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ABSTRACT. We study rationality problems for smooth complete
intersections of two quadrics. We focus on the three-dimensional
case, with a view toward understanding the invariants governing
the rationality of a geometrically rational threefold over a non-
closed field.

1. INTRODUCTION

An algebraic variety X defined over a field k is called rational if it
is birational to projective space, i.e., its function field k(X)) is a purely
transcendental extension of k. It is called stably rational over k if X xP"
is rational over k, for some n € N. One speaks of geometric rationality,
respectively, geometric stable rationality, if these properties hold over
an algebraic closure k of k. In dimension one, there are easy effective
criteria for rationality (and stable rationality): these depend only on
the topology and the existence of a k-rational point. Geometric ratio-
nality in dimensions two and three has been one of the central questions
of classical Italian algebraic geometry, with fundamental contributions
by Enriques, Fano, and many others.

Rationality problems for geometrically rational surfaces X over non-
closed fields k have been intensely studied and are well understood.
Their minimal models over k& are either conic bundles or del Pezzo
surfaces. In addition to the existence of k-rational points X (k), the
essential information is encoded in the Picard group Pic(X), viewed as
a Galois-module. Rationality can be detected by analyzing the Galois
orbit structure on the set of exceptional curves: one of the main results
here is that minimal surfaces X cannot be rational, with a few explicit
exceptions. This allows us to completely settle the question of ratio-
nality of X. Stable rationality remains a challenging open problem.

In dimension 3, the minimal model program leads to conic bundles,
del Pezzo fibrations, and Fano varieties. There is an extensive literature
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on rationality of these varieties over algebraically closed fields, see,
e.g., [IP99]. Recently, there has been decisive progress on the stable
rationality problem, essentially settling this problem in dimension 3,
with the exception of varieties birational to a cubic [HKT16], [HT19b],
[KO20]. These results relied on the specialization method introduced
by Voisin [Voil5] and developed in [CTP16], see also [Voil6], [CT19].
However, little is known about rationality properties of geometrically
rational threefolds over nonclosed fields such as finite fields or function
fields of curves.

Here, we focus on the simplest geometrically rational, nontoric, ex-
ample, the complete intersection of two quadrics

(1) X c P,

with a view toward understanding the invariants governing the ratio-
nality of a geometrically rational threefold over relatively simple ground
fields. Indeed, rationality properties of toric varieties are controlled by
the Picard group, as a Galois module, similar to the case of surfaces;
the classification of nonrational tori can be found in [Kun87]. For X a
smooth intersection of two quadrics, we have

Pic(X) = Z,
with trivial Galois action, and the Brauer group Br(X) is also trivial.
As we will see, the intermediate Jacobian 1J(X) is the Jacobian of a
curve of genus 2, over k. Similarly, there are no obstructions from the
birational rigidity viewpoint. Are there any obstructions to rationality?

We find them in specializations. One of our main results, Theo-
rem 29, is a proof of failure of stable rationality of general X as in (1).
We use two different specializations of X. In Section 9 we use nonra-
tional toric threefolds over k to obtain smooth examples over k((7))
that are nonrational but admit rational points. In Section 10, we work
over k = C(t) and view X as a fourfold over C, admitting a quadric
surface bundle over P! x P'. The failure of stable rationality of such
X, over C, can be proven using the techniques of [HPT18]; this implies
that X, considered as a variety over k = C(t), is not stably rational
over k.

On the other hand, natural rationality constructions interact in unex-
pected ways. In Section 2, we recall the geometry of the varieties of pro-
jective subspaces on higher-dimensional intersections of two quadrics.
The most classical rationality construction — projection from lines — is
discussed in Section 3. Another useful — and a priori distinct — ratio-
nality construction is presented in Section 4. Interestingly, when this
construction applies, it forces the existence of a line over the ground
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field (Theorem 9). In Section 5 we study the connection to the in-
termediate Jacobian of X and its twisted forms; Question 11(ii) is a
natural outgrowth of our examples. Section 6 presents a related ratio-
nality result (Theorem 14) asserting that odd-degree curves force the
existence of a line and rationality. We then explore what happens as
the corresponding cocycle associated with the intermediate Jacobian
collapses. For example, X might admit a pair of skew lines over the
ground field, addressed in Section 7. Given the importance of rational
curves in all our constructions, we explore their geometry in Section 8.
Real pencils of quadrics have been extensively studied; rationality in
the three-dimensional case is discussed in Section 11. The Appendix,
contributed after this manuscript was originally written, addresses sev-
eral questions raised in the text and presents interesting examples and
extensions.

Throughout, we work over a base field k& that has characteristic not
equal to two.
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author was partially supported by NSF grant 1601912. We are grate-
ful to J.-L. Colliot-Thélene for conversations on this topic and helpful
comments on our manuscript. Olivier Wittenberg provided construc-
tive suggestions on Section 11.

2. GEOMETRIC BACKGROUND

In this section, X C P" is a smooth complete intersection of two
quadrics over k. We recall basic facts concerning varieties of linear
subspaces of X.

2.1. Varieties of linear subspaces. Let F.(X) C G(r,n) denote
the variety of r-dimensional linear subspaces in X. It has expected
dimension

e(r,n)=(r+1)(n—2r—2)
which is non-negative provided n > 2r + 2.

Proposition 1. Ifn > 2r + 2 then F.(X) is smooth and nonempty of
dimension e(r,n). If n > 2r + 2 it is also connected.

The nonsingularity result is [Rei72, Th. 2.6] and nonemptyness is
addressed in the introductions to Chapters 3 and 4 of [Rei72]. The
connectedness assertion is [DM98, Th. 2.1].

The adjunction formula [DM98, p. 555] gives the dualizing sheaf

wr,(x) ~ Opx)(2r = n+3),
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which is always non-negative provided e(r,n) > 0. It is negative unless
n=2g+1and r=g—1 for some g € N.

2.2. Connections with hyperelliptic curves and vector bundles.
Assume that n = 2¢g + 1 and consider the fibration

o : Blx(P¥**) — P!

associated with the pencil of quadrics and the relative variety of max-
imal isotropic subspaces

F,(Bly(P**1)/P') — P!

which factors
F,(Blx (P /Py & ¢ 5 P!,

where @ is smooth and + is a double cover branched over D C P! with
|D| = 2g + 2.
Over k, X may be diagonalized

X = {Gooifg +--+ a02g+1$§g+1 = amxé +--+ G12g+19€§g+1 = 0},
and thus admits automorphisms by diagonal matrices with entries £1
(Z)27)* C Aut(X).

As a Galois module, this may be represented as
H = (p1,...,p2g+2) C Pic(C)/(g2)
where the p; are the branch points. This has the relations

2p; =0,p1 + -+ pagy2 = 0.

Desale-Ramanan [DR77] obtain:

Proposition 2. Assume k is algebraically closed.

— F,_1(X) is a torsor over the Jacobian of C.
— Fy_9(X) is the moduli space of rank-two vector bundles € with

fizxed odd determinant, i.e., an isomorphism

det(€) ~ L.
The generic such bundle admits automorphisms by +1 and an action
E—ERQM
where M®?2 ~ 0.
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2.3. Quadric pencils. Consider the fibration
o0: P :=Blx(P") - P!
associated with the pencil of quadrics.

Proposition 3 (Brumer Theorem [Bru78|). The variety X admits a
rational point if and only if 0 admits a section.

Here we assume n = 2g + 1 and write OGryy; for one of the two
isomorphic connected components of the Grassmannian of maximal
isotropic subspaces in a nondegenerate quadratic form in 2¢g 4+ 2 vari-
ables. The relative variety of planes

F,(P/P") — P!
factors
F,(P/PH 3 C 5P,
where w is an étale OGr,-bundle and 7 is a double cover. The standard
theory of quadratic forms yields a class o € Br(C)[2].

Now assume n = 5 and g = 2. Here OGrjs is a Brauer-Severi three-
fold, geometrically isomorphic to P?. Thus

F(P/PYHY S C

is an étale P3-bundle, hence the index of o divides four. Intersection
with X gives an isomorphism

Fy(P/P') = Ry(X)
to the variety Ry(X) of conics on X.

Remark 4. It follows that if X contains a conic over k then C'(k) # ().
The converse holds if &« = 0 or k is a C;-field.

3. RATIONALITY VIA LINES

In this section, we recall a standard rationality construction: Let
X C P” be a smooth complete intersection of two quadrics containing
a line /. Projecting from ¢ induces a birational morphism

B:Bly(X) — P2

that blows down all the lines in X incident to ¢. Fix coordinates
X, ..., Ty S0 that £ = {zy = ... =z, = 0} and

X = {Looxo + Lorz1 + Qo = Lioxo + L1121 + Q1 = 0},
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where the L;; are linear and the @); quadratic in x5, ..., z,. The inverse
mapping 37! is given by a linear series of cubics associated with the
2 X 2 minors of a matrix

Loo Lo
Lyy L1
Qo @1

When n = 5 we recover the following data:
— the base locus of 37!, a smooth quintic curve of genus two

C C {LQ()LH — L01L10 = O} - IED37

— adivisor on C of degree three, corresponding to one of the rulings
of the quadric surface.
This is consistent with our previous notation as the space of conics
Ry(X) admits a natural morphism to C' with rational fibers. Indeed,
conics in X correspond under 3 to conics R C P? incident to C in four
points; we take the residual point in the intersection of C' N span(R).

Remark 5. This yields a geometric explanation for the first assertion
of Theorem 28 of [BGW17], in the genus two case.

We summarize this classical construction:

Construction 1. (see [CTSSD87a, Prop. 2.2]) Let X be a smooth
complete intersection of two quadrics. Suppose that Fi1(X) admits a
k-rational point €. Then X s rational over k.

From this, we obtain

— over k = C, X is rational provided n > 4;

— over k =F,, X is rational provided n > 5;

— over k = C(B), where B is a curve, X is rational provided n > 6.
Most of this is contained in [CTSSD87a, Th. 3.3,3.4], with the excep-
tion of the case of finite fields with n = 5. In this case, Fi(X) is a
principal homogeneous space over the Jacobian of a genus two curve
(by Prop. 2 or [Rei72, Th. 4.8]) and thus admits k-rational points by
Lang’s Theorem [Lan55].

4. RATIONALITY VIA POINTS AND QUADRIC SURFACE FIBRATIONS

In this section we present other rationality constructions.

4.1. Double projection. Let X C P° be a smooth complete intersec-
tion of two quadrics.
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Construction 2. [CTSSD87a, §3] For each x € X (k), double projec-
tion from x induces a quadric surface bundle

q: X' = P!

with siz degenerate geometrically integral fibers. The relative variety of
lines factors

R(X'/PY) S C, — P!
where ¢ is an étale P! bundle, classified by o, € Br(C,)[2].

Proposition 6. We have a natural diagram

Fi(X'/PYY s Fy(P/P)
| |
Cp=—oo—ou-C
| |
]Pl P ]P)l

giving a linear embedding of an étale P*-bundle into an étale P3-bundle.

The arrows are induced as follows:
— for the bottow row

P! = P(T,P°/T,X) = P(I'(Zx(2)) = P*
by taking tangent spaces to the quadric hypersurfaces {@,} in
the pencil;
— for the top row, given p € P! the threefold
PN Q,
is a cone over the surface ¢~!(p) whence
F1<q71(p)) - FZ(P4 NQp) = Fa(Qy);

— the middle row is induced by the functoriality of Stein factoriza-
tion.
A degree computation shows that the P!-fibers are linearly embedded
in the P3-fibers.
Proposition 6 yields the compatibility of the pairs (C,, o) with the
pair (C, ) introduced in Section 2.3:

Corollary 7. The curve C, and Brauer class o, are independent of x.
The index of o equals two whenever X admits a rational point.

Construction 3. Retain the notation of Construction 2. Note that X'
15 rational when o = 0.
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As a consequence, we obtain that X is rational [CTSSD87a, Th. 3.4]
(1) over k a Cj;-field when n > 2/ 4 2;
(2) over k a p-adic field when n > 11.

4.2. Geometric analysis. We first elaborate the geometric implica-
tions of our rationality construction.

Let X C IP° denote a smooth complete intersection of two quadrics
over k and suppose there exists an # € X (k) such that there exist
distinct lines

x €l 0y, U3, 0y C X = Xz

with Ny, g ~ Oz.. Double projection from z induces a rational map
X - P!

defined away from the lines. We resolve indeterminacy

where X — X is obtained by blowing up z and the proper transforms
of 41,...,¢4, and X — X' blows down the exceptional divisors over
the lines along the opposite rulings. The morphism X’ — P! is a
quadric surface bundle. Let Y/ C X’ denote the proper transform
of the exceptional divisor over z, a conic bundle over P! with three
degenerate fibers.

Suppose that the class o € Br(C)[2] = 0 so that

¢: Fy(X'JPY) = C
admits a section. Then we may express
Fi(X'/P") = P(€)

where £ is a vector bundle of rank two and odd determinant [DR77].
Note that it follows immediately that [Pic'(C')] = 0 as a principal
homogeneous space under A = Pic’(C). Thus we may normalize so
that deg(€) = 5.

The structure of sections of ¢ is well-known: For each £ € Pic’(C),
elements of

P(I'(C,E® L))
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yield sections of the projective bundle. Riemann-Roch shows these are
parametrized by a Zariski P2-bundle over Pic’(C). Their proper trans-
forms in X are twisted cubic curves containing x; these are birational
to a Zariski P2-bundle over Fy(X) by:

Proposition 8. Twisted cubic curves on X are residual to a line { C X
in the three-plane they span. Thus the twisted cubics are birational to
a Zariski Gr(2,4)-bundle over Fy(X). Those passing through a fized
point form a Zariski P*-bundle.

In particular, X admits a twisted cubic over k if and only if it admits
a line over k.
Lines in X disjoint from the lines ¢4, ..., ¢, correspond to sections of

[C,E®L), LePic'(0);

Riemann-Roch shows there is a unique such section for generic L.
We summarize this discussion as follows:

Theorem 9. Let X C P5 be a smooth complete intersection of two
quadrics. Suppose that

— X(k) #0;

— the class a € Br(C') vanishes.
Then X is rational and contains a line.

Proof. We may assume that k is infinite — we have already seen that
X always admits a line over finite fields. In this case, Remark 3.28.3
of [CTSSD87a] applies to show that X is unirational, and thus X (k)
is Zariski dense. Hence we may find a point x satisfying the genericity
assumptions. This allows us to apply the construction above. U

Remark 10. The presence of a line on X allows us to realize C' C
P! x P! as a bidegree (2, 3) curve (see Section 3). It is perhaps surprising
that the triviality of « forces the existence of odd degree cycles on C.

5. VARIETY OF LINES AS A COCYCLE

In this section, we explain the connection between the variety of lines
on X and its Albanese variety.

Let C — P! denote the genus two curve associated with X. Note that
Pic’(C) and the Albanese of the variety of lines F;(X) are isomorphic
by work of X. Wang [Wan18] — we call this abelian surface A. Moreover,
we obtain identifications of principal homogeneous spaces over A:

2[F(X)] = Pic'(C).

The class [F1(X)], as a principal homogeneous space over A, has order
dividing four by [Wanl18, Th. 1.1].
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The associated morphism
K : Sym?(Fy (X)) — Pic'(C)

has nodal Kummer surfaces as fibers. Over C' C Pic'(C), we obtain
the reducible conics Rj,cq(X) C Ry(X). Thus we have a natural fac-
torization

Ry ved(X)—— F5(X)

~l

C

realizing the Kummer fibers as 16-nodal quartic surfaces in the Brauer-
Severi fibration associated with «.
We record some basic observations.
— If [F1(X)] is trivial then X admits a line over & and is rational
by Construction 1.
— The Brauer class a € Br(C)[2] is determined geometrically by
the class [F1(X)].
— The class [F}(X)] has index dividing four when X (k) # 0); indeed,
the lines incident to a point are defined over a quartic extension.
Thus the class [F(X)] is the fundamental object for our purposes.

Question 11.!
i. If [F1(X)] has order four must X be irrational over k7
ii. Are there examples where X is rational and [Fy(X)] # 07

The second question grew out of discussions with Colliot-Thélene.

Proposition 12. Consider the following statements:
(1) [F1(X)] has order two,

(2) [F1(X)] has index two, i.e., F1(X) admits a rational point over a
quadratic extension of k;

(3) Ra(X) # 0;
(4) C admits a rational point.
Then we have
3)=4)=(1),12)= (1)
Below we analyze the geometry of each case, with a view toward

understanding whether these implications are strict.

1. Recent work [HT19a, BW19, KP20] finds that [F}(X)] = 0 if and only if X
is rational over k.
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Remark 13. Suppose that & is a C;-field and C(k) # 0. Then X
admits a conic D C X defined over k. Projecting from D gives a
fibration

Blp(X) — P?
in conics, with a quartic plane curve as degeneracy.

Using conic bundles for rationality constructions is problematic, as
we cannot expect to find sections when the base is a surface. Such
sections would yield extra divisor classes in the total space, which would
have to be singular by the Lefschetz hyperplane theorem. (Our X is
rational over k but not because of the conic fibration.)

6. ODD DEGREE CURVES, SECANTS, AND RATIONALITY

In this section, we establish a connection between the existence of
curves of odd degree on X and rationality. Our main result here is:

Theorem 14.2 Let X C P° be a smooth complete intersection of two
quadrics. Suppose that X admits a smooth geometrically connected
curve R C X of odd degree. Then X contains a line and is rational.

6.1. Background on secants. Let R C P° be a smooth projective
geometrically connected curve of degree d and genus g. Let Sec(R)
denote the closure of the secants of R. We have a diagram

By — 4 Sec(R)— PP

l

Sym?(R)

where Sym?(R) is the symmetric square of R, B, — Sym*(R) is P!-
bundle parametrizing lines parametrized by pairs of points on R, and
[ is the canonical morphism.

Proposition 15. [Dal84, Th. 4.3] Assume that the span of R has di-
mension at least four. Then B is birational onto its image and

deg(Sec(R)) = (d; 1) —g.

The formula has the following interpretation: Secants passing through
a plane P correspond to nodes of the image of the projection

mp: R — ]P)Q,
the formula is the difference between the genus of R and the arithmetic
genus of mp(R).

2. Th. A.5 of the Appendix offers a generalization.
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Proposition 16. [Ber92, 1.4, 1.5] Assume that length four subschemes
of R impose independent conditions on linear forms. Then Sec(R) is
smooth away from R and its projective tangent cone atr € R is obtained
by the projection of R from the tangent line of R at r.

Under our assumptions projection of R from the tangent line at r
maps it isomorphically onto a degree d — 2 curve in P2. Thus Sec(R)
has multiplicity d — 2 along R.

6.2. Analysis in complete intersections of quadrics. Let X C
P> denote a smooth complete intersection of quadrics. We denote its
hyperplane class by h. Consider

X' ={(z,0) :x Cl} C X x Fi(X)

which has the following properties:

— 1 : X' — X is generically finite of degree four;

— 71 is branched over a hypersurface in X of degree eight.
It is clear that four lines pass through a generic point of X. For the
second assertion, fix a generic line ¢ € F(X) so the resulting

(=X xxl—{

has two disjoint components ¢ and C', where C' — [ is a degree-three
cover from a curve of genus two branched over eight points.

Proposition 17. Let R C X be smooth and geometrically connected
of degree d > 3 and genus g. Assume that
— Sec(R) has isolated singularities of multiplicity d—2 at the generic
point r of R, and
— finitely many secants to R are contained in X .
Let g denote the sum of the secants to R in X counted with multi-
plicity. Then we have

(d—2)R+Xg = ((d;> —g) h?

in the Chow group of 1-cycles of X.
This is similar to results of M. Shen [Shel4] for cubic threefolds.

Proof. We assume for the moment that R spans a subspace of dimen-
sion at least four. Since [Sec(R)] = ((%,') — g)h? and Sec(R) inter-
sects X in pure dimension one, we just need to interpret the terms of
the intersection. The computation of tangent cones above means that
Sec(R) N X has multiplicity m > (d — 2) along R.

Consider the induced morphism

R =X Xx R — Fl(X),
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its arithmetic genus p,(R’) satisfies
2p.(R') —2=14(29 — 2) + 8d

whence p,(R') = 49 + 4d — 3. We claim R’ maps birationally onto its
image D. Indeed, suppose that [¢] € D has two points 7,75 € R lying
over it. Let r1,75 € R be their images in R; the line ¢ contains these
points and is therefore a secant to R.

An intersection computation shows that the class [D] € Ny (F1(X))
(one-cycles up to numerical equivalence) is equal to dO. Curves in
this class have arithmetic genus d? + 1 and secants to R correspond to
double points of the induced map R’ — D. There are

Pa(dO) — po(R) = d* —4d — 49 + 4
such points, whence
deg(Xg) = d* — 4d — 4g + 4.
Comparing degrees
md+d® —4d —4g+4 =2(d — 1)(d — 2) — 4g

we conclude that m = d — 2 and the formula follows.

Now assume that R spans a subspace of dimension three. If R is a
twisted cubic then it is residual to a line £ in a complete intersection
of linear linear forms; ¢ is the unique secant to R in X so that Xz = /.
Then we obtain

R+(=h

which is consistent with our general formula. If R is an elliptic quartic
curve then

R=h?

which is also consistent with the formula. O

Proposition 18. Let R C X and assume that Sec(R) does not have
1solated singularities of multiplicity d — 2 at the generic point r of R.
Then there are infinitely many secants to R contained in X.

Proof. Under our assumptions, there exist points p,q € R\ {r} such
that the secant ¢(p, ¢) contains r. It follows that the line ¢(p, ¢) meets
X with multiplicity at least three and thus is contained in X. Varying
over r € R, we obtain a curve

B — Fi(X)

such that R is contained in the ruled surface P(S*|B) C X associated
with B. Here S is the universal line sub-bundle on the Grassmannian
Gr(2,6). O
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Proposition 19. Suppose that R C X admits infinitely many secants
on X. If R has odd degree then X admits a cycle of lines of odd degree.

Proof. Let B — B C Fi(X) denote the normalization such that R
factors through a ruled surface F := P(S*|B”) — X. Writing

b= (0" B)px)

we see that [F] = bh and, cutting by hyperplanes, we find that F — B
admits sections of class bh?. These both have degree 4b. If F — B
admits a multisection R then B” admits a zero-cycle of odd degree as
well. Indeed, take the difference of R and a suitable multiple of the
sections mentioned above. Thus F;(X) admits such a cycle as well. [

6.3. Proof of Theorem 14. If X contains a line then there is nothing
to prove. Otherwise, Proposition 17 covers the ‘generic’ case. The
number of secants with multiplicities is

deg(Xg) = d* — 4d — 4g + 4,

which is odd whenever d is odd. However, F}(X) has a point whenever
it admits a cycle of odd degree. When the genericity hypotheses fail to
be satisfied, Proposition 18 puts us in the case where there are infinitely
many secants to R on X. Here we apply Proposition 19 to conclude
the result.

7. TWO SKEW LINES

The motivating question of this section is: Let X C P° denote a
smooth complete intersection of two quadrics over a field k. Suppose
that X admits a line ¢ C X defined over a quadratic extension L/k,
not containing a k-rational point of X. In other words, ¢ and its Galois
conjugate ¢ are disjoint. When does it follow that X is rational?

Example 20. Over £ = R we are guaranteed lines over quadratic
extensions. If X(R) = () then pairs of conjugate lines are necessarily
skew but X is not rational. So the existence of two conjugate lines per
se does not imply rationality. 3

Construction 4. (c¢f. [CTSSD87a, §4,6]) Suppose that X admits a
pair of skew lines £ and {', Galois conjugate over k. Express

span({, )N X

as a quadrilateral {{,mq,¢',;my}. Then projecting from span(¢,{') gives
a sextic del Pezzo fibration

w:Y = P

3. Prop. A.6 of the Appendix addresses this further.
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obtained by blowing down skew lines.

Our analysis will describe the degeneracy locus and associated Galois-
theoretic data of w.

7.1. Details of the construction. Let mi,my C X be residual to ¢
and ¢ in a codimension-two linear section of X

span(£, ()N X = Umy Ul Ums.

Consider the hyperplane sections of X containing ¢,¢',m;, and ms,
which are quartic del Pezzo surfaces with a fixed anti-canonical cycle
of lines. The fiber-wise linear series consists of quadrics vanishing along
¢ and ¢, which collapse m; and ma.

Remark 21. In this situation, we have a natural rational map
Y1 X --» Ry P?

induced by projection from ¢ and ¢'. This factors as

— blowing up ¢ and ¢';

— blowing down the lines m; and ms residual to ¢ and ¢'.
Let Y denote the closed image of X. Geometrically, it is a complete
intersection of three bidegree (1, 1) forms in P3 x P with two ordinary
threefold double points ¥,y € Y, the images of m; and ms. Note that

(2) deg(Y) = (g) =20,Y C P2

The pencil of hyperplane sections of X containing the cycle of ratio-
nal curves

CUmy ULl Umy
gives a rational map
0: X --» P!
that may be factored a follows.

Step 1. Let X; — X denote the blow up of ¢ and ¢ with exceptional
divisors E and E’, each isomorphism to P! x P!. Note that

(B)* = (E') = 0.

The proper transforms 7, and My have normal bundles Opi(—1) @

Opi(—1).
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Step 2. Let X9 — X denote the blow up of m; and my with exceptional
divisors F; and F,. We have

(F)° = (Fp)° =2

from the normal bundle computation. Let E and E’ denote the proper
transforms of ' and E'.

Step 3. Let g denote the pull-back of the hyperplane class of X to Xo.
We claim that

M=g—FE—FE —F —F

is basepoint free. We analyze it on each exceptional divisor.
We can write

Pic(E) = Zg + Ze + Zf1 + Zfs,
where e = —E|FE and f; = F}|E, with nonzero intersections
g-€= 17f12 = _17f22 =—L

We have E is a sextic del Pezzo surface and M|E induces a conic
bundle, which is basepoint free. We can write

Pic(Fy) = Zg + Zn
with nonzero intersections gn = 1. We have
M|Fy=g—2g+(9+n)=n.

Thus F} and F}, are collapsed to P!’s in the ‘opposite’ direction.
Note the further nonvanishing intersection numbers

g(E) = g(E')? = g(F)* = g(F)* = 1
and
EF? = EF}=FEF?=FEF?=—1.
Thus we have

(g—E—E —F,—F)?=4-3-3-3-3+34+3+34+3-2-2=0.

Step 4. We interpret this map as flopping m; and ms, to get
¢ X —PL

The corresponding lines m; and ms in our pencil of hyperplane sections
are contracted, yielding fibers that are sextic del Pezzo surfaces.
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Step 5. Since
X(XD) =x(X1) =4—-4+2+2=4,

assuming ¢’ is degenerate along fibers with one ordinary double point,
the degeneracy locus A C P! satisfies

4= (2—|A|)6 + 5|A| whence |A| = 8.
Our fibration thus has eight singular fibers.

Geometric description. The Galois representation associated with ¢’
p: Gal(k(PY)) — &, x G

may be interpreted as follows. The distinguished quadratic extension
associated to the blow-up realizations over P? is induced by L/k, the
field of definition of ¢ and ¢'.

We analyze conics in the fibers of . Their proper transforms Z C
X are incident to £ and ¢ but disjoint from m; and my. They are
parametrized by a surface T' fibered in conics over a genus-two curve
C’, which admits a morphism

C' — C < Pic*(C)

and a triple cover C" — P! with eight degenerate fibers. It follows that
C" ~ (' and the latter curve admits a degree-three morphism to P!

7.2. Application to rationality. Retain the set-up of Construction 4,
which yields a fibration @ : Y — P! in sextic del Pezzo surfaces where
Y is birational to X over k. The generic fiber of w is rational over
k(P') if and only if @ admits a section. Indeed, a sextic del Pezzo sur-
face over a field is rational whenever it admits a point [Man66, Cor. 1
to Thm. 3.10]. It follows that X is also rational over k.

However, such a section is the proper transform of a curve R C
X of odd degree — the hyperplanes in the pencil meet the section in
one point outside {¢,my, ¢, my} and R meets these lines in pairs of
conjugate points. Assuming that R is smooth, Theorem 14 implies
that X actually contains a line (cf. Question 11).

8. RATIONAL CURVES IN HIGHER DEGREES

In this section we discuss the geometry of spaces of rational curves.
We have already described the structure of lines, conics, and twisted
cubics on a smooth complete intersection X C P® of two quadrics. We
now describe the rational normal quartic curves

R C X;
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by making reference to a rational parametrization
p PP s X,
blowing up C C P? realized as a (2,3) divisor in a quadric surface
Q = {F = 0} C P? (see Section 3). The preimage p~'(R) is also a
rational quartic curve R’ with
R'NC={c,...,c}
Thus we obtain a rational map
My(X,4) --» Sym®(C).
We claim this is generically finite of degree four. Indeed, we write
Ley,..cs(2) = (F,G)
and we have an elliptic quartic curve
E={F=G=0}
and computing intersections in @) yields
(ENC)g=Ac1,...,cs8,¢9,C10}-
Each R’ arising as above sits in a member of the pencil
Q' € {sF +tG =0}

as a divisor of bidegree (1,3). Rulings of quadrics in this pencil are
parametrized by E, in which we have the equation

fi+3falE=0g(ci + -+ cs)
or equivalently
2fy = Opler + -+ +c) (1),
This has four solutions with the structure of a principal homogeneous
space over E[2].
The image of the proper transform of Q)" is obtained in two steps

— blow up ¢4, ..., cio;
— pinch along the E using the degree two morphism

E — P!

induced by the ruling of ) contracted by p.
This is obtained by taking a quadric hypersurface section

YCX

containing R and double along ¢ — these form a linear system of dimen-
sion
21-2-9-3-6=1.
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We are using the fact that Ny x = Og, or Op1 (1)@ Op1(—1) to compute
the conditions imposed by insisting that the quadric is double along /.
Thus ¥ is uniquely determined by ¢ and R.

9. IRRATIONALITY VIA SPECIALIZATION OF BIRATIONAL TYPES

9.1. The toric example. First, we work over an algebraically closed
field.

Let X be toric, isomorphic to
ToX1 — TaX3 = T3 — Tyl5 — 0,

with ordinary singularities at the coordinate axes. We may realize X
as the image of the rational map

PP -y X P
[Y0, Y1, Y2, Y3] > [YoY1, Y23, YoYa, Y1Y3, YoY3, Y1Yo)

that blows up the coordinate points pi, pa, ps, ps and collapses the lines
l1a, ..., 034 joining them to singularities. Let f : X — X denote the
resolution obtained by blowing up the coordinate axes, or equivalently,
blowing up p1, ..., ps and then the proper transforms of ¢1o, ..., l34.
Consider the the graph X'’ of the standard Cremona transformation

L PP oo P3
[y07 Y1, Y2, y3] = [1/y07 l/yla 1/y27 1/3/3]7

whose indeterminacy is given by the scheme

{v1y2y3 = Yoy2ys = Yot ys = Yoy1y2 = 0}.

Letting zg, 21, 22, 23 be projective coordinates on the target projective
space, we have

X' ={yoz0 = 121 = 12 = ysz3} C P° x P°.
It has ordinary singularities at 12 points
([1,0,0,0],[0,1,0,0]), ([0, 1,0,0],[1,0,0,0]), ...,

with three over each of the coordinate axes in the P? factors.



20 HASSETT AND TSCHINKEL

_}? \\
with aITows as follows:

— X — X blows up the proper transforms of the lines f1o, ..., f34;
— X" — X’ blows up the 12 ordinary double points;
— X" — X blows up the proper transforms of the 12 lines L;

We have a diagram

in the exceptional divisors of X — p? connecting the proper
transforms of ¢;; and f;z;

— X — X’ contracts the proper transform of the Li.j.

In addition to the toric action, there is an action of a group

H ~ 64 X 62 ~ (Z/2Z)3 X 63,

where the semidirect product is by permutation of the factors. The
G4 symmetry is the permutation of the coordinates on P?; the &,
symmetry is induced by the standard Cremona transformation on P3.
Thus the action of H on X’ (and thus its resolution X”) is clear from the
notation. The &, action is clearly regular on X as well; the regularity of
the Cremona involution on X (and thus X) reflects the commutativity
of the diagram

RN e
|

Li lqﬁ
SR

Here ¢ is the Cremona involution, j the birational map between P? and
X, and ¢ is the linear transformation

¢(aj07 T1,T2,T3, Ty, .’I)5) - (wla o, X3,T2,Ts, $4)
that preserves X.
9.2. The variety of lines.

Proposition 22. Consider the variety of lines Fy(X).
— deg(F (X)) =32 ;
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— it has eight components isomorphic to P?:
Py, Py, P3, Py and  Pras, Prag, Pi3a, Pasa;

— 1t has four components isomorphic to the degree sixz del Pezzo
surface: Sy, ...,y ;

— 51 meets Py, Pyog, P3, P34, Py, Piay in a hexagonal anticanonical
cycle;

— P} meets Sy, 53,54 in a triangular anticanonical cycle;

— Pjo3 meets S1, 53,535 in a triangular anticanonical cycle.

Proof. First, note that X contains eight planes
{ro=22=24=0},{xg =22 =25 =0},..., {2, = 23 = x5 = 0},

each containing three of the ordinary double points. The lines in these
planes are the eight P?’s in Fy(X). These may be interpreted via j as:

— P, — corresponding to lines in the exceptional divisors over the p;;

— Pjj, — corresponding to conics in P3 containing p;, Dj, Dk-

A direct computation shows that F} is singular along those lines meet-
ing the six singularities. These form 24 lines in F (X ), four associated
with each singularity and three lying on each of the eight planes. We
write

— S; — corresponding to the lines in P3 through p;.

These are parametrized by the blow-up of P? at through noncollinear
points, a sextic del Pezzo surface, cf. [AK77, Th. 1.10]. Note that the
distinguished hexagon of lines in S; coincides with its intersections with
the six planes indicated.

On the other hand, a computation shows that F;(X) is smooth of
dimension two at all lines not meeting to the singularities. In particular,
Fy(X) has pure dimension two.

The statement on the degree of Fj(X) can be obtained via Schu-
bert calculus on the Grassmannian Gr(2,6). It reflects the fact that
Oar(2,6)(1)|F1(X) is four times the principal polarization.

It remains to show that the enumerated lines cover all the lines on
X. The sum of the degrees of the S; equals 24; the sum of the degrees
of the P? components is 8. Thus we conclude Fj(X) is the union of
these 12 surfaces. 0

Our notation is chosen compatibly with the action of G4 x G,. The
first factor permutes the indices. The second interchanges F; and Py

where {7, 7, k, 1} = {1,2,3,4}.

9.3. Galois cohomology. Rationality of a 3-dimensional torus 7' is
governed by the Galois action on its lattice of characters X*(7'); the
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action factors through a subgroup G C H, where
H~ 6, x 6y, C GL3(Z) = Aut(X*(T)).

The main result of [Kun87] is:
— A 3-dimensional torus is nonrational if and only if G contains a
subgroup U; ~ G5 X Gy, see [Kun87, Section 3].
In particular, all 7" with G C &, are rational [Kun87, Lemma 1].
Explicitly, the generators of H are given as matrices

0 1 0 010 -1 0 0
a= 0 0 1],b={100],cc= 0 -1 0],
~1 -1 -1 00 1 0 0 -1

These satisfy the relations
at=b*=(ab)® =1, =1,

where c is central. The generators of U; are given in [Kun87, Thm. 1],
they are (modulo a change of basis)

0 1 0 0 -1 0
(a®bc)? = 1 0 0], be=|[ -1 0 0|,
-1 -1 -1 0 0 -1

A full list of nonrational three-dimensional tori is in [Kun87, Thm. 1].

Remark 23. Assume that the Galois group acts transitively on the
set of 4 coordinate points pi,...,ps € P3, giving rise to X as above.
Then X is rational but does not contain lines defined over k, by the
description in Proposition 22.

Remark 24. The group U; may be realized as a subgroup of H, e.g.,
by taking ¢ as the generator of the second factor, a = (1234) and
b = (12). This group does not fix any of the irreducible components of
F1(X). On the other hand, the Cremona involution acts on the S; by
taking inverses and thus stabilizes points not on hexagon, i.e., lines on
X not meeting singularities.

9.4. Construction of nonrational examples. Since the action of H
is regular on the toric variety X, we can use it to obtain a twisted model
of X and the corresponding torus over a nonclosed field, provided there
is a representation p : Gal(k) — H. For example, let K be a cubic
extension over k and L and quadratic extension over K; assume that
the Galois closures of K and L over k have Galois groups G3 and H
respectively. Let z be an indeterminate in K and # € K a primitive
element; the equations

Tri/k(2) = Trgk(0z) =0
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are independent. Let z be an indeterminate in L satisfying Nmy, /x (x) =
z. The equations

TI'K/k(NmL/K(JJ)) = TrK/k(G NmL/K(:c)) =0

are homogeneous and define a locus on P(Rp/,A') >~ P® geometrically
isomorphic to X.

The resulting variety is one of the minimal nonrational toric three-
folds considered in [Vos01, Ex. 6.2.1].

9.5. Specialization of birational types. We will use a special case
of [KT19, Th. 16]:

Theorem 25. Let k be a field, K = k((r)), B = Spec(k|[[T]]), and
X — B a flat projective morphism from a scheme smooth over k with
closed fiber Xy. We assume that
— the generic fiber X, is smooth and rational (resp. stably rational)
over K;
— X is geometrically irreducible and reduced;
— Xy is singular along a subscheme Y that is smooth over k;
— the blowup [ : Bly (Xy) — Xy resolves the singularities of Xy;
— the exceptional divisor D of B is smooth overY and rational over
k(Y).

Then Xy is rational (resp. stably rational) over k.

Our assumptions mean that the proper transform of A meets the
exceptional divisor of Bly (X) transversally.

Proof. 1t suffices to verify that the pair (X, Xy) has B-rational singu-
larities. Our argument is an extension of [KT19, Ex. 13].

Let X’ = Bly(X) with exceptional divisor £ ~ P(Ny,x); Aj is a
normal crossings divisor and write D for the intersection of E with the
proper transform of A}, i.e., the exceptional locus of 5. Using [KT19,
§4], we write

(3)  Oay(X) =[E — X+ [Bly(&o) — & — [D x A" — X}
(4) =[Bly (%) — &g,

where the cancellation comes from definition of the Burnside group and
the fact that £ and D are both rational over k(Y'). We conclude that

02, (X) = [AG™" — Ko,
the desired condition on the singularities. U

We apply this to the examples of Section 9.4:
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Theorem 26. Let k be a function field of a complex curve, Xy a non-
rational toric complete intersection of two quadrics over k, and X — B
a deformation of Xy with smooth total space. Then the generic fiber of
X, is not (stably) rational over k((T)).

Note that we can easily choose the deformation so that X — B
admits sections, e.g., by choosing the deformed quadratic equations to
vanish at a smooth point of Xjy. This construction yields examples over
function fields of complex surfaces that are irrational yet admit rational
points.

Corollary 27. There exist examples of smooth complete intersections
of two quadrics in P° over C(t,7) that are not rational (or stably ra-
tional) but admit rational points.

Proof. Here Xj is the twisted form of our toric complete intersection of
two quadrics. We take Y to be its six ordinary double points. A de-
formation that is versal for these singularities has smooth total space.
Thus D — Y is a smooth quadric surface fibration over a complex
curve. The Tsen-Lang theorem shows that any such fibration is ratio-
nal, so the hypotheses of Theorem 25 are satisfied. O

Remark 28. Toric degenerations of Fano threefolds have attracted at-
tention in connection with mirror symmetry and the theory of Landau-
Ginzburg models. We expect that the technique presented here will
permit the construction of numerous nonrational but geometrically ra-
tional smooth Fano threefolds.

10. TRRATIONALITY VIA DECOMPOSITION OF THE DIAGONAL

Here we establish the following result, which answers a question of
Colliot-Thélene from 2005:

Theorem 29. There exist smooth complete intersections of two quadrics
X C P5 over the field k = C(t) that fail to be stably rational over k.

The remainder of this section is devoted to the proof. The idea is to
view the quadric surface bundle over P!, over k = C(t), as a quadric
surface bundle over P! x P!, over C. If X were rational over k then
the associated fourfold would be rational over C. The quadric surface
bundle degenerates along a curve of bidegree (6,6). To this we will
apply the specialization method of [Voil5] or [CTP16], as in [HPT18].
This entails two steps:

— exhibit a specialization with nontrivial unramified Brauer group

and

— show that the singularities of the specialization are mild.



INTERSECTIONS OF TWO QUADRICS OVER NONCLOSED FIELDS 25

Throughout, we make reference to the geometric analysis in Section 4.2.

10.1. The case of function fields. We now assume that k = C(¢).
We have X (k) # () by the Tsen-Lang Theorem; indeed, rational points
are Zariski dense as X is rationally connected over the function field of
a curve. (See also the unirationality results in [CTSSD87a, Prop. 2.3].)
We write down representative models for projective equations of
models over P'. The complete intersection of two quadrics sits

X C ]P(Opl S5 Opl(—l)@g S¥) Opl(—Q)EBZ),

where the first summand arises from the section associated with x &
X (k) and the first four summands arise from the tangent space T,X.
Fix {xo}, {21, 22, 23}, and {x4, 25} to be weighted variables correspond-
ing to the summands. We write equations /' = G = 0 where

F = 2xqr4 + Cnxf + 4+ 2 + -+ CI44$421 + 2qusa75 + %535?
and

G = 23701'5 -+ dnx% + -+ 2m14x1w4 + -+ 7'441'421 + 27”4533'4.%'5 + ’1"551'?
with the ¢;; and d;; of degree d, the [;; and m;; of degree d + 1 and
the ¢;; and r;; of degree d + 2. The projection from T, X is given by
(x4, x5); write x5 = tzy which we'll take as the second grading. The
elimination is obtained by taking tF' — G, substituting z5 = tz4, and

then re-homogenizing the ¢ variable. Thus we obtain a quadric surface
bundle

X' CP(O3 o1 @ Oprypi(—1,—1)) — P! x P!
with equation
LHZE% -+ 2L12(L’1[E2 + -+ 2@141)’}11’4 + -+ 044173 =0

associated with the symmetric matrix

Lll L12 L13 Q14
A= L12 L22 L23 Q24
L13 L23 L33 Q34
Q14 C224 Q34 C144

where the L;; are bidegree (d, 1), the @);; bidegree (d + 1,2) and Cyy
bidegree (d + 2,3). The degeneracy locus D C P! x P! has bidegree
(4d + 2,6).

Conversely, given a symmetric matrix A of forms with the prescribed
bidegrees, we may reverse the process to recover X from X’. The
construction depends on

6-2d+1)+3-3(d+2)+4(d+3)—(9+143-4) —6 = 25d + 14
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parameters. However, a generic form of bidegree (4d + 2,6) depends
on
7(4d+3) — (14 6) =28d + 14
parameters.
The model of C'
C — P! x P!
is a double cover branched over a degree-six multisection. The un-
ramified element o € Br(C)[2] governs the rationality of the generic
fiber.

If d = 0 then C — P! x P! is a double cover branched over a curve of
bidegree (2, 6) which has trivial Brauer group; here the fibration ¢ must
have a section. The case d = 1 yields a bidegree-(6, 6) degeneracy locus
— we focus on this. However, note that the determinantal condition
gives a codimension three locus in the parameter space of (6, 6) forms.

10.2. Application to Theorem 29. Specialize to
2EUFLUF UF,UF,

where E is bidegree (2,2), F} and F] are of bidegree (1,0), F; and F}
are of bidegree, and all the fibers are tangent to E. Such configurations
depend on two parameters.

We put these in the prescribed determinantal form. First write

Fl == {yl = 0}7F1/ = {Zl = 0}7F2 = {y2 = 0}7F2/ = {22 e 0}
and set

E ={g(y1,21;y2,22) =0}, g€ Cly, Z1;y2722](2,2),
with g chosen such that E has the tangencies specified above. We set
Y121 0 0 0
0 Y129 0 0
0 0 Y221 0
0 0 0 wzg

A:

Let Cy — P! x P! denote the quadric surface bundle associated with
this quadratic form.

Pirutka’s technique [Pir18, Th. 3.17] shows that Cy has unramified
cohomology, arising from the pull-back of the class of Br(C(P* x P1))
ramified along

FUFUFRUF,

with higher-order ramification at the four points of intersection. While
Cy is singular, it admits a universally CH-trivial resolution of singular-
ities following the procedure in [HPT18, §5]. Indeed, the configuration
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of singularities here is étale-locally equivalent at each point to a stra-
tum of the configuration considered in [HPT18]. There we had a cycle
of three rational curves, each with multiplicity two and simply tangent
to the smooth (multiplicity-one) component of the degeneracy locus
at a point; here we have a cycle of four rational curves with the same
tangency to F.

Now suppose

C - P xP!

is branched over a very general (6,6) curve. An application of [Voil5]
or [CTP16], as in [HPT18], shows that for such C the corresponding
fourfold lacks an integral decomposition of the diagonal and thus fails
to be stably rational.

11. THE REAL CASE

In this section, we settle the rationality problem over the real num-
bers.

11.1. Normal forms for pencils of quadrics. Let X C P” be a
smooth complete intersection of two quadrics over R.
Write X = {Qo = Q1 = 0} with associated pencil

P = {SOQO + SlQl} C P" x I[Dl
and binary form of degree n + 1
F(So, 81) = det(S()Qo + SlQl) € ]R[So, 81].

Note that F'(sp,s1) has no multiple roots because X is smooth. We
write a normal form under linear changes of coordinates, following
[Tho91, Th. 2], expressed as an orthogonal sum of matrix blocks:

— associated with nonreal roots a + bi of F'(1, p) the block

b a—p\.
5 (") ")
— associated with real roots a of F'(1, p) the block
(£(a—p)) .

Provided that sg 1 F(so,s1), i.e., Q1 is nondegenerate, these are the
only blocks that may arise.
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11.2. Isotopy classification. We follow [Kral8, §1].
Consider the degree-two covering S' — P! obtained by realizing
St = {(s0,51) : 55+ 57 = 1}.
Let B
P:=PxmS' —P
denote the associated covering. The advantage of passing to S! is that
the equation soQy + s1Q): lifts to a well-defined family of quadratic
forms over S'. (Over P! the forms are defined up to sign.)

The positive index function IT : St — Z is defined as the number of
positive eigenvalues of the associated form sqQ+ s1Q)1. It satisfies the
following:

— I is piecewise constant with 2k < 2n + 2 jumps of height +1;

— I (—=sg,—s1) =n+1—1"(sq,s1) provided (sg, $1) is not one of

the points of discontinuty.
We are using the fact that X is smooth which means F'(sg, s1) has no
multiple roots so a quadric drops rank at (sg, s;) € S' by at most one.

We extract a combinatorial invariant: A point of discontinuity for I™
is positive if I increases as we cross, moving counter-clockwise. Each
positive point of discontinuity matches with its antipodal negative point
of discontinuity. Observe that

— k = 0 only when n is odd and F(sg,s1) has no real nontrivial

roots, i.e., our pencil is a sum of ”T“ two-dimensional real blocks
(5);

— when k£ # 0 we have k € {1,...,n+ 1} and k =n+ 1 (mod 2).
This reflects the fact that the number of real roots of a polynomial
p(s) € R[s| has the same parity as deg(p).

Decompose

/{Z:k1+"'+/€25+1,k¢ GN,
where each k; represents that number of consecutive positive points of
discontinuity, with the indices increasing as we move counter-clockwise
around S!. The length of the decomposition is odd because the sign
of the quadratic form is reversed under the antipodal involution of S*.
We impose an equivalence relation, identifying decompositions related
by cyclic permutations or reversing all the terms.

Theorem 30. [Kral8| Isotopy classes of smooth complete intersections
of two quadrics in P™ correspond to equivalence classes of odd decom-
positions

/{31+"'+k25+1:k’§n+1
where k is a non-negative integer with parity equal to n + 1 (allowing

k =0 when n is odd).
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The isotopy class corresponding to the trivial decomposition of £ =
n + 1 is the case where X(R) = 0.
Example 31.
(n = 2) There are three isotopy classes corresponding to
(1),(3),(1,1,1).
(n = 3) There are four isotopy classes corresponding to
(0),(2), (2,1, 1), (4).
(n =4) There are seven isotopy classes corresponding to
(1),(3),(1,1,1),(5),(3,1,1),(2,2,1),(1,1,1,1,1).
(n =5) There are nine isotopy classes corresponding to
(0),(2),(4),(2,1,1),(6),(4,1,1),(3,2,1),(2,2,2),(2,1,1,1,1).
11.3. Existence of maximal linear subspaces. Let X C P" be a
smooth complete intersection of two quadrics and write
dim(X)=n—2=2m+1 or 2m,
depending on the parity of n. There exist linear subspaces in X¢ of

dimension < m. The Lefschetz hyperplane theorem shows that larger
dimensional subspaces are not possible.

Theorem 32. [Kral8, §2] The variety X contains a real linear subspace
of maximal dimension m provided that

m+1 §I+(50,81) <m+3
for each (sg,s1) € St.

Example 33. For threefolds X C P° we have the variety of lines F; (X))
admits real points for the decompositions

0),(2),(2,1,1),(2,2,2),(2,1,1,1,1).

These correspond to sequences of nondegenerate signatures on S*:

(3,3)
(2,4)(3,3)(4,2)(3,3)
(2,4)(3,3)(4,2)(3,3)(4,2)(3,3)(2,4)(3,3
(2,4)(3,3)(4,2)(3,3)(2,4)(3,3)(4,2)(3,3)(2,4)(3, 3) (4, 2) (3,
(2,4)(3,3)(4,2)(3,3)(4,2)(3,3)(4,2)(3,3)(2,4)(3,3)(2, 4)(3,

Here we omit the points of discontinuity.

In particular, decompositions (4), (4,1,1) and (3,2,1) admit real
points but no real lines.
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11.4. Topological types in the threefold case. See [Kral8, Th. 5.4]
for topological types of complete intersections of two quadrics X C P°
over R. We list the types that admit real points but not real lines:

— (4): X(R) is diffeomorphic to the sphere S3;

— (4,1,1): X(R) is diffeomorphic to the disjoint union S® LI S3;

— (3,2,1): X(R) is diffeomorphic to the product of spheres S x 2.
In particular, X (R) is disconnected in case (4, 1, 1) thus irrational over
R. It is not a priori clear whether cases (4) or (3,2, 1) are rational; we
explore this in Theorem 36. Certainly there is no topological obstruc-
tion to realizing S® with a rational threefold

{2} + 23 + 25 + 25 = 23} C P

And there is no topological obstruction for (3,2,1) — case (2) yields
examples that are rational but diffeomorphic to S* x S?. See [Kol98|
for more discussion.

11.5. A refinement of the intermediate Jacobian criterion. Let
Y be a smooth projective geometrically rational threefold over R. If Y
is rational over R then its intermediate Jacobian is isomorphic to the
Jacobian of a smooth projective (not necessarily irreducible) curve D
over R [BW20, Cor. 2.8]

LI(Y) ~ J(D).
Fix a family of codimension-two algebraic cycles
ZCYxB

flat over the base B. Assume that:
— given by € B(C), the morphism

Be — IJ(Y({;)
b — [Zb_Zbo]

is an isomorphism;
— the Albanese Alb(B) ~ J(D) over R.
Under the first assumption, B carries the structure of a principal ho-
mogeneous space over an abelian variety, which is isomorphic to J(D)
by the second assumption.

Proposition 34. Retain the assumptions above. Assume that
— Y s rational over R;
— 1J(Y) admits no factors as a principally polarized abelian variety
that are elliptic or the product of two complex conjugate elliptic
CUTVES.
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Then there exist principally polarized factors J; of 1J(Y), isoomor-
phisms n; : J(D;) — J;, and degrees d; such that

[B] = Z 0. [CH' (Di)a,].

Elliptic factors make the bookkeeping more complex: There exist
nonisomorphic genus-one curves with isomorphic Jacobians. By ‘com-
plex conjugate elliptic curves’ we mean that complex conjugation in-
terchanges the two factors/components.

Lemma 35. Fach irreducible factor of 1J(Y') is elliptic, a product of
two complex conjugate elliptic curves, or of the form J; ~ J(D;), where
D; is an wrreducible smooth projective curve over R of arithmetic genus
at least two. In the last case, D; is uniquely determined by its Jacobian.

This follows from the Torelli Theorem over nonclosed fields [Lau01].

Proof. The birational map P? --» Y admits a factorization as iterated
blow-ups and blow-downs along smooth centers [AKMWO02]:

Zy Z1 e L1 Y/
Zo 1 e . . Znim

For notational simplicity we will assume that n = 0 and write Z =
Zy = Z,. There is no harm in doing this as the general case follows by
iterating the argument below.

We apply the blow-up formula for a smooth curve A in a smooth
threefold W [Ful98, §6.7]

CH?(Bl4(W)) ~ CH*(A) & CH*(W).

This is compatible with algebraic families: A family of codimension-
two cycles on Bl4 (W) induces a morphism from the base of the family

to CH'(A).
Thus the intermediate Jacobian of Z in our factorization is a direct
product of the Jacobians of the irreducible curves Ay, ..., Ay that were

blown up at various stages and
CH*(Z) =Z™ & (;, CH' (4;)).

We organize the centers based on which survive in Y. An essential
center is a connected curve of positive genus whose Jacobian contributes
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as a factor of 1J(Y'). There may be inessential centers, e.g., positive
genus curves which are blown-up and then blown-down at a subsequent
step in the factorization. However, these fail to contribute to the Chow
group of Y.

Decompose our principally polarized abelian variety

J(D) ~1J(Y) = H J(D;) x J(E)

where the D; are distinct and of genus at least two, and £ includes
the genus one components. Under our assumptions, the last factor
vanishes. A principal homogeneous space over such a product is a
product of principal homogenous spaces over the factors. Consider the
corresponding factors in 1J(2)

1J(Z) ~ f[J(Dj)Nf x J

where J corresponds to the genus-one factors and the higher-genus
factors not among {Dy, ..., D,}.

The blowup Z — Y implies that each J(D;)" sits in J(D;)™i with
projector

I : J(D)N — J(D;)".

The associated contribution to CH?(Y') is given by applying II; to
CHl(Dj)NJ', regarded as a sum of compatible principal homogeneous
spaces over J(D;)Ni. Interpret II; as a matrix with entries endomor-
phisms of J(D,). Since this respects principal polarizations, it takes
the shape of a projection onto n; of the factors, up to isomorphisms
of those factors. Reindex with ¢ = 1,...,ny + --- + n, so that each
irreducible factor J(D;) C 1J(Y') gets its own index; the D; need not be
distinct. Then the summand of CH?*(Y) associated with D; is obtained
by applying these isomorphisms to cocycles of the form CH'(D;)y, for
suitable degrees d;.

Our family of cycles over B gives a morphism of principal homoge-
neous spaces

B — [ m.(CH'(Dy)a,)
that becomes an isomorphism over C. Hence it is an isomorphism over
R. O

11.6. Application to complete intersections of quadrics. We re-
turn to assuming that X C P% is a smooth complete intersection of
two quadrics over R. We focus on the case where rationality remains
open, i.e., X(R) # () but X does not admit a real line. Note that X
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automatically admits a conic over R, as the pencil of quadric hyper-
surfaces containing it admits members of signature (3, 3) that contain
isotropic planes. Recall from Section 2.3 that the space of such conics
is an étale P3-bundle over the genus two curve C associated with the
pencil, which thus admits real points.

We apply Proposition 34 to B = F;(X) and Z the universal family of
lines on X. The work of Wang [Wan18] (see also [Rei72, Th. 4.8]) shows
that F1(X) is a principal homogeneous space over J(C'), satisfying

2[F1(X)] = [CHY(C) = Pic'(C)].

Since C'is smooth of genus two, J(C') is simple as a principally polarized
abelian surface — it cannot be a product of real or complex conjugate
elliptic factors, which are associated with nodal stable curves of genus
two. Since C(R) # () we have 2[F(X)] = 0. However, then we would
have F1(X) ~ n, CH'(D;)q for some d and some endomorphism 7 :
J(D;) — J(D;); here D; is an essential center of P? --» X. Again,
the Torelli Theorem [Lau0l] guarantees that D; ~ C. We derive a
contradiction as
F(X)R)=0 C(R)#0.

We summarize this as follows:

Theorem 36. Let X C P5 be a smooth complete intersection of two

quadrics over R not containing a real line. Then X 1s not rational over
R.

Remark 37. Colliot-Thélene points out that this fails for complete
intersections of two quadrics X C P* over R. For instance, this happens
when X is the blowup of two pairs of complex conjugate points on a
quadric surface that contains no real lines.

APPENDICE, PAR J.-L. COLLIOT-THELENE

Dans toute cette note, k désigne un corps de caractéristique différente
de 2.

A.1. Quadriques avec une sous-variété de degré impair. On a
le lemme bien connu de T. A. Springer (voir [Lam73, Chap. VII, Thm.
2.3]) :

Lemme A.1. Si une forme quadratique sur un corps k possede un
z€ro mon trivial sur une extension impaire du corps de base, alors elle
posseéde un zéro non trivial sur k.

La proposition suivante est aussi bien connue [EKMO08, Prop. 68.1].
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Proposition A.2. Soit k un corps. Soit Q C P, n > 2, une quadrique
lisse déployée, c’est-a-dire définie par une forme quadratique déployée.

(i) La dimension mazimale d’un sous-espace linéaire de Q) est [(n —
1)/2].

(11) Considérons 'application image directe CH,(Q) — CH,.(P") =
Z entre les groupes de Chow de cycles de dimension r, avec 0 < r <
n — 1. Pour r < [(n — 1)/2], cette application est surjective. Pour
r > [(n—1)/2], son image est 2.7 : toute sous-variété intégre de Q) de
dimension r > [(n — 1)/2] est de degré pair.

Il serait surprenant que 1’énoncé suivant n’ait pas été déja établi.

Théoreme A.3. Soit k un corps. Soit Q C P}, n > 1, une quadrique
lisse. S"il existe une sous-k-variété géométriquement integre W C Q) C
Py de dimension r et de degré impair dans P}, alors @) contient un
espace linéaire ..

Démonstration. Supposons la quadrique donnée par I’annulation d’une
forme quadratique ¢(xq,...,x,). Si la forme ¢ est de rang pair et hy-
perbolique, alors n+ 1 = 2d et ¢ = 0 contient un espace linéaire P{. Si
q est de rang n + 1, avec n = 2d et s’écrit comme somme orthogonale
d’une forme quadratique hyperbolique de rang 2d et d’une forme de
rang 1, alors ¢ = 0 contient un espace linéaire Pz_l. Dans ces deux cas,
d’apres la proposition A.2, la démonstration est achevée.

Toute k-variété W C P} de degré impair contient des points fermés
P de degré [k(P) : k] impair. Si de plus W est géométriquement integre,
alors ses points fermés de degré impair sont denses pour la topologie
de Zariski de W. D’apres le lemme A.1, 'hypothese exclut donc que la
forme quadratique ¢ soit anisotrope.

On peut donc supposer que q(zo, . .., z,) s’écrit sous la forme

q(wo, ..., Tn) = ToT1 + - - - + Tosloss1 + 9(T2sy2, ..., Tn)
avec s > 0 et avec g une forme quadratique anisotrope en au moins
2 variables. Considérons I'application rationnelle de P} vers P22
envoyant (Zg, ..., x,) sur (Tasie,...,Z,). Cette application est définie
hors du fermé défini par
(I23+2, “on ,In) = (O, ce ,O)
Sa restriction a W C @) est donc définie hors du fermé F' C W défini
par ces memes équations, donc en dehors du fermé de W défini par
($25+2, . ,ZEn) = (O, .. ,0)
et
Tox1 + -+ TosTosyr = 0.
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Si F'# W, on a alors une application rationnelle de W dans la qua-
drique anisotrope de P"~2$72 définie par g(z2s42, ..., 7,) = 0. Comme
les points fermés de degré impair sont Zariski denses dans W, et que la
quadrique anisotrope ci-dessus ne possede pas de point fermé de degré
impair par le lemme A.1, ceci est impossible.

On a donc F' = W. La variété W de dimension r est contenue dans
le fermé de P} défini par (z2s19,...,2,) = (0,...,0), qui est un sous-
espace projectif PzS“, et dans la quadrique de cet espace projectif
définie par xgry + - - + TosTosr1 = 0. Comme W est de degré impair,
d’apres la proposition A.2, ceci force r < s. Ainsi ¢ = 0 contient un
espace linéaire [P O

A.2. Intersection de deux quadriques avec une sous-variété de
degré impair. Le théoreme suivant est da a M. Amer [Ame76]. Le cas
d = 1 fut établi indépendamment par A. Brumer. Le théoreme général
est établi de nouveau, en toute caractéristique, dans un tapuscrit de D.
Leep [Lee].

Théoreme A.4. Soient f et g deur formes quadratiques en n + 1
variables sur le corps k. La forme quadratique f 4 tg s’annule sur un
sous-espace linéaire de dimension d de k(t)"*! si et seulement si f =
g = 0 s’annule sur un espace linéaire de dimension d de k™.

Le cas n = 5,7 = 1 du théoreme suivant est établi, par une autre
méthode, dans [HT19¢, Thm. 14].

Théoreme A.5. Soit X C P}, n > 3, une intersection complete lisse
de deuz quadriques.

(i) S’il existe une sous-k-variété géométriquement intégre W C X C
Py de dimension r et de degré impair dans P}, alors X contient un
espace linéaire IPy,.

(ii) Si de plus r > 1, alors X est k-birationnelle a P}

Démonstration. Soit X C P} définie par I'annulation de deux formes
quadratiques f = g = 0. La quadrique lisse @ sur le corps K = k()
définie par f + tg = 0 contient la sous-K-variété géométriquement
integre W x;, K, qui est de degré impair et de dimension r. D’apres le
théoreme A.3, elle contient un espace linéaire P}.. D’apres le théoreme
A4, la K-variété X contient un espace linéaire P}. Ceci établit (i), et
(ii) en résulte d’apres [CTSSD87a, Prop. 2.2]. O

A.3. Intersection de deux quadriques qui contiennent une paire
rationnelle de droites gauches. On répond ici négativement a la
question du §7 de [HT19c|, et on donne simultanément des exemples
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un peu plus simples que ceux du Corollaire 27 du paragraphe 9 de
[HT19¢].

Commencons par des exemples sur le corps des réels, variantes de
[CTS80, §2, p. 128] et [CT18, §1, Prop. 1.3].

Proposition A.6. Soient n > 5 un entier et X C Pg, une intersection
complete lisse de deux quadriques donnée par un systeme d’équations
homogénes :

flza, ... xn) — 2oy =0 = g(x2,...,2,) — (¥o — 1) (20 — 221),
avec f(xg,...,x,) et g(xg,...,x,) deur formes quadratiques a coeffi-
cients réels définies positives.

Alors :

(i) L’espace topologique X (R) a deuz composantes connexes.

(11) La R-variété X n’est pas stablement rationnelle, ni méme rétrac-
tilement rationnelle.

(i7i) La C-variété Xc contient un espace linéaire P avec m = [(n —
3)/2] qui ne rencontre pas son congugué compleze.

Démonstration. 11 n’y a pas de point de X (R) avec (zg,2z1) = (0,0).
On dispose donc de I'application continue X (R) — P*(R) définie par
(2o, x1). Son image est la réunion des intervalles [0, 1] et [2, oo]. L’espace
X(R) a donc au moins deux composantes connexes, et c’est le maxi-
mum possible pour une intersection lisse de deux quadriques. Pour les
conséquences de la non connexité de X (R) sur la non rationalité d’une
R-variété projective et lisse X/R, je renvoie aux références données
dans [CT18, Théoreme 1.1]. Pour I'énoncé (iii), il suffit d’observer que
la section Y de X par zyp + 1 = 0 est une intersection de deux qua-
driques dans P! qui satisfait Y (R) = (). On sait que toute intersection
de deux quadriques dans ]P’?é_l contient un espace linéaire de dimension
m = [(n—3)/2]; ceci résulte par exemple de la combinaison du théoreme
A4 et du théoréme de Tsen. Comme on a Y (R) = (), un tel sous-espace
linéaire de Y ne saurait rencontrer son conjugué dans Y. U

La proposition suivante utilise la méthode de spécialisation sur une
variété pas trop singuliere possédant des invariants non ramifiés non
triviaux [CTP16].

Proposition A.7. Soit p # 2 un nombre premier. Soit F un corps fini
de caractéristique p assez gros. Sur tout corps K avec F(z) C K C
F((x)), sur tout corps K avec C(z)(y) C K C C((z))((y)), sur tout
corps de nombres K, et sur tout corps p-adique K, il existe une inter-
section lisse de deuz quadriques X C P35 qui contient un K-point, qui
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posseéde une paire de droites gauches définies sur une extension quadra-
tique de K, et qui n’est pas rétractilement rationnelle, et en particulier
n’est pas stablement K -rationnelle.

Démonstration. On utilise les exemples donnés avec Coray et Sansuc
dans [CTCS80]; voir aussi la liste d’exemples de [CTSSD87b, §15].
Soit k£ un corps de caractéristique différente de 2 et a € k non carré.
Soient (z,y, z,t,u,v) des coordonnées homogenes de P3.
Soit a = y/a. Soit X C P} définie par le systeme

g =2>—ay* —uww =0

¢ =2>—at’ — (u—c)(u—dv) =0,
avec uv(u — cv)(u — dv) sans facteur multiple.

Elle contient le point rationnel lisse M de coordonnées (1,0, 1,0, 1,0).

La classe de 'algebre de quaternions ((u — cv)/v,a) € Br(k(X)) est
non ramifiée sut tout modele projectif et lisse de X. Comme a n’est
pas un carré dans k, cette classe ne provient pas de Br(k). Ces deux
énoncés sont établis dans [CTCS80, Prop. 6.1 (iii)].

Le lieu non lisse de X est formé des deux points fermés R et S
définis I'un par u = v = 0 = z = t = 0 et donc 22 — ay® = 0,
lautre par u = v = 2 = y = 0 et 2> — at> = 0. On dispose d’une
résolution des singularités f : X — X qui est un isomorphisme au-
dessus du complémentaires de R et S et telle que les fibres f~}(R) et
f7H(S) sont des quadriques lisses de dimension 2 sur le corps k(y/a)
possédant un k(y/a)-point : les k(y/a)-variétés f~1(R) et f~1(S) sont
donc universellement C Hy-triviales.

La variété X contient deux droites gauches conjuguées

r—ay=z—at=u=v=>_0

et
r+ay=z4+at=u=0v=0.

On déforme maintenant X en une intersection lisse de deux qua-
driques contenant deux droites conjuguées et contenant le point M.
Il suffit pour cela de prendre une intersection lisse f; = fo = 0 de
deux quadriques dans P} contenant les deux droites gauches ci-dessus
et contenant le point M (voir [CTSSD87a, §4 et §1]; c’est ici que
I’on suppose le corps fini assez gros). On considere alors 'intersection
complete lisse de deux quadriques X, sur le corps K = k(\) donnée
par

G +Af1=0,
g2 + Afa = 0.
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La K-variété X, possede un point K-rationnel et contient deux
droites conjuguées. Le théoreme de spécialisation sous la forme [CTP16,
Thm. 1.12] montre que X n’est pas K-rétractilement rationnelle.

On peut prendre pour k tout corps assez gros de caractéristique
différente de 2 pour lequel k # k2. Par exemple un corps fini F de
caractéristique différente de 2 assez gros, ou k = C((7)) ou k = C(T).

L’argument donne ainsi des exemples de X C P% non rétractilement
rationnels sur K = C((71))((73)), sur K = C(T1,T3), sur K =F((T)),
sur K = F(T). On peut aussi faire une déformation en inégale ca-
ractéristique et faire des exemples sur tout corps p-adique (de corps

résiduel assez gros et non dyadique), et de 1a sur tout corps de nombres.
O

On trouvera un exemple analogue pour les hypersurfaces cubiques
de Py, dans [CTP16, Thm. 1.21].

A 4. Intersection de deux quadriques non rationnelles en di-
mension quelconque sur des corps non ordonnables. On a déja
donné de tels exemples sur les réels (Prop. A.6). On peut donner des
exemples sur des corps non ordonnables. L’argument donné ici a déja
été développé dans [CT18, Thm. 4.1] pour les hypersurfaces cubiques
diagonales. On renvoie a [CT18] pour plus de détails sur les outils em-
ployés (cohomologie galoisienne, cohomologie non ramifiée).

Soit k£ un corps de caractéristique différente de 2, contenant a €
k* \ k*. Soit K,, = k(s1,...,s,) le corps des fonctions rationnelles
en n > 0 variables. Soient b1,...,b, € k et X,, C P”Kt‘l I'intersection
complete de deux quadriques donnée par le systeme d’équations :

¢:x2—ay2—uv+23iyi2:0

=1

P =2(2? —az?) — (u+v)(2u —v) + Z bisiy: =0
i=1
en les variables homogenes (x,y, z,u,v,y1,...,y,). La K,-variété X,
possede le K,-point (x,y, z,u,v,y1,...,y,) = (1,0,0,1,1,0,...,0). On
supposera X lisse. C’est le cas si le polynéme homogene det(Ap + 1))
est séparable. Si k est infini ou fini avec assez d’éléments, il existe des
éléments by, ...,b, € k qui satisfont ces conditions.

Proposition A.8. Soit K,,(X,,) le corps des fonctions de la K, -variété
X,. Le cup-produit

an = ((u+v)/v,a,s1,...,8,) € H"?(K,(X,),Z/2)
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des classes de ((u +v)/v,a,sq,...,S,) dans
Kn<Xn)*/Kn(Xn)*2 = Hl(Kn(Xn)> Z[2)

est non ramifié sur la K,-variété X, et n’appartient pas a l'tmage de
H"(K,,7Z/2). Ainsi la K,-variété X,, n'est pas CHy-triviale et en
particulier n’est pas rétractilement rationnelle.

Démonstration. Pour n = 0, la classe de quaternions ((u+v)/v,a) est
un élément non constant de la 2-torsion du groupe de Brauer de la
surface Xy C P}, voir [BSD75, §4]. Cela définit donc une classe dans
H2,.(k(Xy)/k,Z/2) qui ne vient pas de H*(k,Z/2). On notera que cela
exclut la présence d'un couple de droites gauches conjuguées sur Xj.

Soit n > 1. Supposons 1’énoncé démontré pour n — 1. Sur la K,-
variété lisse X,,, la classe «,, est non ramifiée en dehors des diviseurs
définis par v = 0 et par u + v = 0. Le diviseur A défini par v = 0 est
integre, donné par le systeme

n

2 2 2

¥ —ay” — E siy; = 0,
=1

2(z% — az?) — 2u* — Zbisiyf = 0.
i=1
Le résidu de o, en A est le cup-produit

Bn = (a,s1,...,5,) € H"(K,(A),Z/2).

L'identité z* — ay® — > s;y? = 0 sur A implique que f3, est nul.
L’argument sur le diviseur integre défini par u + v = 0 est identique.
La classe «,, est donc non ramifiée sur la K,,-variété X,,.

On considére par ailleurs le modele propre sur K, 1[s,] défini par
le méme systeme d’équations que X,. La fibre au-dessus de s, = 0
n’est autre que le cone sur la K,,_;-variété X,,_; définie par le systeme

d’équations :
n—1

2’ —ay’ =Y syl =0,

=1
n—1
2(1‘2 _ azz) _ (u + v)(2u — U) — szslyf = 0.
=1

Le résidu de a,, au point générique de cette variété est la classe
an_1=((u+v)/v,a,s1,...,8.-1),

qui par hypothese de récurrence n’est pas dans 'image de H"(K,,_,7Z/2).
Comme la fibre s, = 0 a multiplicité 1, la comparaison des résidus en
s, = 0 montre que a,, n’est pas dans l'image de H""*(K,,,Z/2). O
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L’argument ci-dessus peut s’adapter en inégale caractéristique et
donne sur tout corps p-adique K avec p # 2 des exemples d’intersection
lisse de deux quadriques X C P3 non rétractilement rationnelle.

[AKT7]

[AKMWO02]

[Ame76]

[Ber92]

[BGW17]

[Bru7g]

[BSD75)

[BW19]
[BW20]

[CT18]

[CT19)

[CTCSS0]

[CTP16]
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