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1. Introduction

Petrov–Galerkin method with optimal test functions. Consider a general variational problem,{
u ∈ U
b(u, v) = l(v), v ∈ V (1.1)

here U, V are Hilbert trial and test spaces, b(u, v) is a continuous bilinear form satisfying the inf–sup condition,

sup
v∈V

|b(u, v)|
∥v∥V

≥ γ ∥u∥U

and l ∈ V ′ satisfies the compatibility condition,

l(v) = 0 v ∈ V0 := {v ∈ V : b(u, v) = 0 ∀u ∈ U} .

By the Babuška–Nečas Theorem [1], Thm. 6.6.1, the problem is well-posed.
Petrov–Galerkin discretization of (1.1) introduces discrete trial and test spaces Uh ⊂ U , Vh ⊂ V of equal dimension, and

approximates (1.1) with its discrete counterpart,{
uh ∈ Uh
b(uh, vh) = l(vh), vh ∈ Vh .

(1.2)

If a discrete inf–sup condition is satisfied,

sup
vh∈Vh

|b(uh, vh)|
∥vh∥V

≥ γh∥uh∥U

then, by the Babuška Theorem [2], the discrete problem is well-posed as well, and we have the a-priori error estimate,

∥u − uh∥U  
approximation error

≤
∥b∥
γh

inf
wh∈Uh

∥u − wh∥U  
the best approximation error

.
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nfortunately, the continuous inf–sup condition does not imply the discrete one, and coming up with a stable pair Uh, Vh
f equal dimension for U ̸= V may be challenging.
The Petrov–Galerkin Method with Optimal Test Functions [3,4], starts by replacing problem (1.1) with an equivalent

ixed formulation,{
ψ ∈ V , u ∈ U
(ψ, δv)V + b(u, δv) = l(δv), δv ∈ V
b(δu, ψ) = 0, δu ∈ U

(1.3)

here the additional unknown ψ is (the Riesz representation of) the residual and, on the continuous level, is equal zero.
nstead of discretizing the original problem, we discretize now the equivalent mixed problem,{

ψh ∈ Vh, uh ∈ Uh
(ψh, δvh)V + b(uh, δvh) = l(δvh), δvh ∈ Vh
b(δuh, ψh) = 0, δuh ∈ Uh .

(1.4)

he Brezzi theory [5] calls for the satisfaction of two inf–sup conditions. The discrete inf–sup in kernel condition is trivially
atisfied due to the coercivity of the test inner product. The discrete LBB condition coincides now with the original discrete
abuška condition with one important difference - Vh need not be of the same dimension as Uh. With a sufficiently large
pace Vh, the discrete inf–sup condition is easily satisfied. The classical way of proving the discrete inf–sup condition is
o construct the so-called Fortin operator [6],

Π : V ∋ v → Πv ∈ Vh
∥Πv∥V ≤ CF∥v∥V

b(δuh,Πv − v) = 0 ∀ δuh ∈ Uh .
(1.5)

ith the existence of the Fortin operator, the continuous inf–sup condition implies its discrete counterpart with γh =

/CF . Obviously, we want the continuity constant CF to be small.

iscontinuous Petrov–Galerkin (DPG) method with optimal test functions. In the DPG method, we enlarge the test space
h to a broken test space Vh(Th) at the expense of introducing yet additional unknowns — Lagrange multipliers, the so-
alled traces ûh ∈ Ûh defined on the mesh skeleton. For localizable test inner products, the Gram matrix corresponding
o (ψh, vh)V becomes block-diagonal, and the residual ψh is eliminated at the element level. The ultimate global price for
tability is the introduction of the additional unknowns — the traces. The broken counterpart of (1.1) looks as follows.{

u ∈ U, û ∈ Û
b(u, v) + ⟨û, v⟩Γh = l(v), v ∈ V (Th)

(1.6)

here the bracket represents additional terms defined on the mesh skeleton. It has been shown in [7] that the broken
ariational formulation is well-posed and it inherits the stability of the original problem with same order stability
onstants.
The abstract conditions for the Fortin operator in context of the DPG method look as follows.

Π : V (Th) ∋ v → Πv ∈ Vh(Th)
∥Πv∥V (Th) ≤ CF∥v∥V (Th)

b(uh, v −Πv) + ⟨ûh, v −Πv⟩Γh = 0 ∀uh ∈ Uh, ûh ∈ Ûh .

onstruction of Fortin operators for globally conforming test spaces is challenging. Value of the operator – Πv, has to
and in the (conforming) discrete test space which suggests the use of techniques used in the construction of interpolation
perators : taking values at vertices, edge and face averages etc. However, the Fortin operator has to be defined on the
hole energy space, and these operations are illegal for general members of such spaces.
With broken test spaces, the global conformity is not an issue, and we can settle for a local construction of the Fortin

perator:

Π : V (K ) ∋ v → Πv ∈ Vh(K )
∥Πv∥V (K ) ≤ CF∥v∥V (K )

bK (uh,Πv − v) + ⟨ûh,Πv − v⟩∂K = 0 ∀uh ∈ Uh, ûh ∈ Ûh

(1.7)

here V (K ) denotes the test space on element K , and Vh(K ) denotes its discrete counterpart. Clearly, satisfaction of the
ocal conditions implies immediately satisfaction of the global conditions as well. The main point in the construction of
he Fortin operator is to use operations that are well-defined on the whole energy space. The finite-dimensionality of
he range and Uniform Boundedness Theorem imply then automatically the continuity of the operator. We also want the
ontinuity constant to be at least (a) independent of element size h and, possibly, (b) independent of polynomial order
. As the Fortin constant enters the ultimate stability constant for the DPG method, we also want it to be as small as
ossible.
Construction of the Fortin operator involves the original bilinear form and the skeleton term resulting from break-

ng the test space and, therefore, is problem dependent. However, if we restrict ourselves to standard test spaces:
1
,H(curl),H(div) (with standard norms), and make a simplifying assumption about the material data to be element-wise



L. Demkowicz and P. Zanotti / Computers and Mathematics with Applications 80 (2020) 2261–2271 2263

F
w

w
A

T

constant, one can strive for constructing general Fortin operators that will serve all problems satisfying the simplifying
assumption. This was done in [7,8]. In what follows, we will generalize ideas from [9]. For an example of a non-local
Fortin operator, see [10].

We will restrict ourselves to affine tetrahedral elements.
The motivation for the construction comes from the ultraweak (UW) variational formulation for two model problems.

The first one is the classical diffusion-convection-reaction problem:⎧⎪⎨⎪⎩
−divσ + cu = f in Ω

a−1σ − ∇u + a−1bu = 0 in Ω
u = u0 on Γu

σ · n = σ0 on Γσ .

An element K contribution to the bilinear form in the UW variational formulation is:

bK ((σ , u, σ̂ · n, û), (τ , v)) = (σ ,∇v + a−1τ )K + (u, cv + div τ + (a−1b) · τ )K − ⟨σ̂ · n, v⟩∂K − ⟨û, τ · n⟩∂K

where
u ∈ L2(Ω), σ ∈ (L2(Ω))3

σ̂ · n ∈ H−1/2(Γh), û ∈ H1/2(Γh)
τ ∈ H(div Th), v ∈ H1(Th) .

or definitions of skeleton trace spaces H1/2(Γh),H−1/2(Γh), and H−1/2(curlΓ ,Γh) used below, see e.g. [7]. Consistently
ith the logic of using the first Nèdèlec exact sequence spaces for discretization we have,

u ∈ Pp−1(K ), σ ∈ Pp−1(K )3

û ∈ γ (Pp(K )) =: Pp
c (∂K )

σ̂ · n ∈ γn(RT p(K )) =: Pp−1
d (∂K )

here γ , γn, and γt used below, denote the trace operators for energy spaces H1(K ),H(div, K ) and H(curl, K ), respectively.
fter integration by parts,

bK ((σ , u, σ̂ · n, û), (τ , v)) = (a−1σ − ∇u + a−1bu, τ )K + (−divσ + cu, v)K + ⟨σ · n − σ̂ · n, v⟩∂K + ⟨u − û, τ · n⟩∂K .

his leads to the following orthogonality requirements for the Fortin operators.

(ψ,Πgradv − v)K = 0 ∀ψ ∈ Pp−1(K )
⟨φ,Πgradv − v⟩∂K = 0 ∀φ ∈ Pp−1

d (∂K ) .
(1.8)

(ψ,Πdivτ − τ )K = 0 ∀ψ ∈ Pp−1(K )3

⟨φ, (Πdivτ − τ ) · n⟩∂K = 0 ∀φ ∈ Pp
c (∂K ) .

(1.9)

Our second example deals with the UW formulation for three-dimensional Maxwell equations,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

E,H ∈ L2(Ω)3, Êt , Ĥt ∈ H−1/2(curlΓ ,Γ )
( 1
µ
E,∇h × F ) + ⟨n × Êt , Ft⟩Γh + iω(H, F ) = 0, F ∈ H(curl, Th)

(H,∇h × G) + ⟨n × Ĥt ,Gt⟩Γh − ((σ + iωϵ)E,G) = (J imp,G), G ∈ H(curl, Th)
Êt = E0,t on ΓE

Ĥt = H0,t on ΓH .

Recalling that approximate E,H ∈ Pp−1(K )3, and approximate Êt , Ĥt belong to the tangential trace of Nèdèlec space N p(K ),
we arrive at the orthogonality conditions for the Fortin operator,

(ψ,Π curlF − F )K = 0 ∀ψ ∈ Pp−1(K )3

⟨n × φ,Π curlF − F⟩∂K = 0 ∀φ ∈ γtN p(K ) (1.10)

where γtN p(K ) denotes the image of tangential trace operator of N p(K ).

Existing results. The first construction of H1 and H(div) Fortin operators for the DPG method was given by Gopalakrishnan
and Qiu in 2012 [8]. The construction utilized a combination of classical techniques based on a judicious definition of
degrees-of-freedom with the elimination of those which are not continuous on the energy spaces. The construction was
later extended to 3D in [7] including the H(curl) Fortin operator. A different technique for 2D problems was used in [9]
where H1 and H(div) Fortin operators are defined implicitly by considering constrained minimization problems set up
on the master element. The work aimed at investigating numerically dependence of continuity constants ∥Πgrad

∥, ∥Πdiv
∥

upon the polynomial degree. More recently, Führer and Heuer were the first to construct Fortin operators for the DPG
method applied to fourth-order problems (Kirchhoff–Love plates) [11]. All these constructions have been done locally
utilizing the DPG use of broken test spaces. The presented work combines techniques from [9] and [7]. The minimal
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ncrement ∆p for the enriched test spaces resulting from this type of analysis is typically ∆p ≥ d, the space dimension.
Numerical experience shows that the use of ∆p = 1 for standard model problems is typically sufficient. An alternative,
global construction of a Fortin operator for linear elasticity (and low order elements) was given by Carstensen and
Hellwig [10]. The resulting sufficient condition ∆p = 1 is much closer to what we observe in numerical experiments,
lthough the (global) analysis is much more complicated.

. Auxiliary results

We will need a few fundamental results on polynomial spaces defined on a tetrahedron. The first four lemmas deal
ith bubble spaces.

emma 1. Let Pp+3
0 (K ) denote the subspace of Pp+3(K ) of H1 bubbles on element K . Let u ∈ Pp+3

0 (K ), and

(ψ, u)K = 0 ∀ψ ∈ Pp−1(K ) .

Then u = 0 and, consequently,

inf
u∈Pp+3

0 (K )
sup

ψ∈Pp−1(K )

|(ψ, u)K |

∥ψ∥ ∥u∥
=β > 0 .

s spaces Pp+3
0 (K ) and Pp−1(K ) are of equal dimension, the order of spaces in the inf–sup condition can be reversed,

inf
ψ∈Pp−1(K )

sup
u∈Pp+3

0 (K )

|(ψ, u)K |

∥u∥ ∥ψ∥
=β > 0 . ■

Proof. Function u must be of the form:

u = λ0 . . . λ3 v

where λi, i = 0, . . . , 3 are affine coordinates, and v ∈ Pp−1(K ). Choosing ψ = v gives

(ψ, u)K =

∫
K
λ0 . . . λ3v

2
= 0 ⇒ v = 0 ⇒ u = 0 .

The result implies that the supremum

sup
ψ∈Pp−1(K )

|(ψ, u)K |

∥ψ∥

efines a norm on u, and the inf–sup condition follows then from the equivalence of norms in a finite dimensional
pace. ■

The following result can be found in [12].

emma 2. Let RT p+1
0 (K ) denote the subspace of RT p+1(K ) of H(div) bubbles on a simplex K ⊂ Rd, d = 2, 3. Let

τ ∈ RT p+1
0 (K ), and

(ψ, τ )K = 0 ∀ψ ∈ Pp−1(K )d .

Then τ = 0 and, consequently,

inf
τ∈RT p+1

0 (K )
sup

ψ∈Pp−1(K )d

|(ψ, τ )K |

∥ψ∥ ∥τ∥
=β > 0 .

s spaces RT p+1
0 (K ) and Pp−1(K )d are of equal dimension, the order of spaces in the inf–sup condition can be reversed,

inf
ψ∈Pp−1(K )d

sup
τ∈RT p+1

0 (K )

|(ψ, τ )K |

∥τ∥ ∥ψ∥
=β > 0 . ■

roof. We prove the 3D case only, the 2D case is fully analogous. It is sufficient to prove the result for the master
etrahedron with master coordinates ξi. Choosing ψ = ∇u, u ∈ Pp(K ) and integrating by parts, we obtain,

0 = (∇u, τ )K = −(u, div τ )K .

s u and div τ are both of order p, this implies that div τ = 0. This implies that τ is a curl of an element of Nèdèlec space
N p(K ) and, in particular, it must be a polynomial of order p, i.e. τ ∈ Pp(K )d. As τ satisfies the homogeneous normal BC,
there must exist ψi ∈ Pp−1(K ) such that

τ = ξ ψ .
i i i
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Testing with such a ψ gives,∫
K
τψ =

∫
K

∑
i

ξi|ψi|
2

= 0 ⇒ ψ = 0 ⇒ τ = 0 .

The result implies that the supremum

sup
ψ∈Pp−1(K )d

|(ψ, τ )K |

∥ψ∥

defines a norm on τ , and the inf–sup condition follows then from the equivalence of norms in a finite dimensional
space. ■

Lemma 3. Let N p+2
0 (K ) denote the subspace of N p+2(K ) of H(curl) bubbles defined on tetrahedron K . Let F ∈ N p+2

0 (K ), and

(ψ, F )K = 0 ∀ψ ∈ Pp−1(K )3 .

hen F = 0 and, consequently,

inf
F∈N p+2

0 (K )
sup

ψ∈Pp−1(K )3

|(ψ, F )K |

∥ψ∥ ∥F∥
= β > 0 .

As spaces N p+2
0 (K ) and Pp−1(K )3 are of equal dimension, the order of space in the inf–sup condition can be reversed,

inf
ψ∈Pp−1(K )3

sup
F∈N p+2

0 (K )

|(ψ, F )K |

∥ψ∥ ∥F∥
= β > 0 . ■

Proof. Again, it is sufficient to consider the master tetrahedron. Let F ∈ N p+2
0 (K ). Let ψ ∈ Pp(K )3. Then

(ψ,∇ × F )K = (∇ × ψ, F )K = 0 .

s the curl operator sets H(curl) bubbles into H(div) bubbles, Lemma 2 proves that ∇ × F = 0 and, in particular,
F ∈ Pp+1(K )3. Any H(curl) bubble on the master tetrahedron must be of the form:

F = (φ1ξ2ξ3, φ2ξ1ξ3, φ3ξ1ξ2)

with some scalar factors φi. As F is of order p+ 1, φi must be of order p− 1. Selecting ψ = (φ1, φ2, φ3), we conclude that
= 0. The rest of the reasoning is the same as in the proof of Lemma 2. ■

In order to cope with boundary terms, we will also need a 2D equivalent of Lemma 3.

emma 4. Let N p+1
0 (K ) denote the subspace of N p+1(K ) of H(curl) bubbles on a triangle K . Let F ∈ N p+1

0 (K ), and

(ψ, F )K = 0 ∀ψ ∈ Pp(K )2 .

hen F = 0 and , consequently

inf
F∈N p+1

0 (K )
sup

ψ∈Pp−1(K )2

|(ψ, F )K |

∥ψ∥ ∥F∥
= β > 0 .

As spaces N p+1
0 (K ) and Pp−1(K )2 are of equal dimension, the order of space in the inf–sup condition can be reversed,

inf
ψ∈Pp−1(K )2

sup
F∈N p+2

0 (K )

|(ψ, F )K |

∥ψ∥ ∥F∥
= β > 0 . ■

Proof. The result follows directly from the 2D version of Lemma 2 and the relation between the two 2D exact
sequences. ■

The next three lemmas deal with polynomial spaces satisfying the orthogonality constraints necessary for Fortin
operators. We will upgrade slightly the orthogonality assumptions (1.10)2 replacing them with:

(ψ,Π curlF − F )K = 0 ∀ψ ∈ Pp−1(K )3

⟨n × φ,Π curlF − F⟩∂K = 0 ∀φ ∈ γt (Pp(K )3) (2.11)

Lemma 5. Let F ∈ H(curl, K ) satisfy the constraints:

(ψ, F )K = 0 ∀ψ ∈ Pp−1(K )3
p 3 (2.12)
⟨n × φ, F⟩∂K = 0 ∀φ ∈ P (K ) .
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hen curl F satisfies the constraint:

(χ, curl F )K = 0 ∀χ ∈ Pp(K )3 (2.13)

which, in turn, implies,

⟨η, curl F · n⟩∂K = 0 ∀η ∈ Pp+1(K ) . (2.14)

Conversely, let F ∈ H(curl, K ) satisfy (2.13). Then, there exists u ∈ Pp+2(K ) such that

(ψ, F + ∇u)K = 0 ∀ψ ∈ Pp−1(K )3 and,
⟨n × φ, F + ∇u⟩∂K = 0 ∀φ ∈ Pp(K )3 . ■ (2.15)

Proof. Taking ψ = curlχ in (2.12)1, and utilizing (2.12)2 gives (2.13). Use χ = ∇η in (2.13) to obtain (2.14).
Let F ∈ H(curl, K ) now satisfy (2.13). It is sufficient to show (2.15)1, i.e., that the variational problem,{

u ∈ Pp+2(K )
(∇u, δψ)K = −(F , δψ)K , δψ ∈ Pp−1(K )3 , (2.16)

has a solution u. The second property follows from the first one with ψ = ∇ × φ and (2.13). We begin by considering
the null space of the conjugate operator,

{ψ ∈ Pp−1(K )3 : (∇δu, ψ)K = 0 ∀ δu ∈ Pp+2(K )} .

We claim that the constraint for ψ is equivalent to ψ = curl ζ where ζ ∈ Pp(K )3 with a zero tangential trace. Sufficiency
follows from integration by parts. To show necessity, we test first with δu ∈ Pp+2

0 (K ) to obtain,

( divψ  
∈Pp−2(K )

, δu)K = 0 .

aking δu = divψ λ0 . . . λ3 where λi, i = 0, . . . , 3 are affine coordinates, we conclude that divψ = 0. Testing next with
general δu, we obtain,

0 = (∇δu, ψ)K = ⟨δu, ψ · n⟩∂K .

aking δu = (ψ ·n)λiλjλk on each [ijk] face, we conclude that ψ ·n = 0 on ∂K . Consequently, there exists a vector potential
ζ ∈ Pp(K )3 with zero tangential trace such that ψ = curl ζ .

To finish the proof, we need to notice that condition (2.13) on F implies that the right-hand side of variational
problem (2.16) is orthogonal to the null-space of the transpose operator. Indeed,

(F , curl ζ )K = (curl F , ζ )K = 0 ∀ ζ ∈ Pp(K )3 with a zero tangential trace. ■

Lemma 6. Let τ ∈ H(div, K ) satisfy the constraints:

(ψ, τ )K = 0 ∀ψ ∈ Pp−1(K )3
⟨φ, τ · n⟩∂K = 0 ∀φ ∈ Pp(K ) . (2.17)

Then div τ satisfies the constraint:

(χ, div τ )K = 0 ∀χ ∈ Pp(K ) . (2.18)

Conversely, let τ ∈ H(div, K ) satisfy (2.18). Then, there exists F ∈ N p+1(K ) such that

(ψ, τ + curl F )K = 0 ∀ψ ∈ Pp−1(K )3 and,
⟨φ, (τ + curl F ) · n⟩∂K = 0 ∀φ ∈ Pp(K ) . ■ (2.19)

Proof. Taking ψ = ∇χ in (2.17)1 and utilizing (2.17)2 gives (2.18).
Let now τ satisfy (2.18). In the same way as in the proof of Lemma 5, we will prove that the variational problem,{

F ∈ N p+1(K )
(curl F , δψ)K = −(τ , δψ)K , δψ ∈ Pp−1(K )3 , (2.20)

has a solution F . The null space of the transpose operator is equal to:

{ψ ∈ Pp−1(K )3 : (curl δF , ψ)K = 0 ∀ δF ∈ N p+1(K )} .

We claim that ψ satisfies the constraint iff ψ = ∇u, u ∈ Pp
0 (K ). The sufficiency follows from integration by parts. In order

o prove necessity, we first test with δF0 ∈ N p+1(K ) with zero tangential trace. We obtain,

(δF0, curlψ   )K = 0
∈Pp−2(K )3
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and, by Lemma 3, curlψ = 0. Testing next with a general F and using Lemma 4, we conclude that γtψ = 0 on ∂K .
onsequently, there exists a u ∈ Pp

0 (K ) such that ψ = ∇u.
It is now sufficient to notice that the right-hand side in variational problem (2.20) is orthogonal to the null space of

he transpose operator,

−(τ ,∇u)K = (div τ , u)K = 0 ∀ u ∈ Pp
0 (K ) .

inally, property (2.19)2 follows from testing in (2.19)1 with ψ = ∇φ, φ ∈ Pp(K ), integration by parts, and (2.18). ■

In the following lemma, we upgrade slightly condition (1.8)2.

Lemma 7. Let u ∈ H1(K ) satisfy the constraints:

(ψ, u)K = 0 ∀ψ ∈ Pp−1(K )
⟨φ · n, u⟩∂K = 0 ∀φ ∈ Pp(K )3 . (2.21)

Then ∇u satisfies the constraint:

(χ,∇u)K = 0 ∀χ ∈ Pp(K )3 (2.22)

which, in turn, implies,

⟨n × η,∇u⟩∂K = 0 ∀η ∈ Pp+1(K )3 . (2.23)

Conversely, let u ∈ H1(K ) satisfy (2.22). Then, there exists a constant c such that

(ψ, u + c)K = 0 ∀ψ ∈ Pp−1(K ) and,
⟨φ · n, u + c⟩∂K = 0 ∀φ ∈ Pp(K )3 . ■ (2.24)

Proof. Proof is elementary. Hint: Recall that if ψ ∈ Pp−1(K ) with zero average then there exists a polynomial v ∈ Pp(K )3
such that div v = ψ and γnv = 0. ■

We record one more elementary algebraic result.

Lemma 8. Let u = (u1, u2, u3) ∈ U1 ×U2 ×U3 be a group variable where U1,U2,U3 are Hilbert spaces. Consider a composite
bilinear form,

b(u, v) := b1(u1, v) + b2(u2, v) + b3(u3, v)

where v ∈ V , a Hilbert test space. Define the kernel spaces

V12 := {v ∈ V : b1(u1, v) + b2(u2, v) = 0 ∀ u1 ∈ U1, u2 ∈ U2}

V1 := {v ∈ V : b1(u1, v) = 0 ∀ u1 ∈ U1}

and assume three inf–sup conditions:

sup
v12∈V12

|b3(u3, v12)|
∥v12∥V

≥ γ3∥u3∥U3

sup
v1∈V1

|b2(u2, v1)|
∥v1∥V

≥ γ2∥u2∥U2

sup
v∈V

|b1(u1, v)|
∥v∥V

≥ γ1∥u1∥U1 .

There exists then a constant γ = γ (γ1, γ2, γ3, ∥b2∥, ∥b3∥) such that,

sup
v∈V

|b(u, v)|
∥v∥V

≥ γ
(
∥u1∥

2
U1

+ ∥u2∥
2
U2

+ ∥u3∥
2
U3

)1/2
. ■

roof. Proof is elementary. ■

. Construction of Fortin operators for DPG problems

.1. Πdiv Fortin operator

We begin with the construction of the Πdiv Fortin operator. The idea is to construct first operator Π̂div on master
etrahedron K̂ , and then use the H(div) pullback map T to extend it to an arbitrary affine element K ,

Πdivτ := T−1Π̂divTτ . (3.25)
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imilarly to the interpolation error estimates, the scaling properties of pullback maps imply that we should have the
ommuting diagram:

H(div, K )
div

−→ L2(K )
Πdiv

↓ P ↓

V p+1 div
−→ Y p

(3.26)

where V p+1 is the enriched test H(div)-space, Y p
= div V p+1, and P is a Fortin operator for the L2 space. In other

ords, divergence of Πdivτ should depend only upon the divergence of function τ . Given that yp := Pdiv τ must satisfy
onstraints (2.18), we are naturally led to the definition of yp through the constrained minimization problem:

∥yp − div τ
=:y

∥ → min
yp∈Yp

subject to constraint (2.18) . (3.27)

The constraint leads also to the minimum assumption on the enriched L2 test space:

Pp(K ) ⊂ Y p .

onsequently, operator P reduces to the L2-projection onto space Y p.
Once we have defined yp = div τ p+1, τ p+1

:= Πdivτ , we proceed with a second minimization problem to define τ p+1

itself. {
∥τ p+1

− τ∥ → min
τp+1∈Vp+1

subject to constraints (2.17), and the constraint on divergence,

div τ p+1
= yp .

(3.28)

It follows from Lemma 6 that the problem is well-posed, provided we satisfy the minimum assumption on the enriched
H(div) test space:

RT p+1(K ) ⊂ V p+1

and the divergence maps V p+1 onto space Y p. The assumptions and Lemma 6 guarantee that there exists a function
τ p+1

∈ V p+1 satisfying the constraints, i.e., the set over which we set up the minimization problem is non-empty.
We can offer an alternate argument based on mixed problems theory. The constrained minimization problem leads to

the equivalent mixed problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
τ p+1

∈ V p+1, ψ ∈ Pp−1(K )3, φ ∈ Pp
c (∂K ), χ ∈ Y p

0
(τ p+1, δτ )K + (ψ, δτ )K + ⟨φ, δτ · n⟩∂K + (χ, div δτ )K = (τ , δτ )K , δτ ∈ V p+1

(δψ, τ p+1)K = (δψ, τ )K , δψ ∈ Pp−1(K )3

⟨δφ, τ p+1
· n⟩∂K = ⟨δφ, τ · n⟩∂K , δφ ∈ Pp

c (∂K )
(δχ, div τ p+1)K = (δχ, div τ )K , δχ ∈ Y p

0

(3.29)

where Y p
0 is the subspace of Y p satisfying constraints (2.18) . We need to check the two Brezzi inf–sup conditions. The

inf–sup in kernel condition is satisfied trivially since the form is coercive. The proof of LBB condition follows the logic of
emma 8. The inf–sup condition for b3(χ, δv) := (χ, div δv) follows from Lemma 6 and coercivity of the form. The inf–sup
condition for b2(ψ, δv) := (ψ, δv) follows from Lemma 2, and the inf–sup condition for b1(φ, δv) = ⟨φ, δv · n⟩ follows
from the choice

δv · n = φ

on each face of the tetrahedron. Consequently, the mixed problem is well-posed. The master element operator Π̂div is thus
well-defined and, by the Uniform Boundedness Theorem argument, it is continuous. Continuity constant is independent
of the element for the class of affine tetrahedra satisfying the standard shape regularity assumptions. Definition (3.25)
and the scaling properties of the pullback map (Piola transform) imply the continuity of Πdiv in the L2-norm. Finally,
ommuting property (3.26) implies the continuity of operator Πdiv in the H(div)-norm. The reasoning is identical to
hat in the derivation of classical interpolation error estimates for the commuting interpolation operators defined on
he H1,H(curl),H(div) and L2 energy spaces.

heorem 1. The operator defined by the constrained minimization problem (3.28) is well-defined and continuous,

Πdiv
: H(div, K ) → V p+1, ∥Πdivτ∥H(div,K ) ≤ CΠdiv∥v∥H(div,K ) .

The continuity constant CΠdiv is independent of element size but it may depend upon the polynomial order p. ■

We conclude this section by observing the action of operator Πdiv on a curl, i.e. for τ = curl F . It follows from the
construction that div(Πdivcurl F ) = 0, so the constrained minimization problem to determine τ p+1 simplifies to:

∥τ p+1
− curl F∥ → min

τp+1∈Vp+1(div0)
subject to constraints (2.17)1 (3.30)

where V p+1(div ) denotes the subspace of V p+1 of divergence-free functions.
0
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3.2. Π curl Fortin operator

We follow the same logic as for the H(div) operator starting by defining the curl of Π curlF . The obvious choice is to use
operator (3.30) but we have to make a small correction accounting for the orthogonality property (2.13) involving poly-
nomials of order p, one order higher than in (3.30). Thus we seek τ p+2

:= curlΠ curlF in the subspace of divergence-free
functions from a larger space V p+2

⊃ RT p+2(K ). In other words, we require that curlQ p+2
⊃ Pp+1(K )3. We have,

∥τ p+2
− curl F∥ → min

τp+2∈curlQ p+2
subject to constraints (2.13) . (3.31)

We can formulate now a constrained minimization problem defining Π curlF ,⎧⎪⎨⎪⎩
Π curl

: H(curl, K ) → Q p+2, Π curlF := F p+2
∈ Q p+2

∥F p+2
− F∥ → min

Fp+2∈Q p+2
subject to constraints: (2.12) and the constraint on curl :

curl F p+2
= τ p+2 .

(3.32)

It follows from Lemma 5 that the problem is well-posed, provided we satisfy the minimum assumption on the enriched
H(curl) test space:

N p+2(K ) ⊂ Q p+2 .

The constrained minimization problem above is equivalent to the mixed problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F p+2

∈ Q p+2, ψ ∈ Pp−1(K )3, φ ∈ γt (Pp(K )3), τ ∈ V p+1
0

(F p+2, δF )K + (ψ, δF )K + ⟨n × φ, δF⟩∂K + (τ , curlδF )K = (F , δF )K , δF ∈ Q p+2

(δψ, F p+2)K = (δψ, F )K , δψ ∈ Pp−1(K )3

⟨n × δφ, F p+2
⟩∂K = ⟨n × δφ, F⟩∂K , δφ ∈ γt (Pp(K )3)

(δτ , curlF p+2)K = (δτ , curlF )K , δτ ∈ V p+1
0

(3.33)

where V p+1
0 is the subspace of curlQ p+2 satisfying constraints (2.13). We use the same arguments as for the Πdiv operator

to prove the LBB inf–sup condition, utilizing Lemma 5, Lemma 3, and Lemma 4.

Theorem 2. The operator defined by the constrained minimization problem (3.32) is well-defined and continuous,

Π curl
: H(curl, K ) → Q p+2, ∥Π curlF∥H(curl,K ) ≤ CΠcurl∥F∥H(curl,K ) .

The continuity constant CΠcurl is independent of element size but it may depend upon the polynomial order p. ■

We conclude this section by observing the action of operator Π curl on a gradient, i.e. for F = ∇u. It follows from the
construction that curl(Π curl

∇u) = 0, so the constrained minimization problem to determine F p+2 simplifies to:

∥F p+2
− ∇u∥ → min

Fp+2∈Q p+2(curl0)
subject to constraints (2.12)1 (3.34)

where Q p+2(curl0) denotes the subspace of Q p+2 of curl-free functions.

3.3. Πgrad Fortin operator

By now, the reader should anticipate the construction and should be able to fill in all necessary details. We seek
F p+3

:= ∇Πgradu in the subspace of curl-free functions from a larger space Q p+3
⊃ N p+3(K ). In other words, we require

that ∇W p+3
⊃ Pp+2(K )3.

∥F p+3
− ∇u∥ → min

Fp+3∈∇Wp+3
subject to constraints (2.22) . (3.35)

We formulate now a constrained minimization problem defining Πgradu,⎧⎪⎨⎪⎩
Πgrad

: H1(K ) → W p+3, Πgradu := up+3
∈ W p+3

∥up+3
− u∥ → min

up+3∈Wp+3
subject to constraints: (2.21) and the constraint on gradient :

∇up+3
= F p+3 .

(3.36)

It follows from Lemma 7 that the problem is well-posed, provided we satisfy the minimum assumption on the enriched
H1 test space:

p+3 p+3
P (K ) ⊂ W .
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he constrained minimization problem above is equivalent to the mixed problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
up+3

∈ W p+3, ψ ∈ Pp−1(K )3, φ ∈ γn(Pp(K )3), F ∈ Q p+2
0

(up+3, δu)K + (ψ, δu)K + ⟨φ, δu⟩∂K + (F ,∇δu)K = (u, δu)K , δu ∈ W p+3

(δψ, up+3)K = (δψ, u)K , δψ ∈ Pp−1(K )3

⟨δφ, up+3
⟩∂K = ⟨δφ, u⟩∂K , δφ ∈ γn(Pp(K )3)

(δF ,∇up+3)K = (δF ,∇u)K , δF ∈ Q p+2
0

(3.37)

here Q p+2
0 is the subspace of ∇W p+3 satisfying constraints (2.22). We use the same arguments as for the Πdiv and Π curl

perators to prove the LBB inf–sup condition, utilizing Lemma 7, Lemma 1, and Lemma 2.

heorem 3. The operator defined by the constrained minimization problem (3.36) is well-defined and continuous,

Πgrad
: H1(K ) → W p+3, ∥Πgradu∥H1(K ) ≤ CΠgrad∥u∥H1(K ) .

he continuity constant CΠgrad is independent of element size but it may depend upon the polynomial order p. ■

. Conclusions

The main contribution of this note lies in the proofs of Lemmas 5–7. The results presented in these lemmas can be
oncisely stated by claiming the exact sequence:

W p−1
0

∇
−→ Q p

0
∇×
−→ V p+1

0
∇·

−→ Y p+2
0

here the involved spaces are subspaces of exact sequence spaces W ,Q , V , Y defined on element K and satisfying the
constraints:

W p−1
0 :=

{
u ∈ W :

(ψ, u)K = 0 ∀ψ ∈ Pp−1(K )
⟨φ, u⟩∂K = 0 ∀φ ∈ γn(Pp(K )3)

}
Q p
0 :=

{
F ∈ Q :

(ψ, F )K = 0 ∀ψ ∈ Pp(K )3

⟨n × φ, F⟩∂K = 0 ∀φ ∈ γt (Pp+1(K )3)

}
V p+1
0 :=

{
τ ∈ V :

(ψ, τ )K = 0 ∀ψ ∈ Pp+1(K )3

⟨φ, τ · n⟩∂K = 0 ∀φ ∈ γ (Pp+2(K ))

}
Y p+2
0 := {y ∈ Y : (ψ, y)K = 0 ∀ψ ∈ Pp+2(K )}

under the assumptions:

Pp+3(K ) ⊂ W , N p+3(K ) ⊂ Q , RT p+3(K ) ⊂ V , Pp+3(K ) ⊂ Y

comp. [7]. The exact sequence enables the definition of the Fortin operators using the double minimization paradigm. I
have every reason to believe that the construction extends to differential forms. I am also hoping that it is general enough
to be extended to elements of different shapes.
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