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SUMMARY

Randomized experiments have become important tools in empirical research. In a completely 10

randomized treatment-control experiment, the simple difference in means of the outcome is unbi-
ased for the average treatment effect, and covariate adjustment can further improve the efficiency
without assuming a correctly specified outcome model. In modern applications, experimenters
often have access to many covariates, motivating the need for a theory of covariate adjustment un-
der the asymptotic regime with a diverging number of covariates. We study the asymptotic prop- 15

erties of covariate adjustment under the potential outcomes model and propose a bias-corrected
estimator that is consistent and asymptotically normal under weaker conditions. Our theory is
purely randomization-based without imposing any parametric outcome model assumptions. To
prove the theoretical results, we develop novel vector and matrix concentration inequalities for
sampling without replacement. 20

Some key words: causal inference; average treatment effect; high-dimensional covariates; model misspecification

1. INTRODUCTION

1.1. Randomized experiment and Neyman’s randomization model
Randomized experiments have been powerful tools in agricultural, industrial, biomedical, and

social sciences (e.g., Fisher, 1935; Kempthorne, 1952; Box et al., 2005; Rosenberger & Lachin, 25

2015; Duflo et al., 2007; Gerber & Green, 2012; Imbens & Rubin, 2015). In a treatment-control
experiment, let Yi(1) and Yi(0) be the potential outcomes if unit i ∈ {1, . . . , n} receives the
treatment and control, respectively (Neyman, 1923/1990). Define the parameter of interest as the
average treatment effect τ = n−1

∑n
i=1 τi, where τi = Yi(1)− Yi(0) is the individual treatment

effect for unit i. In a completely randomized experiment, the experimenter randomly assigns 30

n1 units to the treatment group and n0 units to the control group, with n = n1 + n0. Let Ti

denote the assignment of the i-th unit where Ti = 1 corresponds to the treatment and Ti = 0
corresponds to the control. For unit i, only Y obs

i = Yi(Ti) is observed while the other potential
outcome Yi(1− Ti) is missing.

Neyman (1923/1990) assumed that all potential outcomes are fixed and the randomness comes 35

solely from the treatment indicators. This finite-population perspective has a long history for ana-
lyzing randomized experiments (e.g. Kempthorne, 1952; Imbens & Rubin, 2015; Dasgupta et al.,
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2015; Middleton & Aronow, 2015; Mukerjee et al., 2018; Fogarty, 2018; Li et al., 2018; Li &
Ding, 2020). It clarifies the role of the study design in the analysis without postulating a hypo-
thetical outcome generating process. By contrast, the super-population perspective (e.g. Tsiatis40

et al., 2008; Berk et al., 2013; Negi & Wooldridge, 2020) assumes that the potential outcomes
and other individual characteristics are independent and identically distributed draws from some
distribution. These two perspectives are both popular in the literature, but they are different in the
source of randomness: the finite-population perspective conditions on the potential outcomes and
quantifies the uncertainty from the treatment assignment, and the super-population averages over45

the potential outcomes and quantifies the uncertainty from the independent sampling process.
We focus on the former throughout the paper.

Let 1 denote the vector with all entries 1, I the identity matrix, and V = I − (1T1)−111T

the projection matrix orthogonal to 1, with appropriate dimensions depending on the context.
Let ∥ · ∥q be the vector q-norm, i.e. ∥α∥q = (

∑n
i=1 |αi|q)1/q and ∥α∥∞ = max1≤i≤n |αi|. Let50

∥ · ∥op denote the matrix operator norm. Let N(0, 1) denote the standard normal distribution,
and t(ν) denote standard t distribution with degrees of freedom ν.

1.2. Average treatment effect estimates with and without regression adjustment
Let Tt = {i : Ti = t} be the indices and nt = |Tt| be the fixed sample size for the treatment

arm t ∈ {0, 1}. Consider a completely randomized experiment in which T1 is a random size-n1

subset of {1, . . . , n} uniformly over all n!/(n1!n0!) subsets. The simple difference in means

τ̂unadj = n−1
1

∑
i∈T1

Y obs
i − n−1

0

∑
i∈T0

Y obs
i = n−1

1

∑
i∈T1

Yi(1)− n−1
0

∑
i∈T0

Yi(0)

is unbiased for τ with variance S2
1/n1 + S2

0/n0 − S2
τ/n (Neyman, 1923/1990), where S2

1 , S
2
0

and S2
τ are the finite-population variances of the Yi(1)’s, Yi(0)’s and τi’s, respectively.55

The experimenter usually collects pre-treatment covariates. If they are predictive of the po-
tential outcomes, incorporating them in the analysis can improve the estimation efficiency. Sup-
pose unit i has a p-dimensional vector of pre-treatment covariates xi ∈ Rp. Early works on the
analysis of covariance assumed a constant treatment effect (Fisher, 1935; Kempthorne, 1952;
Hinkelmann & Kempthorne, 2007), under which a commonly-used estimate is the coefficient of60

the treatment indicator of the ordinary least squares fit of the Y obs
i ’s on Ti’s and xi’s. Freedman

(2008) criticized this approach, showing that it can be even less efficient than τ̂unadj in the pres-
ence of treatment effect heterogeneity, and the estimated standard error based on the ordinary
least squares can be inconsistent for the true standard error under the randomization model.

Lin (2013) proposes a simple solution. Without loss of generality, we center the covariates at65

n−1
∑n

i=1 xi = 0. His estimator for τ is the coefficient of the treatment indicator in the ordi-
nary least squares fit of the Y obs

i ’s on Ti’s, xi’s and the interaction terms Tixi’s. His estimator
is consistent, asymptotically normal, and more efficient than τ̂unadj. He further shows that the
Eicker–Huber–White standard error is consistent for the true standard error. His results hold un-
der the finite-population randomization model, without assuming that the linear model is correct.70

We use an alternative formulation of the regression adjustment and consider the following
family of covariate-adjusted estimators:

τ̂(γ1, γ0) = n−1
1

∑
i∈T1

(Y obs
i − xTi γ1)− n−1

0

∑
i∈T0

(Y obs
i − xTi γ0). (1)

Because n−1
t

∑
i∈Tt x

T
i γt has expectation zero over all possible randomizations, the estimator in

(1) is unbiased for any fixed coefficient vectors γt ∈ Rp (t = 0, 1). It is the difference-in-means
estimator with potential outcomes replaced by {Yi(1)− xTi γ1, Yi(0)− xTi γ0}ni=1.75
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Let Y (t) = (Y1(t), . . . , Yn(t))
T ∈ Rn denote the vector of potential outcomes under treatment

t and X = (x1, . . . , xn)
T denote the covariate matrix. Without loss of generality, we assume

1TX = 0 and rank(X) = p, i.e., the covariate matrix has centered columns and full column
rank. Otherwise, we transform X to VX and remove the redundant columns to ensure the full
column rank condition. This operation does not affect inferential validity because X is fixed, or, 80

equivalently, our inference conditions on X .
Let βt be the population ordinary least squares coefficient of regressing Y (t) on (1, X):

(µt, βt) = argmin
µ∈R,β∈Rp

∥Y (t)− µ1 −Xβ∥22 =

(
n−1

n∑
i=1

Yi(t), (X
TX)−1XTY (t)

)
, (2)

which holds because X is orthogonal to 1. Li & Ding (2017, Example 9) show that the ordi-
nary least squares coefficients (β1, β0) in (2) minimize the variance of the estimator in (1). We
emphasize that β1 and β0 are both unobserved population quantities. 85

The classical analysis of covariance chooses γ1 = γ0 = β̂, the coefficient of the covariates
in the ordinary least squares fit of the Y obs

i ’s on Ti’s and xi’s with an intercept. This strategy
implicitly assumes away treatment effect heterogeneity, and can lead to inferior properties when
β1 ̸= β0 (Freedman, 2008). Lin (2013) chooses γ1 = β̂1 and γ0 = β̂0, the coefficients of the
covariates in the ordinary least squares fit of Y obs

i ’s on xi’s with an intercept, in the treatment 90

and control groups, respectively. Numerically, this is identical to the estimator obtained from the
regression with interactions discussed before. Throughout the rest of the paper, we refer to it as
the regression-adjusted estimator.

1.3. Our contributions
In practice, experiments often have many covariates. Therefore, it is important to approximate 95

the sampling distribution with p growing with the sample size n at a certain rate. Under the finite-
population randomization model, Bloniarz et al. (2016) discussed a high dimensional regime
with possibly larger p than n but assumed that the potential outcomes could be well approximated
by a sparse linear combination of the covariates, under the regime with the number of non-zero
coefficients being much smaller than n1/2/ log p. Under a super-population framework, Wager 100

et al. (2016) discussed covariate adjustment using the ordinary least squares and some other
machine learning techniques.

We study the regression-adjusted estimator under the finite-population perspective in the
regime where p < n but p grows with n at a certain rate. We argue that this type of large-n-
moderate-p asymptotics is more important than the large-n-fixed-p asymptotics to analyze com- 105

pletely randomized experiments when p is not a negligible number compared to n. For instance,
the study on pulmonary artery catheter in Bloniarz et al. (2016) has 1013 subjects with 59 co-
variates. In this case, p is approximately n0.6 and thus the inferential guarantees based on fix-p
asymptotics are questionable.

We focus on this estimator because it is widely used in practice thanks to its simplicity, and
it does not require any tuning parameter, unlike other high dimensional or machine learning
methods. As in the classic linear regression, the asymptotic properties depend crucially on the
maximum leverage score

κ = max
1≤i≤n

Hii,

where the i-th leverage score Hii is i-th diagonal entry of the hat matrix H = X(XTX)−1XT. 110

Under the regime κ log p → 0, we prove the consistency of the regression-adjusted estimator
under mild moment conditions on the population ordinary least squares residuals. In the fa-
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vorable case where all leverage scores are close to their average p/n, the consistency holds if
p = o(n/ log n).

In addition, we prove that the regression-adjusted estimator is asymptotically normal under115

κp → 0 and extra mild conditions, with the same variance formula as in the fixed-p regime.
Furthermore, we propose a debiased estimator, which is asymptotically normal under an even
weaker assumption κ2p log p → 0, with the same variance as before. Therefore, this new esti-
mator reduces the asymptotic bias without inflating the asymptotic variance. In the favorable
case where all leverage scores are close to their average p/n, the regression-adjusted estimator120

is asymptotically normal when p = o(n1/2), but the debiased estimator is asymptotically normal
when p = o{n2/3/(log n)1/3}. The regression-adjusted estimator may also be asymptotically
normal in the latter regime, but it requires an extra condition; see Theorem 3. In our simulation,
the debiased estimator indeed yields better finite-sample inferences.

For statistical inference, we propose several asymptotically conservative variance estimators,125

which yield valid asymptotic Wald-type confidence intervals for the average treatment effect. We
prove the results under the same conditions as required for the asymptotic normality. To prove
these results, we also make some technical contributions by proving novel vector and matrix
concentration inequalities for sampling without replacement.

2. REGRESSION ADJUSTMENT130

2.1. Point estimators
We reformulate the regression-adjusted estimator. The average treatment effect τ is the dif-

ference between the two intercepts of the population ordinary least squares coefficients in (2):
τ = n−1

∑n
i=1 Yi(1)− n−1

∑n
i=1 Yi(0) = µ1 − µ0. Therefore, we focus on estimating µ1 and

µ0. Let Xt ∈ Rnt×p denote the sub-matrix formed by the rows of X , and Y obs
t ∈ Rnt the subvec-135

tor of Y obs = (Y obs
1 , . . . , Y obs

n )T, with indices in Tt (t = 0, 1). The regression-adjusted estimator
follows two steps. First, for t ∈ {0, 1}, we regress Y obs

t on Xt with an intercept, and obtain the
fitted intercept µ̂t ∈ R and coefficient of the covariate β̂t ∈ Rp. Second, we estimate τ by

τ̂adj = µ̂1 − µ̂0. (3)

In general, τ̂adj is biased in finite samples. Correcting the bias gives stronger theoretical guar-
antees as our later asymptotic analysis confirms. Here we propose a bias-corrected estimator.140

Define the potential residuals based on the population ordinary least squares as

e(t) = Y (t)− µt −Xβt, (t = 0, 1). (4)

The property of the ordinary least squares guarantees that e(t) is orthogonal to 1 and X:

1Te(t) = 0, XTe(t) = 0, (t = 0, 1). (5)

Let ê ∈ Rn be the vector residuals from the sample ordinary least squares, where êi = Y obs
i −

µ̂1 − xTi β̂1 for the treated units and êi = Y obs
i − µ̂0 − xTi β̂0 for the control units. For any vec-

tor α ∈ Rn, let αt denote the subvector of α with indices in Tt, e.g., Yt(1) and et(1) are the
subvectors of Y (1) and e(1) corresponding to the units in treatment arm t, respectively. Let

H = X(XTX)−1XT, Ht = Xt(X
T
t Xt)

−1XT
t

be the hat matrices of X and Xt, respectively. Let Hii be the i-th diagonal element of H , also
termed as the leverage score, and let Ht,ii be the diagonal element of Ht corresponding to unit i.
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From the higher order asymptotic expansion, the bias of τ̂adj depends on 145

∆t = n−1
n∑

i=1

ei(t)Hii, ∆ = max{|∆1|, |∆0|}. (6)

With the empirical analogs ∆̂t = n−1
t

∑
i∈Tt êiHii, we introduce the following debiased estima-

tor:

τ̂deadj = τ̂adj −
(
n1

n0
∆̂0 −

n0

n1
∆̂1

)
. (7)

When p = 1, (7) reduces to the bias formula in Lin (2013, Section 6 point (iv)). Thus (7) is an
extension to the multivariate case. With some algebraic manipulations, we can show that τ̂deadj is
a finite-population analog of Tan (2014)’s bias-corrected regression estimator in the context of 150

survey sampling with a fixed p.

2.2. Variance estimators
With a fixed p, Lin (2013) proved that n1/2(τ̂adj − τ) is asymptotically normal with variance

σ2
n = n−1

1

n∑
i=1

e2i (1) + n−1
0

n∑
i=1

e2i (0)− n−1
n∑

i=1

{ei(1)− ei(0)}2. (8)

Formula (8) motivates conservative variance estimators since the third term in (8) has no consis-
tent estimator without further assumptions on e(1) and e(0). Ignoring it and estimating the first 155

two terms in (8) by their sample analogs, we have the following variance estimator:

σ̂2 =
n

n1(n1 − 1)

∑
i∈T1

ê2i +
n

n0(n0 − 1)

∑
i∈T0

ê2i . (9)

Although (9) appears to be conservative due to the neglect of the third term in (8), we find in
numerical experiments that it typically underestimates σ2

n if the number of covariates is large.
The classic linear regression literature (e.g. MacKinnon, 2013) suggests rescaling the residual as
ẽi = ζiêi, where ζi = 1 for HC0, ζi = {(nt − 1)/(nt − p)}1/2 for HC1, ζi = 1/(1−Ht,ii)

1/2
160

for HC2 and ζi = 1/(1−Ht,ii) for HC3, for i ∈ Tt. HC0 corresponds to the estimator (9) with-
out corrections. Previous literature has shown that the above corrections, especially HC3, are
effective in improving the finite sample performance of variance estimator in linear regression
under independent super-population sampling. More interestingly, it is also beneficial to use
these rescaled residuals in the context of a completely randomized experiment, motivating 165

σ̂2
HCj =

n

n1(n1 − 1)

∑
i∈T1

ẽ2i,j +
n

n0(n0 − 1)

∑
i∈T0

ẽ2i,j (10)

with residual ẽi,j corresponding to HCj for j = 0, 1, 2, 3. Based on the normal approximations,
we can construct Wald-type confidence intervals for τ based on point estimators τ̂adj and τ̂deadj
with estimated standard errors σ̂HCj/n

1/2.

3. MAIN RESULTS

3.1. Regularity conditions 170

We embed the finite-population quantities {xi, Yi(1), Yi(0)}ni=1 into a sequence, and impose
regularity conditions on this sequence. The first condition is on the sample sizes.



6 L. LEI AND P. DING

Assumption 1. n/n1 = O(1) and n/n0 = O(1).

Assumption 1 holds automatically if treatment and control groups have fixed proportions, e.g.,
n1/n = n0/n = 1/2 for balanced experiments. It is not essential and can be removed at the cost175

of complicating the statements.
The second condition is on κ = max1≤i≤nHii, the maximum leverage score, which also plays

a crucial role in the theory of classic linear models (e.g. Huber, 1973; Mammen, 1989).

Assumption 2. κ log p = o(1).

The maximum leverage score satisfies180

p/n = tr(H)/n ≤ κ ≤ ∥H∥op = 1 =⇒ κ ∈ [p/n, 1]. (11)

Assumption 2 permits influential observations as long as κ = o(1/ log p). In the favorable case
with κ = O(p/n), it reduces to p log p/n → 0, which permits p to grow as fast as nγ for any
0 ≤ γ < 1. Moreover, it implies

p/n ≤ κ = o (1/ log p) = o(1) =⇒ p = o(n). (12)

Assumptions 1 and 2 are useful for establishing consistency. The following two extra condi-
tions are useful for the variance estimation and asymptotic normality. The third condition is on185

the correlation between the potential residuals from the population ordinary least squares in (4).

Assumption 3. There exists a constant η > 0 independent of n such that

ρe = e(1)Te(0)/{∥e(1)∥2∥e(0)∥2} > −1 + η.

Assumption 3 is mild because it is unlikely to have a perfectly negative sample correlation
between the treatment and control potential residuals in practice.

The fourth condition is on the following two measures of the potential residuals:

E2 = n−1max
{
∥e(0)∥22, ∥e(1)∥22

}
, E∞ = max {∥e(0)∥∞, ∥e(1)∥∞} .

Assumption 4. E2
∞/(nE2) = o(1).190

Assumption 4 is a Lindeberg–Feller-type condition requiring that no single residual dominates
the others. A similar form appeared in Hájek (1960)’s finite-population central limit theorem.
Previous works require more stringent assumptions on the fourth moment (Lin, 2013; Bloniarz
et al., 2016) while Assumption 4 allows for heavy-tailed outcomes with E2 growing with n.

These assumptions are weaker than those in previous works (e.g. Lin, 2013; Bloniarz et al.,195

2016; Li & Ding, 2020). Supplementary Material II provides further discussions.

3.2. Asymptotic expansions and consistency
We start with the asymptotic expansions of τ̂adj and τ̂deadj.

THEOREM 1. Under Assumptions 1 and 2,

τ̂adj − τ = τ̂e +OP

[
∆+

{
E2(κ2p log p+ κ)/n

}1/2]
, (13)

τ̂deadj − τ = τ̂e +OP

[{
E2(κ2p log p+ κ)/n

}1/2]
, (14)

where τ̂e = 1Te1(1)/n1 − 1Te0(0)/n0 is the difference in means of the potential residuals.200
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In (13) and (14), τ̂e has mean 0 and variance σ2
n/n (Neyman, 1923/1990), which is

OP{(σ2
n/n)

1/2} by Chebyshev’s inequality. Based on the definitions in (6), we further have

∆2 = max
t=0,1

∆2
t ≤

(
n−1

n∑
i=1

Hii

){
max
t=0,1

n−1
n∑

i=1

e2i (t)Hii

}
≤ E2κp/n (15)

by the Cauchy–Schwarz inequality and the facts that
∑n

i=1Hii = p and Hii ≤ κ. Since κ ≤ 1
and σ2

n = O(E2), Theorem 1 implies

τ̂adj − τ = OP

[
{E2(κp+ 1)/n}1/2

]
, τ̂deadj − τ = OP

[{
E2(κ2p log p+ 1)/n

}1/2]
,

which further imply the following consistency results by requiring the right-hand sides to vanish.

THEOREM 2. Under Assumptions 1 and 2, τ̂adj is consistent if E2 = o{n/(κp+ 1)}, and τ̂deadj
is consistent if E2 = o{n/(κ2p log p+ 1)}. 205

Theorem 2 implies the following consistency results for a fixed or diverging p.

COROLLARY 1. Under Assumptions 1 and 2, both τ̂adj and τ̂deadj are consistent if either (i) p is
fixed and E2 = o(n) or (ii) p is diverging with n and E2 = O(n/p).

We can prove Corollary 1 by verifying the more stringent condition for the consistency of τ̂adj
in Theorem 2. With a fixed p and E2 = o(n), we have E2/{n/(κp+ 1)} ≤ E2/n× (p+ 1) → 0 210

because κ ≤ 1; with a diverging p and E2 = O(n/p), we have E2/{n/(κp+ 1)} = E2/(n/p)×
(κ+ 1/p) → 0 because Assumption 2 implies κ = o(1/ log p).

3.3. Asymptotic normality and variance estimation
In (13) and (14), τ̂e is asymptotically normal with mean 0 and variance σ2

n/n. Therefore, the
asymptotic normalities of τ̂adj and τ̂deadj hold if the the remainders vanish after being multiplied 215

by n1/2/σn. We first present the result for τ̂adj.

THEOREM 3. Under Assumptions 1–4, n1/2(τ̂adj − τ)/σn ⇝ N(0, 1) if κ2p log p = o(1) and
n∆2 = o(E2).

The term n∆2 is the squared bias of n1/2τ̂adj. If it vanishes, τ̂adj has the same asymptotic
normality as τ̂e. We can use Theorem 3 to find more interpretable sufficient conditions to replace
n∆2 = o(E2). An upper bound on ∆ is in (15). So an obvious sufficient condition is κp = o(1),
which also implies κ2p log p = (κp)(κ log p) = o(1) under Assumption 2. On the other hand,
because e(t) has mean zero, we have ∆t = n−1

∑n
i=1 ei(t) (Hii − p/n), which helps to derive

another upper bound on ∆. Define the maximum absolute deviation of the Hii’s from their aver-
age as

κ0 = max
1≤i≤n

|Hii − p/n|,

and then we can use the Cauchy–Schwarz inequality to obtain

∆ = max
t=0,1

|∆t| ≤ κ0 max
t=0,1

n−1
n∑

i=1

|ei(t)| ≤ κ0E1/2
2 .

So another sufficient condition is κ0 = o(n−1/2). This condition implies that κ ≤ κ0 + p/n = 220

o(n−1/2) + p/n, which, coupled with p = o{n2/3/(log n)1/3}, implies κ2p log p = o(1). The
following corollary summarizes the results from the above discussion.
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COROLLARY 2. Under Assumptions 1–4, n1/2(τ̂adj − τ)/σn ⇝ N(0, 1) if either (i) κp =

o(1) or (ii) p = o{n2/3/(log n)1/3} and κ0 = o(n−1/2).

Consider the favorable case with κ = O(p/n). Condition (i) reduces to p = o(n1/2), so Corol-225

lary 2 extends Lin (2013)’s result to p = o(n1/2) without any further assumptions. Condition (ii)
states that when all the leverage scores are within an o(n−1/2) neighborhood of their average
p/n, the requirement on p can be relaxed to o{n2/3/(log n)1/3}. Supplementary Material II
shows that when the xis are realizations of multivariate normal vectors as assumed by Wager
et al. (2016), the leverage score conditions hold with high probability.230

Although we can relax the constraint on the dimension p under condition (ii), it is not ideal
to impose an extra condition on the leverage scores. When p > n1/2, the leverage score con-
dition is more stringent than that in the favorable case. By contrast, the debiased estimator is
asymptotically normal without any additional condition.

THEOREM 4. Under Assumptions 1–4, n1/2(τ̂deadj − τ)/σn ⇝ N(0, 1) if κ2p log p = o(1).235

In the favorable case with κ = O(p/n), the condition in Theorem 4 reduces to p3 log p/n2 =
o(1), which permits p to grow as fast as o{n2/3/(log n)1/3}, verifying the claim in Section 1. In
general, it is strictly weaker than the condition in Theorem 3, which relies on an extra assump-
tion that n∆2 = o(E2). In the favorable case, as shown in Corollary 2, Theorem 4 removes the
condition on κ0.240

The variance estimators σ̂2
HCj’s are all asymptotically equivalent because the correction terms

are negligible under our asymptotic regime. They are asymptotically conservative estimators of
σ2
n, so the Wald-type confidence intervals for τ are all asymptotically conservative.

THEOREM 5. Under Assumptions 1–4, there exists a non-negative sequence an = oP(1)
which depends on {xi, Yi(1), Yi(0)}ni=1 such that σ̂2

HCj/σ
2
n ≥ 1− an for all j ∈ {0, 1, 2, 3}.245

3.4. Comparison with existing results
Theoretical analyses under the finite-population randomization model are challenging due to

the lack of probability tools. The closest work to ours is Bloniarz et al. (2016), which allows p
to grow with n and potentially exceed n. However, they assume that the potential outcomes have
sparse linear representations based on the covariates, and require s = o(n1/2/ log p) where s is250

a measure of sparsity. Under additional regularities conditions, they show that τ̂(β̂lasso
1 , β̂lasso

0 ) is
consistent and asymptotically normal with (β̂lasso

1 , β̂lasso
0 ) being the LASSO coefficients of the co-

variates. Although the LASSO-adjusted estimator can handle ultra-high dimensional case where
p >> n, it has three limitations. First, the requirement s << n1/2/ log p is stringent. Second, the
penalty level of the LASSO depends on unobserved quantities. Although they use the cross-255

validation to select the penalty level, the theoretical properties of this procedure is still unclear.
Third, their “restrictive eigenvalue condition” imposes certain non-singularity on the submatri-
ces of the covariate matrix. However, the covariate matrix can be ill-conditioned especially when
interaction terms of the basic covariates are included in practice. In addition, this condition is
computationally challenging to check. Although our results cannot deal with the case of p > n,260

we argue that p < n without sparsity is an important regime in many applications.
Due to the numerical equivalence of the regression-adjusted estimator to the ordinary least

squares estimator, it is attempting to view our theory as a special case of the existing literature
on high dimensional linear models (e.g. Huber, 1973; Portnoy, 1985; Mammen, 1989; Lei et al.,
2018; Cattaneo et al., 2018). However, the two approaches are fundamentally different. They as-265

sume a linear model for the observed outcomes Y obs
i = α+ Tiτ + xTi β + ϵi, where Ti denotes
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the treatment indicator, xi denotes the covariates to be adjusted for, and ϵi denotes the random
error for unit i. Under their framework, the linear model must be correctly-specified with the
random error ϵi being an important component in statistical inference. Moreover, a linear model
implicitly assumes treatment-unit additivity, that is, the treatment effect is either constant or un- 270

correlated with covariates. By contrast, we do not assume any correctly specified linear model for
the potential outcomes but treat them as fixed quantities instead. Neyman (1923/1990)’s model
allows for arbitrary treatment effect heterogeneity which suggests that the additive linear model
is an inadequate specification (Freedman, 2008). Therefore, the results in this paper are distinct
from those assuming linear models; they are not directly comparable. Similarly, although Wager 275

et al. (2016) relax the assumption of the constant treatment effect in linear models and can handle
the high dimensional case with sparsity level s = o(n/ log p) or p/n → γ ∈ (0,∞), their theory
requires X to be normal and Y (t) to be a homoskedastic linear model of X . By contrast, our
analysis needs none of these assumptions.

4. NUMERICAL EXPERIMENTS 280

4.1. Data generating process
To confirm and complement our theory, we use extensive numerical experiments to examine

the finite-sample performance of the estimators τ̂adj and τ̂deadj as well as the variance estimators
σ̂2

HCj for j = 0, 1, 2, 3. To save space, we only present the results for one synthetic data and
relegate the results for other synthetic data to Supplementary Material III. 285

We set n = 2000, n1 = nπ1 with π1 = 0.2 and generate a matrix X ∈ Rn×n with independent
and identically distributed entries from t(2). We only generate one copy of X per experiment
and keep it fixed. For each exponent γ ∈ {0, 0.05, . . . , 0.7}, we let p = ⌈nγ⌉ and take the first p
columns of X as the covariate matrix. In Supplementary Material III, we also simulate X with
N(0, 1) and t(1) entries with both π1 ∈ {0.2, 0.5}. We select t(2) distribution for presentation 290

because it is neither too idealized as N(0, 1), for which κ ∼ p/n, nor too irregular as t(1). It is
helpful to illustrate and complement our theory.

With X , we construct the potential outcomes from Y (1) = Xβ∗
1 + ϵ(1) and Y (0) = Xβ∗

0 +

ϵ(0). Because β̂t − β∗
t = (XT

t Xt)
−1XT

t ϵ(t) does not depend on β∗
t , we take β∗

1 = β∗
0 = 0 ∈

Rp without changing the bias, variance and coverage properties of the estimates τ̂adj and τ̂deadj. 295

We generate {ϵ(1), ϵ(0)} as realizations of random vectors with independent and identically
distributed entries from N(0, 1), t(2), or t(1). We also consider another case with ϵ(1) = ϵ(0)
that corresponds to the sharp null hypothesis in Supplementary Material III. Given X ∈ Rn×p

and potential outcomes Y (1), Y (0) ∈ Rn, we generate 5000 binary vectors T ∈ Rn, and for each
T , we observe half of the potential outcomes. 300

4.2. Repeated sampling evaluations
Based on the observed data, we obtain two estimates τ̂adj and τ̂deadj, as well as four variance esti-

mates σ̂2
HCj (j = 0, 1, 2, 3) and the theoretical asymptotic variance σ2

n. Below τ̂ can be either τ̂adj
or τ̂deadj, and σ̂2 can be any of the five estimates. Let τ̂1, . . . , τ̂R denote the estimates in R = 5000
replicates, and τ denote the true average treatment effect. The empirical relative absolute bias 305

is n1/2|R−1
∑R

k=1 τ̂k − τ |/σn. Similarly, let σ̂2
1, . . . , σ̂

2
R denote the variance estimates obtained

in R replicates, and σ̂2
∗ denote the empirical variance of (n1/2τ̂1, . . . , n

1/2τ̂R). We compute the
standard deviation inflation ratio R−1

∑R
k=1 σ̂k/σ̂∗. Note that σ̂2

∗ is an unbiased estimate of true
sampling variance of n1/2τ̂ , which can be different from the theoretical asymptotic variance σ2

n.
For each estimate and variance estimate, we compute the t-statistic n1/2(τ̂ − τ)/σ̂ . For each 310
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t-statistic, we estimate the empirical 95% coverage rate by the proportion within [−1.96, 1.96],
the 95% quantile range of N(0, 1).

In summary, we compute three measures defined above: the relative bias, standard deviation
inflation ratio, and 95% coverage rate. We repeat 50 times using different random seeds and
record the medians of each measure. Fig. 1 summarizes the results.315

4.3. Results
From Figure 1a, τ̂deadj does reduce the bias regardless of the distribution of potential outcomes,

especially for moderately large p. For standard deviation inflation ratios, the true sampling vari-
ances of n1/2τ̂adj and n1/2τ̂deadj are almost identical and thus we set the sampling variance of
n1/2τ̂adj as the baseline variance σ̂2

∗ . Figure 1b shows an interesting phenomenon that the the-320

oretical asymptotic variance σ2
n tends to underestimate the true sampling variance for large p.

Theorem 1 partially suggests this. The theoretical asymptotic variance is simply the variance of
τ̂e while the finite sample variance also involves the remainder, which can be large in the pres-
ence of high dimensional or influential observations. All variance estimators overestimate σ2

n

because they all ignore the third term of σ2
n. However, all estimators, except the HC3 estimator,325

tend to underestimate the true sampling variance for large p. By contrast, the HC3 estimator does
not suffer from anti-conservatism in this case.

Figures 1b shows that HC0 and HC1 variance estimates lie between the theoretical asymptotic
variance and the HC2 variance estimate. For better visualization, Figures 1c only shows the
95% coverage rates of t-statistics computed from σ2

n, σ̂
2
HC2 and σ̂2

HC3, based on which we draw330

the following conclusions. First, as we pointed out previously, the coverage rates based on two
estimates are almost identical because the relative bias is small in these scenarios. Second, as
Figures 1b suggests, the t-statistic with HC3 variance estimate has the best coverage rate, which
is robust with covariates of an increasing dimension. By contrast, the theoretical asymptotic
variance and the HCj (j = 0, 1, 2) variance estimates yield significantly lower coverage rates335

for large p. We recommend σ̂2
HC3.

4.4. Effectiveness of debiasing
In the aforementioned settings, τ̂deadj yields almost identical inference as τ̂adj. This is not sur-

prising because in the above scenarios the potential outcomes are generated from linear models
and thus the regression-adjusted estimator has bias close to zero. However, in practice, the po-340

tential outcomes might not have prefect linear relationships with the covariates. To illustrate the
potential benefits of debiasing, we consider the worst-case situation which maximizes the bias.
Specifically, we consider the case where ϵ(0) = ϵ and ϵ(1) = 2ϵ for some vector ϵ that satisfies
(5) with sample variance 1. To maximize the bias term, we take ϵ as the solution of

max
ϵ∈Rn

∣∣∣∣n1

n0
∆0 −

n0

n1
∆1

∣∣∣∣ = max
ϵ∈Rn

(
2n0

n1
− n1

n0

) ∣∣∣∣ n∑
i=1

Hiiϵi

∣∣∣∣, (16)

such that ∥ϵ∥22/n = 1 and XTϵ = 1Tϵ = 0. Supplementary Material III gives more details of345

constructing ϵ. From (16), the bias is amplified when the group sizes are unbalanced, and it
effectively imposes a non-linear relationship between potential outcomes and covariates.

We perform simulation detailed in Section 4.2 based on potential outcomes in (16) and re-
port the relative bias and coverage rate to demonstrate the effectiveness of debiasing. To save
space, we only report the coverage rates based on σ̂2

HC2 and σ̂2
HC3. Fig. 2 summarizes the results.350

Unlike the previous settings, the relative bias in this setting is large enough to affect the cov-
erage rate. The debiased estimator reduces a fair proportion of bias and improves the coverage
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(b) Ratio of standard deviation between five standard deviation esti-
mates, σn, σ̂HC0, σ̂HC1, σ̂HC2, σ̂HC3, and the true standard deviation of
τ̂adj.
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(c) Empirical 95% coverage rates of t-statistics derived from two esti-
mators and four variance estimators (“theoretical” for σ2

n, “HC2” for
σ̂2

HC2 and “HC3” for σ̂2
HC3)

Fig. 1: Simulation with π1 = 0.2. X is a realization of a random matrix with t(2) entries, and
ϵ(t) is a realization of a random vector with entries from a distribution corresponding to each
column.
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(b) Empirical 95% coverage rates of t-statistics de-
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Fig. 2: Simulation. X is a realization of a random matrix with t(2) entries, π1 = 0.2 and ϵ(t) is
defined in (16).

rate especially when the dimension is high. We provide experimental results in more settings in
Supplementary Material III.

4.5. Trimming covariates355

Because our theory holds even for mis-specified linear models, we can preprocess the covariate
matrix X arbitrarily without changing the estimand, provided that the preprocessing step does
not involve T or Y obs. This is a feature of our finite-population theory. Moreover, our asymptotic
theory suggests that the maximum leverage score of the design matrix affects the properties
of τ̂adj and τ̂deadj. When there are many influential observations, it is beneficial to reduce κ by360

trimming the values of covariates before regression adjustment. Importantly, trimming covariates
should not use any information of T or Y obs.

For the cases considered in previous subsections, we consider trimming each covariate at its
2.5% and 97.5% quantiles. For the 50 design matrices used in Section 4 with p = ⌈n2/3⌉ and
n = 2000, the average of κ is 0.9558 with standard error 0.0384. After trimming, the average365

of κ reduces dramatically to 0.0704 with standard error 0.0212. Fig. 2 shows that the bias is
significantly reduced and the coverage rate gets drastically improved after trimming covariates.
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