similar analysis can also be performed on the shear field. In Fig. 7,
we present quantitative comparisons between the four techniques
discussed in our study. It shows the high performance of the
scattering transform over a wide range of noise levels. We therefore
advocate using this new estimator in the analysis of existing and
upcoming weak lensing surveys, in observational cosmology, and

"We note that Ribli et al. (2019b) do include the field mean information in
their CNN training. So, a fair comparison would be s; + s» versus power
spectrum, and so + s; + 52 versus CNN.

MNRAS 499, 5902-5914 (2020)

1202 dunf Z0 U Jasn Aleiqr auIIPS JO [0049S NAN A LOYHZ6S/Z06S/¥/661/91o1HE/SEIUL/WOD dNO"dlWSpPEdE//:SdRY Wol) papeojumoq



5910  S. Cheng et al.

Table 1. Comparison of the constraining power for (Qp,, o'g) between different methods, with a single 3.5 x 3.5 deg? convergence map. The FoM is
defined as the reciprocal of the 1o confident area based on Fisher matrix (or the 68 per cent posterior contour, in parentheses) on the (2, og) plane.

The convergence maps are smoothed with o = 1 arcmin Gaussian filter except for the case shown in the last column with no smoothing.

Methods Qm—og FoM
ng =10 arcmin—?2 ng =30 arcmin 2 ng =100 arcmin~?  Noiseless Noiseless (no smoothing)

Scattering transform: so + 51 + 52 50 140 329 1053 3367
Scattering transform: so + s1 21 55 133 492 565

Scattering transform: s; + s2 39 91 181 446 1720

Power spectrum P(/) 20 40 67 104 253

Peak count 30 89 162 170 667

CNN (Ribli et al. 2019b) (44) (121) (292) (1201) (-)

scattering transform power spectrum CNN (Ribli+19)

ne, = 10,30, 100 arcmin™2
with 1" smoothing

0.4
Qm

0.2

0.6 0.2

0.4
Om

0.4
Om

0.6 0.2 0.6

Figure 6. Comparison of different estimators in noisy cases. Ellipses are 1o Fisher forecast (or posterior, in the CNN case) of cosmological parameters (2,
and og) from noisy 3.5 x 3.5 deg? convergence maps smoothed with o = 1 arcmin Gaussian filter. The scattering coefficients have comparable performance as
a state-of-the-art CNN (Ribli et al. 2019b) at all noise levels, and 3—5 times better than the power spectrum depending on the noise level.

more generally, in the analysis of stochastic fields encountered in
physics.

5 DISCUSSION

5.1 Inference for non-Gaussian fields

In physics, many inference problems concern estimating physical
parameters from realizations of random fields. Ideally, one would
like to use the likelihood function of the field itself, but this is
often out of reach except for several simple cases such as some
Gaussian random fields. Therefore, for the inference problem to
be feasible, a statistical representation of the data is often used.
Statistical descriptors reduce the dimensionality of the data vector
and they tend to Gaussianize according to the central limit theorem.
Both of these properties help to regularize the likelihood. However, it
is still challenging to find a proper representation because in general
a random field can be random in too many different ways. In these
cases, a useful characterization must be one that makes use of known
properties of the field.

Viewed in this direction, traditional statistical approaches with
their own representation framework may or may not suit the prop-
erties of particular fields. For example, the peak count statistic used
in weak lensing cosmology suits the presence of distinct haloes in
convergence maps. N-point functions, closely related to perturbation
theory and convenient for analytical prediction, represent the field
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with a series expansion, which makes them good descriptors for
fields slightly deviating from a Gaussian one. A highly non-Gaussian
field, however, requires using larger N. As the number of coefficients
and the complexity of configurations increase rapidly with N,
N-point functions quickly become an inefficient and non-robust
representation of the input field. On the other hand, CNNs try to
learn the field properties and search for informative representation
through a training optimization.

Fortunately, the non-Gaussian fields that originate from physical
interactions do often have common properties. Such fields typically
display localized, coherent structures in multiscales, and smaller
structures often act as building blocks of larger structures. These
properties can be used as the ‘domain knowledge’ to guide our design
or choice of the statistical representation in a general sense. As we
will explain in the next section, the design and operations of the
scattering transform lead to an efficient and robust representation for
such fields, because they are tailored for these properties.

5.2 Attractive properties of the scattering transform

Efficiency: All the three elements (wavelet convolution, modulus,
and the hierarchical design) play essential roles to make the scattering
transform efficient. The use of wavelets balances the resolution in
real and frequency domain. As a result, the scattering transform can
capture localized information from a large range of scales with only a
few coefficients, at each order. After selecting structures of scale j, in
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Figure 7. Noise dependence of the (2, og) constraints with different
methods. The FoM is defined as the 1o confident area on the (2, og)
plane. Note that the CNN result (Ribli et al. 2019b) is reported in terms
of posterior, while others are Fisher forecast. For noisy cases, the difference
between scattering transform and CNN is not intrinsic but due to the difference
between posterior and Fisher forecast. Peak count’s performance does not
increase as fast because it is more sensitive to smoothing scale than the other
methods.

one order, the scattering transform then selects structures ‘assembled’
by these j,-scale structures in the next order. This hierarchical
design allows the nth order scattering coefficients to quickly access
configurations described by about 2" points. Moreover, the ‘low-
order’ non-linear operator, modulus, helps to collect information
even beyond the access of 2" point functions. We will discuss it
further in another paper (Cheng et al. in preparation).

These strategies concentrate relevant information to a limited set
of statistical descriptors, which is desirable in terms of compactness
of the representation and the signal-to-noise ratio of each estimator.
For example, in our case, the scattering transform compresses weak
lensing information into 37 coefficients, a number that is much
smaller than typical bi-spectrum descriptors, while achieving CNN-
like constraint on cosmological parameters.

Robustness: All scattering coefficients are ‘first-order’ statistics
in the sense that they are proportional to the input field, and it
is proved that the scattering representation is non-expansive, i.e.
the distance between two vectors in the scattering representation
never exceeds their distance in the original pixel-based representation
(Mallat 2012; Bruna & Mallat 2013). Therefore, it does not amplify
the process variability. This is in contrast to the N-point correlation
function approach, which requires multiplying an increasing number
of field fluctuations and causes high variability. As a result, the
scattering coefficients are low variance descriptors and insensitive to
outliers.

The locality of wavelets, which is related to their logarithmic
spacing and widths in frequency space, also introduces stability to
deformations (Mallat 2012), which is a desired property of robust
descriptors that classical N-point functions do not have.
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Interpretability: As discussed in Section 2.4, the scattering
coefficients have a simple and intuitive interpretation. They describe
clustering properties of the field in the following way:

The first-order scattering coefficients are similar to a coarsely
binned power spectrum, which characterize the clustering strength
at different scales j;. As the scattering transform uses an L' norm
as opposed to an L? norm, the ratio between s, coefficients and the
power spectrum provides a measure of sparsity of the field. This
explains why in Fig. 5 the constraints from first-order coefficients
and the power spectrum are slightly different, and just combining
these two can also provide a stronger constraint on cosmology than
using power spectrum alone.

The second-order scattering coefficients characterize the clus-
tering strength of jj-scale structures separated by j,-scales. In
other words, these coefficients characterize the clustering of struc-
tures selected over a given frequency range, or the ‘clustering of
clustering’. Their departure from their Gaussian counterparts is a
robust measure of the strength of non-Gaussianities. The nth-order
scattering coefficients, though not shown explicitly in this study,
can in turn be understood as the strengths of nth-order hierarchy of
clustering of the field at all different combinations of scales.

5.3 Comparison to CNNs

The scattering transform and CNNs share a number of properties.
Both of them have hierarchical layers with localized convolution ker-
nels and use a simple non-expansive non-linear operation. Although
CNNs are usually trained to directly map a field to physical param-
eters, their inside can be considered as composed of a convolutional
part that extracts spatial features and a second part that learns the
mapping from these features to physical parameters. Both parts are
trainable and trained together. The scattering transform, on the other
hand, uses preset wavelets as convolutional kernels and just a few
layers (in our case two layers). So it can be viewed as a non-trainable
mini-CNN playing the role of the first part of trainable CNNs. In the
scattering transform’s approach, the second part of trainable CNNs
is supplanted by using traditional regression techniques.

The trainable kernels make CNNs more flexible and may lead
to a higher performance for finer classification problems such as
classifying different types of rabbits, but in the mean time this
overparametrization defines a much more brittle statistical model
(Szegedy et al. 2013; Bruna & Mallat 2019). Our results imply that
compared to CNNs, the scattering transform has enough expres-
siveness to characterize the matter density field in the cosmological
context while holding provable stability properties. Indeed, as shown
by Riblietal. (2019b), a CNN trained on convergence maps internally
generates kernels similar to (azimuthally averaged) Morlet wavelets.
Our results also imply that much of the power of CNNs may be
detached from its trainable nature.

Overparametrized models tend to overfit, i.e. to ‘remember’ single
realizations instead of comprehending the overall property of the
whole training set. Thus the overparametrized CNNs require a large
number of simulations as training set to alleviate the overfitting
problem. In contrast, the scattering transform uses preset kernels,
thus has no parametrization in the kernels. In addition, the choice of
CNN architecture can modify the results substantially, as can be seen
in the comparison between results of Ribli et al. (2019b) and Gupta
etal. (2018). As such, CNNs usually require much, and often ad hoc,
fine-tuning. The scattering transform, on the other hand, is not subject
to these sources of variability. It requires the use of simulations only
to probe the cosmic variance of the descriptors. Without learning the
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kernels, the scattering transform also significantly save calculation
time.

Another view on the overfitting problem is given by the framework
of maximum-entropy regularized estimation, which looks for the
most ‘non-committal’ statistical model under the constraints of
a ‘feature vector’ of sufficient statistics (Jaynes 1957). There is
thus a tension in the design of such vector of sufficient statistics
(Bruna & Mallat 2019): On the one hand, the features should be
descriptive enough so that they introduce enough constraints, i.e.
typical samples from the estimated model should also be typical
in the true distribution; On the other hand, one would like the
features to be efficiently estimated from the available samples, so
that the corresponding statistical model is robust under resampling.
In other words, typical samples from the true distribution should
remain typical under the estimated statistical model.

Finally, when applied to observational data, the scattering trans-
form holds another advantage over CNNs, namely the possibility
to investigate systematic effects. As traditional statistics, the scat-
tering coefficients can be used to derive not only the best-fitting
cosmological parameters, but also an evaluation of the goodness of
fit and therefore a sanity check of the result. In contrast, although the
internal machinery of CNNs can be roughly divided into a feature
extraction part and a regression one, the CNNs are trained as a whole
to learn a direct mapping from the data to the physical parameters.
Due to the overparametrization nature, outputs from intermediate
layers (i.e. the intermediate abstraction of CNN) do not typically
have good statistical properties. Therefore, when using CNN, it is
challenging to check for systematic error in real data.

5.4 Relation to peak count method

The non-linear gravitational evolution of density fluctuations in
the universe gives rise to haloes, which are virialized systems
locally bound by gravity. As highlighted by Ribli et al. (2019b)
in their fig. 10, a substantial amount of non-Gaussian cosmological
information can be extracted from these features. The peak count
method directly captures information in the abundance of haloes.
However, it does not characterize the spatial information including
profiles and positions of these haloes, which is also sensitive to
cosmological parameters. The scattering transform implicitly ex-
tracts a comprehensive information of the abundance, profile, and
distribution of haloes by first highlighting structures of particular
scales and then characterizing their clustering at other scales, as
described in Section 2.4. In the limit of small j; and large j,, the
second-order scattering coefficients can be understood as a measure
of the ‘two-halo term’ in the halo model at scale j,, weighted by the
halo response to the first wavelet with scale j;. This response is related
to halo profiles. In general, the scattering transform provides a non-
parametric description of the one-halo, two-halo, and transitional
regime where haloes overlap and form larger haloes.

6 CONCLUSION

Characterizing arbitrary non-Gaussian fields is challenging as the
dimensionality of their description can be arbitrarily high. The
subset of fields relevant in physics, however, tends to be more
constrained as they typically display localized, coherent structures.
In the cosmological context, the matter density field presents another
characteristic property, namely hierarchical clustering. An efficient
statistical descriptor of the cosmological density field would ideally
make use of these properties.
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In this paper, we advocate the use of the scattering transform
(Mallat 2012; Bruna & Mallat 2013), which generates statistics
designed to extract information from complex fields with provable
stability properties. It involves operations similar to those found in
CNNss: it uses wavelet convolution, which is particularly suitable for
characterizing localized structures; it uses modulus as the non-linear
operation; and it iterates these operations. However, in contrast to
CNNgs, the scattering transform does not require training. It generates
a compact set of robust coefficients, which forms a representation
of the input field and can be used as efficient summary statistics for
non-Gaussian information.

We applied the scattering transform to a parameter inference
problem in the context of weak lensing cosmology. For simplicity,
we focused on the convergence field but a similar analysis can also
be performed on the shear field. We used simulated convergence
maps generated by ray-tracing N-body simulation results (Zorrilla
Matilla et al. 2016; Gupta et al. 2018) and measured their scattering
coefficients to infer the cosmological parameters 2, and og. On
maps with and without galaxy shape noise, the scattering transform
outperforms the power spectrum and peak counts, and is on a par
with the state-of-the-art CNNs.

As described in Section 5.2, the scattering transform possesses a
series of attractive properties for parameter estimation. It is efficient,
robust, and interpretable. Obtained by iteratively applying wavelet
convolution and modulus and finally taking the expectation value,
the scattering coefficients can be interpreted as the strength of a
hierarchy of clustering at various combinations of scales. Different
from N-point functions, all scattering coefficients have the welcome
property that they remain proportional to the input field, thus
avoid instability problems and extract much more information when
the field distribution has a long tail. Similar to classic statistical
estimators, the scattering transform requires no training or tuning
and offers the possibility to investigate systematic errors potentially
present with real data.

In this paper we demonstrated applications of the scattering
transform in weak lensing data. Using it with existing and upcoming
surveys (see e.g. DES, LSST, Euclid, WFIRST) can be of great
interest to improve constraints and provide consistency checks. Based
on its properties and design, the scattering transform can also be an
attractive approach for many other applications: in observational
cosmology, astrophysics, and beyond.
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APPENDIX A: MORLET WAVELETS

Wavelets are localized oscillations in real space and band-pass filters
in Fourier space. If we simply use a Gaussian envelope to modulate
a plane wave, then we obtain a Gabor function

_ L —xT271x/2 Jiko-x Al

G(x) me e , (A1)
where X is the covariance matrix describing the size and shape
of the Gaussian envelope, and k, determines the frequency of the
modulated oscillation. To keep maximum symmetry, usually X is
selected to have only 1 eigen-value different from the others, and
ko to be along that eigen direction. Thus, we denote the eigen value
along ko by 0% and the other eigen value by o%/s>. The parameter s
is also the ratio of transverse to radial width of the wavelet in Fourier
space.

The Fourier transform of a Gabor function is simply a Gaussian
filter centred at ko),

G(k) — e—(k—ko)r):(k—ko)/Z . (A2)

Wider envelope in real space makes narrower filter in Fourier space.
Note that the product kyo determines the number of oscillations
within £ & 3 standard deviation of the Gaussian envelope and
allows for a trade off between spatial and frequency resolution.
Unfortunately, a Gaussian profile in Fourier space does not go to
zero at O frequency. This contradicts the admissibility of wavelet
which requires wavelets to strictly be band-pass filters, not low-pass
filters. Therefore, a small correction is required. A simple solution is
to introduce an offset, 8, before the Gaussian modulation. In Fourier
space this is equivalent to subtracting another Gaussian profile
centred at 0 to cancel out the O-frequency contribution. Families
of wavelets created in this way are called Morlet wavelets. Formally

1 Tyl -
V) = e F R (T - p) (A3)
where § = e~k %k0/2 i5 determined by the admissibility criterion. Its

Fourier transform is
T(k) = Gk) — pe* =2 (A4)

In our study, which is a 2D case, we follow the settings used in the
‘kymatio’ package mentioned in Section 3.3

o =0.8x2/
37
ko = ,
07 4%
s =4/L, (A5)

where o is in unit of pixels, j is an integer starting from 0, and kg
is always between 0 and 1. This choice allow a family of Morlet
wavelets best covers the whole Fourier space with a dyadic sequence
of scales (2/). Examples of the Morlet wavelets we use are shown
in Fig. 2. Within the wavelet envelope, there are about 2 cycles of
oscillations, because kgo ~ 2.
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APPENDIX B: SCATTERING TRANSFORM IN
FOURIER SPACE

It is enlightening to collect some intuition of the scattering transform
in the Fourier domain. In general, as a non-linear operator, a modulus
in real space will mix Fourier modes and scatter information among
different frequencies. In particular, taking the modulus of /xyr, where
¥ has a single peak in Fourier space, will re-express I’s information
around v’s frequency in forms of lower frequencies. In other words,
the typical frequency of |Ixyr| is lower than Ixir.

Intuitively, this is because the modulus is converting complex-
valued oscillations into its local strength, namely its envelope. For-
mally, this can be revealed by first writing |Ixyr| as /(I x ¥ )(1 * })*,
where * stands for complex conjugate, and then Taylor expanding
the square root in terms of (Ixy)(Ixy¥)* — C, where C is the
mean of (Ixy)(Ixy)* over all pixels (Mallat 2010). The leading
term of the Taylor expansion is proportional to (Ixy)(Ixy¥)* — C
itself, which corresponds to /xy’s autocorrelation in Fourier space.
When the power spectrum of / is a smooth function, the frequency
distribution of /*y is similar to . For the Morlet wavelets used
in the scattering transform, the central wavenumber of the wavelet
Y is roughly ko (as defined in Appendix A), and its half-width in
Fourier space around 1/o. So, its autocorrelation will have an half-
width around +/2/c and a centroid at 0. As ~/2/c ~ 0.75ky < ko
(equation AS5), this means that the typical frequency of [Ixy/| is
lower than Ixyr. Therefore, the core operation I — |Ixyr| re-
expresses high-frequency information of 7, in terms of lower fre-
quency modes including the O-frequency component in the next-order
fields 1, + 1. As the O-frequency component is translation invariant,
it can be directly used as a statistical descriptor of the original
field.

Writing the modulus |x| as \/W = 4/x - x* brings an inter-
esting question: what happens if we replace each modulus by
modulus squared? It can be shown that, in this case, the nth-
order scattering coefficients will exactly become some averaged
2"-point-spectra weighted (binned) by wavelets. Nevertheless, they
are not equivalent to any degenerate case of 2"-point functions in
either real or Fourier domain. For example, at the second order,

these ‘pseudo’ scattering coefficients become / / /}o(kl)fo(—k/l —

ko) Io(k) Io(—K), + ky) - W - dkdk, dk,, where the weight is deter-
mined by the wavelets: W = v, (k) (k, + kz)xlﬂ(—k/l)%(—k/l +
kz)l/;zz(kz), and the tilde sign denotes Fourier conjugate. Although
these ‘pseudo’ coefficients may help us understand the connection
between scattering transform and N-point functions in terms of
how they organize spatial configurations, the genuine scattering
transform is fundamentally different from N-point functions, because
it generates ‘first-order’ estimators, which alleviates the problem
of classic moments described in Carron (2011) when dealing with
tailed probability distribution. Indeed, we find that the constraining
power of genuine scattering coefficients is about 4 times stronger
than these ‘pseudo’ ones (in the noiseless, unsmoothed case).
We will discuss this further in another paper (Cheng et al. in
preparation).
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APPENDIX C: COSMOLOGICAL INFERENCE
FRAMEWORK

In this appendix, we describe the Fisher forecast formalism used to
infer the cosmological parameters in this study. According to the
Cramér—Rao inequality, the variance of any unbiased estimator 6 for
model parameters 6 cannot be smaller than the inverse of the Fisher
information matrix 1(8) of the model

cov(®) > 10)". (ChH

Elements of the Fisher matrix is defined as

dln p(x|@) dln p(x|0)
hth) = (SO IREED )

(€2

where x is the observable, p is the likelihood function, and ( - ) is
the expectation over x. In our cosmological case, 6 represents cos-
mological parameters, @ = (2, 0g), and x represents the statistical
descriptors such as the scattering coefficients. The function p(x|@) is
called the likelihood of @ when x is fixed, and is called the probability
density function (PDF) of x when @ is fixed.

In our study, we assume that given any cosmology @, the PDF of
statistical descriptors x is Gaussian

1 1

p(x0) o¢ ——exp[—(x — p)"C'(x — w1, (€3)
JIC| 2

where C(6) and p(#) are the mean and covariance matrix depending

on the cosmological parameters 6. Thus, elements of the Fisher

matrix can be written as

o’ d
Lyn = £ c! -
' 00, 00,
1 oC aC
—r(C'—C' ), C4
+ 5t 26, 36‘,,) (C4

where the first and second items describe the information from
cosmological dependence of u and C, respectively. To obtain these
items for arbitrary cosmology, we first calculate the sample mean
and covariance matrix of the 512 realizations of each cosmology
in the simulations (Section 3.1). The sample mean is an unbiased
estimator of the real mean vector, but to unbiasly estimate the inverse
of covariance matrix, C~!, a correction factor is needed (Hartlap,
Simon & Schneider 2007):

i N=D=26t (©5)

N -1

where E*\I is the unbiased estimator in the inverse, N is the number
of independent sample used for the estimation, D is the dimension
of each data vector, and C is the sample covariance before Bessel’s
correction. Then, with a further assumption that  and C have smooth
cosmological dependence, we use third-order polynomials to fit for
the cosmological dependence of u’s elements and use 2nd-order
polynomials for C’s elements.
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