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1. Introduction

Petrov-Galerkin method with optimal test functions. Consider a general variational problem,

uelU
{ b(u,v)=1v), veV (1.1)

where U, V are Hilbert trial and test spaces, b(u, v) is a continuous bilinear form satisfying the inf-sup condition,
[b(u, v)|
——— > yllully
vev  lvllv
and | € V' satisfies the compatibility condition,
l(lv)=0 veVy:={veV:bu,v)=0 VueU}.

By the BabuSka-Necas Theorem [1], Thm. 6.6.1, the problem is well-posed.
Petrov-Galerkin discretization of (1.1) introduces discrete trial and test spaces U, C U, V;, C V of equal dimension, and
approximates (1.1) with its discrete counterpart,

u, € Uy
1.2
{ b(up, vy) = (vp), vp € Vj. (1.2)

If a discrete inf-sup condition is satisfied,
|b(up, vn)l

> Yullunlly
vpeVy ”Uh”V

then, by the BabuSka Theorem [2], the discrete problem is well-posed as well, and we have the a-priori error estimate,

bl .
lu—uplly <-— inf [[u—wslly
—_——— Yh wpeUp
approximation error S~—

the best approximation error
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Unfortunately, the continuous inf-sup condition does not imply the discrete one, and coming up with a stable pair U, V},
of equal dimension for U # V may be challenging.

The Petrov-Galerkin Method with Optimal Test Functions [3,4], starts by replacing problem (1.1) with an equivalent
mixed formulation,

veV,uelU
[ (¥, 8v)y + b(u, dv) =I16v), dveV (1.3)
b(su, ) =0, suelU

where the additional unknown v is (the Riesz representation of) the residual and, on the continuous level, is equal zero.
Instead of discretizing the original problem, we discretize now the equivalent mixed problem,

Y € Vi, up € Uy
(¥n, Sup)v + b(up, dvy) = 1(8vp), vy € Vy (1.4)
b(dup, ¥r) =0, Suy € Uy .

The Brezzi theory [5] calls for the satisfaction of two inf-sup conditions. The discrete inf-sup in kernel condition is trivially
satisfied due to the coercivity of the test inner product. The discrete LBB condition coincides now with the original discrete
Babuska condition with one important difference - V;, need not be of the same dimension as U,. With a sufficiently large
space V4, the discrete inf-sup condition is easily satisfied. The classical way of proving the discrete inf-sup condition is
to construct the so-called Fortin operator [6],

IT1:V>v —>IveV,
[Tvlly < Cellvlly (1.5)
b((Suh,Hv—v) =0 Véu,eU.

With the existence of the Fortin operator, the continuous inf-sup condition implies its discrete counterpart with y, =
y /Cg. Obviously, we want the continuity constant Cr to be small.

Discontinuous Petrov-Galerkin (DPG) method with optimal test functions. In the DPG method, we enlarge the test space
Vi, to a broken test space V,(7y) at the expense of introducing yet additional unknowns — Lagrange multipliers, the so-
called traces i, € Uy defined on the mesh skeleton. For localizable test inner products, the Gram matrix corresponding
to (Yn, vp)y becomes block-diagonal, and the residual v, is eliminated at the element level. The ultimate global price for
stability is the introduction of the additional unknowns — the traces. The broken counterpart of (1.1) looks as follows.

ueU, iiel
b(u, v) + (i, v)p, = I(v), veV(T)
where the bracket represents additional terms defined on the mesh skeleton. It has been shown in [7] that the broken
variational formulation is well-posed and it inherits the stability of the original problem with same order stability
constants.
The abstract conditions for the Fortin operator in context of the DPG method look as follows.

I:V(Th)sv — Mve V(T

HTvllvermy < Cellvlivem A
b(uh,v—l'[v)—i-(ﬁh,v—ﬂv)ph =0 VuheUh, ﬁhGUh.

(1.6)

Construction of Fortin operators for globally conforming test spaces is challenging. Value of the operator - ITv, has to
land in the (conforming) discrete test space which suggests the use of techniques used in the construction of interpolation
operators : taking values at vertices, edge and face averages etc. However, the Fortin operator has to be defined on the
whole energy space, and these operations are illegal for general members of such spaces.

With broken test spaces, the global conformity is not an issue, and we can settle for a local construction of the Fortin
operator:

IT:V(K)sv — ITveVy(K)
Tvllvey =< Cellvllvi A (1.7)
bK(uh,Hv—v)—i-(ﬁh,Hv—v)aK =0 VuheUh, fthUh

where V(K) denotes the test space on element K, and V,(K) denotes its discrete counterpart. Clearly, satisfaction of the
local conditions implies immediately satisfaction of the global conditions as well. The main point in the construction of
the Fortin operator is to use operations that are well-defined on the whole energy space. The finite-dimensionality of
the range and Uniform Boundedness Theorem imply then automatically the continuity of the operator. We also want the
continuity constant to be at least (a) independent of element size h and, possibly, (b) independent of polynomial order
p. As the Fortin constant enters the ultimate stability constant for the DPG method, we also want it to be as small as
possible.

Construction of the Fortin operator involves the original bilinear form and the skeleton term resulting from break-
ing the test space and, therefore, is problem dependent. However, if we restrict ourselves to standard test spaces:
H', H(curl), H(div) (with standard norms), and make a simplifying assumption about the material data to be element-wise
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constant, one can strive for constructing general Fortin operators that will serve all problems satisfying the simplifying
assumption. This was done in [7,8]. In what follows, we will generalize ideas from [9]. For an example of a non-local
Fortin operator, see [10].

We will restrict ourselves to affine tetrahedral elements.

The motivation for the construction comes from the ultraweak (UW) variational formulation for two model problems.
The first one is the classical diffusion-convection-reaction problem:

—dive +cu =f in$£
alc —Vu+a'bu =0 inf
u =1ug only
o-n =o9g only,.
An element K contribution to the bilinear form in the UW variational formulation is:

1

be((o,u, 6 -n, 1), (t,v)) = (0, Vo+a 't)g + (U, cv+dive +(a'b)- )¢ — (6 -1, v)ax — (&, T - n)ak

where

uel?R), o e (l*(R))>

G-neH V), 4 e HYA(I})

T € HdivTy), v e H\(T).
For definitions of skeleton trace spaces H'/2(I},), H~/2(I3), and H=/?(curl, IT,) used below, see e.g. [7]. Consistently
with the logic of using the first Nedélec exact sequence spaces for discretization we have,

uePPYK), o e PPIK)

il € y(PP(K)) = PE(3K)

6 -n € y(RTP(K)) = P5~'(8K)
where y, ¥, and y; used below, denote the trace operators for energy spaces H'(K), H(div, K) and H(curl, K), respectively.
After integration by parts,

o — Vu + a’lbu, Tk + (=dive +cu, v)g + (o -n—6 -n, v)sx + (u— i,71- T

bg((o,u,6 -n, 1), (r,v)) = (a”
This leads to the following orthogonality requirements for the Fortin operators.

(f, Ty —v)y =0 Vy e PPY(K)

(@, % —v)x =0 V¢ ePr'(3K). (1.8)

(f, It — 1)y =0 V¢ e PP (K)
(¢, (Tt —7)-n)sx =0 V¢ eP(IK).

Our second example deals with the UW formulation for three-dimensional Maxwell equations,

E,H e I2(R2), E,, H, € H*(curly, I')

(1.9)

(LE, Vi x F)+ (n x Ei,F)p, +io(H,F) =0, F € H(curl, 73)
(H, Vi x G)+ (n x Hy, Gy, — (0 + iw€)E, G) = (J™,G), G € H(curl, T5)
E[ = EO,t on [g
I:I[ = HOA,t on FH .

Recalling that approximate E, H € PP~1(K)*, and approximate E., H, belong to the tangential trace of Nédélec space NP(K),
we arrive at the orthogonality conditions for the Fortin operator,

(Y, T"F —F)y =0 V¢ ePPI(K)
(nx ¢, MIF —F)yxk =0 V¢ € pNP(K)

where . NP(K) denotes the image of tangential trace operator of AP(K).

(1.10)

Existing results. The first construction of H' and H(div) Fortin operators for the DPG method was given by Gopalakrishnan
and Qiu in 2012 [8]. The construction utilized a combination of classical techniques based on a judicious definition of
degrees-of-freedom with the elimination of those which are not continuous on the energy spaces. The construction was
later extended to 3D in [7] including the H(curl) Fortin operator. A different technique for 2D problems was used in [9]
where H! and H(div) Fortin operators are defined implicitly by considering constrained minimization problems set up
on the master element. The work aimed at investigating numerically dependence of continuity constants ||778"4]|, || [79V||
upon the polynomial degree. More recently, Fiihrer and Heuer were the first to construct Fortin operators for the DPG
method applied to fourth-order problems (Kirchhoff-Love plates) [11]. All these constructions have been done locally
utilizing the DPG use of broken test spaces. The presented work combines techniques from [9] and [7]. The minimal
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increment Ap for the enriched test spaces resulting from this type of analysis is typically Ap > d, the space dimension.
Numerical experience shows that the use of Ap = 1 for standard model problems is typically sufficient. An alternative,
global construction of a Fortin operator for linear elasticity (and low order elements) was given by Carstensen and
Hellwig [10]. The resulting sufficient condition Ap = 1 is much closer to what we observe in numerical experiments,
although the (global) analysis is much more complicated.

2. Auxiliary results

We will need a few fundamental results on polynomial spaces defined on a tetrahedron. The first four lemmas deal
with bubble spaces.

Lemma 1. Let Pg+3(1<) denote the subspace of PP*3(K) of H' bubbles on element K. Let u € P§+3(K), and
(Y, u)x =0 V¢ € PPYK).

Then u = 0 and, consequently,

,u
inf sup M:ﬂ >0
uePl ) yerr-1(k) 11l
As spaces P{j”(K ) and PP~Y(K) are of equal dimension, the order of spaces in the inf-sup condition can be reversed,
,u
inf sup M—ﬂ >0. m

VPP i UV

Proof. Function u must be of the form:
U=XAg...A30

where A;, i =0, ..., 3 are affine coordinates, and v € PP~!(K). Choosing ¥ = v gives
(Y, u)g =/A0...k3v2=0 = v=0 = u=0.
K

The result implies that the supremum

(¥, u|
sup ————
YePP~1(K) ¥l

defines a norm on u, and the inf-sup condition follows then from the equivalence of norms in a finite dimensional
space. H

The following result can be found in [12].

Lemma 2. Let RTgH(K) denote the subspace of RTP(K) of H(div) bubbles on a simplex K C RY, d = 2,3. Let
t e RTH(K), and

(Y, T =0 Vi e PPIK).
Then T = 0 and, consequently,

, T
inf sup M:ﬂ >0
TGRTS+1(K)w6Pp—1(K)d ||1/f|| ”T”

As spaces RTSH(K) and PP~ (K)! are of equal dimension, the order of spaces in the inf-sup condition can be reversed,

inf sup M—/3>0. [ ]

S L7

Proof. We prove the 3D case only, the 2D case is fully analogous. It is sufficient to prove the result for the master
tetrahedron with master coordinates &;. Choosing v = Vu, u € PP(K) and integrating by parts, we obtain,

0= (Vu, ‘L')K = —(u, div 'L')K .

As u and div 7 are both of order p, this implies that divt = 0. This implies that 7 is a curl of an element of Nédélec space
NP(K) and, in particular, it must be a polynomial of order p, i.e. T € PP(K)?. As T satisfies the homogeneous normal BC,
there must exist ; € PP~1(K) such that

T = &Y.
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Testing with such a ¢ gives,

/TK”Z/Z&WHZ:O = Yy=0 = 1=0.
K K

The result implies that the supremum
(¥, 7kl
sup ————
yePP-1(K)d ||W||

defines a norm on 7, and the inf-sup condition follows then from the equivalence of norms in a finite dimensional
space. H

Lemma 3. Let /\/’(’)’ﬁ(K) denote the subspace of N?T2(K) of H(curl) bubbles defined on tetrahedron K. Let F € Ng+2(1(), and
(V. F) =0 Vy e PPI(K) .

Then F = 0 and, consequently,

inf sup 167 Pl _ B >0

FeNPT(K) yepp—1(Kk)3 I IF

As spaces N(’)’ +2(K ) and PP~Y(K)? are of equal dimension, the order of space in the inf-sup condition can be reversed,
,F
inf sup M:ﬁ>0. |
wePr 1P peppizgy IV IIFI

Proof. Again, it is sufficient to consider the master tetrahedron. Let F € /\/’g +2(K ). Let ¥ € PP(K)3. Then
(1//7VXF)K:(VX1/[7F)K:0~

As the curl operator sets H(curl) bubbles into H(div) bubbles, Lemma 2 proves that V x F = 0 and, in particular,
F € PP*1(K). Any H(curl) bubble on the master tetrahedron must be of the form:

F = (16283, $28163, 936152)

with some scalar factors ¢;. As F is of order p + 1, ¢; must be of order p — 1. Selecting v = (¢1, ¢2, ¢3), we conclude that
F = 0. The rest of the reasoning is the same as in the proof of Lemma 2. ®

In order to cope with boundary terms, we will also need a 2D equivalent of Lemma 3.

Lemma 4. Let Ng“(K) denote the subspace of NP*1(K) of H(curl) bubbles on a triangle K. Let F € NgH(K), and
(y,F)x =0 Yy € PP(K).
Then F = 0 and , consequently
(¥, F)xl

inf sup ——=8>0
FeNDT (k) yePp—1(k)? Iy IHIF

As spaces /\/’é’ +1(K ) and PP~1(K)? are of equal dimension, the order of space in the inf-sup condition can be reversed,

inf sup M=ﬂ>0. [ ]

YePP—1(K)2 FeNg“(K) I I IF |

Proof. The result follows directly from the 2D version of Lemma 2 and the relation between the two 2D exact
sequences. N

The next three lemmas deal with polynomial spaces satisfying the orthogonality constraints necessary for Fortin
operators. We will upgrade slightly the orthogonality assumptions (1.10), replacing them with:

(Y, IF —F)y =0 V¢ e PP 1K)

(nx ¢, I"F —F)yx =0 Vo€ p(PPK)) (2.11)
Lemma 5. Let F € H(curl, K) satisfy the constraints:
— p—1 3
(y,F)x =0 V¢ e PP7(K) 212

(nx¢,Flox =0 Vo ePP(K).
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Then curl F satisfies the constraint:
(x,curlF)y =0 Vx e PP(K)? (2.13)
which, in turn, implies,
(n,curl F-nsx =0V € PPHI(K). (2.14)
Conversely, let F € H(curl, K) satisfy (2.13). Then, there exists u € PPt2(K) such that
(W, F+Vu) =0 V¢ e PP Y(K) and,

nx ¢, F+Vu)yr =0 Vo e PPK). (2.15)
Proof. Taking ¥ = curl x in (2.12);, and utilizing (2.12), gives (2.13). Use x = Vn in (2.13) to obtain (2.14).
Let F € H(curl, K) now satisfy (2.13). It is sufficient to show (2.15);, i.e., that the variational problem,
p+2
u € PPT4(K) . (2.16)
(Vu, 8¢ ) = —(F, 8¢ )k, oy € PP(K),

has a solution u. The second property follows from the first one with v = V x ¢ and (2.13). We begin by considering
the null space of the conjugate operator,

{y € PPTUK) : (Vou, )k =0 Voue PPH(K)}.

We claim that the constraint for v is equivalent to ¥ = curl ¢ where ¢ € PP(K)? with a zero tangential trace. Sufficiency
follows from integration by parts. To show necessity, we test first with du € PS“(K ) to obtain,
( leIﬂ ,511)1( =0.

———

€PP=2(K)

Taking u = divys Ag ... A3 where A;, i =0, ..., 3 are affine coordinates, we conclude that div{» = 0. Testing next with
a general §u, we obtain,

0 = (Véu, ) = (8u, ¥ - nhax .

Taking du = (v -n)A;A;Ax on each [ijk] face, we conclude that ¢ -n = 0 on dK. Consequently, there exists a vector potential
¢ € PP(K)® with zero tangential trace such that v = curl¢.

To finish the proof, we need to notice that condition (2.13) on F implies that the right-hand side of variational
problem (2.16) is orthogonal to the null-space of the transpose operator. Indeed,

(F,curl¢)x = (curlF,¢)x =0 V¢ e PP(K)? with a zero tangential trace. W

Lemma 6. Let v € H(div, K) satisfy the constraints:

(W, Tk =0 V¢ e PP I(K)
(p,7-nyx =0 Vo ePP(K).

Then div T satisfies the constraint:
(x,divt)x =0 Vyx € PP(K). (2.18)
Conversely, let T € H(div, K) satisfy (2.18). Then, there exists F € NP*1(K) such that

(Y, t+curlF)y =0 Vy e PP~Y(K)? and,
(¢, (r +curlF)-njsx =0 Vo € PP(K).

(2.17)

(2.19)

Proof. Taking ¥ = Vy in (2.17); and utilizing (2.17), gives (2.18).
Let now 7 satisfy (2.18). In the same way as in the proof of Lemma 5, we will prove that the variational problem,

F € NPT(K)
(curl F, 8¢ )k = —(z, 8% )k, 8¢ € PPTI(K)?,

has a solution F. The null space of the transpose operator is equal to:
{y € PPYK)® : (curl F, ¥)x =0 V&F € NPYI(K)}.

We claim that v satisfies the constraint iff v = Vu, u € 735 (K). The sufficiency follows from integration by parts. In order
to prove necessity, we first test with 8Fy € AP*1(K) with zero tangential trace. We obtain,

((SF(), Cul‘llﬂ )K =0
———

(2.20)

ePP—2(K)3
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and, by Lemma 3, curly = 0. Testing next with a general F and using Lemma 4, we conclude that y;¢» = 0 on 9K.
Consequently, there exists a u € Pg (K) such that ¥ = Vu.

It is now sufficient to notice that the right-hand side in variational problem (2.20) is orthogonal to the null space of
the transpose operator,

—(r, Vu) = (divr,u)x =0  VYue P)K).
Finally, property (2.19), follows from testing in (2.19); with ¥ = V¢, ¢ € PP(K), integration by parts, and (2.18). ®

In the following lemma, we upgrade slightly condition (1.8),.

Lemma 7. Let u € H(K) satisfy the constraints:
(Y, ux =0 V¢ ePP(K)

(p-nujgx =0 Vo ePP(K)P. (2.21)
Then Vu satisfies the constraint:
(x, Vi) =0 Vx € PP(K)’ (2.22)
which, in turn, implies,
(nxn, Vuygg =0 VnePPHIK). (2.23)
Conversely, let u € H'(K) satisfy (2.22). Then, there exists a constant ¢ such that
(W, u+ckxk =0 Yy e PP~IK)and, (2.24)

(¢-n,u+c)31< =0 V¢€PP(K)3.
Proof. Proof is elementary. Hint: Recall that if ¥ € PP~!(K) with zero average then there exists a polynomial v € PP(K)?
such thatdivv = and y,v =0. &

We record one more elementary algebraic result.
Lemma 8. Let u = (uy, Uy, uz) € Uy x Uy x Uz be a group variable where Uy, U,, Us are Hilbert spaces. Consider a composite
bilinear form,
b(u, v) == by(uy, v) + ba(uz, v) + bs(us, v)

where v € V, a Hilbert test space. Define the kernel spaces

Vig = {l) eV : bl(ul, U)+b2(U2, U) =0 YuelU, uy e Uz}
Vi, = {UEV : b](U],U):O Vu1eU1}

and assume three inf-sup conditions:

[bs(u3, viz)|
———"= > ysllusllu,
v12€Vy2 ”v]Z”V

[b2(uiz, v1)]

— = > plully,
v1€eVy ”U] ”V

[b1(uy, v)|

——— > yiluilly, -
veV lvllv

There exists then a constant y = y(y1, ¥2, ¥3, b2, ||b3]|) such that,
|b(u, v)|

)1/2
vev  lvllv )

2 2 2
>y (lul, + luzl3, + llusl?, ]

Proof. Proof is elementary. MW
3. Construction of Fortin operators for DPG problems
3.1. 1% Fortin operator

We begin with the construction of the I7 4V Fortin operator. The idea is to construct first operator I1% on master
tetrahedron K, and then use the H(div) pullback map T to extend it to an arbitrary affine element K,

a%ve = 71T (3.25)
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Similarly to the interpolation error estimates, the scaling properties of pullback maps imply that we should have the
commuting diagram:

Hdiv, k) =5 12(K)
miv | Pl (3.26)
vret &y
where VP*! is the enriched test H(div)-space, Y? = divVP*!, and P is a Fortin operator for the L?> space. In other

words, divergence of 7%Vt should depend only upon the divergence of function r. Given that y? := Pdiv r must satisfy
constraints (2.18), we are naturally led to the definition of y? through the constrained minimization problem:

ly?* —divt || — min subject to constraint (2.18). (3.27)
S—— yPeyp
=y

The constraint leads also to the minimum assumption on the enriched L? test space:
PP(K) C YP.

Consequently, operator P reduces to the Lz—projectiqn onto space Y?.
Once we have defined y? = divtP*!, t?*1 .= 797, we proceed with a second minimization problem to define tP*!
itself.
IzP*' = ¢|| > min subject to constraints (2.17), and the constraint on divergence,
P+l eyp+i (3.28)
div Pl = yP .
It follows from Lemma 6 that the problem is well-posed, provided we satisfy the minimum assumption on the enriched
H(div) test space:

RTP+](I<) C VIJ+]

and the divergence maps VP*! onto space YP. The assumptions and Lemma 6 guarantee that there exists a function
tP*+1 e VP*1 satisfying the constraints, i.e., the set over which we set up the minimization problem is non-empty.

We can offer an alternate argument based on mixed problems theory. The constrained minimization problem leads to
the equivalent mixed problem:

Pl e VPR g e PPI(K)3, ¢ € PE(OK), x €YY
(TP 87T)k + (¥, 8T)k + ($. 87 - n)ax + (x. divéT = (v, 7). st e VPl
(89, TPt ) =(8V, Tk, sy € PPI(K)? (3.29)
(8¢, TP - n)ok = (8¢, T -n)gk, ¢ € PE(IK)
(8, div Pt =(8x,divt)y, dx € Yg

where Yé’ is the subspace of Y? satisfying constraints (2.18) . We need to check the two Brezzi inf-sup conditions. The
inf-sup in kernel condition is satisfied trivially since the form is coercive. The proof of LBB condition follows the logic of
Lemma 8. The inf-sup condition for b3(y, §v) := (x, divév) follows from Lemma 6 and coercivity of the form. The inf-sup
condition for by(y, §v) := (¥, §v) follows from Lemma 2, and the inf-sup condition for by(¢, §v) = (¢, év - n) follows
from the choice

Sv-n=4¢
on each face of the tetrahedron. Consequently, the mixed problem is well-posed. The master element operator 1% is thus
well-defined and, by the Uniform Boundedness Theorem argument, it is continuous. Continuity constant is independent
of the element for the class of affine tetrahedra satisfying the standard shape regularity assumptions. Definition (3.25)
and the scaling properties of the pullback map (Piola transform) imply the continuity of /79 in the L2-norm. Finally,
commuting property (3.26) implies the continuity of operator /79 in the H(div)-norm. The reasoning is identical to

that in the derivation of classical interpolation error estimates for the commuting interpolation operators defined on
the H', H(curl), H(div) and L? energy spaces.

Theorem 1. The operator defined by the constrained minimization problem (3.28) is well-defined and continuous,
a%v :H(div, K) — VP 1TVt i < Crranllollngaivi -
The continuity constant Cpawv is independent of element size but it may depend upon the polynomial order p. ®

We conclude this section by observing the action of operator 7 4V on a curl, ie. for t = curlF. It follows from the
construction that div(/7%"curl F) = 0, so the constrained minimization problem to determine zP*! simplifies to:

Iz?*! — curl F|| — min subject to constraints (2.17), (3.30)
P+H1eyp+H (divg)

where VP*1(divy) denotes the subspace of VP*! of divergence-free functions.



L. Demkowicz and P. Zanotti /| Computers and Mathematics with Applications 80 (2020) 2261-2271 2269

3.2, IT®" Fortin operator

We follow the same logic as for the H(div) operator starting by defining the curl of I7°“"'F. The obvious choice is to use
operator (3.30) but we have to make a small correction accounting for the orthogonality property (2.13) involving poly-
nomials of order p, one order higher than in (3.30). Thus we seek t?*? := curl IT°"'F in the subspace of divergence-free
functions from a larger space VP2 > RTP+2(K). In other words, we require that curl QP2 > PP+1(K)3. We have,

[TP*? — curl F|| — min subject to constraints (2.13). (3.31)
P2 ecurl QP2

We can formulate now a constrained minimization problem defining I7"'F,

%" : H(curl, K) — QP2 [T°F := FP2 € QP+2

IFP*¥2 —F|| > min subject to constraints: (2.12) and the constraint on curl : (3.32)
Fp+2€Qp+2 °
curl FP2 = ¢P+2,

It follows from Lemma 5 that the problem is well-posed, provided we satisfy the minimum assumption on the enriched
H(curl) test space:

NPH(K) C QP2
The constrained minimization problem above is equivalent to the mixed problem:

FP+2 c QP2 ¢ € PPTUK), ¢ € (PP(K)), T e VEH!

(FP*2 8F)¢ + (f, 8F ) + (n x ¢, 8F)sx + (T, curl8F)x = (F, 8F ), SF € QP2

(8, FPH2) = (8, Fx, Sy e PPI(K)? (3.33)
(n x 8¢p, FPT2) ¢ = (nx 8¢, Flox, 8¢ € v(PP(K)?)

(87, curlFP+2), = (87, curlF);, 8t e VP!

where vg“ is the subspace of curl QP2 satisfying constraints (2.13). We use the same arguments as for the /74" operator
to prove the LBB inf-sup condition, utilizing Lemma 5, Lemma 3, and Lemma 4.
Theorem 2. The operator defined by the constrained minimization problem (3.32) is well-defined and continuous,
e Hieurl, K) — QP2 1T Fllieun i) < Crreun [IF llgcun k) -
The continuity constant Cpycun is independent of element size but it may depend upon the polynomial order p. ®

We conclude this section by observing the action of operator /7" on a gradient, i.e. for F = Vu. It follows from the
construction that curl(J7%"Vu) = 0, so the constrained minimization problem to determine FP*? simplifies to:

|FP2 — Vu|| —» min subject to constraints (2.12), (3.34)
FP+2eQP+2(curly)

where QP*2(curly) denotes the subspace of QP2 of curl-free functions.

3.3. 114 Fortin operator

By now, the reader should anticipate the construction and should be able to fill in all necessary details. We seek
FP+3 .= v 1%y in the subspace of curl-free functions from a larger space QP*3 > AP*3(K). In other words, we require
that VWP+3 5 pPH2(K)3,

|FP+3 — Vu|| — min - subject to constraints (2.22). (3.35)
FPt3evVwpt

We formulate now a constrained minimization problem defining /78"y,

el s HY(K) — WPH3, rendy = ypt3 e wets
P2 —u| - up+?;iv{/]p+3 subject to constraints: (2.21) and the constraint on gradient : (3.36)
Vup+3 — Fp+3 .

It follows from Lemma 7 that the problem is well-posed, provided we satisfy the minimum assumption on the enriched
H' test space:

PP+3(K) C wpt3
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The constrained minimization problem above is equivalent to the mixed problem:

wt e Wr g e PPI(K), ¢ € ya(PP(K)), F e QFF
(WP, Su)e + (¥, Sl + (. Su)o + (F, Vou)e = (u, su)e,  due WP

(89, uPt3)¢ =8y, u)k, &Y € PPIK) (3.37)
(8¢, uPT3) = (8¢, U)ok, ¢ € ya(PP(K)?)
(8F, VuP+3), = (8F, Vu), OF e QX"

where Q(f” is the subspace of VWP*3 satisfying constraints (2.22). We use the same arguments as for the /74" and 7"
operators to prove the LBB inf-sup condition, utilizing Lemma 7, Lemma 1, and Lemma 2.

Theorem 3. The operator defined by the constrained minimization problem (3.36) is well-defined and continuous,
I HY(K) — WP Ty < Crpemaa Ul gy, -

The continuity constant Cpgra is independent of element size but it may depend upon the polynomial order p. ®
4. Conclusions

The main contribution of this note lies in the proofs of Lemmas 5-7. The results presented in these lemmas can be
concisely stated by claiming the exact sequence:

p-1 V. ap VX yptl Vo ypt2
WO VO YO

where the involved spaces are subspaces of exact sequence spaces W, Q,V,Y defined on element K and satisfying the
constraints:

p—1 . . (Woux =0 Vy ePPIK)
Wo o EEWE o =0 Yo e p(PIKY) }
— . (.F)x =0 Vy eP(K)
6 =FEQ p R =0 Vo e nPHIKY) }
o ) (¥,1)k =0 Vy e PPH(K)®
B =T prma =0 Ve e y(PHEHK)) }
={yeY: (Y. yk =0 Yy € PPH(K)}
under the assumptions:

PPEEK)CcW, NPPBPK)cQ, RTPPEK)cV, PPPEPK)cCY

p+2
YO

comp. [7]. The exact sequence enables the definition of the Fortin operators using the double minimization paradigm. I
have every reason to believe that the construction extends to differential forms. I am also hoping that it is general enough
to be extended to elements of different shapes.
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