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Chapter 28

Mathematical Modeling of Plasticity and Heterogeneity
in EMT

Shubham Tripathi, Jianhua Xing, Herbert Levine, and Mohit Kumar Jolly

Abstract

The epithelial-mesenchymal transition (EMT) and the corresponding reverse process, mesenchymal-
epithelial transition (MET), are dynamic and reversible cellular programs orchestrated by many changes
at both biochemical and morphological levels. A recent surge in identifying the molecular mechanisms
underlying EMT/MET has led to the development of various mathematical models that have contributed
to our improved understanding of dynamics at single-cell and population levels: (a) multi-stability—how
many phenotypes can cells attain during an EMT/MET?, (b) reversibility/irreversibility—what time
and/or concentration of an EMT inducer marks the “tipping point” when cells induced to undergo
EMT cannot revert?, (c) symmetry in EMT/MET—do cells take the same path when reverting as they
took during the induction of EMT?, and (d) non-cell autonomous mechanisms—how does a cell under-
going EMT alter the tendency of its neighbors to undergo EMT? These dynamical traits may facilitate a
heterogenous response within a cell population undergoing EMT/MET. Here, we present a few examples
of designing different mathematical models that can contribute to decoding EMT/MET dynamics.

Key words Mathematical modeling, Epithelial-mesenchymal plasticity, Nongenetic heterogeneity,
Multi-stability, Epithelial-mesenchymal heterogeneity

1 Introduction

The epithelial-mesenchymal transition (EMT) is a cellular process
involving changes in multiple aspects of cellular behavior, including
cell–cell adhesion, cell polarity, cell migration and invasion, and cell
shape [1]. EMT and the corresponding reverse process, mesenchy-
mal-epithelial transition (MET), are regulated at multiple levels.
These include transcriptional, posttranscriptional, translational,
and epigenetic [2] controls, along with non-cell autonomous
mechanisms acting through matrix density [3] or cell–cell commu-
nication [4–7]. Largely thought of in the past as a binary process,
EMT is now known to involve multiple stable intermediates
referred to as hybrid epithelial/mesenchymal (hybrid E/M) phe-
notypes [8]. This updated view of the process has, in part, been
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driven by predictions made by various mathematical models for the
regulatory networks involved in EMT [4, 5, 9–14]. These mathe-
matical models have focused on characterizing the properties of
EMT and have predicted that cells can stably maintain one or more
hybrid E/M phenotypes [15]. Moreover, these models have also
driven insights into how cells may spontaneously switch between
various phenotypes due to stochasticity, and thereby determine
how cellular plasticity leads to phenotypic heterogeneity associated
with EMT as observed experimentally [16, 17]. These models have
also offered mechanistic insights into experimental observations
showing that EMT and MET are not necessarily symmetric pro-
cesses [12, 18], i.e., cells may take different paths during EMT and
MET in the multi-dimensional landscape of epithelial-
mesenchymal plasticity. Finally, these models have helped us gain
insights into the interconnection between EMT and other cellular
traits such as stemness; for instance, the prediction that a hybrid
E/M phenotype is more stem-like and metastatically aggressive
than cells exhibiting extremely epithelial or extremely mesenchymal
phenotypes [19] was recently confirmed both in vitro and in vivo
[20–22]. Here, we introduce a generic framework for developing
mathematical models of EMT regulation and share examples of
how these models can be used as tools to generate predictions
that will guide the next set of experiments.

2 Mathematical Modeling of EMT

The choice of a systems biology approach to study a biological
process is highly context-dependent. We here describe a generic
procedure for choosing an appropriate approach and detail how this
procedure was applied to modeling EMT.

2.1 Identify a

Problem that

Mathematical

Modeling Can Help

Address and Form a

Team of Experimental

and Modeling

Researchers

This is a key and probably the most challenging step in modeling
studies. There are questions that modeling studies can address and
others that they cannot address. It is typically constructive to form a
team of experimental and modeling researchers. The team mem-
bers hold thorough literature review and extensive, in-depth dis-
cussions to review existing knowledge and identify open questions
regarding the system. One may find it pedagogically illuminating to
read accounts of how some successful collaborations were estab-
lished [23, 24].

2.2 Choose an

Appropriate Modeling

Framework

Several modeling frameworks have been used to analyze EMT
regulatory networks. A Boolean network has dynamics that are
discrete in time and involve discrete variable values. The variable
values are updated based on a set of Boolean functions that reflect
the regulatory relations [25]. Conversely, an ordinary differential
equation (ODE)-based model treats time and variables as taking
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continuous values. Both Boolean network and ODE-based models
can be deterministic (meaning that one can precisely predict the
temporal evolution of the variables from a set of initial conditions),
or stochastic (meaning that the prediction is only probabilistic).
There is no best modeling framework for all cases, and one needs to
determine what is appropriate and justified for the biological system
and process under study. Some general aspects that may be consid-
ered include:

1. What is the qualitative and quantitative information available?
Compared to a Boolean model, an ODE model typically has
more parameters and requires more quantitative data to con-
strain these model parameters. Therefore, for a large regulatory
network without much quantitative data such as the one stud-
ied by Steinway et al. [11], the Boolean framework is appropri-
ate. It would be questionable whether an alternative
ODE-based model with dozens or even hundreds of free para-
meters can provide further additional information (but see
systematic statistical analyses of model ensembles discussed
below).

2. Is the framework sufficient to describe the system dynamics,
and does it provide new mechanistic insights that would be
unavailable or unclear without the modeling approach? Each
framework has its limitations. For example, a Boolean model
typically uses some universal parameters and only provides
qualitative or at most semiquantitative information. It can be
a good starting point to analyze how multiple regulatory fac-
tors interact to generate different EMT cell types as demon-
strated by Steinway et al. [11]. The model has limited capacity
to describe how different time scales of the signal transduction
pathways involved in EMTcontribute to quantitative detection
and encoding of the dose and duration information of the
stimulating signals. For the latter purpose, an ODE-based
model is a more appropriate choice, as demonstrated by
Zhang et al. [26] to show how pathway cross talk leads to a
temporal checkpoint mechanism for detecting TGF-β duration
information.

As a rule of thumb, one chooses a modeling framework that is
simple and sufficient to address the underlying problem. The widely
regarded criterion suggested by Einstein for evaluating physics
theories also applies here: “Everything should be made as simple
as possible, but not simpler.” It is possible that for a given problem,
initially a coarse-grained framework is appropriate, and as more and
more quantitative data becomes available, a different framework
becomes necessary to incorporate the new information.

Unfortunately, a commonly held misconception emphasizes that
it is always desirable to incorporate additional biological details
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explicitly into a mathematical model, and this tendency is further
reinforcedby the expanding computational power.However, abstrac-
tion is necessary and is done in all modeling efforts. We want to stress
here that themost important reason for usingmodeling approaches is
to providemechanistic insight buried in the data, andnot just to crank
machines and obtain some numbers. For this purpose, it is both
productive and necessary to perform proper abstraction and idealiza-
tion as successfully used in theoretical physics [27]. A simple model
that onlymakes qualitative predictions but provides deepmechanistic
insight has more value than a complex model that can only “repro-
duce” experimental data but does not necessarily make a new set of
predictions that may be tested experimentally to improve our under-
standing of the system. To be fair, both detailed and simplified
approaches have their merits, and sometimes it is constructive to
combine the two strategies https://www.nature.com/articles/
s41540-020-0132-1. One may start with detailed models that can
reproduce the data, then remove model ingredients step-by-step to
identify the minimal components that are essential for recapitulating
the key dynamical features of the system.

2.3 Construct a

Mathematical Model

and Perform Analysis

With the problem identified and an appropriate modeling frame-
work selected, one can follow some generic modeling procedures:

1. Summarize known interacting species into a regulatory net-
work. If there are uncertain interactions, one may construct a
set of possible networks for later comparative studies. Figure 1
shows a core EMT regulatory network used in several studies
[9, 13, 28].

2. Set up mathematical equations based on the biology. This step
is nothing more than translating the relevant biological infor-
mation into mathematical forms. For example, the equation
below governs the temporal evolution of the total level of
SNAIL1 mRNA ([snail1]t), which is summed over both free
( (snail1)) and miR-34 bound ([snail1]t � (snail1))
mRNAs [28].

d snail1½ �t
dt

¼ k0|{z}
basal expression

þ k
TGF½ �t=K1

� �2
1þ TGF½ �t=K1

� �2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

TGF‐β activation

1
1þ SNAIL1½ �=K2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
SNAIL1 self ‐inhibition

� kd0 snail1½ �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
snail1 basal degradation

� kd snail1½ �t � snail1½ �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

miR�34 regulated snail1 degradation

Each term on the right-hand side of the above equation
corresponds to one of the SNAIL1 related links in Fig. 1.

3. Constrain model parameters using the available quantitative
data. Several parameter estimation algorithms are available,
from linear regression to the more sophisticated maximum
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likelihood estimation, and Markov chain Monte Carlo meth-
ods. Since, in practice, it is rare to have sufficient data for a
specific system under study, a commonly adopted practice is to
estimate the many parameters based on data from different
labs, different cell lines, or cells from different tissues. How-
ever, even results from the same cell line can be quantitatively
different due to factors such as differences in cell generation,
reagent vendors, or even batches. Besides, dynamical para-
meters such as mRNA turnover rates can differ by orders of
magnitude for cells under different conditions. An emerging
trend is to collect data from one lab or under the same experi-
mental settings [29], similar to what has been adopted in some
large consortiums like ENCODE. Furthermore, instead of
using only the best-fit parameter set, one may use an ensemble
of model parameters to make model predictions. Zhang et al.
[26] adopted such an integrated modeling-quantitative mea-
surement procedure and an ensemble-based approach has been
developed previously [30, 31]. Another model ensemble
method is discussed in the next section.

4. Specify initial conditions (e.g., initial concentrations of various
species) that reflect the experimental setup. For example, if one
models cell response after adding TGF-β at time 0, one may
first make a rough estimation of the initial concentrations, then

Fig. 1 Core EMT regulatory network that leads to epithelial, hybrid E/M, and mesenchymal phenotypes
(adapted from [13]). Pointed arrows represent activation, blunt-end arrows represent inhibition, and the
dashed lines represent links first proposed in the modeling study by Lu et al. [9]
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propagate the ODEs for a sufficiently long time under the
condition of no TGF-β to reach a steady state, and use the
steady state values as the initial conditions at time 0.

5. Perform standard analyses such as bifurcation analysis, phase dia-
gram, temporal trajectories, and robustness/sensitivity analysis.
One may either write custom computer code (e.g., in Matlab,
Python, etc.), or use available computer packages, e.g., XPP
(http://www.math.pitt.edu/~bard/xpp/xpp.html), Oscill8
(http://oscill8.sourceforge.net/), and BioNetGen [32].

2.4 Explain Available

Experiments and Make

Testable Predictions

A unique advantage of computational modeling over experimental
studies is that, generally, it is much easier to perform a series of in
silico studies than their experimental counterparts, as the latter may
be either time and resource consuming, or may even not be feasi-
ble. Generally speaking, mathematical/computational modeling
can:

1. Provide mechanistic insights not evident from the data, and
sometimes resolve conflicting experimental results or distin-
guish competing mechanisms. For a given system, data are
typically collected from different sources and using different
techniques. Each experimental technique or approach can only
reveal partial information about the system, and modeling
integrates the discrete information. By placing all the experi-
mental results on a common ground, a modeling study allows
one to check whether the data are consistent mutually, and with
the conceived mechanisms.

2. Make predictions leading to new experimental measurements
that might not have been considered otherwise. For example,
the modeling study by Tian et al. [13] inspired a subsequent
measurement of single cell SNAIL1 expression levels using flow
cytometry [28].

3. Identify essential ingredients or missing links necessary to
explain the observations. For a given system, there may be
too much information, and some of it may not be or may
only be marginally relevant to addressing a specific question.
By adding or removing individual components and examining
the effect on model behavior, one can identify the essential
ingredients of a model. In other cases, the available information
may be insufficient. In such a scenario, following a similar
procedure of systemically adding individual components, one
can predict the missing component(s) that are necessary to
explain the experimental results. The missing component may
then be identified in subsequent experimental studies. For
example, the study by Lu et al. [9] suggested the existence of
positive feedback in the regulation of ZEB in EMT regulation
(dashed line in Fig. 1).
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It is important to point out that a model need not necessarily be
right in order to be useful. In fact, every model is only an approxi-
mation and abstraction of the biological system under study and
will be replaced by better approximations when additional informa-
tion becomes available. “All models are wrong, but some are use-
ful” [33]. Even an eventually falsified model may suggest useful
experimental studies that would otherwise not have been per-
formed, and thus help in advancing our knowledge of a biological
system. Such models should receive deserved credit.

2.5 Perform

Corresponding

Experimental Studies

As Katchalsky pointed out [24], “Theory tells us what cannot
happen, and it can tell us what could happen. But only experiments
tell us what does happen.” All model predictions need to be subject
to subsequent experimental tests.

2.6 Go Back to Step

2 and Iterate;

Expansion of Model

(Even After Publishing

the Original Work)

It has become more and more common to see studies that have
iterations between modeling and experiments. Sometimes the
integrated experiment-modeling process may even lead to revisiting
step 1 to define new questions and seek expanded collaborations.
For example, early modeling studies [9, 13] on EMT focused on
the core regulatory network (Fig. 1). Several subsequent studies
expanded the network to explore how additional factors contribute
to the spectrum of EMT phenotypes [4, 34, 35].

3 Modeling Population Heterogeneity in EMT

Intra-tumoral heterogeneity, wherein cancer cells within the same
tumor exhibit different phenotypes, has been reported across mul-
tiple cancer types, both in vitro and in vivo [36]. Tumor cell
populations in different cancer types including leukemia [37],
breast cancer [38], colorectal cancer [39, 40], brain cancer [41],
and prostate cancer [42] can consist of subpopulations of cells that
exhibit stem-cell-like behavior. Cells in triple-negative breast cancer
can exhibit distinct phenotypes including luminal, basal, immuno-
modulatory, mesenchymal, and stem-like [43]. In small cell lung
cancer, tumor cells can exhibit both neuroendocrine and
non-neuroendocrine phenotypes [44]. Intra-tumoral heterogene-
ity has recently been identified as a principal cause for the failure of
anticancer therapies [45]. Therefore, characterization of the
mechanisms driving this feature of tumor cell populations is key
to advancing anticancer therapeutics. In many (perhaps most)
cases, genetic heterogeneity does not underlie phenotypic hetero-
geneity, i.e., tumor cells exhibit different phenotypes in spite of
carrying the same genetic alterations. This indicates that nonge-
netic mechanisms may be the chief driver of intra-tumoral
heterogeneity.
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Cells within the same tumor can exhibit different
EMT-associated phenotypes—an epithelial phenotype, a mesen-
chymal phenotype, and one or more hybrid E/M phenotypes.
This is a canonical example of nongenetic intra-tumoral heteroge-
neity observed across cancer types including in breast cancer [46],
melanoma [47], colorectal cancer [48], and in prostate cancer
[49]. Different EMT-associated phenotypes exhibit varying
tumor-initiating capabilities [6, 7] and sensitivities to anticancer
drugs [50, 51]. How does such epithelial-mesenchymal heteroge-
neity emerge in a population of cancer cells? How is this heteroge-
neity maintained and propagated across generations and passages?
These are key questions that must be answered if we are to be able
to attenuate the role of epithelial-mesenchymal heterogeneity in
driving the failure of anticancer therapies.

Multiple nongenetic mechanisms can contribute towards the
emergence of phenotypic heterogeneity. The regulatory circuits
that govern the phenotypes of different cells often respond differ-
ently to the same external cues leading to a phenotypically hetero-
geneous population. Phenotypes of cells in a population can change
stochastically due to the noisy transcription of genes [52] or due to
the random partitioning of the parent cell molecules among the
daughter cells during cell division [53, 54]. Finally, cell–cell com-
munication can cause cells in a population to acquire distinct phe-
notypes in a non-cell autonomous manner. Each of these three
mechanisms has been implicated in the emergence and mainte-
nance of epithelial-mesenchymal heterogeneity. Mathematical and
computational modeling approaches have played a key role in
determining how these mechanisms can drive epithelial-
mesenchymal heterogeneity in populations of cancer cells. Here,
we describe mathematical modeling approaches corresponding to
each of the three mechanisms.

4 Heterogeneity from Cell-to-Cell Variation in Regulatory Kinetics

Large and complex gene regulatory networks underlie different
cellular functions such as stem cell differentiation [55, 56] and
circadian rhythm [57, 58]. The dynamical behavior of such large
networks can be understood as being driven by a core regulatory
circuit with the remaining genes in the circuit being peripheral to
circuit dynamics, acting only to alter the signaling status of the core
regulatory circuit [59]. The effects of peripheral genes and exoge-
nous signaling can then be modeled as perturbations to the kinetic
parameters governing the dynamics of the core regulatory module.
This is the approach underlying the framework known as random
circuit perturbation or RACIPE [60]. Here, we describe how to use
RACIPE for modeling epithelial-mesenchymal heterogeneity.
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While multiple signaling pathways have been implicated in
controlling EMTandMET, the activities of many of these pathways
converge onto a small set of core regulatory players. This set
includes the master regulators such as SNAI1, miR-34, miR-200,
and ZEB1 [8, 61]. The effects of different signals modulating EMT
and MET can thus be modeled as perturbations to the kinetics of
this smaller core regulatory circuit. These perturbations can vary
from cell-to-cell, thus representing the differing internal and exter-
nal signaling states of tumor cells in a population.

We first describe the RACIPE framework using the simple
toggle switch as an example. As shown in Fig. 2, the toggle switch
consists of two transcription factors, A and B, which form a mutual
inhibitory feedback loop. The dynamics of this circuit can be
described using a pair of ODEs:

d A½ �
dt

¼ gAH
S B½ �,KA

B ,n
A
B , λ

A
B

� �� kA A½ � ð1Þ

d B½ �
dt

¼ gBH
S A½ �,KB

A,n
B
A, λ

B
A

� �� kB B½ � ð2Þ

Here, [A] and [B] are the protein expression levels of genes
A and B, respectively. gA and gB are the production rates of A and
B when no activator or inhibitor is present. kA and kB are the
inherent degradation rates of the two proteins. The regulatory
action of gene B on geneA is modeled via the shifted Hill function:
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KA
B is the threshold concentration of B, nA

B is the Hill coeffi-
cient, and λAB is the maximum fold change in the expression level of
A that can be caused by the activity of B. If B activates A, λAB > 1. If
B inhibits A, 0 � λAB < 1. For the toggle switch, 0 � λAB , λ

B
A < 1.

Thus, there are five types of kinetic parameters in the model. Two of
them, g and k, are associated with each gene. The remaining three,
K, n, and λ are associated with each regulatory link. Thus, for a
circuit with 10 genes and 25 regulatory interactions, the total
number of parameters will be (2 � 10) + (3 � 25) ¼ 95.

RACIPE performs randomization on all five types of circuit
parameters to obtain an ensemble of kinetic models for a given
circuit topology. The randomization procedure is such that most
biologically realizable possibilities are represented by one of the
models in the ensemble. RACIPE uses two assumptions to obtain
a representative ensemble of models. First, the maximum produc-
tion rate of each gene is fixed, independent of the number and type
of interactions that gene is a target of. For a gene with one activator,
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the maximum production rate, G, will be obtained when the acti-
vator is highly expressed. Thus, the basal production rate of the
gene must be g ¼ G

λ , λ > 1. For a gene with only one inhibitor, the
maximum production rate will be obtained in the absence of inhib-
itor expression. Thus, G ¼ g where g is the basal production rate.
This approach can easily be generalized to the case when a gene has
multiple activators and inhibitors [60]. RACIPE randomizes the
maximum production rate (G) and then calculates g using the
above-mentioned approach.

The second assumption is that in order for the ensemble of
models to be representative of most biological possibilities, each
regulatory link in the circuit must have an almost equal chance of
being functional and being nonfunctional. To ensure this, RACIPE
chooses the threshold parameters in such a manner that the steady
state concentration of the corresponding regulator in different
models within the ensemble is roughly equally likely to be above

Fig. 2 Transcription factors A and B with a mutual inhibitory feedback loop (top).
RACIPE was used to generate 100 kinetic models corresponding to this topology.
A total of 122 distinct steady states were obtained—78 kinetic models exhibited
only one steady state while 22 kinetic models exhibited two steady states.
Hierarchical clustering of this collection of steady states (bottom) revealed that
these steady states can be divided into two phenotypic classes: high A, low B
(highlighted in red) and low A, high B (highlighted in green). Thus, in a population
wherein each cell carries a copy of this circuit, cells can exhibit two distinct
phenotypic states. Hierarchical clustering was carried out using the Z-scores of
the log2 transformed expression levels
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the threshold parameter (in which case the interaction is functional)
and below the threshold parameter (in which case the interaction is
nonfunctional). For a detailed description of how this is achieved,
see Huang et al. [60].

In the ensemble generated by RACIPE, all models have the
same topology but differ in the values of kinetic parameters govern-
ing the model dynamics. The dynamics of each model is then
numerically simulated multiple times, each time starting with a
different set of initial concentrations of the molecules in the circuit.
This allows RACIPE to obtain a set of steady states that a given
model can generate. Once this has been done for each model in the
ensemble, RACIPE obtains a collection of steady states that the
given circuit topology can exhibit. Each model in the ensemble
generated by RACIPE may be interpreted as representing a single
cell. Thus, the collection of steady states obtained by RACIPE will
represent an in silico gene expression profile obtained for a popula-
tion of cells. One aspect that should be kept in mind is that a model
that can exhibit more than one steady states will be counted more
often in the collection of steady states generated by RACIPE as
compared to a model that can exhibit only one steady state. Never-
theless, this steady state expression data can be analyzed using
familiar methodologies including principal component analysis
and hierarchical clustering to gain insight into the different classes
of steady states that may be exhibited by a given network topology.

The C language computer code implementing the RACIPE
framework is available online on GitHub (https://github.com/
simonhb1990/RACIPE-1.0). Once the code has been down-
loaded, change to the folder or directory where the code files are
present and use the make command to compile the code files for
your system. This will generate a single executable named
“RACIPE.” This executable takes as input a topology file, exten-
sion .topo, which describes the topology of the circuit being ana-
lyzed. This must be a plain text file with three tab-separated
columns. The first column (“Source”) contains the name of the
regulator gene. The second column (“Target”) contains the name
of the gene being regulated. The third and final column (“Type”)
describes the interaction type, 1 if the interaction is activating and
2 if the interaction in inhibiting. A sample topology file (TS.topo) is
available online with the code. Once the topology file for the circuit
of interest has been generated, the RACIPE code can be run as
follows:

$ ./RACIPE network.topo

Additional input options that may be provided to the code are
described in the “README.md” file available with the code. Upon
execution, the code generates multiple files. Most important
among these are:
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1. Parameter ranges file (.prs extension) This file contains the
ranges of different kinetic parameters.

2. Parameters file (_parameter.dat extension) This file contains
the kinetic parameters for each model in the ensemble along
with the number of steady states obtained for that model.

3. Solutions files These files contains the gene expression levels
in each of the steady states obtained for different models.
Steady state expression levels for models exhibiting different
numbers of steady states are stored in different files. For models
with only steady state, the file extension is “_solution_1.dat.”
For models with three steady states, the file extension is “_solu-
tion_3.dat.” All gene expression values reported in these files
are log2 normalized.

Descriptions of other output files can be obtained from the
“README.md” file available online with the code.

To determine if epithelial-mesenchymal heterogeneity can
emerge from cell-to-cell variation in kinetic parameters as simulated
using the RACIPE framework, we used a 26-node circuit (Fig. 3;
top panel) which was constructed using Ingenuity Pathway Analysis
(IPA; QIAGEN Inc.) and literature search [62]. The circuit consists
of 17 protein-coding genes and 9 micro-RNAs. The set of protein-
coding genes includes transcription factors such as SNAI1, ZEB1,
and TWIST1 whose role as master regulators of EMT is well
characterized [8]. The set also includes EMT-associated biomarkers
such as CDH1 and VIM along with “phenotypic stability factors”
[34] such as GRHL2, OVOL2, and ΔNP63α. The collection of
steady states that can be exhibited by models with the topology of
this EMT circuit was obtained using RACIPE and analyzed using
hierarchical clustering (Fig. 3; bottom panel). As mentioned previ-
ously, this collection of steady states is representative of the gene
expression profile of cells in a tumor. The steady states can be
broadly classified into four groups on the basis of expression levels
of the 26 proteins and micro-RNAs in the EMT circuit. Group
1 exhibits high levels of expression of epithelial phenotype-
associated genes including CDH1 along with high levels expression
of EMT inhibitors such as GRHL2 and miR-200. This group thus
represents cells that exhibit an epithelial phenotype. In group
4, EMT drivers such as SNAI1 and ZEB1 are highly expressed
along with high expression of the mesenchymal marker VIM. This
group represents cells that exhibit a mesenchymal phenotype.
Groups 2 and 3 consist of steady states with co-expression of both
epithelial and mesenchymal-associated factors. The expression of
epithelial factors in these groups is lower than the expression of
these factors in the epithelial group (group 1) and the expression of
mesenchymal factors is lower than that in the mesenchymal group

396 Shubham Tripathi et al.



(group 4). Groups 2 and 3 thus co-express both epithelial and
mesenchymal factors at intermediate levels.

Thus, analysis of a 26-node EMT circuit using the RACIPE
framework demonstrates one mechanism by which

Fig. 3 The 26-node EMT topology (top). RACIPE was used to generate 5000
kinetic models corresponding to this topology. A total of 13,486 steady states
were obtained via numerical integration of the ODEs in these kinetic models.
Using hierarchical clustering, these steady states were grouped into four phe-
notypic classes (bottom)—epithelial (red), mesenchymal (green), and two hybrid
E/M phenotypic classes (light blue and dark blue). Hierarchical clustering was
carried out using the Z-scores of the log2 transformed expression levels
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epithelial-mesenchymal heterogeneity can emerge in a population
of cancer cells. Due to the cell-to-cell variation of kinetic parameters
driving EMT dynamics, cells can exhibit distinct gene expression
profiles that can broadly be grouped into epithelial, mesenchymal,
and hybrid E/M classes. The cell-to-cell variation in kinetic para-
meters is indicative of the differing exogenous signaling states in
different cells. While cells in the population exhibit different gene
expression profiles, the population does not consist of clones and
subclones with cells in each clonal population exhibiting a specific
EMT kinetic, i.e., the gene expression profile of a cell is not always
hereditary and can change in response to changes in the exogenous
signaling environment. Note that while our analysis reveals 2 groups
of steady states with co-expression of epithelial and mesenchymal
factors suggesting that 2 such hybrid E/M states exist, a different
analysis technique may reveal a greater number distinct types of
hybrid E/M phenotypes. Cells can likely be classified into an even
greater number of phenotypic groups by incorporating other
EMT-associated factors into the circuit topology [10, 11] which
would provide greater resolution as has been reported recently
[16]. Finally, the RACIPE framework can easily be used to probe
the contribution of each protein and micro-RNA and of each
regulatory relationship in driving epithelial-mesenchymal hetero-
geneity. One can edit the circuit topology file (extension .topo) to
add and/or delete EMT-associated factors and regulatory relation-
ships and analyze the expression levels in the collection of steady
states obtained for the altered circuit.

5 Heterogeneity from Random Partitioning of Molecules During Cell Division

Another scenario in which phenotypic heterogeneity can emerge in
a population occurs if cells undergo stochastic changes in their
phenotypes. In general, for such stochastic changes to happen,
there must exist a mechanism to generate noise and a mechanism
to stabilize the decision reached in response to the noise [63]. One
mechanism which can generate noise is the random partitioning of
molecules (RNAs, proteins, etc.) in the parent cell among the
daughter cells at the time of cell division [53, 54, 64]. This mecha-
nism is likely to be a prominent source of noise in tumors wherein
cells divide fast and uncontrollably. While phenotypic fluctuations
in cells in response to noise are usually small and transient, the
fluctuations can be amplified if the underlying response mechanism
exhibits multi-stability, i.e., co-existence of multiple steady states.
As described previously [9, 13], circuits which drive EMTandMET
exhibit multi-stable behavior. Thus, random partitioning of
EMT-associated factors during cancer cell division is likely to be a
key contributor toward the emergence of epithelial-mesenchymal
heterogeneity.
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The schematic representation of a computational model that
can be used to probe the role of this mechanism in the emergence
of epithelial-mesenchymal heterogeneity is shown in Fig. 4. The
model [65] builds upon the dynamics of the core regulatory circuit
involving SNAIL, ZEB, miR-34a, and miR-200. These transcrip-
tion factors and micro-RNAs together form a circuit that acts as a
ternary switch, responding to the signaling pathways driving EMT
and MET [9]. Stable steady states of this circuit can be mapped to
different EMT-associated phenotypes—epithelial, mesenchymal,
and hybrid E/M—on the basis of expression levels of ZEB
(Fig. 4). To see the effect of random partitioning on the phenotypic
composition of the population, we here consider a population of
cancer cells with each cell carrying a copy of this EMT regulatory
circuit. Since this regulatory circuit does not involve cell–cell com-
munication, the dynamics of the regulatory circuit within each cell
in the population can be simulated independent of other cells in the
population. The dynamics of EMT regulation at the single-cell level
are simulated using ordinary differential equations which have been
described previously [9]. At the population level, there are two
types of events that can take place. One is cell death during which

Fig. 4 A schematic representation of the model to investigate how epithelial-mesenchymal heterogeneity can
arise from the random partitioning of proteins and RNAs during cell division. (Figure adapted from Tripathi
et al. [65])
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a cell is simply removed from the population. The other is cell
division.

When a cell divides, the molecules present in the parent cell are
randomly partitioned among the daughter cells [53, 54, 64]. Thus,
each daughter cell receives a copy of the EMT regulatory circuit.
However, due to the random partitioning of molecules, the con-
centrations of a molecular species in the two daughter cells can be
different from each other and different from the concentration of
that species in the parent cell. Let Isig represent the multiple signal-
ing pathways that converge onto the core EMT regulatory circuit.
We here consider noise in the partitioning of Isig as the dominant
perturbation to EMT regulation in the daughter cells. The concen-
trations of Isigs in the daughter cells are given as:

I daughtersig ¼ I parentsig þ ηN 0, 1ð Þ ð5Þ
Here,N(0,1) is a standard normal distribution and η is a model

parameter which determines the variance of the noise distribution.
Due to the perturbation in the concentration of Isig, a daughter cell
may acquire a phenotype different from that of the parent cell. The
population can then become phenotypically heterogeneous
over time.

Since the dynamics of EMT regulation is much faster as com-
pared to the time scale at which cell division and cell death events
take place, the model dynamics can be simulated in a multi-scale
manner. Population-level dynamic, i.e., cell division and cell death,
are simulated in a stochastic manner using Gillespie’s algorithm
[66]. Between two population-level events, the concentrations of
RNAs and transcription factors within each cell are updated using
ordinary differential equations. Previous studies have shown that
different EMT-associated phenotypes can exhibit different rates of
cell division [67–69]. However, one may consider a simpler case
with equal division and death rates for all three cell types. In
addition, to incorporate the effect of limited availability of nutrients
in the tumor microenvironment, a logistic model of growth with a
fixed carrying capacity can be used.

Dynamics of the model can be simulated as follows:

1. Choose an initial population size and randomly assign concen-
trations of molecules in the EMT regulatory circuit to different
cells in the population. The concentrations are drawn from
log-normal distributions such that the median concentration
of each molecular species is within the range for which the
regulatory circuit exhibits multi-stable dynamics.

2. Using Gillespie’s algorithm [66], update the number of cells in
the population. In the case of a cell death event, that cell is
removed from the simulation and thus the population. In the

400 Shubham Tripathi et al.



case of a cell division event, Isig concentrations in the daughter
cells are updated using Eq. 5.

3. At the end of the Gillespie update, the concentrations of mole-
cules in each cell in the population are updated. Let Δt be the
time interval between the last Gillespie update and the current
one. Then, the concentrations of molecules can be updated by
integrating the ordinary differential equations for the EMT
regulatory circuit [9] over the time period Δt.

Computer code for simulating the model dynamics can be
downloaded from GitHub (https://github.com/st35/cancer-
EMT-heterogeneity-noise).

We simulated the model dynamics for populations with
different initial phenotypic compositions. Figure 5 shows how
epithelial-mesenchymal heterogeneity can emerge in a phenotypi-
cally homogeneous population over a period of 2 weeks. While
epithelial and mesenchymal populations exhibit fairly stable pheno-
typic compositions, a hybrid E/M population can quickly give rise
to a mixed population with both epithelial and mesenchymal cells.
Such behavior has been confirmed in populations of mouse prostate
cancer cells [17] and a comparison of experimental dynamics with
the predictions from the model is shown in Fig. 5 (bottom panel).

The model thus shows that random partitioning of parent cell
proteins and RNAs among the daughter cells can generate
epithelial-mesenchymal heterogeneity in a population of cancer
cells. Arising from cell division, this heterogeneity can emerge and
be propagated from a small population, such as the one left after an
anticancer regime. Note that the model proposed here is not sensi-
tive to the choice of the core EMT/MET regulatory circuit. Any
circuit topology can be used within the framework of this model as
long as the circuit dynamics is multi-stable which is a key feature of
EMT regulation.

6 Heterogeneity from Cell–Cell Communication Via Notch Signaling

In addition to the regulatory mechanism at the single-cell level,
cell–cell communication also plays a major role in modulating EMT
[6, 7]. Notch signaling [70, 71] is one such mechanism which
operates via the binding of Notch, a transmembrane receptor, to a
ligand expressed on the surface of a neighboring cell. This binding
event triggers the cleavage of the Notch intracellular domain
(NICD). NICD is then released into the cytoplasm where it can
act as a transcriptional cofactor thereby promoting or inhibiting the
expression of certain genes [70]. Notch signaling between neigh-
boring cells can create varied spatial patterns in a population. The
pattern type depends on the type of Notch ligands that are active in
the population. NICD inhibits the expression of Delta ligands and
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promotes the expression of ligands of the Jagged family. Notch-
Delta signaling leads to neighboring cells acquiring distinct pheno-
types—the cell expressing high levels of the Notch receptor and low
levels of Delta ligands acts as the “sender” cell while the neighbor-
ing cell with low levels of Notch expression and high expression
levels of Delta ligands acts as the “receiver” cell [72] (“lateral
inhibition”; Fig. 6 (top panel)). Notch-Jagged signaling, on the
other hand, leads to neighboring cells acquiring the same pheno-
type which is characterized by the co-expression of Notch receptors
and Jagged ligands [73] (“lateral induction”; Fig. 6 (bottom
panel)).

The role of Notch signaling in EMT regulation arises from the
coupling between the Notch signaling machinery and the core
regulatory circuit that drives EMT (Fig. 7; top panel). miR-34
can posttranscriptionally inhibit the expression of Notch receptors
and that of Delta ligands. miR-200 similarly inhibits the expression
of Jagged ligands. Further, NICD promotes the expression of
SNAIL, thereby acting as an EMT promoter [4]. Due to the cross
talk between the Notch signaling and EMT circuits, the spatial
patterns that emerge from Notch signaling translate into spatial
patterning in the expression of epithelial and mesenchymal markers

Fig. 5 (Top) Average number of epithelial, mesenchymal, and hybrid E/M daughter cells generated during the
division of an epithelial cell (left), a hybrid E/M cell (middle), or a mesenchymal cell (right). Daughter cells can
exhibit a phenotype distinct from that of the parent cell due to the random partitioning of Isig during cell
division. (Bottom) Change in the fraction of different phenotypes in a population of cancer cells when starting
with a purely epithelial (left), a purely hybrid E/M (middle), or a purely mesenchymal population on day 0. Solid
lines indicate the predictions from the proposed model. Dotted lines indicate the behavior for a population of
mouse prostate cancer cells re-plotted from Ruscetti et al. [17]. (Figure adapted from Tripathi et al. [65])
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in a population of cells. In general, since NICD is an EMT pro-
moter and Notch-Delta signaling leads to neighboring cells acquir-
ing distinct phenotypes, Notch-Delta signaling leads to a spatial
expression profile wherein hybrid E/M and mesenchymal cells are
surrounded by epithelial cells. On the other hand, Notch-Jagged
signaling can lead to the emergence of spatial clusters of hybrid
E/M and mesenchymal cells due to the tendency of neighboring
cells to acquire the same phenotype in the presence of in the
presence of Notch-Jagged signaling (Fig. 7).

The spatial expression of epithelial and mesenchymal factors in
a population in the presence of Notch signaling can be probed
using ordinary differential equations to model the behavior of
coupled Notch signaling and EMT circuits. The methodology
differs from previous models of EMT regulation in that the dynam-
ics of the circuit within each cell depends not only on the

Fig. 6 Two types of Notch signaling-mediated coupling between neighboring cells. In the presence of Notch-
Delta signaling (top), neighboring cells form a mutual inhibitory feedback loop causing them to exhibit distinct
phenotypes. One of the cells acts as the receiver (green cell in the top panel) with high Notch, low Delta
expression. The other cell acts as the sender (orange cell in the top panel) with low Notch, high Delta
expression. On the other hand, in the presence of Notch-Jagged signaling (bottom), neighboring cells form a
mutual excitatory feedback loop causing them to acquire the same phenotype. Each cell acts both as a sender
and a receiver and both cells co-express Notch receptors and Jagged ligands
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concentrations of molecules within the cell but also on the concen-
trations of molecules, particularly Notch receptors and ligands, on
neighboring cells that are in direct contact with the given cell.
Therefore, before simulating Notch signaling-mediated dynamics,
one must choose a suitable spatial lattice wherein each lattice posi-
tion is occupied by a single cell. This is essential in order to properly
identify the neighboring cells for each cell in the population. We
will not describe the mathematical form of the ordinary differential
equations here since these equations have been described in detail
previously [4].

Figure 7 (bottom panel) shows the spatial patterns that emerge
via Notch signaling between cells occupying a hexagonal lattice
wherein each cell communicates with six neighboring cells in the
population. The results indicate that spatial epithelial-mesenchymal
heterogeneity can emerge in a population of cancer cells due to the
activity of the Notch signaling mechanism. Cells with differing
expression levels of epithelial and mesenchymal factors can be

Fig. 7 (Top) Coupling between Notch-Delta-Jagged signaling and EMT regulation. (Bottom) Spatial heteroge-
neity in the expression of epithelial and mesenchymal markers in the presence of Notch-Delta signaling (left)
and in the presence of Notch-Jagged signaling (right)
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spatially organized in distinct patterns in different contexts. While
Notch-Delta signaling leads to a “salt-and-pepper” patterning
wherein hybrid E/M and mesenchymal cells are surrounded by
epithelial cells, Notch-Jagged signaling leads to the emergence of
clusters of these cell types. The spatial organization of epithelial-
mesenchymal heterogeneity is a distinguishing feature of this mech-
anism for emergence of heterogeneity. Neither cell-to-cell variation
in kinetic parameters governing EMT regulation nor random par-
titioning of molecules during cell division can lead to such behav-
ior. Spatial heterogeneity in the abundance of different phenotypes
is a characteristic of tumors [74]. For example, mesenchymal cancer
stem cells are abundant near the tumor-stroma boundary while
cancer stem cells exhibiting a hybrid E/M phenotype tend to
localize in the interior of the tumor [75]. The cell–cell
communication-dependent mechanism for the generation of phe-
notypic heterogeneity described here can be used to understand
and describe such features of the tumor microenvironment [76].

7 Modeling the Coupling Between EMT and Stemness in Cancer Cells

Across cancer types, subpopulations of tumor cells that exhibit
stem-cell-like behavior, i.e., an increased capacity to repopulate
tumors, have been observed [77]. These cancer stem cells
(CSCs), often inherently resistant to anticancer therapies, can not
only repopulate the tumor post-therapy but also re-create the
intra-tumoral heterogeneity exhibited by the original tumor. The
connection between EMT and the appearance of stem-cell-like
properties in cancer cells has been studied for a long time. Initial
studies argued that tumor cells must undergo a complete EMT in
order to exhibit traits of CSCs [78, 79]. This proposition was
consistent with the then prevalent perception of EMT as a binary
process. Later studies showed that EMT/MET and cancer cell
stemness are both highly dynamic processes. Cancer cells can
exhibit hybrid E/M phenotypes and inter-convert between the
different EMT-associated phenotypes. Similarly, cancer cells can
switch between CSC and non-CSC phenotypic states, maintaining
a dynamic equilibrium in a population of cancer cells [80–83]. Due
to these developments, a more nuanced picture of the
EMT-stemness connection has emerged wherein all
EMT-associated phenotypes—epithelial, mesenchymal, and hybrid
E/M—can exhibit stemness properties depending on the strength
of the coupling between the modules regulating EMT and
stemness.

In cancer cells, stemness is regulated by a 2-component
decision-making circuit (Fig. 8) wherein LIN28 and let-7, a
micro-RNA, form a mutual inhibitory loop. NF-κB activates the
expression of both LIN28 and let-7 and thus acts as an input to this
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regulatory module. Both LIN28 and let-7 can also activate their
own expression. The dynamics of this regulatory circuit can be
modeled using ODEs as has been done previously for the EMT
regulatory circuit. These ODEs have been described in detail else-
where [19]. The ODEs can be integrated numerically to obtain the
steady state expression levels of LIN28 and let-7 for different
concentrations of NF-κB. Three distinct phenotypes are evident
from this analysis—high LIN28, low LIN28, and intermediate
LIN28. LIN28 activates the expression of the pluripotency marker
OCT4 [84] and the stem cell state is characterized by the expres-
sion of OCT4 within a range—both very low and very high levels of
OCT4 expression lead to the loss of stemness [85–88]. Thus, only
cells with such intermediate levels of OCT4 expression can acquire
a cancer stem cell phenotype.

The stemness regulatory module couples with the EMT regu-
latory module via two micro-RNA mediated regulatory interac-
tions. miR-200 inhibits the expression of LIN28
posttranscriptionally. Similarly, let-7 inhibits the expression of the
EMT-driver ZEB (Fig. 8). These interactions can easily be included
in the ODE-based models of EMT and stemness regulation to
couple the two regulatory units [89]. Since both very low and

Fig. 8 Coupling between the circuits regulating EMT and stemness. The strength
of coupling between the two circuits is governed by the parameters α1 and α2.
α1 is the maximum fold change in the rate of production of LIN28 that miR-200
can cause while α2 is the maximum fold change in the rate of ZEB production
that let-7 can cause. Since both coupling interactions are inhibitory, 0 � α1,
α2 � 1 with α1, α2 ~ 1 indicating weak coupling
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very high levels of OCT4 expression lead to loss of stemness, to
determine if a certain EMT-associated phenotype can acquire stem-
ness, one can define a “stemness window”—range of expression
levels of OCT4 for which a cell can acquire stemness.
EMT-associated phenotypes that overlap with this stemness win-
dow can then acquire stemness. This overlap, and thus the set of
EMT-associated phenotypes that can acquire stemness can be
modulated by varying the strength of the coupling between the
two regulatory units. This coupling is modeled via two para-
meters—α1, the maximum fold change in the expression level of
LIN28 that miR-200 can cause, and α2, the maximum fold change
in the expression level of ZEB that let-7 can cause. Since miR-200
inhibits LIN28 and let-7 inhibits ZEB, 0 � α1, α2 � 1. A fold
change close to 1 indicates weak coupling while a fold change close
to 0 indicates strong coupling.

When there is no coupling between the two regulatory units
(α1 ¼ 1, α2 ¼ 1), cells can exhibit three distinct phenotypes asso-
ciated with the EMT circuit (epithelial, mesenchymal, and hybrid
E/M) provided the concentration of the EMT-driver SNAIL is
within the range for which the EMT circuit can exhibit
tri-stability. Cells can further exhibit three distinct phenotypes
corresponding to the stemness circuit (low LIN28, high LIN28,
and intermediate LIN28). Thus, 9 (3 � 3) total phenotypes are
possible. This number decreases when the strength of the coupling
between the circuits is increased. Which of the EMT-associated
phenotypes exist within the stemness window depends on the
relative values of α1 and α2. When both α1 and α2 are close to
1 (weak coupling), all three EMT-associated phenotypes lie within
the “stemness window” and thus can acquire stemness. Upon
decreasing α1, the stemness window shifts toward the mesenchymal
phenotype. Epithelial cells can no longer acquire stemness in this
scenario. When α2 is decreased while keeping α1 close to 1, the
stemness window shifts toward the epithelial phenotype and mes-
enchymal cells cannot acquire stemness with such a coupling
between the regulatory units. The different scenarios have been
illustrated in Fig. 9.

The total number of phenotypes that may be exhibited by cells
in a population will further depend on the concentration of SNAIL.
For example, when the SNAIL concentration is very high, cells can
only exhibit the mesenchymal phenotype. These mesenchymal cells
can then acquire stemness provided the “stemness window” over-
laps with the mesenchymal phenotype. Similarly, very low concen-
trations of SNAIL will lead to cells in the population exhibiting
only the epithelial phenotype. In such a scenario, two distinct
phenotypes may be acquired by tumor cells in the population—
epithelial stem-like and epithelial non-stem-like. The number of
phenotypes exhibited can further be tuned by varying the concen-
tration of NF-κB which activates the expression of both LIN28 and
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let-7. Very low or very high NF-κB concentrations, for example,
will cause cells to lose their ability to acquire and maintain stemness
due to very low and very high OCT4 expression levels, respectively.

The coupling of EMT and stemness regulatory modules thus
allows for the existence of a myriad of phenotypes. Tumor cells in a
population may exhibit all or some of these phenotypes depending
on the signaling profile. Coupled with the spatial heterogeneity of

Fig. 9 The coupling parameters determine the overlap of the stemness window
(expression of OCT4 within a range) with the spectrum of EMT-associated
phenotypes. The overlap determines which of the phenotypes can acquire
stemness. In the top panel, all three phenotypes can acquire stemness. In the
middle panel, only epithelial and hybrid E/M phenotypes can acquire stemness.
In the bottom panel, only hybrid E/M and mesenchymal phenotypes can acquire
stemness
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signaling states within a tumoral mass, subpopulations exhibiting
different phenotypic profiles can exist in different parts of the
tumor. The EMT regulatory circuit in cancer cells is further cou-
pled with other regulatory modules including the Notch signaling
module. Such additional couplings can further increase the number
of phenotypes that can be exhibited by cells in a population in a
manner similar to the EMT-stemness coupling described above.
Additionally, since Notch signaling leads to the emergence of spa-
tial patterns in the distribution of different phenotypes, EMT-
Notch-stemness coupling can lead to the localization of different
stemness associated phenotypes in different parts of the tumor
microenvironment [76].

8 Conclusion

Here, we have presented EMT from the lens of computational
systems biology where the focus is on the emergent properties of
the underlying regulatory network, instead of those of individual
nodes in the network. We have highlighted various examples of
how physics/engineering/mathematics driven approaches can
reveal unprecedented insights into various aspects of EMT dynam-
ics, such as multi-stability, reversibility/irreversibility, symmetry
(or not) in EMT/MET, the effects of non-cell autonomous
mechanisms in EMT/MET, and finally the connection of EMT/
MET with other cellular traits such as stemness. The in silico
models presented here have their own strengths, limitations, and
assumptions, just as is the case with any in vitro, in vivo, or ex vivo
model. The examples presented here emphasize how an iterative
cross talk between mathematical modeling and experimental biol-
ogy can help decode plasticity and heterogeneity in EMT/MET.
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(2013) Reduced Oct4 expression directs a
robust pluripotent state with distinct signaling
activity and increased enhancer occupancy by
Oct4 and Nanog. Cell Stem Cell 12:531–545.
https://doi.org/10.1016/j.stem.2013.04.
023

87. Shu J, Wu C, Wu Y et al (2013) Induction of
pluripotency in mouse somatic cells with line-
age specifiers. Cell 153:963–975. https://doi.
org/10.1016/j.cell.2013.05.001

88. Theunissen TW, van Oosten AL, Castelo-
Branco G et al (2011) Nanog overcomes repro-
gramming barriers and induces pluripotency in
minimal conditions. Curr Biol 21:65–71.
https://doi.org/10.1016/j.cub.2010.11.074

89. Jolly MK, Jia D, Boareto M et al (2015) Cou-
pling the modules of EMT and stemness: a
tunable “stemness window” model. Oncotar-
get 6:25161–25174. https://doi.org/10.
18632/oncotarget.4629

Mathematical Modelling of EMT 413

View publication statsView publication stats

https://doi.org/10.1073/pnas.1416287112
https://doi.org/10.1101/cshperspect.a026583
https://doi.org/10.1101/cshperspect.a026583
https://doi.org/10.1016/j.stemcr.2013.11.009
https://doi.org/10.1016/j.stemcr.2013.11.009
https://doi.org/10.1073/pnas.1815345116
https://doi.org/10.1146/annurev-pathol-012615-044438
https://doi.org/10.1146/annurev-pathol-012615-044438
https://doi.org/10.1016/j.cell.2008.03.027
https://doi.org/10.1016/j.cell.2008.03.027
https://doi.org/10.1371/journal.pone.0002888
https://doi.org/10.1371/journal.pone.0002888
https://doi.org/10.1073/pnas.1018898108
https://doi.org/10.1073/pnas.1018898108
https://doi.org/10.1038/bjc.2012.126
https://doi.org/10.1038/bjc.2012.126
https://doi.org/10.1371/journal.pone.0084654
https://doi.org/10.1371/journal.pone.0084654
https://doi.org/10.1016/j.cell.2011.07.026
https://doi.org/10.1016/j.cell.2011.07.026
https://doi.org/10.1093/nar/gkp1071
https://doi.org/10.1038/74199
https://doi.org/10.1038/74199
https://doi.org/10.1016/j.stem.2013.04.023
https://doi.org/10.1016/j.stem.2013.04.023
https://doi.org/10.1016/j.cell.2013.05.001
https://doi.org/10.1016/j.cell.2013.05.001
https://doi.org/10.1016/j.cub.2010.11.074
https://doi.org/10.18632/oncotarget.4629
https://doi.org/10.18632/oncotarget.4629
https://www.researchgate.net/publication/344426300

	Chapter 28: Mathematical Modeling of Plasticity and Heterogeneity in EMT
	1 Introduction
	2 Mathematical Modeling of EMT
	2.1 Identify a Problem that Mathematical Modeling Can Help Address and Form a Team of Experimental and Modeling Researchers
	2.2 Choose an Appropriate Modeling Framework
	2.3 Construct a Mathematical Model and Perform Analysis
	2.4 Explain Available Experiments and Make Testable Predictions
	2.5 Perform Corresponding Experimental Studies
	2.6 Go Back to Step 2 and Iterate; Expansion of Model (Even After Publishing the Original Work)

	3 Modeling Population Heterogeneity in EMT
	4 Heterogeneity from Cell-to-Cell Variation in Regulatory Kinetics
	5 Heterogeneity from Random Partitioning of Molecules During Cell Division
	6 Heterogeneity from Cell-Cell Communication Via Notch Signaling
	7 Modeling the Coupling Between EMT and Stemness in Cancer Cells
	8 Conclusion
	References


