EFFECTIVE FRONTS OF POLYTOPE SHAPES

WENJIA JING, HUNG V. TRAN, YIFENG YU

ABSTRACT. We study the periodic homogenization of first order front propaga-
tions. Based on PDE methods, we provide a simple proof that for n > 3, the class
of centrally symmetric polytopes with rational coordinates and nonempty interior
is admissible as effective fronts, which was also established in [1, 10] in the form of
stable norms as an extension of Hedlund’s classical result [7]. Besides, we obtain
the optimal convergence rate of the homogenization problem for this class.

1. INTRODUCTION

In this paper, we study a couple of fine questions related to the homogenization
of the following Hamilton-Jacobi equation:

uf +a (L) |Duf| =0 in R™ x (0, 00),
u(z,0) = g(x) on R™.

Here, g € BUC (R") N Lip (R") is the initial data, where BUC (R") is the space
of bounded, uniformly continuous functions on R™. The coefficient a : R* — R
determines the normal velocity in the underlying front propagation model; the small
number ¢ € (0, 1) is the spatial scale of variations in a. This problem hence models
front propagations in oscillatory environment. We assume throughout the paper
that a is a continuous, Z"-periodic and non-constant positive function.

The qualitative homogenization of (1.1) fits in the classical and standard frame-
work (see [11, 5] for example). Here is a brief review of the result. As ¢ — 0, the
solution u® of the above problem converges, locally uniformly in R" x [0, 00), to the
solution of the effective or homogenized problem:

{ut + H(Du) =0 in R"™ x (0, 00),
u(z,0) = g(z) on R™.

(1.1)

(1.2)

Here, H is the so-called effective Hamiltonian. For each p € R™, H(p) is the unique
real number such that the following equation admits a continuous viscosity solution

(E), a(ylp+ Duy(y)| = H(p) inT"
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This is the well-known cell problem.

An important feature of problem (1.1), due to its special structure, is that the
effective Hamiltonian H is also intrinsically determined by a shape theorem which
says the large time average of the reachable set from the origin, determined by the
environment function a, converges to a centrosymmetric convex set. It turns out
that H is the support function of this convex set; see (1.4) below.

In this paper, we aim to study an inverse shape theorem: what class of convex
sets are admissible as the limiting shapes of the averaged reachable sets for some
environment function a? We show that for n > 3, all centrally symmetric poly-
topes with rational coordinates and nonempty interior are admissible. The second
objective of this paper is to obtain optimal convergence rate of the homogenization
problem, and we show this is possible in general when H is determined by centrally
symmetric polytopes type limiting shapes.

Let us now present the reachable set framework and our main results.

1.1. Admissible paths and reachable sets. For ¢ > 0, let Ay; be the set of
admissible paths defined as follows

Aoy = {7 € WE([0,4],R") : [4(s)| < a(y(s)) for ae. s € 0,4}

The reachable set R;(x) at time ¢ > 0 emanating from = € R™ at time 0 is defined
as following

Ri(z) = {y € R" : there exists v € A, such that v(0) = z,v(¢t) = y}.

Note that since a is periodic and positive, there exist a lower bound o > 0 and an
upper bound 8 > « such that, for all z € R,

0<a<a(x)<p.

It is then easy to verify that, for any fixed z € R", the set R;(z) is increasing
with respect to t. We are interested in the large time average of R,(z), that is, the
behavior of

Rt(m) as t — 00.

We also denote by R:(Y) the union of R(x), € Y. To describe this behavior, we
need the following notions. Let € denote the set of non-empty compact subsets of
R™. The Hausdorff distance between E and F in % is defined by

E, F)=max< sup inf |z — y|, sup inf |z —
P, F) = s {sup inf | — ], sup i 1o — 1}
=inf{s>0: FCE+B,, ECF+B,}.

It is well known that (%, p) is a complete metric space. The existence of the limiting
shape below is well known to experts.

Lemma 1.1 (A Shape Theorem). There exists a compact and convex set D C R"

such that
Ri()

lim

t—o00

=D in (¥,p). (1.3)
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If needed, we write D, instead of D to demonstrate the clear dependence of the
limit (1.3) in a. An important property of (1.1) is, as mentioned before, the effective
Hamiltonian H of the homogenized problem, which is usually determined by (E) »
is the support function of the above limit shape D. This means: for p € R",

H(p) =supp-q. (1.4)
qeD

We then have the following result.

Theorem 1.2 (Qualitative homogenization result for (1.1)). For each ¢ > 0, let
uf be the unique viscosity solution to (1.1). Let u be the solution of (1.2), with H
defined by (1.4). Then, as € — 0, u® converges locally uniformly on R" x [0, 00) to
the solution u of (1.2).

The qualitative homogenization result for (1.1) with H determined by the cell
problem (E) > €ven in a more general framework, is quite well-known in the literature
(see [11, 5] for example). The result above shows that in the specific case of (1.1),

H can also be characterized by (1.4). We used both forms of H in our analysis.

1.2. Main results. We proceed to study deeper properties of H and the rate of
convergence of u to u. In the sequel, the usual n-dimensional flat torus is denoted
by T™ = R"/Z", and all polytopes are assumed to be centered at the origin. We say
a non-zero vector p € R™ is rational if sp has integer coordinates for some s > 0.

Theorem 1.3. Assume that n > 3. Let P C R"™ be a centrally symmetric polytope
with rational vertices and nonempty interior. Then, there exists an environment
function a € C*(T", (0,00)) such that D, = P.

The set of centrally symmetric polytopes with rational vertices and nonempty
interior is important since it is dense in the set of centrally symmetric convex sets
with nonempty interior. The same result has also been proved in [1, 10] in the
equivalent form of stable norms. Constructions in these works are all based on
Hedlund’s original idea [7] where a cubic D is constructed. The main difference
lies in the methods/computations involved in verifying that D is indeed the desired
polytope. Our proof based on PDE/weak KAM type approaches is much simpler
than those delicate geometric calculations in [7, 1, 10]. This result belongs to
the ongoing project of studies of inverse problems in periodic homogenization of
Hamilton-Jacobi equations (see [12, 9, 15]). A very interesting question is whether
every centrally symmetric convex set with nonempty interior is realizable within the
class of a € C(T™, (0,00)). A natural thought is to achieve this by approximations.
However, our construction actually shows that H is not stable under convergence
of a that is weaker than the uniform convergence (see Remark 2). In addition,
we would like to point out that, when n = 2, polytopes are not realizable by a €
C(T?, (0, 0)), because it is proved in [4] that a € C" yields strictly convex limiting
shape D (equivalently, the dual set {H = 1} is C''). As long as the continuous class
of a is considered, we believe that the above theorem should hold in two dimensions.
We will investigate these problems in the future.



4 W. JING, H. V. TRAN, Y. YU

Next is our optimal rate of convergence result in case that the effective front is a
centrally symmetric polytope with nonempty interior.

Theorem 1.4. Let P C R" be a centrally symmetric polytope with nonempty in-
terior. Let a € C(T™,(0,00)) be such that D, = P. Then, there exists a constant
C > 0 depending only on a such that

[u® = ul| Lo @ x[0,00)) < CE.

The first quantitative result in periodic homogenization of Hamilton-Jacobi equa-
tions was obtained in [3] with rate O(¢'/?). Afterwards, optimal rate of convergences
O(e) were derived in various convex settings in [13]. In particular, if the Hamil-
tonian H = H(y,p) is homogeneous in the p variable (e.g., H(y,p) = a(y)|p| in
our case) in two dimensions, O(g) holds for any Lipschitz continuous initial data
g(x) (see [13, Theorem 1.2]). If n > 3, we believe that extra assumptions on H are
necessary in general in order to obtain O(e) although an example with a fractional
convergence rate is still elusive. This theorem is a next development along the line
of [13] for n > 3. See Theorem 1.1 in [13] for other more “generic” assumptions.

Remark 1. The assumption in Theorem 1.3 that the polytope D has rational
vertices is necessary in our constructive proof. It is not clear to us, for smooth a,
whether D, being a polytope automatically implies that all vertices are rational
vectors. According to [2], if D is a polytope, no vertex could be an irrational vector
(i.e., its coordinates are linearly independent over Q). However, there are vectors
which are neither rational nor irrational, for example ¢ = (1,2, /3) € R?.

Outline of the paper. In Section 2, we give the proof of Theorem 1.3, which is a
generalization of the classical Hedlund example. In Section 3, we prove the optimal
convergence result (Theorem 1.4). In the Appendix, we present the results on large
time average of reachable sets and the qualitative homogenization result (proofs of
Lemma 1.1 and Theorem 1.2). Although Lemma 1.1 and Theorem 1.2 are classical
and standard in the literature, for readers’ convenience, we provide their proofs
based on the reachable set framework, which are quantifiable and more in line with
the approaches used in this paper.

Notations. Let Y be the unit cell [0,1]" and Y = =Y = [~1,0]". For any = € R",
denote by ([z],Z) the unique pair in Z™ x [0,1)" such that z = [z] + Z. Denote by
B,(7), B,(x) the open ball, closed ball of center z, radius r > 0 in R", respectively.
We write B, = B,(0), B, = B,(0) for short. For E, F C R” nonempty and ¢ € R,
weset E4+ F={c+y:x€EyeF}, and cF ={cx : v € F}.

2. A GENERALIZATION OF THE CLASSICAL HEDLUND EXAMPLE

In this section, we assume that n > 3 and we provide a proof of Theorem 1.3. Our
goal is: we construct an a € C*=(T", (0, 00)), such that the effective Hamiltonian H
determined by (E) , corresponds to the support function of the polytope P given in
Theorem 1.3.
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Proof of Theorem 1.3. Assume that the vertices of P are +q1, +¢o, ..., +¢,,, which
are rational vectors. Denote by L; = {tq; : t € R} for 1 <i < m. Since P is convex
and has nonempty interior, ¢y, go, . . ., ¢ are mutually non-parallel and

Spa‘n{QIa q2, - .- 7Qm} = R".

As a result,

@ := min max |p-qg;| > 0.
wﬂKKmWQA

Step 1: Construction of a. Let x; = 0. Iteratively, for £ < m — 1, choose

k
Tpy1 € (O, 1)”\ U {.Tl + Sqr+1 1+ tq; + 7" . s, t e R} .
=1

Then for such selected 1, xs, ..., x, € (0,1)", we have that for i # 7,

Due to the fact that {¢;} are rational vectors, the projection of {x; + L; + Z"} to
the flat torus T" is a closed orbit. As a result, we can choose a sufficiently small
number 0 € (0,1/3) so that, for i # j,

T(;,i N T(SJ‘ - @,

where
T&i = {x e R" : d(%,l‘z + L; + Zn) < 5}

Choose a smooth Z"-periodic function a : R™ — (0, c0) such that

a(x) = Alg| onx; + L; + Z" for 1 <i < m,
1 <a(z) < Algl on T, for 1 <i <m,
a(z) =1 on R™\ Ui~ Ts.;-

Here, A > 0 is a large positive constant to be determined later.
Next, for every unit vector |p| =1 and 1 < i < m, write
(p- )
|qi|?
which is the projection of p on the (n — 1)-dimensional Euclidean space that is

perpendicular to ¢;. Apparently, we can construct a smooth Z"-periodic function ¢
satisfying that

i =p-— %,

Do(z) = —p}- in Ty, for all 1 <7 <m,
and
D@l < Cs,

for a constant Cs > 0 depending only on ¢, and ¢, go, ..., ¢n. We now pick A such
that

AZmax{l+C§ ! }

6 miﬂlgigm |Qz’
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Step 2: Characterization of the effective Hamiltonian. Let H be determined by
(E), with a defined above. We claim that

H(p) = A max |g; - p| for all p € R™. (2.1)

1<i<m

We only need to prove this claim for unit vectors |p| = 1. Fix such a p. Firstly,
by using ¢ above, it is clear that

H(p) < maxa(z)|p+ Do()]

zeR™

< . — .
_max{Alg%gllqz p|,1+05} A@g\qz pl-

Secondly, let v = v, be a solution of (E),. We assume v € C*(T") (to make this
rigorous, one needs to do convolution with a standard mollifier, but we omit it here).
Then, for each 1 <7 < m,

Algillp + Dv(z)| = H(p) for x € z; + Li + Z".
Denote by u(z) = p-x+v(x) for x € R*. Choose m € Z such that mgq; € Z™. Then

u(z; + mq;) —u(x;) = mp - q;.

Since |u(z; + mq;) — u(x;)| < m|g;| max,eq,+r, |Du(x)|, we deduce that

H(p) > Alp- ¢il.
Accordingly, (2.1) holds true.
Step 3: The corresponding shape D. Let a(x) = %. Then by scaling the result

of Step 2, the effective Hamiltonian H 4(p) determined by (E) , With a replaced by
a4 satisfies

Ha(p) = max |g; - p| = equ X, QTP =Tmaxq-p, for all p € R™.

Compare with Theorem 1.2 and in particular the relation (1.4), we conclude that
P = D,,. This completes the proof. O

Remark 2. From the constructions in the proof, we observe that, by properly
choosing those rational vectors ¢; and 9, it is not hard to construct a sequence
{am(-)} € C>°(T™) such that

0<a,<Il, lim ap,(x) =0 forae. xeT",

m—00
and

lim H,,(p) = |p| locally uniformly in R",
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3. THE OPTIMAL RATE OF CONVERGENCE

This section is strongly motivated by [13]. It is clear from the proof of Theorem
1.2 in the Appendix that, in order to quantify the rate of convergence of u® to w,
we need a quantitative version of (A.10). The following result, which is similar to
[13, Lemma 2.1], shows this connection.

Lemma 3.1. Let D be the limit shape of Lemma 1.1. Assume that there exists

C > 0 such that
"Z Y
p( ti ),D) < % fort > 0. (3.1)

Then, there exists C' > 0 such that

||u€ — U”LOO(R"X[O,OO)) S Ce. (32)
Proof. By (3.1),

(200) o (B0)< -

which implies
p(eRy:(Y),tD) < Ce.
We then use this result in (A.8) and (A.9) to conclude the proof. O

3.1. Proof of Theorem 1.4. We first give a definition on backward characteristics
(see calibrated curves in [6], backward characteristics in [14, Chapter 5]).

Definition 1. For each p € R", let v, € Lip (T™) be a viscosity solution to the cell
problem (E),. Then, £ : (—o0,0] — R" is called a backward characteristic of v, if

p€(0) + 0y (€(0) - ) — (et = [ LW, EO) + HO) e (39

[

for all ty <ty < 0. Here L is the Legendre transform of the Hamiltonian H.

For our problem (1.1), the Hamiltonian H (y,p) = a(y)|p| only has linear growth at
infinity. The corresponding Lagrangian L is defined by

{o ] < aly),

L(y,v) = sup (v-p— H(y,p)) = 1o lv] > a(y).

peR”™
By approximating H by smooth and strictly convex Hamiltonians, it is easy to show
that for each p € R", there exists a viscosity solution v, € Lip (T") of (E), such
that for every y € R", there is a backward characteristic &, of v, with £,(0) = y.
Of course, due to (3.3), L(£,(s),&,(s)) = 0 for all s < 0. Hence, |£,(s)] < a(&,(s)),
which yields &,(s) € Rs(y) for all s < 0. In other words, (3.3) for £, can be written
in an equivalent way as following

{gy(s) € Ryisi(v) for s < 0,

p-E&(t) +up(E(t)) = p-&(ta) —vp(E(t2)) = (i — to) H(p) for ta <t <0.
(3.4)



8 W. JING, H. V. TRAN, Y. YU

Lemma 3.2. Assume all the hypotheses of Theorem 1.4. Let v be a verter of P.
Pickp € R™ such that H is differentiable at p and DH(p) = v. Let ¢ : (—o0,0] — R®
be a backward characteristic of v, € Lip (T"), a solution of (E),. Then, £(t) €
Rp4(£(0)) for allt < 0. Furthermore, there exists C, > 0 depending on H, H,p such
that
t —_
‘M—v‘g% fort < 0. (3.5)
Proof. In fact, H is linear in a neighborhood of p, say B(p,r), and D?H (p) = 0.
By the definition of backward characteristics and (3.4), {(t) € Ry (£(0)), and

p-§(0) —p - () +v,(6(0)) — vy(&(1)) = [t[H (p),
for all t < 0. Next, for p € R", let v; € Lip (T") be a solution to (E);. It is clear
that

p-£(0) = p-&(t) +05(£(0)) — up(E(1)) < /t L(&(s),&(s)) + H(p) ds = |t[H(p).

It suffices to prove (3.5) for ¢ < —1. Set

AR (R CEL U
There is nothing to prove if w = 0. We therefore may assume that w # 0. Accord-

ingly, for [p—p| <,
€0~ €0) _ COL+ o)

Hp)—Hp) = (p-p)- > i (3.6)
Since H is linear in B(p,r), for |p —p| <,
H(p) = H(p) + DH(p) - (b — p).
Combine this with the above inequality to deduce that
- (B98O ) < Al
Choose p = p + gﬁ to complete the proof. O

Lemma 3.3. Assume all the hypotheses of Theorem 1.4. Then, there exists C' > 0

such that
R(Y)

t
Proof. Let vy, ..., vy be the vertices of P. By Lemma 3.2, there exist &(-), ..., &(+)
and a constant C' > 0 such that
&i(t) € Ry(Y) forall 1 <i <k, t>0,
Gt —ty| <C forall1<i<k, t>0.

PC + Bc.

=Q

For any point v € P, v can be written as a convex combination of the vertices
v1,..., Vg, that is,
V= U1 + -+ 0O,



EFFECTIVE FRONTS OF POLYTOPE SHAPES 9

for some ar, ..., > 0and Zle a; = 1. We construct £(-) as a convex combination
of the paths & (-),...,&(:) (roughly, aq&(+) + - -+ + &k (-) with connectors as in
(A.1)) so that

E(t) € Ry(Y), [€(t) —tv] < C forall t > 0.
The proof is complete. U
We now need to obtain the converse inclusion. It is extremely important noting
that the following result always holds true in general setting without any restriction
on P. This result is similar to [13, lower bound (1.2)].
Lemma 3.4. There exists C' > 0 such that
Ri(Y)
t

Proof. Let z be a point on the boundary of P. For given ¢t > 0, consider = : [0,t] —
R™ such that

Cc P+ Be.

Y(s)| < a(y(s)) forae. se(0,t),

where A > 0 is given. We now proceed to estimate how big A can be. For each
p € P, let v, € Lip (T™) be a solution of (E),. Then,

H(p) = a(y(s))lp + Dvp(7(s))] = 4(s) - (p + Dvy(7(s)))  for ae. s € (0,1).

To make the above rigorous, one needs to do convolution with a standard mollifier,
but we omit it here. Integrate this on [0, ¢] to deduce that

{7(0) €Y, y(t) = Az,

tH(p) > /0 Y(8) - (p+ Dup(v(s))) ds = p - (Az — 7(0)) + vp(s2) — v,(7(0)),
which means

p-— —H(p) <

If A <1, then v(t) € P. Otherwise, for A > 1, we take the supremum of the above

over p € P to yield
A Az — C
c(Z—1)<sw(p-Z-Hp)) <~
t peP t t

for some ¢ > 0. Thus, we arrive at

Az — g
t

<1+

| >

¢
t )

which gives the conclusion. 0

Proof of Theorem 1.4. Thanks to Lemmas 3.3 and 3.4, we infer that
R(Y C
p( ti ),D>§7 for t > 0.

We then apply Lemma 3.1 to conclude the proof. 0
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APPENDIX A. HOMOGENIZATION THROUGH THE SHAPE THEOREM

In this appendix, we give quick proofs of Lemma 1.1 and Theorem 1.2, which
are classical and standard in the literature. The proof of Lemma 1.1 follows closely
the ideas in [8]. Once (1.3) is proved, homogenization of (1.1) follows in a quite
straightforward way. Throughout the proof, a > 0 and 5 > « denote, respectively,
the lower and upper bound of the positive periodic function a.

Let us first note that we can always construct an admissible path ¢,_,, € Ay, to
reach from a point ¢ to a point p within time ¢ = \/E/a, if p and ¢ belong to the
same cube of unit size, i.e., p—qg € Y or ¢ —p € Y. Without loss of generality,
assume p # ¢ and let e = (¢ — p)/|q — p| denote the unit directional vector from p
to ¢g. Then the path can be explicitly defined by

p+tae, te0,]|qg—pl/a],
Cpsq(t) = {(L tellg—pl/a, . (A1)

Sketch of proof of Lemma 1.1. Let R(Y) be the reachable set at ¢ > 0 starting
from the unit cell Y, that is, R¢(Y) = |U,cy Re(x). Then we have, for all £, s > 0,

Rips(Y) CR(Y) +R(Y) + Y.
By taking closure and then taking the convex hulls, we also get
cORps(Y) CcoR(Y) 4+ coRy(Y) + Y. (A.2)

Set Xy = coRm(Y) +Y for m € N. We obtain a sequence of convex compact
sets { X, }men which are subadditive in the sense that X,,., C X, + X,,. Then by
subadditivity, we get

Xn coR, ( X X,
li '~ lim —— . i . A.
im im O . in (¢, p) (A.3)

n—oo N n—00

We note that D is a convex and compact set in R". Moreover, in view of the controls
on R;, we have B, C D C Bg. By the monotonicity of R; in ¢, and by the fact
that p(coR¢, coR;) = 0 for all ¢, we also have that

1
tliglop (;co R.(Y), D) = 0.

The next step is to show that

1
lim p (;Rt(Y), D) =0

t—o00

still holds, that is to remove the convex hull in the convergence result. Since R; is
a subset of its convex hull, we only need to show that

1
max d (z, ;Rt(Y)) — 0, as t — oo. (A4)

zeD

If we view the mappings z — d(z,t7"Ry(Y)) as a family of functions of z € D
indexed by t > 0, then this is an equicontinuous family. Because D is a compact
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set, the above result would follow if we prove that: for every z € D,

. 1
tliglod <z, ;Rt(Y)) = 0. (A.5)
Here are the main steps to obtain the above. First, for exposed points, (A.5)
follows by convex analysis. Indeed, if y is an exposed point of D, then there exists
an affine function f : R®™ — R such that f(y) > f(x) for all x € D\ {y}. Let
E; = E(t7'coR(Y)) denote the set of exposed points of the convex hull of R,(Y).
For each t > 0, let z; be a point of E; where f admits its maximum in coR;(Y).
This is possible since f is an affine function and co R,(Y’) is compact and convex, so
the maximum can be realized in the closure of the expose set. Hence, there exists
z¢ € E, such that
fla/) > mas  f(@) -
z€t~tcoR¢(Y) t
Since {r;/t} C Bpg, we can find at least one cluster point z of z;/t, and clearly
z € D. Moreover, passing to the limit in the above equality, we get f(z) > f(y).
This shows that the cluster point must be y, the pre-fixed exposed point of D. This

shows that
. 1 =

On the other hand, since £(co A) C A, we get

1—
lim d (y, ZR,:(Y)) = 0.

t—o0

Then (A.5) follows for any z that is an exposed point of D.

Next, we consider the case of z being an extreme point of D. By Straczewicz’s
theorem, z is a limit point of £(D). Since (A.5) hold on £(D), it also hold on (D).
That is it holds for all extreme points of D.

Finally, for all other points of z € D, we show z is close to t 'R, as t — oo by
using the convex combination of extreme points and then by using the fact that
extreme points are close to the average reachable set. More precisely, given any
z € D, by Caratheodory’s theorem, there exist n + 1 extreme points {y;}; C £(D)
and n 4 1 real numbers {\;}; C [0,1] such that S0\ = 1, and 2 = S Ny
Without loss of generality, we assume that \; > 0 for all ¢; otherwise we only need
to use a smaller number of extreme points. Fix an arbitrary ¢ > 0, by (A.5) for
extreme points, there exists a constant 77, for each i € {1,--- ,n + 1}, such that

1

1
d (yi, gRt(Y)) < g, for all t > T7. (A.6)

Next, we show that for all ¢ > max{3""' \/1TF + nl, 2e'ny/n(1 + B/a)}, we
can find a path v € Ay, such that y(0) € Y and d(y(t)/t,2) < €. This is sufficient
to establish (A.5).
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Let ¢/ =t — nl. For the first step, we note that A\t > \7° > T§, so we can find
71 € Ag v such that, if we set p; = 71(0) and ¢1 = 71 (Mt’), then p; € Y and
q1 €

- <o
AW

We define the desired path v by v(s) = 71(s), for s € [0, A\;¢']. The later steps in
the construction of + is by induction. Suppose (s) is defined for s € [0, (k — 1)¢ +
SOF | \it']. We define the (k +1)-th segment of 5 as follows. Since Ayt > Ty, we
know there exists an admissible path 7,41 € Ao, v, and if we set pp1 = Yi41(0)
and gr1 = Vig1(Argat’), then ppyy € Y and

(A7)

Let T, = (k—1){+ Zle Ait’, the time upon which v is already constructed. Define

(s) = @)=t Hpia (s = Tk), s € (T, Ti + €],
Vir1(s = T — 0), s € (T + 0, Ty + 0+ A t'].

The first part of the above construction leads the path v to pxi1 + [v(Tk)], which
is an integer translation of py.;, and the second part starts from this point and
is a translation of ,,;. By periodicity of the environment, the translated path is
admissible. As a result, we moved the path ~ forward up to time T}, + ¢ + \p1t'.
After a total of (n + 1) steps, we have constructed « up to time Z?jll At +nl =t
From the construction, we see that v € Ag;. Moreover, we have

n+1 n n+1

V) =D e+ ) (VT = (T —pe) = Y e+ Q

where () is a point in nY. We then have

n+1 n+1 n+1
tz —(t) = Z Ne(t +nl)y, — Z @ — Q= Z(Akt’yk —qr) — Q +nlz.
k=1 k=1 k=1

Note that nfz € nfBs. Hence |Q —nfz| < ny/n(1+ /a). Combining this estimate
with (A.7), we get

n+1
1) _1 : ny/n(l+ B/a)
- <= Aty —
R B M
This completes the proof of (A.5). O

We are now ready to give a proof of the qualitative homogenization theorem.

Proof of Theorem 1.2. Note that x € Ry(y) iff y € Ry(x). Fix R,T > 0. For each
(x,t) € Br x [0,T], we use the Hopf-Lax formula for the solution of (1.2) to imply

u(z,t) = inf {g(y) 2 ; Ye D} =inf{g(y) : y €z —tD} (A.8)

=inf{g(y) : y € x+tD}.
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On the other hand,

u(z,t) = inf {g(y) L eR, <g>} = inf {g(y) Y R (f)} (A.9)

g e \& £ g
=t o) e ([Z]+ = (2= [2)))
=it o) verre (R (2-[]) - (G- [E))))-
By Lemma 1.1, we yield
g o (R 5 o a0
which, together with (A.8) and (A.9), gives the desired result. 0

1]
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