
1.  Introduction
The physical properties (such as age, thickness, composition, temperature, and viscosity) of continental 
lithosphere contain crucial information about its formation and evolution, and more fundamentally, about 
Earth's tectonic dynamics through geological time. The thickness of cratonic lithosphere, revealed by fast 
seismic velocities, is on average ∼200–250 km (e.g., Cammarano & Romanowicz, 2007; Bedle & van der 
Lee, 2009; Fischer et al., 2020; Hamza & Vieira, 2012; Kind et al., 2020; Schaeffer & Lebedev, 2014), roughly 
in agreement with estimates from xenolith analysis (O'Reilly & Griffin, 2010; Crépisson et al., 2014), heat 
flow (Mareschal & Jaupart, 2004), and magnetotelluric data (Adetunji et al., 2014; Evans et al., 2019). It is 
commonly agreed that cratonic lithosphere is thicker, colder, and more stable than younger continental lith-
osphere. The lithosphere-asthenosphere boundary (LAB) is typically interpreted as a thermal and rheologic 
transition zone (Sleep, 2005; Yuan & Romanowicz, 2010). Other factors, such as grain size, composition, wa-
ter content, and extent of partial melt, may also contribute to the character of the LAB (Fischer et al., 2010).

Our understanding of the nature of continental lithosphere has been significantly evolved in recent years. A 
sharp seismic boundary has been detected within many cratons at a depth range of ∼80–140 km (e.g., Eeken 
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et al., 2018; Hopper & Fischer, 2018; Petrescu et al., 2017; Rychert & Shearer, 2009; Yuan & Romanow-
icz, 2010). This type of boundary has been commonly termed as a mid-lithospheric discontinuity (MLD), 
and alternatively interpreted to reflect the presence of partial melting, seismic anisotropy, compositional 
variation, or a high geothermal gradient. However, the lithospheric boundaries, LAB and MLD, have typi-
cally been detected separately by independent seismological methods. The presence of MLD has not been 
imaged with tomographic methods, probably due to the lack of model resolutions on small-scale features. 
Discrepancies exist about the depth distribution and the sharpness of each layer, which significantly limit 
our understanding of the significance of the boundaries. For example, what are the possible tectonic con-
nections among those boundaries? Was lithospheric layering inherited from the pre-existing architecture of 
continental lithosphere or newly developed after continental formation? How does the character of litho-
spheric layering change over geological time?

Eastern North America provides a complete record of continental evolution over the last 1.3 Ga from the 
formation and breakup of the supercontinent Rodinia through the multistage assembly of Pangea to the for-
mation of the modern Atlantic Ocean (Hatcher, 2010; Thomas, 2006). This region involves three major tec-
tonic units (Figure 1a), including the Archean North American craton (∼3.8–1.3 Ga), the Proterozoic Gren-
ville Province (∼1.3–0.98 Ga), and the Paleozoic Appalachian orogen (∼495–280 Ma) (David et al., 2009; 
Hatcher, 2010; McLelland et al., 2010, 2013), serving as an iconic setting to investigate the formation and 
modification of continental lithosphere. The coverage of seismic stations in eastern North America is excel-
lent (Figure 1b), benefiting from the EarthScope Transportable Array (IRIS Transportable Array, 2003; UC 
San Diego, 2013), the Eastern North American Margin Community Seismic Experiment (Gaherty, 2014), 
together with many other seismic networks over the last 2  decades. The dense coverage of seismic sta-
tions provides us for the first time an unprecedented opportunity to construct a complete model of eastern 
North America. Using an advanced full-wave propagation simulation and inversion method, our new model 

GAO AND LI

10.1029/2020GL091074

2 of 11

Figure 1.  Major tectonic units in the eastern North American continent and distribution of seismic stations. (a) Three major tectonic units in eastern North 
America, modified after Hibbard et al. (2006). The two cyan dashed lines mark the inferred craton-Grenville boundary and the Grenville-Appalachian 
boundary. The blue dashed line indicates the Great Meteor hotspot track (GMHT), marked with time in Ma. (b) Distribution of seismic stations used in full-
wave ambient noise tomography. The six black lines are the profile locations shown in Figures 2 and 3. GMHT, Great Meteor hotspot track.
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detects the coexistence of multiple intralithospheric low-velocity layers and sharp lateral variations of litho-
sphere thickness. The variations generally correlate with the major tectonic boundaries and thus, may relate 
to the accretionary tectonic history in eastern North America.

2.  Data and Method
2.1.  Extraction of Empirical Green's Functions

We collect ambient noise seismic waveforms from 1995 to 2019 recorded by 1,029 broadband stations 
in our study area (Figure  1b). We remove the instrument response, normalize the data with a frequen-
cy-time-normalization method (Shen et al., 2012), and eliminate waveform segments for large earthquakes. 
The Rayleigh-wave empirical Green's functions (EGF) are extracted from ambient noise cross-correlation 
of vertical-to-vertical components between each station pairs (Gao & Shen, 2014). We are able to retrieve 
high-quality Rayleigh-wave signals at periods up to 250 s (Figure S1), covering most of the eastern North 
American continent and part of the offshore region (Figure S2).

2.2.  Finite-Difference Wave Simulation and Inversion

The full-wave propagation simulation and inversion have been fully documented by Gao and Shen (2014), 
Gao (2016, 2018), and Yang and Gao (2020). We simulate wave propagation in the three-dimensional (3-D) 
spherical Earth using the nonstaggered-grid, finite-difference method (Zhang et  al.,  2012). We parame-
terized the model domain into 0.035° × 0.035° in the longitudinal and latitudinal directions. The vertical 
grid size increases with depth from one-third of the horizontal grid size for the top 15 km to about 5 km at 
100 km depth. The initial reference velocity model is the AK135 model extending from the surface down to 
1,000 km depth. We extract the synthetic Rayleigh waveforms between each station pairs after wave simu-
lation, and directly measure the phase delay times between the EGFs and synthetics by cross-correlation at 
multiple overlapping period bands, ranging from 150–250 s, 100–200 s, 75–150 s, 50–100 s, 35–75 s, 25–50 s, 
15–35 s, 10–25 s, to 7–15 s. When measuring the phase delays, we require the signal-to-noise ratio of the 
EGFs to be ≥6 and the correlation coefficients to be ≥0.85.

We calculate the 3-D finite-frequency sensitivities of Rayleigh waves at the above period bands. The use 
of finite-frequency sensitivity kernels allows for the ability of resolving structures smaller than the domi-
nant frequency (Spetzler & Snieder, 2004), which have been demonstrated by many previous studies (Chen 
et al., 2018; Gao & Shen, 2014; Tape et al., 2009; Wang et al., 2018, 2019). We consider the influence of both 
P- and S-wave velocities on the propagation of Rayleigh waves (Zhang et al., 2012; Zhang & Shen, 2008). 
Incorporation of P-wave velocities in kernel calculation and inversion provides additional constraints for 
the shallow crust, which significantly reduces the influence of P-wave velocity uncertainties on deeper 
structures. We invert for the shear velocity perturbations based on a damped least squares scheme (Montelli 
et al., 2004; Gao & Shen, 2014; Yang & Gao, 2020), with the damping and smoothing parameters selected 
in terms of the tradeoff between model norm and variance reduction (Figure S3). The velocity model was 
progressively and iteratively updated for a total of six iterations (Figures S4 and S5).

3.  Results
Our new tomographic results (Figures 2 and 3) demonstrate three key features within one model system: 
(1) Strong lateral variations of lithosphere thickness from the North American craton (∼200–250 km) to 
the Grenville Province (∼150–200 km) and the Appalachian Province (∼100 km); Here we define our inter-
preted LAB (thick transparent red lines in Figures 2 and 3) as the minimum negative gradient of velocity 
within a depth range of 150–260 km beneath the craton, 135–215 km beneath the Grenville, and 75–200 km 
beneath the Appalachians, respectively; (2) Multiple nearly horizontal low-velocity layers within the conti-
nental lithosphere; and (3) low-velocity anomalies at the base of the Grenville and Appalachian lithosphere. 
Please see supporting information for the average 1-D velocity profiles (Figure S6) and shear velocity maps 
at multiple depths (Figure S7). The checkerboard resolution tests (Figure S8) show that the model can be 
well recovered within a depth range of 50–250 km. The minimum resolvable dimensions increase from 
55 km at shallower depths (≤75 km) to 135 km at greater depths (≥200 km). We also demonstrate that our 
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model has the ability to resolve the lateral variation of lithosphere thickness among the major tectonic units 
(Figures S9–S13) and the intralithospheric low-velocity layers with the layer thickness greater than 25 km 
(Figures S14 and S15).

The new model is characterized by a fast velocity down to ∼200–250 km depths beneath the craton (Figures 2 
and 3a). We interpret this to reflect the thick continental lithosphere, consistent with previous seismic stud-
ies (e.g., Bedle & van der Lee, 2009; Biryol et al., 2016; Foster et al., 2020; Ho et al., 2016; Kind et al., 2020; Pe-
trescu et al., 2017; Pollitz & Mooney, 2016; Schmandt & Lin, 2014; Yuan & Romanowicz, 2010). Within the 
cratonic lithosphere, we observe two thin low-velocity layers at a depth range of approximately 55–75 km 
and 125–155 km (Figure 3a), which appear to be nearly parallel to each other. The shear velocities of the two 
intracratonic layers vary within a range of ∼4.5–4.6 km/s.

The interior of the Grenville Province is characterized by strong variations of seismic characteristics from 
north to south. First, a clear fast-to-slow velocity transition is observed at ∼150–175 km depths beneath the 
northern Grenville and at ∼200 km depth to the south, which we hypothesize as the base of the lithosphere. 
The thickness difference between the craton and the Grenville lithosphere results in a sharp offset up to 
100 km in the north, which is located approximately along the geologically defined surface boundary (Fig-
ure 2a), and a relatively gradual 50-km offset in the south, which is about 100 km eastward of the surface 
boundary (Figure 2c). Second, we observe strong low-velocity anomalies (Vs < 4.4 km/s) located in the 
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Figure 2.  NW-SE profiles of the seismic tomography model beneath eastern North America. See profile locations in Figure 1b. The gray lines represent 
the sharp negative-wave speed discontinuity defined by teleseismic receiver functions (Hopper & Fischer, 2018). The thin red lines are the lithosphere-
asthenosphere boundary defined by global tomography (Ho et al., 2016). The thick transparent red lines are our interpreted lithosphere-asthenosphere 
boundary. The brown dashed lines correspond to the Vs = 4.5 km/s contours. The two vertical dashed green lines mark the geologically defined surface 
boundaries between the three tectonic provinces. The black lines above each profile represent the bathymetry/topography.



Geophysical Research Letters

asthenosphere immediately beneath the southernmost and northern ends of the Grenville lithosphere (Fig-
ure 3b). In contrast, beneath the central segment of the Grenville lithosphere, the shear velocity is similar 
as the velocity beneath the craton. Third, we detect a nearly uniform low-velocity (∼4.5–4.6 km/s) layer at 
a depth range of ∼60–85 km within the northern Grenville lithosphere (Figure 3b). In contrast, two low-ve-
locity layers are clearly imaged within the southern Grenville lithosphere. The top layer is located at a depth 
range of ∼50–75 km with shear velocities of 4.4–4.5 km/s, and the bottom layer at depths of 125–155 km 
with much lower shear velocities (Vs < 4.4 km/s).

The seismic features in the Appalachian Province appear to be more complex and heterogeneous than 
within the craton and the Grenville Province. Beneath the northern and southern parts of the Appalachian 
Province, our model reveals a velocity reduction at the depth of ∼100 km (Figures 2a and 2c), which we 
interpret as the base of the lithosphere (Hopper & Fischer,  2018; Wagner et  al.,  2018). Consequently, a 
sharp offset in lithospheric thickness (∼75–100 km) is observed approximately at the Grenville - Appala-
chian surface boundary (Figures 2a and 2c). Strong low-velocity anomalies lie underneath the Appalachian 
lithosphere (Vs < 4.4 km/s; Figures 2a and 2c). In addition, a low-velocity (∼4.5 km/s) layer is imaged at 
∼50–75 km depths. Finally, beneath the narrow segment of the central Appalachians, a strong low-velocity 
layer (Vs < 4.5 km/s) exists at ∼125–150 km depths, underlain by a fast velocity down to ∼200 km depth 
(Figures 2b and 3c).

The new tomographic model constrains, in significant detail, the distribution of both LAB and multiple 
intralithospheric layers beneath eastern North America. Even though numerous tomographic models exist 
for eastern North America (e.g., Bedle & van der Lee, 2009; Boyce et al., 2016; Boyce et al., 2019; Fichtner 
et al., 2018; Foster et al., 2020; Golos et al., 2018; Petrescu et al., 2017; Schaeffer & Lebedev, 2014; Yuan 
et al., 2014), none have the resolution and scope to detect the lithospheric features revealed in this study. 
Previous seismic anisotropy studies revealed an intracratonic boundary at the depths of ∼120–150 km (e.g., 
Foster et al., 2020; Petrescu et al., 2017; Yuan & Romanowicz, 2010). Seismic receiver functions detect a 
boundary within a depth range of ∼80–110 km (Hopper & Fischer, 2018; Liu & Stephen, 2018), which was 
interpreted as an MLD beneath the craton or as the LAB beneath the eastern North American margin. Our 
model clearly detects two nearly horizontal low-velocity layers within the craton and the U.S. Grenville lith-
osphere. The first layer roughly corresponds with the MLD that was previously detected by receiver func-
tions (Hopper & Fischer, 2018; Liu & Stephen, 2018), and the second layer corresponds with the anisotropic 
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Figure 3.  SW-NE profiles of the seismic tomography model beneath eastern North America. See profile locations in Figure 1b. Other symbols are the same as 
in Figure 2.
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layer (Foster et al., 2020; Petrescu et al., 2017; Yuan & Romanowicz, 2010). In contrast, within the Canadi-
an Grenville Province and the Appalachian Province, we image a single low-velocity layer, which roughly 
corresponds with the receiver-function-defined boundary (Hopper & Fischer, 2018; Liu & Stephen, 2018).

4.  Discussion
Our model reveals strong structural variations within eastern North America. It has been demonstrated that 
more data and/or a more accurate methodology result in stronger velocity contrasts (e.g., Hung et al., 2004; 
Becker, 2012; Gao & Shen, 2014; Gao, 2018; Gao et al., 2020; Savage et al., 2017; Yang & Gao, 2020). Fur-
thermore, we ignore seismic anisotropy and attenuation in wave simulation and inversion. Although this 
should not affect the key features discussed in this study, it may affect the amplitudes of shear velocity (e.g., 
Boyce et al., 2016; Debayle et al., 2020; Long et al., 2019). The shear velocity of the continental lithosphere 
within our study region varies within 4.6–4.8 km/s among different models of North America (Figure S6; 
e.g., Bedle & van der Lee, 2009; Yuan et al., 2014; Eeken et al., 2018), which is higher than the global models 
(e.g., Fichtner et al., 2018; Kennett et al., 1995). Here we define the reference velocity of continental lith-
osphere as the average of shear velocities within a depth range of 50–200 km (∼4.7 km/s; Figure S6). The 
shear velocity of our model at the depths of ∼200–250 km beneath the craton and ∼100–150 km beneath 
the Grenville reaches up to 5.0 km/s, about 6% higher than the average of continental lithosphere. Similarly, 
Schaeffer and Lebedev (2014) demonstrated that the craton can be up to 8% higher than the average.

We suggest that the low-velocity layers observed within the continental lithosphere (Figures 2 and 3) likely 
represent the accumulation of fluid-rich minerals. In comparison with the average velocity of continental 
lithosphere (4.7 km/s), the intralithospheric low-velocity layers are about 2%–4% lower within the craton 
and the northern Grenville, and are at least 6% lower within the southern Grenville. Similarly, a velocity 
reduction up to 7%–10% across the MLD was also suggested by seismic receiver functions (Hopper & Fis-
cher, 2018) and active-source seismic data (Ohira et al., 2017). Ohira et al. (2017) interpreted the MLD as a 
layer of partial melts frozen within the Pacific lithosphere. However, the preservation of partial melts within 
the old craton and Grenville Province is less likely. Alternatively, it has been commonly proposed that meta-
somatic alteration can significantly modify the mantle lithosphere of eastern North America (e.g., Boyce 
et al., 2016; Petrescu et al., 2017; Eeken et al., 2018; Boyce et al., 2019; Eeken et al., 2020; Foster et al., 2020). 
Metasomatized minerals formed at the depths of ∼70–150 km can contain ∼0.5–1 wt% of water, contribut-
ing to ∼4–6% of shear velocity reduction (Eeken et al., 2018). The lateral discontinuity of the MLDs, which 
was also observed by receiver function studies (Hopper & Fischer, 2018; Liu & Stephen, 2018), suggests the 
irregular emplacement and accumulation of the hydrous minerals. Nevertheless, we cannot completely 
rule out contributions of other factors, such as seismic anisotropy and temperature (e.g., Eeken et al., 2020; 
Fischer et al., 2010).

A variety of mechanisms have been proposed for the seismically observed MLDs within North America. 
One hypothesis is that the craton was formed at (at least) two stages, with the top 100–150 km representing 
the Archean lithosphere and the lower part formed at a later stage (e.g., Altoe et al., 2020; Eeken et al., 2020; 
Foster et al., 2020; Petrescu et al., 2017; Yuan & Romanowicz, 2010). Another mechanism is that the entire 
craton was formed during the Archean, but its lower part was later modified by subduction-derived meta-
somatism (e.g., Boyce et al., 2016; Boyce et al.,  2019). Alternatively, Perchuk et al.  (2020) demonstrated 
that cratonic lithosphere can be thickened by large-scale viscous underplating of oceanic mantle during 
the Archean subduction. Below, we elaborate our preferred interpretations of the key seismic observations 
(Figure 4), although our model alone cannot differentiate those mechanisms or determine the timing(s) of 
formation/modification for each layer.

First, what are the origins of the intralithospheric low-velocity layers? It has been broadly suggested that the 
pre-existing structure at a lithospheric scale can be tectonically inherited through the cyclic assembly and 
breakup of supercontinent in eastern North America (Thomas, 2006; Wagner et al., 2018). We hypothesize 
that the mantle lithosphere (as well as the MLDs) was formed through multiple tectonic episodes. The lack 
of major large-scale tectonic events in eastern North America during the last 200 Ma helps to preserve the 
MLDs within the continental lithosphere. Specifically, the low-velocity layers located within a depth range 
of 50–85 km (Figure 4) were likely inherited from pre-existing lithosphere prior to the establishment of the 
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eastern North American continent. During the assembly of the supercontinents of Rodinia at ∼1.3–0.98 Ga 
and Pangea at ∼495-280 Ma, the lower part of the present mantle lithosphere was added beneath the Gren-
ville and Appalachians, respectively. The subduction-derived metasomatism may contribute to the presence 
of the second low-velocity layers within the craton and southern Grenville lithosphere (Boyce et al., 2019). 
After the establishment of eastern North America, the mantle lithosphere would have experienced different 
levels of deformation and modification due to their inherent differences in strength/weakness (Audet & 
Bürgmann, 2010; Boyce et al., 2019; Wagner et al., 2018).

Second, what is the origin for the distinctive differences observed between the U.S. and Canadian portions 
of the Grenville Province? Those differences, ranging from crust to mantle lithosphere (Figure 3; e.g., Boyce 
et al., 2019; Eeken et al., 2020; Li et al., 2020; Schmandt et al., 2015; Shen & Ritzwoller, 2016), have impor-
tant implications in terms of formation and/or modification of the Grenville lithosphere. The tomographic 
model by Boyce et al.  (2019) showed that the cratonic lithosphere extends further eastward beneath the 
Canadian Grenville but is restricted to the west of the U.S. Grenville Front. In contrast, we observe a sharp 
difference in lithospheric thickness between the craton and the northern Grenville, which was also imaged 
by Boyce et al. (2016). We propose that the observed differences within the Grenville Province likely result 
from different modes of collision during the Grenville Orogeny. The Canadian Grenville represents the in-
tense collision of a sequence of tectonic terranes onto the North American craton (Li et al., 2020; McLelland 
et al., 2013; Rivers, 1997). This intense collision may explain why the change of lithospheric thickness is 
approximately across the boundary between the craton and the Canadian Grenville (Figure 4). In addition, a 
portion of the northern Grenville Province passed over the Great Meteor hotspot at about 130–110 Ma (Fig-
ure 1a; Eaton & Frederiksen, 2007). The hotspot-induced mantle upwelling may have further thinned the 
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Figure 4.  Schematic diagrams illustrating the key seismic features and possible interpretations in eastern North 
America. (a) Continent-arc collisional model that can be applied to the northern part of eastern North America. 
(b) Continent-continent collisional model that can be applied to the southern part of eastern North America. The 
thick black dashed lines represent the interpreted LAB. The cyan dashed lines represent our interpreted subsurface 
extent of the major tectonic boundaries. The nearly horizontal red patches with carets within the lithosphere denote 
the intralithospheric low-velocity layers. The red ellipses represent the observed low-velocity anomalies due to 
asthenosphere upwelling from edge-driven convection, and the white arrows denote the direction of edge-driven 
convection. The thin black dashed lines within the northern Grenville lithosphere mark the interpreted boundaries 
between small terranes. Modified after McLelland et al. (2010) and Li et al. (2020). LAB, lithosphere-asthenosphere 
boundary.
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overlying lithosphere of the northern Grenville. In contrast, a simple continent-continent collision mode 
between the craton and the U.S. Grenville Province would likely result in the westward thrusting of Gren-
ville lithosphere (Li et al., 2008, 2020; Long et al., 2019), supporting our observation in this study (Figure 4).

The sharp lateral variation of lithosphere thickness can initiate edge-driven mantle convection and as-
thenospheric upwelling (Figure 4; King & Anderson, 1998; Till et al., 2010), which would consequently 
modify the overlying mantle lithosphere and sharpen the gradient in lithosphere thickness. For example, 
the average seismic velocities beneath the Grenville and Appalachian lithosphere are much lower than 
beneath the craton (Figure S6), indicative of active mantle dynamics along the marginal lithosphere. The 
lateral extent of asthenospheric upwelling beneath the thinner lithosphere can reach up to 200 km (Till 
et  al.,  2010). Accumulation of melt produced by decompressional melting resulting from asthenospher-
ic upwelling would significantly reduce the seismic velocities at the base of the thinner lithosphere (e.g., 
Chantel et al., 2016; Kawakatsu et al., 2009). The low-velocity anomalies at the base of the Grenville and 
Appalachian lithosphere can be up to 8%–10% lower than the average velocity (∼4.6 km/s; Figure S6) be-
neath the craton, which would require the presence of at least 0.7% melt (Debayle et al., 2020). In addition, 
the hotspot-induced mantle upwelling may have further decreased the seismic velocities at the base of the 
northern Grenville lithosphere.

5.  Conclusions
Continental accretion and evolution are fundamental questions of broad importance in Earth and Planetary 
sciences. The advanced full-wave propagation simulation and inversion provides a powerful tool to deline-
ate the 3-D seismic features of the mantle lithosphere with great lateral and depth resolutions. Most impor-
tantly, our new model demonstrates strong lateral variations of lithosphere thickness and multiple nearly 
parallel low-velocity layers within the eastern North American lithosphere. We suggest that the present 
mantle lithosphere was likely formed and modified through multiple stages of tectonic processes. Among 
those tectonic processes, metasomatized minerals may have significantly contributed to the observed intra-
lithospheric low-velocity layers. The sharp thickness variation of lithosphere initiated edge-driven mantle 
convection, which has been consequently modifying the overlying mantle lithosphere. Edge-driven mantle 
convection has also resulted in partial melts at the base of the Grenville and Appalachian lithosphere. These 
findings have implications for character of continental accretion in eastern Laurentia, the nature of mantle 
lithosphere, and our understanding of continental growth and evolution in general.

Data Availability Statement
All the continuous seismic data were requested via the Data Management Center (https://ds.iris.edu) of 
the Incorporated Research Institutions for Seismology (IRIS). The velocity model generated by this study is 
available through the IRIS Earth Model Collaboration (http://ds.iris.edu/ds/products/emc-ena_fwt2021/). 
The computer codes for full-wave ambient noise tomography were developed by Dr. Yang Shen at the Uni-
versity of Rhode Island (https://sites.google.com/view/seismo). The codes are available at Github open-ac-
cess repository (https://doi.org/10.5281/zenodo.4021348).
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