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Abstract

We study the problem of community recov-
ery from coarse measurements of a graph. In
contrast to the problem of community recov-
ery of a fully observed graph, one often en-
counters situations when measurements of a
graph are made at low-resolution, each mea-
surement integrating across multiple graph
nodes. Such low-resolution measurements ef-
fectively induce a coarse graph with its own
communities. Our objective is to develop
conditions on the graph structure, the quan-
tity, and properties of measurements, under
which we can recover the community orga-
nization in this coarse graph. In this pa-
per, we build on the stochastic block model
by mathematically formalizing the coarsen-
ing process, and characterizing its impact
on the community members and connections.
Through this novel setup and modeling, we
characterize an error bound for community
recovery. The error bound yields simple and
closed-form asymptotic conditions to achieve
the perfect recovery of the coarse graph com-
munities.

1 Introduction

Community detection (a.k.a. clustering) in a graph is
the problem of identifying groups of nodes with similar
behaviour (Fortunato and Hric, 2016; Von Luxburg,
2007; Abbe, 2017). Identifying communities is usu-
ally the first analysis tool used to draw an initial ob-
servation from data (Yang and Leskovec, 2013). A
community in a graph refers to a group of nodes that
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are more similar to each other than to the rest of the
graph. The notion of similarity most conventionally
means assortativity, i.e. denser intra-community links
in an unweighted graph where no weight or label is as-
sociated with the graph edges (Fortunato, 2010). How-
ever, the group similarity notion has been extended to
other forms of connectivity, as well as to weighted net-
works (Fortunato and Hric, 2016). Cluster formation
is proven to be a universal structure in real networks
(Yang and Leskovec, 2015). As a result, detecting com-
munities in networks has become a central question to
a great body of prediction and inference tasks, with ap-
plications in network neuroscience (Sporns and Betzel,
2016; Bassett and Sporns, 2017; Betzel et al., 2019),
social networks (Yang and Leskovec, 2013), collabora-
tion networks (Hou et al., 2008), and biological net-
works (Girvan and Newman, 2002).

While existing methods for community detection have
been effective in modeling, studying, and recover-
ing communities from finely detailed, high-resolution
graphs (Fortunato and Hric, 2016), there are various
scenarios where a large-scale graph is not fully ob-
servable and should be coarsened due to restrictions
imposed by the measuring instrument (will be exem-
plified shortly) (Betzel and Bassett, 2017), limitations
of the storage memory, high sampling costs, compu-
tational tractability (Dabagia et al.; Serrano et al.,
2009), restricted accessibility to data, and the creation
of multi-scale representations for graphs (Safro et al.,
2015; Loukas, 2019). Discovering the latent commu-
nity structure from the coarse measured graph is a
valuable objective of many graph-based tasks (Mucha
et al., 2010; Betzel et al., 2019).

Although conventional community detection models
can be directly applied to the coarse measured graphs
(Betzel and Bassett, 2017), a fundamental understand-
ing of the impact of coarsening on the community
structure and recovery is missing. Fig. 1 illustrates
how the coarse measurement process can obscure the
high-resolution graph structure. The figure shows that
as coarsening reduces the size of the graph, introduces
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Figure 1: Visual illustration of (a) the underlying high-resolution (fine) graph, (b) the measurement (coarsening) proce-
dure whose result is modeled as a coarse graph, and (c) the effect of the coarsening on the community structure, whose
recovery is the objective of this paper. Some notations used in this paper, with their values realized for this figure, are
annotated.

heterogeneity in the edge weights, which can poten-
tially cause a drift away from the true community
structure.

The study of clustering from coarse measured graphs
enables the characterization of contributing factors
to their community recovery. Such characterization
leads to identifying the barriers in community detec-
tion from a coarse graph, which can potentially im-
prove the clustering by applying adjustments to the
measurement and community recovery process. Such
clustering characterization and recovery improvement
are crucial to many fields including neuroscience. Of-
ten in the study of the brain on a large scale, the scien-
tific measuring instruments are quite coarse and can-
not directly monitor the activity of all the neurons in
the brain, which is as high as 14 billion. Hence, one
is restricted to collect aggregate signals from bundles
of neurons (Osorio et al., 2016; Ghoroghchian et al.,
2020), from which a low-resolution functional brain
graph is generated (Friston, 2011; Ghoroghchian et al.,
2018). The communities identified in the measured
graph have been connected to brain cognitive and be-
havioral units, and they provide biomarkers for neuro-
logical diseases (Sporns and Betzel, 2016; Bassett and
Sporns, 2017; Lynn and Bassett, 2019; Patankar et al.,
2020).

Contributions: In this paper, we study the commu-
nity detection from coarse measured graphs, which to
the best of our knowledge is the first analysis of this
problem:

• A random generative model is introduced for

the coarse measured networks. A mathematical
framework is defined that characterizes the mea-
surement process, the coarse graph, as well as the
relationship between the community structure of
the fine and coarse graphs.

• Simple and closed-form asymptotic conditions are
developed on the graph structure, the quantity
and properties of the measurements, under which
the community organization of the coarse graph
is recovered. The recovery error is characterized,
which facilitated studying the effects of various
measurement- and structure-related parameters,
who take part in improving or exacerbating the
quality of the recovery.

• Simulations are provided to compare the derived
theoretical error bound with the performance of
state-of-the-art community detection methods.

Related Work: While the problem of coarsening
a known graph has received considerable attention in
the past (Karypis and Kumar, 1998; Harel and Ko-
ren, 2001; Kushnir et al., 2006; Safro et al., 2015;
Loukas, 2019; Rahmani et al., 2020), to the best of
our knowledge, this paper is the first to consider learn-
ing community structure from coarse summaries of an
unknown graph.

This paper is built upon the stochastic block model
(SBM), a random generative model that is widely used
as a canonical model in community detection literature
(Abbe, 2017). Although there are other approaches
to detect communities, mainly based on modularity



Nafiseh Ghoroghchian, Gautam Dasarathy, Stark C. Draper

maximization and statistical inference (Fortunato and
Hric, 2016; Javed et al., 2018), there are advantages
to SBM that fit it to our purposes. SBM provides
a rich benchmark that facilitates its generalization to
numerous variants (Abbe, 2017; Fortunato and Hric,
2016; Funke and Becker, 2019). Furthermore, the gen-
erative nature of SBMs allows for characterizing com-
munities and their recovery (Abbe, 2017), which par-
ticularly serves the improvement of community detec-
tion. We start by using the vanilla symmetric SBM to
model the fine scale graph, which we consider a latent
model that underlies the observed coarse graph. Under
this model, we show that the coarse graph becomes a
weighted and mixed membership (or overlapping) vari-
ant of the SBM.

The mixed membership SBM (MMSBM) is another
relevant paradigm to our purposes and could serve as
a good model when directly applied at the measure-
ment (coarsened) level. However in the current paper,
we start with a model of the fine graph and charac-
terize the coarse model as a function of the coars-
ening/measurement procedure. This is more natu-
ral given our goal is to infer community information
about the underlying fine graph. Relatedly, as far as
we know, most papers on MMSBM such as (Dulac
et al., 2020) are algorithmic-oriented and do not con-
tain theoretical analysis of the community recovery
performance similar to our work in this paper. Few
existing works that include theoretical analysis (Mao
et al., 2017), do not model weighted edges and do not
focus on coarsening, the two components that are cru-
cial to our setup.

2 Model

Consider an unweighted graph G = G(V, E), where V
is a set of nodes of cardinality |V| = n, and E is a set
of pairs of nodes, referred to as edges. Alternative to
E and since the graph is unweighted, we can represent
the edges using an adjacency matrix W ∈ {0, 1}n×n,
where each node of the graph is labeled by a unique
number in the index set [n] , {1, 2, · · · , n}, andWuv =
1 shows the existence of an edge between nodes u and
v.

We assume an underlying community structure on
V, which partitions the node set into disjointed sets
V = ∪Kk=1Vk. For all k ∈ [K], Vk represents the set
of the nodes that belong to community k. Each node
belongs to only one of the K communities. The intra-
connection among nodes in the same community is dif-
ferent from their connection to the rest of the graph.
Let P ∈ {0, 1}K×n be the true community assignment
matrix, where Pku = 1 iff node u belongs to commu-

nity k, i.e.

Pku =

{
1 if u ∈ Vk
0 else

. (1)

A graph is drawn under the Symmetric Stochastic
Block Model (SSBM) characterised by p and q, where
the probability of having an edge between two nodes
is independently distributed according to Bernoulli(p),
for two nodes in the same community, and Bernoulli(q)
for nodes in different communities. Also, the nodes
are assigned to communities in a uniform and inde-
pendent manner. We let W be distributed according
to W ∼ SSBM(n,K, p, q) conditional on P , i.e.,

Wuv ∼
{

Bernoulli(p) if ∃k ∈ [K] : Pku = 1, Pkv = 1
Bernoulli(q) else

,

(2)

We assume a general scaling behaviour for p, q by
defining the constants 0 < α, β < ∞ and a scaling
factor f(n), where:

p , αf(n), q , βf(n). (3)

f(n) tracks the changes in the graph density as a func-
tion of the graph size. As n increases, f(n) may remain
unchanged, or it may get smaller, i.e. the graph be-
comes sparser as it grows. The latter sparsity assump-
tion has been considered in existing literature, as it fits
to many real-world applications, including biological,
social, and collaborative networks (Abbe, 2017; Mos-
sel et al., 2014; Abbe et al., 2015; Abbe and Sandon,
2015a).

In real applications, G can be very large, in the or-
der of millions or billions of nodes. In general, the
population is much larger than the number of commu-
nities (e.g., there are many more citizens than cities)
and so n� K. We often cannot observe the existence
(or lack of existence) of all n(n−1)

2 possible connections
and instead measure J summaries of associations.

One possible choice to collect a simplified and inter-
pretable set of summary measurements (more expla-
nations come shortly), is to define a set of disjointed
measurement vectors {b1,b2, · · · ,bm}, all satisfying
bi ∈ {0, 1}n and bib

ᵀ
j = 0 for all i ∈ [m] different from

j ∈ [m]. The latter condition means measurement vec-
tors do not overlap, i.e. each node is measured at most
one time. Each summary, denoted by s` for ` ∈ [m2],
is defined as:

s` =
∑

u∈supp(bd`/me)

∑
v∈supp(b` mod m)

Wuv

= bd`/meWbᵀ
` mod m.

(4)

supp(bi) denotes the support of bi and |supp(bi)| is
the cardinality of the support. Equation (4) corre-
sponds to the set of summary measurements one would
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get if one defines an m × n matrix whose rows are
b1,b2, · · · ,bm, and then collects m2 non-distinct (or
m(m+1)

2 distinct) measurements as in (4), forming the
following matrix equality:

W̃ = BWBᵀ. (5)

Such measurement model is a natural choice in exist-
ing applications. For instance, linear measurement of a
high-dimensional signal appear in compressed sensing
(Donoho, 2006; Draper and Malekpour, 2009) which is
further applied to Electroencephalogram (EEG) sig-
nal processing (Aviyente, 2007) and image process-
ing (Baraniuk, 2007), as well as in Covariance sketch-
ing (Dasarathy et al., 2015). For such linear mea-
surements, the original and the measured graphs re-
spectively model the Covariance (here, thresholded for
weighted graphs) matrices of the original and the lin-
early measured signals. The measurement model in
(5) is also a popular graph reduction method, where
W̃ approximates W by preserving some of its spectral
properties (Safro et al., 2015; Loukas, 2019; Jin et al.,
2020).

Matrix W̃ can be thought of as the weighted adjacency
matrix representation of a measured weighted graph
G̃ ∈ G̃(Ṽ, Ẽ), where Ṽ is the set of c-nodes 1 and |Ṽ| =
m. Ẽ is the set of c-edges, consisting of pairs of c-
nodes and a weight, i.e., (i, j, w̃). Note that W̃ij ’s for
all i > j are independent random variables if the bi’s
are disjoint. We return to this point, and the formal
statistics of W̃ , shortly.

Definition 1. A measurement matrix B is “r-
homogeneous” if for all i ∈ [m] there is a constant
positive integer r ≤ n

m such that |supp(bi)| = r.

We assume the number of measured fine nodes that
represent a c-node is the same for all c-nodes. We refer
to this number as the coverage size and denote it by r.
Accordingly, the support of the rows of a homogeneous
measurement matrix has cardinality equal to r. We
define the c-node profile matrix:

Φ , BP ᵀ, (6)

whose dimension is m×K and connects the measure-
ment matrix B to the graph of community assignment
matrix P . Φ displays the impact of coarsening on the
community memberships. A c-node can belong to one
community or multiple communities. Each row of the
c-node profile matrix, φi, is a length-K vector that
counts the number of nodes in each community in G
that is measured by the i-th c-node. For instance,

Φ =


0 4 0
2 0 2
4 0 0
0 2 2

 means that, all the 4 fine nodes

1 “c-” stands for compound or coarse.

that map to the first (resp. the third) c-node belong
to community 2 (resp. 1), while half of the 4 fine nodes
mapping to the second c-node belong to community 1
and the other half belong to community 3.

The following Lemma derives the statistics of W̃ .

Lemma 1. Let W ∼ SSBM(n,K, p, q) from which W̃
in (5) is measured under the r-homogeneous measure-
ment assumption defined in Def. 1. Then W̃ij’s are
i.i.d. random variables for all i > j, with distribution:

W̃ij ∼ PoissonBinomial({p}φ
ᵀ
i φj , {q}r2−φ

ᵀ
i φj ) ,

(7)

where the PoissonBinomial in (22), is a compact nota-
tion for a Poisson Binomial distribution with success
probabilities φᵀi φj of p’s and r2 − φᵀi φj of q’s.

The proof is elaborated in Sec. 4.1 of the supplemen-
tary materials.

Each c-node can measure from members of one or mul-
tiple communities. We denote the maximum number
of communities that overlap with a c-node, by ν, where
1 ≤ ν ≤ K. This is considered as a Community Over-
lap (CO) constraint, and is illustrated in the next Def-
inition.

Definition 2. A measurement matrix B is CO-ν with
respect to a graph G ∈ G(V, E) with community assign-
ment matrix P , if the profile matrix Φ = BP ᵀ satisfies:
1 ≤ |supp(φi)| ≤ ν ∀i ∈ [m].

Def. 2 means that the support of each row of B cor-
responds to at most ν of the communities in G. The
next definition is the last step to formalizing the coarse
graph community structure.

Definition 3. A measurement matrix B is “balanced”
with respect to a graph G ∈ G(V, E) with community
assignment matrix P , if the profile matrix Φ = BP ᵀ

satisfies Φik = Φik′ for all i ∈ [m] and k, k′ ∈ supp(φi).

In other words, in a balanced-measured graph, an iden-
tical number of nodes are measured from each commu-
nity.

The objective of this paper is to recover the c-node
profile matrix Φ from the measured graph W̃ in (5).
Let a maximum a posteriori (MAP) estimator take a
measured graph G̃ with the true c-node profile matrix
Φ, and returns its estimate Φ̂ that assigns every c-node
in G̃ to communities. We characterize an upper bound
on the failure probability of the MAP estimator. The
error refers to assigning a wrong profile to at least one
c-node, up to equivalent relabelling of communities.
We also study the asymptotic conditions such that this
error tends to zero.

Recovering Φ in (6) from the measured matrix W̃ ,
without imposing additional constraints on Φ, is gen-
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erally a very hard problem. Hence, we relax the prob-
lem to achieve tractability, by putting the constraints
in Def. 1, 2, and 3 on the measurement matrix (i.e.
B), with respect to the community assignment matrix
(i.e. P ) of the graph. In many practical settings,
assumptions such as homogeneity are reasonable. For
instance, Electroencephalography (ECoG) signals are
acquired from different brain regions using electrodes
whose contact surface areas are the same. Neverthe-
less, a relaxation of these assumptions is of consider-
able interest and will serve as a compelling avenue for
future exploration.

In the next section, we state and study the community
recovery problem under the CO-ν constraint.

3 Recovery under the Community
Overlap (CO)-ν constraint

In this section, we derive an upper bound on the MAP
recovery error of the profile matrix Φ, as described at
the end of Sec. 2. The recovered profile matrix Φ̂,
estimates at most ν communities from which each c-
node measures.

3.1 Main Results

We begin sketching our main result by defining

K(ν) =

ν∑
`=1

(
K

`

)
, (8)

the profile set:

Υ(ν) , {φi|φi = biP
ᵀ, 1 ≤ |supp(φi)| ≤ ν,

∀k ∈ supp(φi) : φik = r
|supp(φi)|},

(9)

and a one-to-one function h : Υ(ν) −→ [K(ν)]. Function
h maps a c-node profile to an extended community
indexed by [K(ν)] (more explanations in Sec. 3.2). A

probability matrix U ∈ [0, 1]K
(ν)×K(ν)

is defined, for
all a,a′ ∈ Υ(ν) and k = h(a), k′ = h(a′), as:

Uk,k′ = P(X ≥ r2(τ̃ p+ (1− τ̃)q)) , (10)

where 0 ≤ τ̃ ≤ 1 and X is an auxiliary random variable
distributed as:

X ∼ PoissonBinomial({p}aᵀa′ , {q}r2−aᵀa′) . (11)

Sec. 3.2 will elaborate on the reasons behind these def-
initions, using the binarization of the coarse measured
graph, i.e. mapping the c-edge weights to zero or one.
Sec. 3.2 shows that the elements of matrix U in (10)
essentially denote the probability of having a connec-
tion between members of the extended communities

(or equivalently between c-node profiles), in the bi-
narized coarse graph. The prior distribution on the
extended communities is denoted by the probability
vector s. We define the scaled Chernoff-Hellinger (CH)
divergence as:

D(diag(s)Uk, diag(s)Uk′) , max
0≤t≤1∑

k′′∈[K(ν)]

sk′′ [tUkk′′ + (1− t)Uk′k′′ − U tkk′′U
(1−t)
k′k′′ ],

(12)

where the original CH divergence is D+ = m
logmD. The

following theorem provides an error bound for commu-
nity recovery from the coarse graph.

Theorem 1. Let W ∼ SSBM(n,K, p, q) from which
W̃ in (5) is measured under the r-homogeneous, bal-
anced, and CO-ν constraints. s is a length-K(ν) prob-
ability vector, Uk denotes the k-th column of matrix
U defined in (10), and K(ν) is defined in (8). The
probability that the MAP estimator fails to recover the
c-node profile matrix Φ from W̃ (up to relabelling of
Φ’s columns) is upper-bounded by:

P(MAP failure) ≤
∑

k,k′∈[K(ν)]
k<k′

e−mD(diag(s)Uk,diag(s)Uk′ ),

(13)

where D is the scaled CH divergence in (12).

The modeling of the coarse graph under the CO-ν
constraint, i.e. binarization and profile mapping to
extended communities sketched before the theorem,
makes the binarized coarse graph fit to the general
SBM framework in (Abbe and Sandon, 2015b). In gen-
eral SBM, the connection probability between mem-
bers of the extended communities is no longer sym-
metric. Rather, this probability differs for each pair
of extended communities. This way, the error bound
is straightforwardly derived using equations (44) and
(47) in (Abbe and Sandon, 2015b), while adjusting the
notations. The rest of the detailed proof techniques for
Theorem 1 is elaborated in Sec. 3.2.

Theorem 1 demonstrates that, as the connectivity
probability among pairs of the extended communities
become distant, the recovery error bound improves.

Remark 1. In order to extract interpretable obser-
vations from the recovery error bound in Theorem 1,
we examine the dominant term of the CH divergence
in (12). For each pair of extended communities, k, k′,
the dominant term corresponds to an extended com-
munity k′′, where the probability of its connectivity to
those communities is the most distant. We derived
an estimate for the dominant term in Sec. 4.2 of the
supplementary materials, which demonstrates the fol-
lowing: the exponent of the error recovery bound (i.e.
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the CH divergence) increases as r and |α−β| increase
(by fixing whichever α or β that is smaller and in-
creasing the other one), or as ν decreases, while other
parameters remain unchanged.

In the following we list the observations derived from
Theorem 1 and Remark 1:

1. As we increase the measurement size (i.e. m, the
number of c-nodes), the error bound decreases.

2. As the coverage size per measurement (i.e. r, the
number of measured fine nodes represented by a c-
node) expands, the failure error bound decreases.

3. By allowing measurements overlapping with fewer
communities (i.e. increasing the purity of the c-nodes),
the error bound drops. This intuitively makes sense
due to a decrease in complexity.

4. The expansion of the gap between extra- and intra-
community probabilities results in a decrease in the
error bound. This is intuitively expected since commu-
nities become more distinguishable from one another.

Note that the trends listed above are true so long as
the prior s remains unchanged, or does not change
such behaviors. We also assume other parameters ex-
cept for the one mentioned, remain unchanged. Oth-
erwise, we face perturbing multiple parameters simul-
taneously, which might make the behavior of the error
bound unpredictable and heavily depending on the pa-
rameter values.

The following corollary characterizes the asymptotic
conditions such that the community recovery error,
upper-bounded in Theorem 1, approaches zero.

Corollary 1. Let W ∼ SSBM(n,K, p, q) from which
W̃ in (5) is measured under the r-homogeneous, bal-
anced, and CO-ν constraints. The probability that the
MAP estimator fails to recover the c-node profile ma-
trix Φ from W̃ (up to relabelling of Φ’s columns), for
a constant ∆ > 0, 0 < τ̃ < 1

ν , tends to zero as:

r > ∆√
f(n)

, α 6= β,

∆2(mn )2 < f(n) ≤ f0, n ≥ n0, m, n→∞
. (14)

The constant ∆ is defined in equation (45) in Sec. 4.3
of the supplementary materials. The remaining pa-
rameters are assumed to remain fixed.

The condition in (14) is directly derived from the er-
ror bound in Theorem 1, by tending the exponent to
infinity resulting in the error to approach zero. The
complete proof is sketched in Sec. 3.2.

Corollary 1 characterizes the impact of coarsening on
the community recovery. After the coarse graph is
binarized, the connectivity probability between some

c-edges reaches very fast to zero, and the rest to one,
which facilitates the separation of communities. More-
over, the measurement coverage size r (i.e. the num-
ber of measured fine nodes combined into a c-node),
and the graph binarization threshold τ̃ , must satisfy
a lower and upper bound, respectively, to allow per-
fect community recovery of a coarsened graph through
its binarization. The recovery conditions derived in
Corollary 1, are illustrated in the last column of Ta-
ble 1, and are compared with those of the classic (non-
coarsened) general SBM that exist in the literature.
The comparison is made in terms of various scalings
of the parameters. The first column exhaustively par-
titions the scaling of the connection probability of the
coarse graph, which can be a function of m,n, r and
denoted by f̃(m,n, r), for which the second column
shows state-of-the-art conditions to allow or disallow
exact recovery. In the third column, different scal-
ings of the coarsening coverage size r are considered,
where each scaling results in separate recovery condi-
tions demonstrated in the last column.

3.2 Proof Techniques

The community recovery problem under the CO-ν con-
straint refers to the problem of estimating the c-node
profile matrix Φ that corresponds to the weighted ad-
jacency matrix W̃ defined in (5) and measured from
W ∼ SSBM(n,K, p, q) under the r-homogeneous, bal-
anced, and CO-ν constraints. This way, W̃ is dis-
tributed according to (7) and hence, can be thought
of and modeled as a sample of a weighted version of
the Overlapping general SBM (OSBM) random graph
ensemble. The formal definition of general SBM is
found in (Abbe and Sandon, 2015a). We define the
weighted OSBM that models W̃ , similar to the classic
OSBM, except that the node profiles φi for all i be-
long to the set Υ(ν) defined as (9). rather than the
set of any length-K binary vectors {0, 1}K . Further-
more, the weighted OSBM that models W̃ , an edge
between pairs of nodes is distributed as the Poisson
Binomial distribution in (7), rather than the Bernoulli
distribution in classic OSBM. Note that due to the
Community Overlap (i.e. CO-ν) assumption on W̃ ,
the edge distributions depend on the inner product of
the pairwise profiles, which takes values between 0 and
r2, i.e. 0 ≤ φᵀi φj ≤ r2. Hence, the weighted OSBM is
not symmetric.

Deriving the conditions that allow the community re-
covery from a weighted OSBM, except for the sym-
metric case (c.f. Sec. 3.3 and Sec. 1 in the supple-
mentary materials), is an open problem (Xu et al.,
2020). In the following, we exploit the properties of
the special case of the weighted OSBM concerning this
study, which enables its transformation to a classic
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Table 1: Comparison of the recovery conditions under the CO-ν constraint, derived from Corollary 1. All scaling notations
(o for strictly smaller than, and Ω for strictly greater than, disregarding constants) are defined with respect to m. f(n) is
the probability scaling of connections in the fine graph, Q is a constant matrix (i.e. it does not scale with other variables),

∆ is a positive constant, and f̃(m,n, r) represents the probability scaling of connections in the coarse graph, which is a
function of the fine and coarse graphs sizes, and the coverage size (i.e. the number of measured fine nodes represented by
a c-node), to allow for comparison with the classic scenario (i.e. with n = m, r = 1).

f̃(m,n, r): Classic (exact) Recovery Scaling of Recovery, This paper

probability scaling SBM(m, s, U = Qf̃(m,m, 1)) coarsening as m,n→∞
of connections as m,n→∞ coverage size,
in coarse graph (Abbe and Sandon, 2015a) i.e. r

o( logm
m

) Impossible o( 1√
f(n)

) Impossible

c1
1√
f(n)

Possible if α 6= β, c1 > ∆, f(n) > ∆2(m
n

)2

Ω( 1√
f(n)

) Possible if α 6= β, f(n) = Ω((m
n

)2)

c0
logm
m

Possible if D+ > 1 o(
√

m
logm

) Impossible

c1
√

m
c0 logm
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(unweighted) general SBM. We propose a two-stage
strategy that first binarizes W̃ and then represents the
resultant unweighted OSBM as an unweighted clas-
sic (non-overlapping) general SBM. The binarization
is motivated for two reasons. First, binarization is
widely used to simplify and sparsify weighted graphs.
Second, through binarization, we can leverage existing
work in community detection literature to study the
conditions to recover the c-node profile matrix.

3.2.1 Stage one: Binarizing W̃

The summation in the coarsening model (5) suggests
the concentration of edge weights around a mean value.
Hence, for the c-edges that corresponds to a pair of c-
nodes measuring from only one community, the ex-
pectation of the weights tend to concentrate about
means pr2 or qr2. Regarding the c-nodes measuring
from multiple communities, their corresponding c-edge
weights concentrate about means pφᵀi φj+q(r

2−φᵀi φj).
This motivates solving our weighted OSBM prob-
lem by first binarizing W̃ . Such binarization facili-
tates community recovery by adopting the much more
evolved tools available for unweighted graphs. We de-
fine the binarized coarse measured matrix W̃ (b) as:

W̃
(b)
ij ,

{
1 if W̃ij ≥ r2(τ̃ p+ (1− τ̃)q)
0 else

, (15)

for 0 ≤ τ̃ ≤ 1. The chosen threshold, i.e. r2(τ̃ p +
(1− τ̃)q) in (15), is a suitable choice since it is lower-
and upper- bounded by qr2, pr2, the minimum and
maximum mean values of W̃ij for various profile inner
products. This way, we only keep the most significant
edges, i.e. those whose weights are above the mean
value of the intra-community connections.

3.2.2 Stage two: SBM representation of the
OSBM

Through the binarization explained in Sec. 3.2.1, the
coarse graph W̃ previously modeled as a weighted gen-
eral OSBM, is converted to W̃ (b), which is a clas-
sic (unweighted) general OSBM. Following the ap-
proach suggested in (Abbe, 2017), we convert the clas-
sic OSBM to an equivalent non-overlapping general
SBM. To do so, instead of the original community
set [K], we use the extended community set [K(ν)]
, where K(ν) , |Υ(ν)| defined in (8), where each ex-
tended community represents a possible c-node profile
φi ∈ Υ(ν) for all i ∈ [m]. The one-to-one function
h : Υ(ν) −→ [K(ν)] provides indexing for the extended
communities, i.e. a profile vector φi ∈ Υ(ν) maps to
an extended community k = h(φi). Such conversion
of profiles to extended communities, models the bina-
rized matrix of measurements W̃ (b) in (15) as a general
unweighted SBM denoted by W̃ (b) ∼ SBM(m, s, U),
where s is a prior probability vector of the extended
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communities. Sec. 2 in the supplementary materi-
als provides the formal definition of the general un-
weighted SBM, the derivation of the matrix of commu-
nity connectivity probabilities U , and the remaining of
the proof techniques of Theorem 1 and Corollary 1.

3.3 Stronger recovery under the special
Community Overlap (CO)-1 constraint

The results in Sec. 3.1 are applicable to coarse mea-
sured graphs under the general CO-ν constraint, for all
1 ≤ ν ≤ K. However, the CO-1 constraint is an special
case, which corresponds to a weighted and symmetric
SBM. Contrary to the general (i.e. non-symmetric)
weighted SBM model which is an open problem, the
community recovery from such weighted and symmet-
ric SBM has already been addressed in the literature
(Jog and Loh, 2015; Xu et al., 2020). In the following
theorem, we adopt the results of (Jog and Loh, 2015)
to achieve stronger recovery conditions under the CO-
1 constraint, compared with those of the general CO-ν
scenario in Corollary 1.

Theorem 2. Let W ∼ SSBM(n,K, p, q) from which
W̃ in (5) is measured under the r-homogeneous, and
CO-1 constraints. The probability that the MAP esti-
mator fails to recover the c-node profile matrix Φ from
W̃ (up to relabelling of Φ’s columns) from W̃ , tends
to zero as:{

α 6= β if m <∞ r
√
f(n)→∞

α+β
2 −

√
αβ > lim

m→∞

[
K
2

logm
r2f(n)m

]
if m,n→∞,

(16)

if f(n)
n→∞−−−−→ 0. K is assumed to remain fixed.

More explanations and proof details are found in Sec. 1
and Sec. 4.4 of the supplementary materials.

4 Numerical Results

In this section, we evaluate the error behavior of
the community recovery from synthetically generated
coarse measured graphs. We compare the theoreti-
cal error bounds derived in Sec. 3, with state-of-the-
art community detection methods from existing works
that are applied to the generated coarse graphs. 2 It
should be noted these algorithmic methods only out-
put the index of the nodes estimated to be assigned.
This translates into the recovery of a binarized ver-
sion of the community assignment matrix Φ. Refer
to Sec. 3 in supplementary materials for the detailed
methodology used in this section.

2The Python code to reproduce the results of
this paper is available at: https://github.com/NaGho/
Community-Detection-From-Coarse-Measured-Graphs.

In Fig. 2, the theoretical error bound (solid line),
as well as the community recovery error for multi-
ple state-of-the-art overlapping community detection
methods (Rossetti et al., 2019) are plotted3. The
methods include Modularized non-negative matrix fac-
torization (M-NMF) (Wang et al., 2017), Speaker-
listener Label Propagation Algorithm (SLPA) (Xie
et al., 2011, 2013), Non-Negative Symmetric Encoder-
Decoder (NNSED) (Sun et al., 2017), and Cluster Af-
filiation Model for Big Networks (BigClam) (Yang and
Leskovec, 2013) (dashed lines). Note that we have
evaluated these methods for various hyper-parameters
and plotted their best performance.

(a) w.r.t. m for r = 50.

(b) w.r.t. r for m = 400.

Figure 2: Community recovery error for n = 30000 fine
nodes, ν = 2 community overlap (CO), K = 5 commu-
nities, and α = 500, β = 50 intra- and extra- community
constants for the probability of connectivity.

From Fig. 2a, we observe that as we increase the mea-

3 The results in this section are computed assuming
p, q,K, r are known. However, using model selection meth-
ods, heuristics can be developed to estimate these param-
eters when they are not known apriori.

https://github.com/NaGho/Community-Detection-From-Coarse-Measured-Graphs
https://github.com/NaGho/Community-Detection-From-Coarse-Measured-Graphs
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surement size (i.e. m, the number of c-nodes), the
theoretical error bound drops monotonically. Simi-
larly, Fig. 2b plots the community recovery error with
respect to the coverage size r (i.e. the number of
measured fine nodes combined into a c-node), demon-
strating that increasing the coverage size monotoni-
cally improves the theoretical community recovery er-
ror. These observations confirm the expectations made
subsequent to Theorem 1. Although the simulated
methods, both in Fig. 2a and Fig. 2b, do not perform
as predictable as the theoretical error bound, most of
them show an overall decrease in their recovery error
when respectively, the number of measurements and
the coverage size increase. Note that the light shade
in Fig. 2 around the theoretical bound represents the
ambiguity in the calculation of the bound (c.f. Sec. 3
of the supplementary materials).

Note that the theoretical bound is the upper bound
for the MAP estimator. Fig. 2 shows that the upper
bound seem to be loose in certain regimes (e.g. for
small m, r), in which existing methods perform bet-
ter. However, as the measurement- and the coverage
sizes increase, the theoretical error bound becomes
tight and outperforms existing community detection
methods with an increasing gap.

5 Conclusion and Future Work

We introduced a mathematical framework based on
the stochastic block model, that characterizes com-
munity recovery from coarse measured graphs. We
developed theoretical conditions, on the quantity and
properties of the measurements with respect to the
community structure of the high-resolution graph, to
achieve perfect recovery. The assumptions of homoge-
neous and balanced measurements were essential to
this work. We leave to future work the relaxation
of these assumptions. Moreover, community recov-
ery in a coarse measured graph, in which communities
modeled using the weighted and overlapping stochastic
block model, utilized edge weight binarization. Future
work can look into community recovery without bi-
narization, in which one would use full graph weight
distribution for recovery.

Finally, a significant gap was observed between the
performance of state-of-the-art community detection
algorithms, with the theoretical error bounds derived
in this paper, in certain regimes. This gap motivates
future work to improve existing clustering algorithms
to achieve its theoretical potential. An algorithmic
investigation into recovery performance, e.g. similar
to the variational inference approaches used in (Aicher
et al., 2015; Dulac et al., 2020), is a promising direction
to future work and would complement our theoretical

analyses.
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