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ABSTRACT. We discuss the equivariant Burnside group and re-
lated new invariants in equivariant birational geometry, with a
special emphasis on applications in low dimensions.

Let G be a finite group. Suppose that G acts birationally and gener-
ically freely on a variety over k, an algebraically closed field of charac-
teristic zero. After resolving indeterminacy and singularities we may
assume that G acts regularly on a smooth projective variety X. Clas-
sifying such actions

X © G,

up to birational conjugation, especially in cases where X S5 P is a
long-standing problem. This entails understanding realizations of G in
the Cremona group BirAut(P™). There is an enormous literature on
this subject; we will summarize some key results in Section 1.

The focus of this survey is a new approach to the analysis of actions
via new invariants extracted from the fixed points and stabilizer loci
of X. This new approach has its origin in the study of specializations
of birational type. Suppose a smooth projective variety specializes
to a reduced normal crossing divisor — we seek to gain information
about the general fiber from combinatorial structures associated with
the special fiber [30, 21]. That circle of ideas, in turn, was inspired by
motivic integration — another instance of this philosophy [26]. Actions
of finite groups yield formally similar stratifications: we have the open
subset, on which the group acts freely, and the locus with nontrivial
stabilizers. The combinatorics of the resulting stratification — along
with the representations of the stabilizers of the strata on the normal
directions — sheds light on the original group action. In many cases,
we can extract additional information on the birational type of these
strata and the action of the normalizer of the stabilizer. We explain
these constructions in detail, with many examples of small dimensions,
referring to the original papers [20, 23]. Our goal is to illustrate how
the layers of this new formalism reveal various levels of structure among

Date: September 21, 2020.



2 BRENDAN HASSETT, ANDREW KRESCH, AND YURI TSCHINKEL

G-birational types. In particular, we apply these new obstructions to
cyclic actions on cubic fourfolds, including rational ones, and produce
examples of nonlinearizable actions.

Here is the roadmap of the paper: After briefly recalling several
classical results, we discuss the case of finite abelian groups G. We in-
troduce the group of equivariant birational types B,(G), as a quotient
of a Z-module of certain symbols by explicit defining relations and find
a simpler presentation of these relations (Proposition 2.1). In Section 3
we explain, in numerous examples, how to compute the invariants on
surfaces. In Section 4 we show that all symbols in B, (G) are repre-
sented by smooth projective varieties with G-action. In Section 5 we
introduce and study refined invariants of abelian actions, taking into
account not only the representation on the tangent bundle to the fixed
point strata, but also birational types of these strata. In Section 6
we exhibit cyclic actions on cubic fourfolds that are not equivariantly
birational to linear actions; our main goal is to highlight the applica-
tions of the different invariants in representative examples. Finally, in
Section 7 we consider nonabelian groups, define the equivariant Burn-
side group, which encodes new obstructions to equivariant rationality,
and show how these obstructions work in a striking example, due to
Iskovskikh [19]: distinguishing two birational actions of Gy x S3 on
rational surfaces.
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The third author was partially supported by NSF grant 2000099.

1. BRIEF HISTORY OF PREVIOUS WORK

These questions were considered by Bertini, Geiser, De Jonquieres,
Kantor, etc. over a century ago but continue to inspire new work:

e Manin [27], [28] studied G-surfaces both in the arithmetic and
geometric context, focusing on the induced G-action on the geo-
metric Picard group, and on cohomological invariants of that
lattice;

e Iskovskikh [18] laid the groundwork for the G-birational classi-
fication of surfaces and their linkings;

e Bayle, Beauville, Blanc, and de Fernex [4, 5, 13, 9, 10] classified
actions of finite abelian G on surfaces;

e Dolgachev and Iskovskikh [14] largely completed the surface
case;
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e Bogomolov and Prokhorov [11, 34] considered the stable con-
jugacy problem for the surface case using cohomological tools
introduced by Manin;

e Prokhorov, Cheltsov, Shramov, and collaborators proved nu-
merous theorems for threefolds — both concerning specific groups,
such as simple groups [33, 12], as well as general structural prop-
erties [35].

Much of this work fits into the Minimal Model Program, using dis-
tinguished models to reduce the classification problem to an analysis
of automorphisms of a restricted class of objects, e.g., del Pezzo sur-
faces. With a few exceptions — the application of the cohomology on
the Néron-Severi group, by Manin and Bogomolov-Prokhorov, and the
‘normalized fixed curve with action (NFCA)’ invariant of Blanc [10] —
invariants play a limited role.

A fundamental observation, recorded in [36, App. A], is that the
presence of a point fixed by a given abelian subgroup H of G is a bira-
tional invariant of a smooth projective variety X with generically free
G-action. Furthermore, Reichstein and Youssin showed that the deter-
minant of the action of abelian stabilizers on the normal bundle to the
locus with the given stabilizer, up to sign, is also a birational invariant
[37]. However, for finite groups this is only useful when the minimal
number of generators of the abelian group equals the dimension of the
variety [36, Th. 1.1]. For cyclic groups, it is applicable only for curves.

The invariants defined in [20, 22, 23] record all eigenvalues for the
action of abelian stabilizers, as well as additional information about
the action on the components of the fixed locus, and on their function
fields. These collections of data are turned into a G-birational invariant,
via explicit blowup relations. The groups receiving these invariants,
the equivariant Burnside groups, have an elaborate algebraic structure.
And they led to new results in birational geometry, some of which will
be discussed below.

2. EQUIVARIANT BIRATIONAL TYPES

Here we restrict to the situation where G is abelian and consider
only fixed points of X O (. In general, there are no such fixed points
and we obtain no information. However, large classes of actions do
have fixed points, e.g., if G is cyclic and h*(X,Ox) = 0, for each i >
0, then the Atiyah-Bott holomorphic Lefschetz formula [2, Cor. 4.13]
yields a fixed point. The vanishing assumption holds for rational and
rationally connected X. If G is an abelian p-group (p prime) acting on
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X without fixed points then every Chern number of X is divisible by
p [17, Cor. 1.1.2].

To define an invariant of X © G, we consider collections of weights
for the action of GG in the tangent bundle at G-fixed points in X. To
formalize this, let

A=GY =Hom(G,G,,)
be the character group of GG, and n = dim X. Let
Sn(G)
be the free abelian group on symbols
lai,...,a,], a; €A, V7,

subject to the conditions:

(G) Generation: {ai,...,a,} generate A, i.e.,

n
Z Z(li = A,
i=1
thus, n is at least the minimal number of generators of Gj

(S) Symmetry: for each permutation o € &,, we have

[ag(l), e ,aa(n)] = [al, e ,an].

Let
S.(G) = B,(G) (2.1)

be the quotient, by relations, for all 2 < r < n:

(B,) Blow-up: for all [ay,...,a.,b1,...,b,_,] € S,(G) one has
[alw'-aar‘abla"'abnfr] =

Z [a1—ai,...,ai,...,ar—ai,bl,...,bn_r]. (22)

1<i<r, a;7#a, for i/ <i

These relations reflect the transformations of weights in tangent spaces
to components of the fixed locus upon blowing up along a G-stable
stratum.

From the definition, we have

B.(G) Z*WN)if G is cyclic of order N,
! ~]o otherwise.
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Proposition 2.1. [23, Prop. 8.1] For n > 2, all relations (B,) are
implied by relation (Bs).

Thus, B,,(G) is obtained by imposing the relation:

(B) Blow-up: for all [a, as,b1,...,b,—2] € S,(G) one has

[ala CL27bl: R bn—?] =

[al,aQ — &1,b1, ey bn_g} + [al — a9, A9, bl, Ce ,bn_g], aq 7’é asg, (23)

[07a17b17"'7bn—2]7 a1 = as.

Proof of Proposition 2.1. We prove the result by induction on r. We
first treat the case that aq,ao,...,a, are pairwise distinct; we drop
the entries by, ...,b,_, from the notation, as they do not take part in
relations. Suppose 7 > 3. Then:
lay,...,a,] = (by (B,_1)) [a1,a9 —ay,...,ar—1 — a1, ap] + -
+la1 —ar1,... 00 — ap_1,0,1, Gy

= (by (S)) la1,ar, a9 —ay, ... ap_1 —ay] +---

+ [ar—1, Gy 01 — Qp_1, ..y Qpg — Gy
= (by (B3) + (S), applied to each term)
la, a9 —ay,...,a, —ai] + [a1 — ap, a9 — ayg, ..., a,_1 — ay, a,]
+ N _l’_
a1 — Gr_1, .o Qrg = Gp_1, Gyt Gy — Gy
+ a1 — a1, Qe — A1, Qg — A,y Q).

The right-hand terms, taken together, are equal by (B,_;) to
[afl = Qry .., Qro1 — Qp, af?“]a

which together with the left-hand terms gives us what we want.

Next we treat the more general case a, ¢ {ai,...,a,_1}. In that
case, for every i with a; € {ay,...,a;_1} we omit the ith term on the
right-hand side in the initial application of (B,_;) and (S) and omit
the ith line after the applications of (Bsy) and (S). We conclude as
before.

Finally we treat the case a, € {ay,...,a,_1}. We start in the same
way, by applying (B,_1) and (S) as above. Now, when we apply (By),
we have to pay special attention to terms with a; = a,: in the corre-
sponding line we should leave the left-hand term but omit the right-
hand term. Each of the remaining right-hand terms vanishes by an
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application of (Bs) to a symbol of the form [0,...], i.e., the vanishing
of any symbol with two nonzero weights summing to 0. The left-hand
terms give us directly what we want. U

2.1. Antisymmetry. Let
B.(G) = B, (G)
be the projection to the quotient by the additional relation

[—ay,...,a,) = —[a1,...,a,). (2.4)
In particular, symbols of the type [0, as, ..., a,] are in the kernel of the
projection. We write
lay, ... a,]"
for the image of a standard generator [ay, ..., ay].

2.2. Multiplication and co-multiplication. Consider a short exact
sequence

0-G —-G—-G" =0

and its dual
0—+A" A A —=0.

The multiplication
V:By(G)®B.uw(G") = B,(G), n +n"=n,
is defined by

lay, .. .,al )@ d), ... a] — Z lay, ..., ap,al,. . al.],

summing over all lifts a; € A of a; € A’. It descends to a similar map
on quotients by the relation (2.4). .
The co-multiplication is defined only on B, (G):

AT : B, (G)— B, (G")®B,,(G"), n'+n"=n.
On generators is takes the form
[(11, Ce ,an]_ —> Z [CLI/ mod A”]_ & [CLI//]_,

where the sum is over subdivisions {1,...,n} = I’ U I” of cardinality
n', respectively n”, such that

ea;c A’ forall jel”

e a;,j € 1", generate A”.
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The correctness of this definition is proved as in [20, Prop. 11|. Here
are the main steps: By [23, Prop. 8.1] (= Proposition 2.1), it suffices
to check 2-term relations (By), i.e., the image of the relation

lar, az,...]” = [a1 — ag,ag,...]” +[ar, a9 —ay,...]”

after applying co-multiplication. The only interesting part is when
the first two arguments are distributed over different factors in the
definition of co-multiplication.

The relation is the same relation as that for the M, (G)-groups,
introduced and studied in [20], unless, a; = as — recall that

la,a,...] =1a,0,...,] € B.(G).

Since

0=la,—a,...]” =—la,a,...]”
we have
la,a,...]” =]a,0,...]” =0.

Now it suffices to repeat the argument in [20, Prop. 11]. Using the
terminology of that paper, there are four cases, of which only (1) and
(4) are relevant. In both cases, all terms are zero.

We return to the definition of an invariant for X © G, dim(X) = n,
and G abelian. Consider irreducible components of the fixed locus

xX¢=T]F..

and write
504 - [al,aa cee 7an,o¢]
for the unordered n-tuple of weights for the G-action on the tangent

space T, X, for some x, € F, — this does not depend on the choice of
Zo. The number of zero weights is dim(F,). We express

BXOG) = fa€BuG), (2.5)
and write
pT(X ©G)eB,(G),
for the image under the projection.
Theorem 2.2. [20, Th. 3] The class
B(X ©G) € By(G)

1s a G-birational invariant.
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The proof relies on G-equivariant Weak Factorization, connecting G-
birational varieties via blow-ups and blow-downs of smooth G-stable
subvarieties.

Proposition 2.3. Consider a linear, generically free, action of a cyclic
group Cy, of order N, on P, for n > 2. Then

ﬁi(Pn D CN) =0¢€ B;(CN)

Proof. We know that all such actions are equivariantly birational, see,
e.g., [37, Th. 7.1]. Thus it suffices to consider one such action. Take
an action with weights (1,0,...,0). It fixes a hyperplane, and a point,
the corresponding class is

[1,0,...,0] +[~1,—-1,...,—=1] = [1,0,...,0] + [~1,0,...,0],

here, we repeatedly used relation (2.3) to transform the second term.

O

Remark 2.4. We shall show in Section 3.3 that [1,0] + [—1, 0] is torsion
in By(Cy). See [20, Prop. 7 and Lem. 32| for the case of prime N. The
element is nontrivial when

N =17,9,10,11,13,14, 15,17, . . ..

3. COMPUTATION OF INVARIANTS ON SURFACES

3.1. Sample computations of By(C,). This group is generated by
symbols [a1, as], where

ai, ay € Hom(C,, G,,,) = Z/pZ

are not both trivial. To simplify notation, we write a; = 0,1,...,p— 1.
Note that

la,a] =[0,a] and [a1,a2] = [az, a1
so that the symbols
la1, as) : O0<a;<ay<p
generate By(C),). The other relation — for a; < ay — takes the form

[a1, as] = [a1, a2 — a1] + [p + a1 — ag, as).

(p = 2) We obtain relations
[1,1] =[0,1], [0,1] =[0,1] + [1, 1]
forcing By(Cy) = 0.
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(p = 3) We obtain relations

[0,
[
[
[
[

N = = O

forcing
[1,2] =0 and [0,1] =[1,1] = —[2,2] = -]0,2].
We conclude that By(Cs3) = Z
For instance, consider the standard diagonal action on P?

(z:y:2)m= (2: Gy G2)
with the convention that (y is a primitive Nth root of unity. This has
invariant
B(P? O C3) =[1,2] +[1,2] +[1,2] = 0.
On the other hand, the action of C'5 on the cubic surface

X = {0 = Sy 2)}, iy D)o Guiziy:2)
fixes the cubic curve {w = 0} and we find that
BX © Cy) = [2,0] £0,

thus X is not G-equivariantly birational to P2, with linear action. Note
that 8 does not allow to distinguish among these cubic surfaces. Nor
does it distinguish the cubic surfaces from the degree one del Pezzo
surfaces with Cs-action

YV ={w"=2"+ fo(z,9)} CP(3,1,1,2),
given by
(w:x:y:z)—=(w:x:y:(32).
We shall see in Section 5 that taking into account the fixed locus [F]
gives a complete invariant.

(p =5) We have relations

I=E=I=a=)
o S o o

+ + + +
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forcing [1,4] = [2,3] = 0. We also have

[1,2] =[1,1] + [4, 2]
[1,3] =[1,2] + [3, 3]
[1,4] = [1,3] + [2,4]
12,3] =[2,1] + [4, 3]
[2,4] = [2,2] + [3,4]
(3,4] = [3,1] + [4, 4]

which shows that By(Cj) is freely generated by
61 = []_, 1] and /62 = [1,2]
with

[1:3] = B — Po, [2,2] =20, — B, [274] = By — P,
[37 3] = 51 - 2ﬁ27 [374] = _ﬁ27 {47 4] = _ﬁl-

For example, Mys, a del Pezzo surface of degree 5, has a natural
action of Cs by permuting the coordinates with fixed points given by
the roots of 2° — 1 and 2° + 1. We compute 5(Mq5 O Cs):

Bi4Pat (81— B2)+(282—B1) +(Ba—B1) +(B1—282) +(—B2) +(— 1) = 0.
Indeed, this action is in fact conjugate [5] to a linear action on P?
(:y:2) = (x: Gy G2).

However, there is also a nontrivial action of C5 on a del Pezzo surface
of degree 1:

X ={w? =22+ Moz 4+ o(us® + %)} C P(3,1,1,2),
(w:x:y:z)—(w:x:(Gy: 2),
with fixed locus an elliptic curve and invariant S(X © C5) = [4,0].

Let us compute an example of nonprime order. The group By(Cy)
has generators

[0,1],]0,3],[1,1],[1,2],[1, 3], 2, 3], [3, 3]
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and relations

whence
1,3] =0, p/:=1[1,2]=-[2,3], [0,3]=[3,3] =2[2,3] =204,
0,1] =[1,1] = 2[1,2] =254
and By(Cy) = Z.

Consider the del Pezzo surface of degree 1, given by
X ={w? = 2%+ zLy(2%,9*) + ayMa(2®,y*)} C P(3,1,1,2),
where L, and M; are homogeneous of degree two. It admits a Cy-action
(weix:y:z)—=(lw:z:—y:—2)

with a unique fixed point (0 : 1 : 0 : 0). The weights on the tangent
bundle are [2, 3] whence

B(X © Cy) #0.

Observe that X2 is a curve of genus four.

See [8, §10.1] for a classification of automorphisms of large finite
order N on del Pezzo surfaces:

(1) The surface
X ={w?=2+z(2"+9°)} CP(3,1,1,2)
admits an automorphism of order 30
(w:x:y:z)—=(—w:z:Gy:(2)
with fixed point (0:0:1:0) and with weights [3, 2], thus
B(X D Cs) =1[3,2] #0 € Bo(Cs0) ® Q,

by a computation in Sage [38]. This implies (see Remark 2.4)
that this action is not conjugate to a linear action. Note that
dim [52(030) ® Q = 33.
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(2) The surface
X ={w* =2+ 2y(a* +y)} CP(3,1,1,2)
admits an automorphism of order 24
(w:x:y:z)—= (Ggw:x:iy: —i(3z).
The fixed point is (0 : 1 : 0 : 0) with symbol [21, 22]. Computing
via Sage we find
B(X O Cy) # 0 € By(Coy) @ Q.
Here dim By(Chy) ® Q = 23.

There are good reasons why we obtain nonvanishing invariants only
when a curve is fixed: If G = Cy is a cyclic group acting generically
freely on a complex projective smooth rational surface X © G then
the following are equivalent [8, Th. 4]:

e No g # 1 € GG fixes a curve in X of positive genus.
e The subgroup G is conjugate to a subgroup of Aut(P?).

Even more is true: if G contains an element fixing a curve of positive
genus then X is not even stably G-birational to projective space with
a linear G-action, indeed, in this case H'(G, Pic(X)) # 0 [11].

3.2. Examples for noncyclic groups. If G is a noncyclic abelian
group then B;(G) = 0 by definition but there are actions on curves:

Example 3.1. Consider the action of Cy x Cy on P! by

{0 -1 (1 0
g1 = 1 O ) go = O —1)
with the elements
4 _ -1 0
9% = g1929; 192 b= ( 0 _1)
acting trivially. Thus we obtain

]P)l D (CQ X Cg)

The group has no fixed points whence B(P!' © (Cy x Cy)) = 0. The
cyclic subgroups do have fixed points

(PH) = {(1: )}, (PHY = {(1:0),(0: 1)}, (P99 = {(1: £1)}.

We return to this in Example 5.2. In Section 5.2, we will discuss how
to incorporate information from all points with nontrivial stabilizer.
We compute By(Cq x Cy). Writing

(Cy x C9)Y = {0, x1, X2, X1 + X2}
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the only admissible symbols are

[x1s X2l [xas xa + xals [xa + xe, xel
with relations:
[x1:Xx2] =[x, xa + xe) + [x1 + xe, xel
[xas xa + xa2) = Dxas xel + xa + x2, xel
(X1 + X2, xe] = [x1, x1 + xal + [x1, xal-
Thus we obtain the Klein four group again
By(Cy x Cg) = Cy x Cs.

The classification of finite abelian noncyclic actions on rational sur-
faces may be found in [8, §10.2]. Examples of actions of Cy x Cy on
rational surfaces include:

On P! x PL:
(1) (z,y) — (Ezt!, y), without fixed points;
(2) ('Ta y) = (:i:(lf, :ty)7 with fixed points (07 0)7 (07 OO), (OO7 0)7 (OO’ 00)7
thus

B(Pl X Pl D) CQ X 02) = 4[X1,X2] = 0;
(3) the diagonal action
(l’, y) = (_'Tv _y)a (x,y) = ('rilﬂyil)
has no fixed points so the symbol sum is empty;

On conic fibrations over P!:
(4) (w1 :22) X (Y1 :y2) =

(x1: —x2) X (Y1 :y2), respectively,
(1 1 22) X (yo(z1 — bxo) (21 + b22) @ Y1 (21 — aza)(xy + axsy),

which also has four fixed points with the same symbol;

On a degree two del Pezzo surface:
B) (w:z:y:z)—(w:z:y:+z)on
{w2 = L4<£L’,y) + 22L2(377 y) + 24}7

with the involutions fixing a genus three curve and an elliptic
curve meeting in four points whence 3(X O Cy x Cy) = 0;

On a degree one del Pezzo surface:
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6) (w:x:y:2)— (w:z:+y:z)on
2 3 2 2 2 2
{U} =z +2L2(l' Y >+L3($ Y )}7
with the involutions fixing a genus four curve and a genus two

curve meeting in six points whence (X © Cy x Cy) = 0.

None of these actions are distinguished by Ba(Cy x Cy). Case (1)
is stably equivalent to the action on P! described above. The second
action is equivalent to a linear action on P? — project from one of the
fixed points. We return to these examples in Section 5.4.

3.3. Linear actions yield torsion classes. Let Cy act linearly and
generically freely on P". We saw in Proposition 2.3 that

B(P" © Cy) = [a,0,...,0] + [—a,0,...,0]

for some a relatively prime to N. Remark 2.4 pointed out this is torsion
for n > 2; we offer a proof now:

Proposition 3.2. For N € N, an a with gcd(a, N) = 1, and n > 2
the element

(0,0, ..,0] +[~a,0,...,0] € B,(Cy)

18 torsion.

Proof. 1t suffices to consider n = 2; the argument we present goes
through without changes for n > 2.

We will work in By (Cy) @ Q. We use generators for this space arising
from the alternative symbol formalism My (Cy) introduced in [20] with
the property that [20, Prop. 7]

Bo(Cn) ® Q = My(Cn) ® Q.
For a,b € Hom(Cy,G,,) generating the group we set
wn={l0 iy,
The advantage of these generators is that the relations are uniformly
(a,b) = (a,b—a) + (a—0b,b) (B),

even when a = b.
We follow the proof of [20, Th. 14]. For all a,b with ged(a,b, N) =1
we write

d(a,b) := (a,b) + (—a,b) + (a,—b) + (—a, —b).
We claim this is zero in By(Cy) @ Q.



SYMBOLS AND EQUIVARIANT BIRATIONAL GEOMETRY 15

First, we check that d(a,b) is invariant under SLy(Z/NZ). This has

generators
0 —1 1 -1
1 0 )" 0o 1 /°

and 0(a,b) = §(—b, a) by the symmetry of the underlying symbols. We
also have

d(a,b—a)={a,b—a)+ (—a,b—a) + (a,a — by + (—a,a — b)
applying B to second and third terms above
=(a,b—a)+ (—a,b) + (=b,b — a)
+ {a, —b) + (b,a — b) + (—a,a —b)
applying B to get first and four terms below
=(a,b) + (—a,b) + (a, —b) + (—a, —b)
=d(a,b).
Average d(a,b) over all pairs a,b with ged(a,b, N) =1 to obtain

Si=Y 6(a,b) =4 (a,b).

Applying the blowup relation (B) to all terms one finds
S =25,

which implies that S =0 € By(Cyn) @ Q.

We may regard d(a,b) and S as elements of By(Cl). It follows that
d(a,b) is torsion in By(Cly), annihilated by the number of summands
in S. Substituting b = 0, we obtain that

d(a,0) = [a,0] + [—a,0] = 0 € By(Cn) ® Q.
U

The invariance of §(a,0) shows that [a, 0] + [—a, 0] is independent of
the choice of a relatively prime to N.

3.4. Algebraic structure in dimension 2. For reference, we tabu-
late

for G = Cy and small values of N:

N|2 345678910 11 12 13 14 15 16
01122335 4 6 7 8 7 1310

For primes p > 5 there is a closed formula [20, §11]:

: -1 —5)(p—17 —1
dlmBQ(Cp)(X)Q:pT—l—l:(p gip )+p2, (3.1)
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which strongly suggested a connection with the modular curve X;(p)!

We also have
(p=5)(p-17)

dim B; (C,) ® Q = ol :

and, by [20, Prop. 30],
Br(Cy) © Q = Ker(Bo(Cy) - B; () @ Q.

Computations in noncyclic cases have been performed by Zhijia Zhang!;
we summarize the results: for primes p > 5 one has

(p— 1)@ +6p* —p+6)
24 ’

(p—D(@’—p+12)
24

For G = Cy, x Cy, and small values of Ny, No, we have:

(3.2)

dim By (C,y x C,)) @ Q =

dim By (C, x C,) ® Q =

N2 22 2 2 2 3 3 3 3 4 4 4 3 6

N2 46 8 10 16 6 3 9 27 8 16 32 25 36
dp |0 2 3 6 7 21 15 7 37 235 33 105 353 702 577
dp |00 0 1 1 9 7 319 163 17 65 257 502 433
dy |2 5 8 13 18 36 15 7 37 235 34 106 354 702 578
dy |2 3 5 8 12 24 7 3 19 163 17 65 257 502 433

4. RECONSTRUCTION THEOREM

The examples offered so far might suggest that very few invariants in
B, (G) are actually realized geometrically by smooth projective varieties
X © @G. If one allows nonrational examples far more invariants arise:

Proposition 4.1. Let p be a prime. Then B,(C,) is generated as an
abelian group by (X © C,), where X is smooth and projective.

Proof. We proceed by induction on n. The case of n = 1 follows from
the Riemann existence theorem applied to cyclic branched covers of
degree p with the prescribed ramification data. (See also Lemma 4.2
below.)

For the symbols [a4,...,a,_1,0] we construct (n — 1)-dimensional
varieties D with the prescribed invariants and D x P! with trivial action
on the second factor. Since [a,a,as,...,a,] =[0,a,as,...,a,] we may
focus on symbols [ay,as,...,a,],0 < a; < ay < ... < a, < p. We are
reduced to the following lemma:

Isee https://cims.nyu.edu/~zz1753/ebgns/ebgms . html
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Lemma 4.2. Any sum

Z M[ay,a2,...,an] [a'h ag, ..., an] (41)
of symbols

[at,a9,...,a,]), 0<a;<ay<...<a,<p,

with nonnegative coefficients, is realized as (X O C,), where X is
smooth, projective, and irreducible.

For each symbol [ai,as,...,a,] appearing in the sum, take an n-
dimensional representation Vi, 4., With the prescribed weights and
the direct sum

W[al,ag,...,an] = (‘/[al,ag,...,an] S¥ C)m[al’a2 """ an]
where C is the trivial representation of C,. Write
W = ®W[a1,ag,...,an]7

where the index is over the terms appearing in (4.1), and consider the
projectivization P(W) and the n-planes

P[al,az,...,an],j C P(W[al,ag,.‘.,an])a ] - 17 cee am[al,ag,...,an]

associated with the summands of Wiy, 4. 4,), €ach with distinguished
fixed point
Dlar,az,man]y = (0:0:---:0:1).
The action on
an]P[a1,a2,...,an],j
coincides with the action on Vi, 4.4, The fixed points of P(IV) cor-
respond to the eigenspaces for the C), action. Write M = May a9,....an]
for the number of summands; each weight occurs at most M times.
Thus the fixed point loci are projective spaces of dimension < M — 1.
Choose a high-degree smooth complete intersection X of dimension
n, invariant under the action of C), containing the pi4, as.....a,),; and tan-
gent to Pg, as....a,),; fOr €ach [a1, as, ..., a,]. This complete intersection
exists by polynomial interpolation applied to the quotient P(W)/C,;
smoothness follows from Bertini’s Theorem. Since complete intersec-
tions of positive dimension are connected, the resulting X is irreducible.
It only remains to show that such a complete intersection need not
have fixed points beyond those specified. Now X has codimension
(M —1)(n+1), so we may assume it avoids the fixed point loci — away
from the stipulated points pig, s,,...a.],; — Provided (M —1)(n+1) > M.
It only remains to consider the special case M = 1. Here we take

W = (Viay azan] ® C)?,
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imposing conditions at just one point (0 : 0 : .-+ : 0 :1). Here X C
P(W) has codimension n + 1 and the fixed point loci are P!’s; so we
may avoid extraneous points of intersection. 0

5. REFINED INVARIANTS

5.1. Encoding fixed points. Since By(C3) = 0 this invariant says
nothing about involutions of surfaces! Bertini, Geiser, and De Jon-
quieres involutions are perhaps the most intricate parts of the clas-
sification, which relies on the study of fixed curves. This leads to a
natural refinement of the invariants: For the symbols of type [a, 0],
corresponding to curves F, C X fixed by Cy, we keep track of the
(stable) birational equivalence class of F,, and the element of B;(Cly)
associated with [a].

In general, [20] introduced a group combining the purely number-
theoretic information encoded in B, (G) with geometric information
encoded in the Burnside group of fields from [21]. Let

Bir,_1m(k), 0<m<n-—1,

be the set of k-birational equivalence classes of (n — 1)-dimensional
irreducible varieties over k, which are k-birational to products W x A™,
but not to W’ x A"+ for any W', and put

Bn(G7 k) = @Zl—:lo 69[Y]EI—D’irnfl,'m(l'C) Bm+1 (G) (51)

Let X be a smooth projective variety of dimension n with a regular,
generically free, action of an abelian group G. Put

6 XOG Zﬁkaa

where, as before, the sum is over components F,, C X of the G-fixed
point locus, but in addition to the eigenvalues ay, . .., a,—dgimr.) € A in
the tangent space T, X one keeps information about the functlon field
of the component F,. Choosing m, so that

[Fy x A" 4] € Bir, 1, (k)
we set

ﬁk,a = [al, oy Op—dim(Fl)s 0,...,0 ] S Bma—i-l(G);
~——
Mma+1—n+dim(Fy)
identified with the summand of (5.1) indexed by [F, x Ar—l-dim(Fe)],
When F, is not uniruled we get a symbol in Beodim(r,)(G)-
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Theorem 5.1. [20, Remark 5] The class
(X © G) € B,(G, k)
1s a G-birational invariant.

5.2. Encoding points with nontrivial stabilizer. We continue to
assume that G is a finite abelian group, acting regularly and generically
freely on a smooth variety X. Let H C G arise as the stabilizer of some
point of X, F C X an irreducible component of the fixed point locus
with generic stabilizer H, and Y the minimal G-invariant subvariety
containing GG. In Section 7.2, we will explain how to blow up X so that
Y is always a disjoint union of translates of F.

Additional information about the action of G on X is contained in
the action of the quotient G/H, which could act on the function field
of F, or by translating F' in X. The paper [23] introduced the group

Burn, (G)

as the quotient by certain relations of the free abelian group generated
by symbols

(H,G/H C K, p), (5.2)

where K is a G/H-Galois algebra over a field of transcendence degree
d < n over k, up to isomorphism, and (3 is a faithful (n—d)-dimensional
representation of H (see [23, Def. 4.2] for a precise formulation of con-
ditions on K and relations).

Passing to a suitable G-equivariant smooth projective model X — as
discussed in Section 7.2 — its class is defined by

(X ©G):=) > (HG/HCK(Y),B(X)) € Bun,(G), (53)
HCG Y

where the sum is over all G-invariant strata Y C X with generic sta-
bilizer H as above, the symbol records the eigenvalues of H in the
tangent bundle to x € Y as well as the G/H-action on the total ring
of fractions K(Y).

Example 5.2. We revisit Example 3.1 using the notational conven-
tions x1(g2) = x2(¢91) = 1 and G = Cy x Cy. Here we have

P' O Gl =((1),G k() + ((91) . G/ (g1) & {(1: i)}, x1)
+ ({92) , G/ {g2) S {(1:0),(0: 1)}, x2)
+ ({9192) , G/ (9192) C {(1: £1)}, x1 + X2).

The action on K (P') = k(t) is by ¢1(t) = —t and go(t) = —1/t.
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Blowup relations ensure that [X © G] is a well-defined G-birational
invariant — see Section 5.3 for more details.
There is a distinguished subgroup
Burn™(G) C Burn, (G)

n

generated by symbols (1,G & K = K(X)). For ‘bootstrapping’ pur-
poses — where we seek invariants of n-folds in terms of lower-dimensional
strata with nontrivial stabilizers — we may suppress these tautological
symbols to get a quotient

Burn,,(G) — Burn™™(G).

n

And there is also a natural quotient group
Burn, (G) — Burn%(G)

obtained by suppressing all symbols (H,G/H C K, () where H is a
proper subgroup of G. By [23, Prop. 8.1 and Prop. 8.2], there are
natural surjective homomorphisms

Burn(G) — B,(G, k) — B.(G).

nontriv

Example 5.3. The group Burnj (G) is freely generated by non-
trivial subgroups H C G and injective characters a : H < Gy, e.g.
Burn}*™™(Cy) = ZN¥~! and Burn]*""(Cy x Cy) = Z3.

5.3. Examples of blowup relations. We illustrate the relations for
fixed points of cyclic actions on surfaces. More computations are pre-
sented in Section 5.4; the reader may refer to Section 4 of [23] for the
general formalism. All the key ideas are manifest in the surface case be-
cause the full set of blowup relations follows from those in codimension
two — see [23, Prop. 8.1] and the special case Prop. 2.1 above.

Suppose that G = Cy acts on the surface X with fixed point p and
weights a; and ap that generate A = Hom(Cy,G,,). Let X denote
the blowup of X at p and E ~ P! the exceptional divisor. Let H =
ker(a; —az) C G denote the generic stabilizer of E which acts faithfully
on the normal bundle ./\/’E/;( via a; = ay € A := Hom(H, G,,).

Assume first that a; and as are both prime to N, so p is an isolated
fixed point of X. The quotient G/H (when nontrivial) acts faithfully
on F = P! with fixed points p; and p,. If H = G then a; = as and we
get the relation

(G, triv C k = K(p), (a1,a1)) = (G, triv C k(t) = K(FE), (a1)).
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If triv € H' C G then
(G, triv & k = K(p), (a1,a2)) = (H,G/H ¢ k(t) = K(E),a, = as)

+ (G, triv & k = K(p2), (a1, a2 — ay))

+ (G, triv G k = K(pl), (CLQ, ai — CLQ)) (54)
where G/H acts on t by a primitive dth root of unity with d = |G/H|.
If H is trivial then

(G, triv C k = K(p),(a1,a2)) = (G, triv C k = K(p2), (a1,a2 — a1))
+ (G,tl‘iV C k= K(pl), (CLQ, ap — CLQ)). (55)
Assume now that a; = myn; and as = mans where ny, no| N (and
are relatively prime modulo N) and m; and my are prime to N and
each other. Then we have
pe L NF,

for irreducible curves F; and F, with generic stabilizers C,,, and C,

respectively. Let Fi, F5 C X denote the proper transforms of £} and F3
and pi,pe € E their intersections with the exceptional divisors. Thus
the contribution to the strata containing p is

(G, triv & K(p),(ay,a9))
+(Cn1, CN/Cnl C K(F1>,CL2) -+ (Cn2, C'N/C'n2 C K(FQ),CLl)

with the latter two terms appearing in the symbol sum on X, with the
F; replaced by the F;. Note that H = ker(a; —as) € G because a; Z ay.
Here the blowup formula takes the form (5.4) or (5.5) depending on
whether H' is trivial or not.

Now suppose that as = 0. Let ' C X denote the irreducible com-
ponent of the fixed locus containing p, so that a; is the character by
which G acts on Np/x. Write F' C X for the proper transform of F,
p1 = FNE, and py € E for the other fixed point. Here we get the
relation

(G,GC K(F),a1) = (G,GC K(F),a1) + (G,G & K(p2), (a1, —ay)),

whence the latter term vanishes.

5.4. Examples. We now complement the computations in Section 3,
for G = Cl, and small N. As before, we work over an algebraically-
closed based field k of characteristic zero.

(N =2)
L4 62(02) = 0.
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o By(Ch, k) = Burn$?(C,); has a copy of By(Cy) = Z, for every
isomorphism class o_f curves of positive genus.
e Burny(Cy) = Burny™(Cy) @ BurnS?(C).

(N =3)
o B5(C5) = Z, generated by [1,1],

[1,2] =0, [2,2]=—[1,1].

o B5(Cs, k) = Burn$?®(Cs), is a direct sum of Z, corresponding to
points and rational curves, and a copy of B;(C3) = Z? for every
isomorphism class of curves of positive genus.

e Burny(C3) = Burn™(C3) @ Burn$® (Cy).

(N =1)
e B5(Cy) = Z, generated by [1,2],

[1,1] =2[1,2], [1,3]=0, [2.3]=-[1,2], [3,3]=—2[1,2].

e By(Cy, k) is a direct sum of Z, corresponding to points and ra-
tional curves, and a copy of By(C,) = Z? for every isomorphism
class of curves of positive genus.

e Burny(Cy) = Burny™(Cy) @ Burnj®™(Cy): Burn®™(Cy)
has, for every isomorphism class of curves of positive genus,
a copy of Bi(Cy) and a copy of B;(C>), with an additional copy
of B1(Cy) for every isomorphism class of curves of positive genus
with involution.

We claim points and rational curves contribute

7* C Burny®™™v(C,),
generated by [1,2] and [2, 3] where
[i,51 = (Cu, &, (0,9)),  (0,9) = (1,1),(1,2),(1,3),(2,3), (3,3).
Abusing notation, write
[1,0] = (Cy, k(t),1) [3,0] = (Cy, k(t),1).

We write down the blowup relations, both orbits of points with
special stabilizers and orbits on one-dimensional strata with
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nontrivial stabilizer:

[0,1] =[0,1] + [1, 3]
[0,3] =[0,3] + [1, 3]
[1,1] =[1,0]
1,2] =[1,1] + [2, 3]
[1,3] =[1,2] + [2,3] + (Cy,Cy C k(t),1)
12,3] = [1,2] + [3, 3]
[3,3] = [3,0]
(Co, Cy &K, (1,1)) = (Cy, Cy & (), 1)
(Ca, Cy G k(t),1) = (Cy, Coy C k(t),1) + (Ca, Cy C k(£)%,1)
(Ca, Cy G K(£)%,1) = (Ca, Cy C k(1) 1) + (Cy, Co C k()2 1)

Thus we find
[1,3] =0,
[0,3] = [3,3] = —=[1,2] + [2,3],
0,1 = [1,1] = [1,2] - [2,3],
(Co, Cy G k(1),1) = —[1,2] — [2,3],
(C2, Gy C K2(1),1) = 0,
(Cy,Cy & k?,(1,1)) = 0.

Here k™ denotes the total ring of fractions for an orbit of length n and
k"(t) the total ring of fractions of the exceptional locus of the blowup
of such an orbit. Furthermore, Cy C k(t) is via t — —t.
For example, the linear action on P?
(x:y:2)— (x:iy: —iz)
has invariant

[1,3] +[1,2] +[2,3] + (Ca, Cy & k(y/2),1) = 0 € Burnj®™ ™ (Cy).

We close this section with a noncyclic example:

(CQ X CQ)
Write

G = 02 X 02 - {]-7gla927g3 - 9192}
and

GY =10, x1, X2, X3 = x1+tXa2}, X1(91) = x2(92) = =1, x1(92) = x2(q1) =
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as before.

o By(Cy x Cy) = {0, [x1, x2l, [x1, x3], [Xx2, x3]} with the structure
of the Klein four group presented in Section 3.

L] BQ(CQ X 02, k‘) = BQ(CQ X CQ) as 81(02 X Cg) =0.

e Burny(Cy x Cy) = Burn™ (Cy x Cy) @ Burny®™ (Cy x Cy) where
the second term is a direct sum of the subgroup R generated
by points and rational curves, a copy of

Burnrfontriv(Cg x Cy) = 73

for each curve of positive genus, and another copy for each curve
of positive genus equipped with an involution.

The group R fits into an exact sequence
0— Burnilontriv(Cg X 02) — R — BQ(CQ X 02) —0

obtained by computing generators and relations.

Generators: Here we take 1 <i < j <3:
Xi, X5] = (G, triv C k, (x4, X))
ei = ({g:), G/ (9:) C k(t),Xi = 1)
g = ((9:). G/ {gs) C K, (X0 i) = (1,1))
fir= W), G/ () C K (1), xi = 1)
Relations: Here we choose h so that {h,i,j} = {1,2,3}:

[xis X5] = en + [Xn, Xi] + [xn, x5]  (blow up fixed point)
¢; = fi (blow up orbit ¢;)
e; = e; + fi; (blow up general orbit of e;)
Thus the ¢; and f; are zero and we have
R/ (€1, eq,€3) = By(Cq x ).

We revisit the actions of Cy x (5 on rational surfaces in Section 3
using these new techniques:

(1) the action (z,y) — (£a*!,y) on P! x P! has invariant
fit+ ot f3=0;
(2) the action (z,y) — (£x, +y) on P! x P! has invariant
2e1 + 2e5 + 4[x1, x2] = 0;
(3) the diagonal action on P! x P! has invariant

20+ @2+ q3) =0;
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(4) the action on the conic fibration admits an elliptic curve
F = {yi(z1 — axy)(z1 + axs) = y5(x1 — bxy) (21 + b12) }

that is fixed by g and fibers over (x; : x2) = (0 : 1),(1 : 0)
fixed by ¢g; and thus has invariant

4x1, X2] +2e1 + ({g2) , (1) © K(F),1) #0

where g; acts on K(F) by x1/xe — —x1/29;

(5) the action on the degree two del Pezzo surface has nontrivial
invariant arising from the positive genus curves fixed by ¢; and
92;

(6) the action on the degree one del Pezzo surface has nontrivial
invariant arising from the positive genus curves fixed by the
involution.

5.5. Limitation of the birational invariant. It is an elementary
observation, recorded in [36, App. A], that the presence of a point fixed
by a given abelian subgroup H of GG is a birational invariant of a smooth
projective variety X with generically free G-action. Two smooth n-
dimensional projective varieties with generically free G-action might
be distinguished in this way but nevertheless have the same class in
Burnnontriv (G) '

n
Indeed, letting C5 act on P!, we consider the corresponding product
action of Cy x Oy on P! x P, As well, the action of Cy x Cy on P! gives
rise to a diagonal action on P! x P'. The former, but not the latter,
has a point fixed by Cy x Cs, so the actions belong to two distinct
birational classes. However, both actions give rise to a vanishing class

in Burn)®™™(Cy x Cy).

5.6. Reprise: Cyclic groups on rational surfaces. As already dis-
cussed in Section 3, the presence of higher genus curves in the fixed lo-
cus of the action of a cyclic group of prime order on a rational surface
is an important invariant in the study of the plane Cremona group.
For example, for G = (5, these curves make up entirely the group
Burn$ (@) and famously characterize birational involutions of the plane
up to conjugation [4].

For more general cyclic groups acting on rational surfaces, we recover
the NFCA invariant of Blanc [10], which governs his classification.

We recall the relevant definitions: Let g € Cry be a nontrivial element
of the plane Cremona group, of finite order m.
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e Normalized fized curve [13]:

() if no curve of positive genus is fixed by g,

isomorphism class of the normalization of fixed curve.

NFC(g) := {

e Normalized fized curve with action:

m—1

NFCA(g) := ((NFC(g), g nvcn) ey

where g |xro(gr) is the automorphism induced by g on NFC(g").

One of the main results in this context is the following characterization:

Theorem 5.4. [10] Two cyclic subgroups G and H of order m of Cry
are conjugate if and only if

NFCA(g) = NFCA(h),
for some generators g of G and h of H.

It follows immediately from the definition that the information en-
coded in Burny(G), for G = C,,, is equivalent to NFCA(g).

Remark 5.5. It would be interesting to use symbol invariants to orga-
nize the classification of cyclic group actions on rational threefolds.

6. CUBIC FOURFOLDS

In this section we discuss several illustrative examples, showing var-
ious aspects of the new invariants introduced above. Equivariant ge-
ometry in dimension < 3 is, in principle, accessible via the Minimal
Model Program, and there is an extensive literature on factorizations
of equivariant birational maps. We focus on dimension four, and in
particular, on cubic fourfolds.

Let X C P° be a smooth cubic fourfold. No examples are known
to be irrational! Here we show that there are actions X < G where
G-equivariant rationality fails, including actions on rational cubic four-
folds.

We found it useful to consult the classification of possible abelian
automorphism groups of cubic fourfolds in [29]. Here is a list of N > 1,
such that the cyclic group Cy acts on a smooth cubic fourfold:

N =2,3,4,5,6,8,9,10, 11,12, 15, 16, 18, 21, 24, 30, 32, 33, 36, 48.
Note that
By(Cy)®@Q=0, forall N <27, N=230,32.
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We record their dimensions dg in the remaining cases:

N |33 36 48
do| 2 3 7

One can also work with finite coefficients: let
d, = dp(N) := dim B4(Cy) @ F,,

we have ds, d3,ds = 0, for all N < 15, and N = 18,21. In the other
cases, we find:

N ‘ 16 24 30 32 33 36 48
d| 1 5 10 12 3 19 50
|0 0 0 0 2 3 7
|0 0 0 0 2 3 7
10 0 0 0 2 3 7

Thus, to exhibit applications of B,(Cy) we have to look at large N.

Using B, (G): Consider X C P° given by
TiT9 + T5T3 + T3 + 1375 + TEwg + T = 0. (6.1)
It carries the action of G = (U354, with weights
(0,4,28,16,9,18)
on the ambient projective space, and isolated G-fixed points
P=(0:1:0:0:0:0),...,P5:=(0:0:0:0:0:1).

Computing the weights in the corresponding tangent spaces, we find
that 5(X) equals

[4,24,31,22]+[28,24, 19, 10] +[24, 12,7, 34] +[9, 5, 17, 29] +[14, 26, 2, 9].

Solving a system of 443557 linear equations in 82251 variables, we find,
by computer, that

B(X) # B(P* O Cs6) = 0 € By(Cs) @ Fy = Fy’.
This implies that X is not G-equivariantly birational to P*.

Using co-multiplication: The fourfold X C P° given by
T3 + T34 + Tw5 + TEw0 + 2 + 25 =0 (6.2)

carries an action of Cyg with weights (0, 16, 3, —6, 12, —24), and isolated
fixed points. We find that (X)) € B4(Cys) equals

[—3,13,9, —27] + [6,22,9, —18] 4 [—12,4, —9, —18] + [40, 27, 18, 36].
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Here, we apply the co-multiplication formula from Section 2.2 to the
image 8~ (X) of 5(X) under the projection
Bi(Cus) — By (Cas)-
Let
G :=72/3Z, G":=7Z/16Z, n'=1 and n"=3.
We have a homomorphism
V™ By (Cus) = By (C3) @ By (Cie)
and we find that V~ (57 (X)) equals
1" ® ([-1,3,-9]" +[2,3,—6]" + [—4,—3,—6]" +[9,6,12] 7).

Now we are computing in B3 (Ci6), a much smaller group. We have

dim B3(Ci6) ® Q = 3, but dim B; (C15) ® Q = 0,
however

dim B3(C16) @ Fo = 8 and dim B; (C15) @ Fo = 7.
We find, by computer, that

[—4,—-3,—6] =[9,6,12] € B3(C1p) ® [y,

so that the sum of these terms does not contribute to V= (57 (X)), and
check that

[—1,3,-9]" +[2,3,—6]" = [1,2,10] # 0 € B3 (Cy).
It follows that
V7 (B (X)) #0, thus B~ (X)#0¢€ By (Cu),

and this action of Cyg on the cubic fourfold is not equivariantly bira-
tional to a linear action on P*.

Using B, (G, k): There is also another way to analyze the fourfold in
(6.2): observe that the divisor Y C X, a smooth cubic threefold given
by x; = 0, is fixed by C3 C Cyg. This divisor is irrational, and we get a
nontrivial contribution to Gx(X) € B4(Cs, k), in the summand labeled
by Y € Biry o; thus X is not even Cs-equivariantly birational to P4.

The fourfold X C P° given by
f3(x0, 21, T2) + 3wy + w5 + 22 f1 (20, 71, T2) = 0
carries the action of G = Cg, with weights
(0,0,0,1,6,4).

The fourfold is smooth, e.g., for f3 = z3 + z3 + 23 and f; = x.
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Here, there are no isolated fixed points, but we find information from
fixed point loci in higher dimension. The G-fixed locus contains the
degree 3 curve Y given by

r3 =14 = x5 = f3(0,71,72) =0,

which is smooth for appropriate f3. Thus we get a contribution to
Br(X) € B4(G, k), in the summand labeled by Y € Birs s:

[77274] 7& 0€ 63(CS> = FQ-

Here, we solve 289 linear equations in 120 variables. This implies that
X is not G-equivariantly birational to P4. Of course, this also follows by
observing that the fourth power of the generator fixes a cubic threefold.

Using Burn, (G): Consider X C P° given by
TTT + Towy — Ty — AToT] 4+ BTy + Tas — ow; — x5 = 0. (6.3)
It carries the action of G = (s, which acts with weights
(0,0,0,1,3,4).
The cubic fourfold X is rational, since it contains the disjoint planes
ro=x1—T4=23—25=0 and x9=x1—2x4=2x3+25=0.

Noticing a cubic surface S C X, with Cs-stabilizer and scalar ac-
tion on the normal bundle, the fact that its Cs-action fixes an elliptic
curve lets us conclude, by [11], that the cubic surface is not stably
Cs-equivariantly rational; the corresponding symbol

[C3,Cy & K(S), 5] # 0 € Burng(Cy),

moreover, it does not interact with any other symbols in [X © G,
which implies that X is not G-birational to P* with linear action. In
this case, no subgroup of Cg fixes a hyperplane section.

We discuss obstructions of such type in Section 7.4 below — formally,
Burny(Cs) admits a projection to Z that distinguishes the equivariant
birational class of X from that of P* with linear action.

Kuznetsov [24] conjectures which cubic fourfolds X are rational, in
terms of their derived categories D?(X). Consider the line bundles
Ox,O0x(1),Ox(2) and the right orthogonal complement

Ax = (Ox,0x(1),0x(2))" . (6.4)

Conjecturally, X is rational if and only if Ay = D?(S), the bounded
derived category of a K3 surface S. However, the K3 surface need
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not be canonically determined as there are many examples of derived-
equivalent but nonisomorphic K3 surfaces. Indeed the following con-
ditions on complex projective K3 surfaces S; and Sy are equivalent
[31]

e DV(S)) = DY(S,):

e the Mukai lattices

H(S,,7) = H(S,,7)

as Hodge structures;
e the transcendental cohomology lattices

Hthan(Sh Z) = thran(327 Z)
as Hodge structures.

There is an alternative Hodge-theoretic version of the conjecture: A
smooth cubic fourfold X is rational if and only if there exists a K3
surface S and an isomorphism of integral Hodge structures

HY X, Z)twan = H*(S, L) tran(—1), (6.5)

where tran denotes the orthogonal complement of the Hodge classes
and (—1) designates the Tate twist. Work of Addington and Thomas
[1], and recent extensions [3, Cor. 1.7], show that the conditions (6.4)
and (6.5) are equivalent. In particular, both are stable under spe-
cialization, consisting of an explicit countable collection of divisors in
moduli [15]. The main theorem of [21] - that rationality is stable under
specializations of smooth projective varieties — gives the equivalence of
Kuznetsov’s conjecture with the Hodge-theoretic statement.

Suppose then that X admits an action of a finite group G. If X is ra-
tional — and the conjectures are true — then G naturally acts on Ax and
D(S), for each surface S arising in (6.4). There is an induced action
on H *(S,Z) as well. It is natural to speculate that a G-equivariant

birational map P* -=» X should imply that we may choose S in its
derived equivalence class so that the G-action on the Mukai lattice is
induced by a G-action on S.

There are several possible obstructions to finding such an S:

e if S exists then there exists a sublattice of algebraic classes

U= (? é) = H*(S,Z)*

in the G-invariant part of the abstract Mukai lattice arising
from Ax;
e the action of G on Pic(S) preserves the ample cone of S.
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The first condition fails when G permutes various derived equivalent
K3 surfaces. The second condition fails if G includes a Picard-Lefschetz
transformation associated with a smooth rational curve P C S. De-
rived equivalent K3 surfaces might have very different automorphism
groups [16, Ex. 23]; this paper discusses descent of derived equivalence
in the presence of Galois actions.

We mention some results on when the group action can be lifted to
the associated K3 surface [32, §8]:

o if G # {1},G acts on X symplectically, i.e., acts trivially on
HY(Q3%), then S is unique;
e if X is the Klein cubic fourfold

3 2 2 2 2 2 _
] + 25x3 + 1374 + T3T5 + Tz T6 + T5x2 = 0

then X admits a symplectic automorphism of order 11 and
Ax = Db(S) for a unique K3 surface, which has no automor-
phism of order 11.

We speculate that the Klein example should not be C;-equivariantly
rational, even though

ﬂ(X @ Cll) - O € 84(011),

as the C'j1-action has isolated fixed points and the target group is trivial
20, §8].

Question 6.1. Let X be a smooth cubic fourfold with the action of a
(finite) group G. Suppose that Ax = D®(S) for a K3 surface S with
G-action, compatible with the isomorphism. Does it follow that

[X © G] = [P* © G] € Burny(G),
for some action of G on P*?

It is mysterious how the invariants in the Burnside groups interact
with the actions on the Hodge structures on the middle cohomology
of X. Obstructions to G-equivariant rationality arise from fixed loci
in various dimensions but the Hodge theory encodes codimension-two
cycles only. The example (6.3), which is rational but not Cg-rational,
is particularly striking to us: How is the cubic surface in the fixed locus
coupled with the associated K3 surfaces?

7. NONABELIAN INVARIANTS

In this section, GG is a finite group, not necessarily abelian.



32 BRENDAN HASSETT, ANDREW KRESCH, AND YURI TSCHINKEL

7.1. The equivariant Burnside group. As in Section 5.2, it is de-
fined as the quotient of the Z-module generated by symbols

(H,No(H)/H C K, (),

similar to those in (5.2), by blow-up relations. The required relations
are a bit complicated but similar in spirit to what was written above;
precise definitions are in [23, Section 4]. The resulting group

Burn, (G)

carries a rich combinatorial structure, that remains largely unexplored.

7.2. Resolution of singularities. The class of X © G, a projective
variety with a generically free G-action, is computed on a suitable
model of the function field K (X). We explain how such a model may be
found in practice. While this is a corollary of Bergh’s ‘destackification’
procedure [6], the approach here can be helpful in specific examples.
We first review the resolution process of [36, §3]. A variety with

group action as above is in standard form with respect to a G-invariant
divisor Y if

e X is smooth and Y is a normal crossings divisor;

e the G action on X \ Y is free;

e for every g € GG and irreducible component Z C Y either g(Z) =

Zorg(Z)NnZ =1.

We recall several fundamental results. First, we can always put actions
in standard form:

If X is smooth and Y is a G-invariant closed subset such
that G acts freely on X\ Y then there exists a resolution

W:)Z'—>X

obtained as a sequence of blowups along smooth G-

invariant centers, such that X is in standard form with
respect to Exc(m) Un (YY) [36, Th. 3.2].

Using a canonical resolution procedure as in [7] — take an embedded
resolution of Y C X and then blow up the proper transform of ¥ —
may assume that

T X\7H(Y) S X\

Even if we start with Y as the complement of the open set where G
acts freely, the resulting strict normal crossings divisor may properly
contain the locus with nontrivial stabilizers.

An action in standard form has stabilizers of special type:
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Assume that X is in standard form with respect to Y
and x € X lies on m irreducible components of Y then
the stabilizer H of z is abelian with < m generators |36,
Th. 4.1].

The proof of [36, Th. 4.1] (see Remark 4.4) yields étale-local coordinates
on X about z

Tlye ey Thy YLy oo s YLy 21y -+ 5 Zm
such that
e H acts diagonally on all the coordinates;
oy = - =1y =2 = - = z, = 0 coincides with X¥ i.e.,

these are the coordinates on which H acts nontrivially;

® y -y = 0 coincides with Y and the associated characters
of x; : H — G, generate H' = Hom(H,G,,) so the induced
representation

is injective.
Suppose that X is in standard form with respect to Y with irre-
ducible components Y7, ..., Y. For each orbit of these under the action
of GG, consider the reduced divisor obtained by summing over the orbit.

The resulting divisors D(1),..., D(r) have smooth support — by the
definition of standard form — and

DLHU---UD(r)=Y,U---UY,.

The line bundles Ox(D(i)) are naturally G-linearized and thus descend
to line bundles on the quotient stack [X /G| and we obtain

¢ : [X/G] = BG,, x --- x BG,, (r factors).

We claim ¢ is representable. It suffices to check this by show-
ing that the induced homomorphism of stabilizers is injective at each
point [39, Tag 04YY]. For x € X, fix the indices iy, ..., so that
D(iy),...,D(iy,) are the components of Y containing z, and consider
the induced

.+ [X/G] - BG,, x --- x BG,, (m factors).

The homomomorphism on stabilizers is given by (7.1) which is injective.
Thus we have established:

Proposition 7.1. Let X be a smooth projective variety with a gener-
ically free action by a finite group G, in standard form with respect
to a divisor Y. Then the Assumptions of [23] hold and the invariants
constructed there may be evaluated on X.
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We are specifically using the formulation of Assumption 2 in [23,
Rem. 3.2iii]. This is an alternate perspective on [23, Prop. 3.3|, which
guarantees these Assumptions can be satisfied on a suitable blowup.

7.3. The class of X © (. On a suitable model X, we consider each
stratum ' C X with nontrivial (abelian) stabilizer H C G, the action
of the normalizer Ng(H)/H on (the orbit of) the stratum, and the
induced action of H on its normal bundle, and record these in a symbol.
Then we define

(X ©G]=>_ > (H Ne(H)/H C K(F),) € Burn,(G), (7.2)

HCG F

s (5.3). The proof that this is a G-birational invariant relies on G-
equivariant Weak Factorization and combinatorics [23, Section 5.

7.4. Elementary observations. As we discussed, the presence of
higher genus curves in the fixed locus of the action of a cyclic group of
prime order on a rational surface is an important invariant in the study
of the plane Cremona group; see, e.g., [10]. These make up entirely the
group Burnf/ *2(7,/27) and entirely characterize birational involutions
of the plane up to conjugation [4].

More generally, for any nontrivial cyclic subgroup H of G and bi-
rational class of an (n — 1)-dimensional variety Y, not birational to
Z x P! for any variety Z of dimension n — 2, we have a projection
from Burn,(G) onto the free abelian group on the Ng(H)-conjugacy
classes of pairs (H',a), where H' is a subgroup, H C H' C Ng(H),
and a € H" is a primitive character. This sends

(H, Indpys P (K(Y)), a),

for any H'/H & K(Y), to the generator indexed by the conjugacy
class [(H',a)] of the pair.

A more refined version of this observation might also relax the re-
striction on Y but take into account the action H'/H & K(Y). We
do not go into details, but only point out, for instance, that for n = 2
and Y = P! there is a projection

Burny(G) — EB Z.
(H'\a)]
H'/H not cyclic
Taking G to be the dihedral group of order 12 and H the center of
G, we may distinguish between the two inclusions of G into the plane
Cremona group considered in [19], see Section 7.6 below.
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7.5. Dihedral group of order 12. We now compute Burny(G), for
G = Dg, the dihedral group with generators

p, o, with p°=0%=popo=ep,.
We list abelian subgroups, up to conjugacy:
e order 6: Cs = (p)
order 4: Dy = {p3 o)
order 3: C5 = (p?)
order 2: central Cy = (p®), noncentral S := (c), S’ := (p?0)
order 1: triv

The subgroup of order 4 and two noncentral subgroups of order 2 have
normalizer Dy, the others are normal.

As before, we use K (X) to denote the function field of the underlying
surface X, K to denote the algebra of functions of a one-dimensional
stratum (perhaps reducible) with nontrivial stabilizer, and k™ to denote
the algebra of functions of a zero-dimensional orbit of length n. When
we blow up such an orbit, we use k"(t) to denote the total ring of
fractions of the exceptional locus.

Generators:

(067 <7> C K (1
Cs, (o) & k%, (1
Cs, (o) C K%,(2,3
DQ,tI'lV Ck,(ay,a

7)), Ji=1,...,4,
), ai,as € F3, generating F3

(
( 7
( |
( (
(Cs, (p,o > C kY (
( (
(5,
(
(

1
trlv D¢ & K(X),triv)

Relations:

(Cs, (o) & K%, (1,1

(067 <6> c kQﬂ ( 72)) = (067 <5> c kQ? (17 1)) + (067 <6> c k27 (174))

(067 <5> c k2’ (17 3)) = (067 <5> c kz? (17 2)) + (CG» <5-> C k27 (27 3))+
(Cy, (p,a) C (1), (1)),

where p acts by cube roots of unity on ¢

(Oﬁa <6> c k2> (174)) = (06’ <5> c k27 (17 3)) + (067 <6> C k2> (27 3))+
(Cs,(p.0) C K(t), (1)),
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where p acts by —1 on ¢

0=2(Cs, () C k2, (1,4)) + (Co, (p,0) C K*(1), (1)),
where p acts by cube roots of unity on ¢

(067 <5> c k27 (27 3)) = (Cﬁa <5> c kQ? (17 2)) + (Cﬁa <5> c kz? (17 3))

(Dy, triv C k,((1,0),(0,1))) = (Do, triv C k, ((1,0), (1,1)))+
(Do, triv C k, ((0,1), (1,1))) + (S, Cy & k(t), (1))

(Dy, triv C k, ((1,0),(1,1))) = (Da, triv C k, ((1,0),(0,1)))+
(Do, triv & k, ((0,1), (1,1))) + (Ca, {p,5) & K*(t), (1)),

permutation action on k® with & acting by —1 on ¢

(Do, triv & k, ((0,1), (1,1))) = (Do, triv < k, ((1,0), (0,1)))+
(Do, triv & &, ((1,0), (1, 1)) + (S, Gy & k(2), (1))

(Cs,(p,0) kK, (1,1)) = (C, (p, 0) C k(t), (1))

0=2(Cs, (5,5) & k4, (1,1))
0= (Cy, (p,5)  k5(t), (1))

0=(8,Cp k1), (1))
0=(5,C k1), (1))

7.6. Embeddings of G3 x (5 into the Cremona group. Iskovskikh
[19] exhibited two nonconjugate copies of G = &3 x Cy = Dg in
BirAut(P?):
e the action on x; + x5 + x3 = 0 by permutation and reversing
signs, with model P?;
e the action on ¥y y2y3 = 1 by permutation and taking inverses,
with model a sextic del Pezzo surface.

To justify the interest in these particular actions we observe that G is
the Weyl group of the exceptional Lie group G,, which acts on the Lie
algebra of the torus, respectively on the torus itself, and it is natural to
ask whether or not these actions are equivariantly birational. It turns
out that they are stably G-birational [25, Proposition 9.11], but not
G-birational. The proof of failure of G-birationality in [19] relies on
the classification of links, via the G-equivariant Sarkisov program.
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Here we explain how to apply Burns(G) to this problem. Note that
neither model above satisfies the stabilizer condition required in the
Definition (7.2)! We need to replace the surfaces by appropriate models
X and Y, in particular, to blow up points:

o (x1,29,23) = (0,0,0), with G as stabilizer;
e (y1,992,y3) = (1,1,1), with G as stabilizer, and
(w,w,w), W whw?), w=e/3
with &3 as stabilizer.

We describe these actions in more detail, following closely [19]. The
action on P2, with coordinates (ug : uy : u9) is given by

1 00 1 0 0 1 0 0
00 1], 0 0 1|, p*P=(0 -1 0
010 0 —1 -1 0 0 -1

There is one fixed point, (1 : 0 : 0); after blowing up this point, the
exceptional curve is stabilized by the central involution p?, and comes
with a nontrivial Gs-action, contributing the symbol

(C2, &3 C K(P'), (1)) (7.3)

to [X © G]. Additionally, the line ¢y := {up = 0} has as stabilizer
the central C5, contributing the same symbol. There are also other
contributing terms, of the shape:

L (Cﬁa CZ C k27 5)
o (Dy,triv C k, )
for some weights (3, 5’
A better model for the second action is the quadric

2
VoU1 + V1V + Vavg = 3w”,

where &3 permutes the coordinates (vy : vy : v2) and the central in-
volution exchanges the sign on w. There are no G-fixed points, but a
conic Ry := {w = 0} with stabilizer the central Cy and a nontrivial
action of &5. There are also:

e a G-orbit of length 2:
{Phi=(1:1:1:1),P:=(1:1:1:-1)},

exchanged by the central involution, each point has stabilizer
G5 — these points have to be blown up, yielding a pair of con-
jugated P!, with a nontrivial Gz-action;
e another curve Ry := {vy + v; + vy = 0} with effective G-action;
e additional points with stabilizers Cg and Dy in Ry and R;.
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The essential difference is that the symbol (7.3) appears twice for
the action on P2, and only once for the action on the quadric: the
pair of conjugated P! with Gs-action has trivial stabilizer and does
not contribute. Further blow-ups will not introduce new curves of this
type. Formally, examining the relations in Section 7.5, we see that the
symbol (7.3) is not equivalent to any combination of other symbols,
i.e., it is independent of all other symbols. This implies that

(X © G| # Y © G] € Burny(G),

thus X and Y are not G-equivariantly birational. Note, that X and Y
are equivariantly birational for any proper subgroup of G.

Remark 7.2. One can view the symbol (7.3) as the analog of a curve
of higher genus in the fixed locus of an element in the classification of
abelian actions on surfaces, as discussed in Section 3.
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