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Abstract

Imitation learning (IL) aims to mimic the behavior of an expert policy in a sequen-
tial decision-making problem given only demonstrations. In this paper, we focus
on understanding the minimax statistical limits of IL in episodic Markov Decision
Processes (MDPs). We first consider the setting where the learner is provided a
dataset of N expert trajectories ahead of time, and cannot interact with the MDP.
Here, we show that the policy which mimics the expert whenever possible is in
expectation . |S|H2 log(N)

N suboptimal compared to the value of the expert, even
when the expert plays a stochastic policy. Here S is the state space and H is the
length of the episode. Furthermore, we establish a suboptimality lower bound of
& |S|H2/N which applies even if the expert is constrained to be deterministic, or if
the learner is allowed to actively query the expert at visited states while interacting
with the MDP for N episodes. To our knowledge, this is the first algorithm with
suboptimality having no dependence on the number of actions, under no additional
assumptions. We then propose a novel algorithm based on minimum-distance
functionals in the setting where the transition model is given and the expert is
deterministic. The algorithm is suboptimal by . |S|H3/2/N , matching our lower
bound up to a

√
H factor, and breaks the O(H2) error compounding barrier of IL.

1 Introduction

Imitation learning or apprenticeship learning is the study of learning from demonstrations in a
sequential decision-making framework in the absence of reward feedback. The imitation learning
problem differs from the typical setting of reinforcement learning in that the learner no longer has
access to reward feedback to learn a good policy. In contrast, the learner is given access to expert
demonstrations, with the objective of learning a policy that performs comparably to the expert’s with
respect to the unobserved reward function. This is motivated by the fact that the desired behavior in
typical reinforcement learning problems is easy to specify in words, but hard to capture accurately
through manually-designed rewards [AN04]. Imitation learning has shown remarkable success in
practice over the last decade - the work of [ACQN07] showed that using pilot demonstrations to learn
the dynamics and infer rewards can significantly improve performance in autonomous helicopter
flight. More recently, the approach of learning from demonstrations has shown to improve the state-
of-the-art in numerous areas: autonomous driving [HVP+18, PCS+20], robot control [ACVB09],
game AI [ILP+18, Vin19] and motion capture [MTD+17] among others.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Following the approach pioneered by [BDH+05], several works [RB10, BSH20] show that carrying
out supervised learning (among other approaches) to learn a policy provides black box guarantees
on the suboptimality of the learner, in effect “reducing” the IL problem to supervised learning.
In particular when the expert follows a deterministic policy, [RB10] discuss the behavior cloning
approach, which is a supervised learning method for imitation learning by minimizing the number
of mistakes made by the learner compared to the expert under the empirical state distribution in the
expert demonstrations. However, the authors conclude that supervised learning could lead to severe
error compounding due to the “covariate shift problem”: the actual performance of learner depends
on its own state distribution, whereas training takes place with respect to the expert’s state distribution.
Furthermore, it remains to see how the reduction approach fares when the expert follows a general
stochastic policy. As we discuss later, in this setting, the reduction analysis is in fact loose and can be
improved: we instead use a novel coupling based approach to provide near optimal guarantees.

Nevertheless, the aforementioned reduction approach is quite popular in studying IL and shows that
it suffices to approximately solve an intermediate problem to give one directional bounds on the
suboptimality of a learner. But it is unclear whether a difficulty in solving the intermediate problem
implies an inherent difficulty in solving the original imitation learning problem. In this work, we cast
the imitation learning problem in the statistical decision theory framework and ask,

What are the statistical limits of imitation learning?

We investigate this question in a tabular, epsiodic MDP over state space S , action spaceA and episode
length H , one of the most basic settings to start with. The value J(π) of a (possibly stochastic) policy
π is defined as the expected cumulative reward accrued over the duration of an episode,

J(π) = Eπ

[∑H

t=1
rt(st, at)

]
(1)

where rt is the unknown reward function of the MDP at time t, and the expectation is computed with
respect to the distribution over trajectories {(s1, a1), · · · , (sH , aH)} induced by rolling out the policy
π. Denoting the expert’s policy by π∗ and the learner’s policy π̂, the subopimality of a learner, which
is a random variable, is the difference in value of the expert’s and learner’s policies: J(π∗)− J(π̂).

In the imitation learning framework, we emphasize that the learner does not observe rewards while
interacting with the MDP, but is given access to expert demonstrations to learn a good policy. The
learner is said to “interact” with the MDP by submitting a state-action pair to an oracle and receiving
the next state, with the reward being hidden. We study the problem in the following 3 settings:

(a) No-interaction: The learner is provided a dataset of N independent rollouts of the expert
policy. The learner is not otherwise allowed to interact with the MDP.

(b) Known-transition: The only difference compared to the no-interaction setting is that the
MDP state transition functions and initial state distribution are exactly known to the learner.

(c) Active: The learner is not given a dataset of expert demonstrations in advance. However,
the learner is allowed to actively query the expert using previous expert feedback while
interacting with the MDP for N episodes.

The active setting gives the learner more power than the no-interaction setting: it can just follow the
observed expert actions (same as no-interaction setting), or actively compute a new policy on the fly
based on expert feedback, and then use the most up-to-date policy to interact with the MDP. DAGGER
[RGB11] and AGGRAVATE [RB14] are popular approaches proposed for IL in the active setting.

1.1 Main results

The reduction approach in [RB10] shows that if the expert policy is deterministic, and the probability
of error in guessing the expert’s action at each state is ε, then J(π∗)− J(π̂) . min{H, εH2}. The
appearance of this H2 factor is called error compounding which can be intuitively understood as the
inability to get back on track once the learner makes a mistake. Indeed the basis for this argument is
that if at each time the learner makes an error at time t with probability εt, and gets lost thereafter,
incurring an error ofH− t+1, the error incurred is . Hε1 +(H−1)ε2 + · · ·+ εH . min{H,H2ε}
where ε = ε1+···+εH

H is the probability of error averaged across time. This informal argument supports
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the reduction of imitation learning to the problem of minimizing the empirical probability of error,
known as “behavior cloning”.

Is this error compounding inevitable or is it just a consequence of the behavior cloning algorithm?
Our first contribution shows that it is fundamental to the imitation learning problem without additional
assumptions: even if the learner operates in the active setting and the expert is deterministic, no
algorithm can beat the H2 barrier. The term instance is used to refer to the underlying MDP and the
expert’s policy in the imitation learning problem.
Theorem (informal) 1.1 (Formal version: Theorem 5.1 (a)). In the active setting, for any learner π̂,
there exists an instance such that the suboptimality of the learner is at least |S|H2/N up to universal
constants, i.e., J(π∗)− E[J(π̂)] & |S|H2/N . This lower bound applies even if the expert’s policy
π∗ is constrained to be deterministic.

The key intuition behind this result is to identify that at states which were never visited during the
interactions with the MDP, the learner has no prior knowledge about the expert’s policy or what
state transitions are induced under different actions. With no available information, the learner is
essentially forced to play an arbitrary policy on these states. Indeed, for ε which is a function of |S|
and N , we construct an instance such that for any learner, the probability of visiting at time t a state
unseen during the interactions is ε(1− ε)t−1. Upon visiting such a state, the learner gets completely
lost thereafter with constant probability, and incurs a loss of H − t. The suboptimality is therefore
& (H − 1)ε+ (H−2)ε(1−ε) + · · ·+ ε(1−ε)H−2 & min{H,H2ε}.
Our next result shows that if the expert is deterministic, one can in fact achieve the bound |S|H2/N
in the no-interaction setting by the behavior cloning algorithm:
Theorem (informal) 1.2 (Formal version: Theorem 3.2 (a)). When the expert’s policy is deterministic,
in the no-interaction setting, the expected suboptimality of a learner π̂ that carries out behavior
cloning satisfies J(π∗)− E[J(π̂)] . |S|H2/N on any instance.

We prove this result exactly as stated: by first bounding the population 0-1 risk of the policy to be
|S|/N and subsequently invoking the black box reduction [RB10, Theorem 2.1] to get the final bound
on the expected suboptimality of the learner.

The optimality of behavior cloning and Theorem (informal) 1.1 point to an interesting observation:
the ability to actively query the expert does not improve the minimax expected suboptimality beyond
the no-interaction setting. An important implication of this result is that DAGGER [RGB11] and
other algorithms that actively query an expert, cannot improve over behavior cloning in the worst
case. However, we remark that our bounds are worst-case, and does not imply that behavior cloning
outperforms other existing algorithms on more structured instances observed in practice.

The closest relative to our bounds on behavior cloning in the deterministic expert setting is [SVBB19]
the authors of which propose the FAIL algorithm. When the expert’s policy is deterministic, FAIL is
suboptimal by .

√
|S||A|H5/N (ignoring logarithmic factors). In contrast, in Theorem 3.2 (a), we

show that behavior cloning is suboptimal by . |S|H2/N which always improves on the guarantee of
FAIL: not only is it independent of |A|, but has optimal dependence on H and N . However, note
that the two results apply in slightly different settings and are not directly comparable: FAIL applies
in the ILFO setting where the learner does not observe the actions played by the expert in the set
of demonstrations, and only observes the visited states. The ILFO setting assumes that the reward
function of the MDP does not depend on the action chosen at a state.

Prompted by the success of behavior cloning in the deterministic expert setting, it is natural to ask
whether supervised learning reduction continues to be a good approach when the expert is stochastic.
The reduction from [RB10] indeed still guarantees that any policy with total variation (TV) distance
ε with expert’s action distribution has suboptimality . H2ε (see Lemma A.4). However there is a
problem with invoking such a reduction to bound the suboptimality of the learner: the empirical action
distribution at each state converges very slowly to the population expert action distribution under TV
distance. Seeing as it corresponds to matching the expert’s and learner’s policies at different states
which are distributions over A, the population risk suffers from a convergence rate dependent on
the number of actions, with rate

√
|A|/N instead of N−1. In order to prove tight guarantees on the

expected suboptimality of a policy, we are therefore forced to circumvent the reduction framework.

We analyze the MIMIC-EMP policy in this setting, which carries out empirical risk minimization
under log loss. This is a natural extension of empirical risk minimization under 0-1 loss to the
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Expert Setting Upper bound Lower bound

Det. No-interaction |S|H2

N (Thm. 3.2 (a)) |S|H2

N (Thm. 5.1 (a))
Active |S|H2

N (Thm. 3.2 (a)) |S|H2

N (Item 5.1 (a))

Known-transition min

{
|S|H3/2

N ,
√
|S|H2

N

}
(Thm. 4.1 (a)) |S|H

N (Thm. 5.1 (b))

Non. Det. No-interaction |S|H2 log(N)
N (Thm. 3.3) |S|H2

N (Thm. 5.1 (a))
Active |S|H2 log(N)

N (Thm. 3.3) |S|H2

N (Thm. 5.1 (a))
Known-transition |S|H2 log(N)

N (Thm. 3.3) |S|H
N (Thm. 5.1 (b))

Table 1: Minimax expected suboptimality in different settings (bounds are up to universal constants)

stochastic expert setting. The namesake for this policy follows from the fact that minimizing the
empirical risk under log loss precisely translates to the learner playing the empirical expert policy
distribution at states observed in the expert dataset. It is interesting to note that when the expert is
determinstic, MIMIC-EMP indeed still minimizes the empirical 0-1 risk to 0 and continues to be
optimal in this setting. We show that when the expert is stochastic, the expected suboptimality of
MIMIC-EMP does not depend on the number of actions. Moreover from the lower bound in Theorem
(informal) 1.1, it is in fact minimax optimal up to logarithmic factors.
Theorem (informal) 1.3 (Formal version: Theorem 3.3). In the no-interaction setting, the expected
suboptimality of a learner π̂ carrying out MIMIC-EMP is upper bounded by J(π∗) − E[J(π̂)] .
|S|H2 log(N)/N on any instance. This result applies even when the expert plays a stochastic policy.

The main ingredient in the proof of this result is a coupling argument which shows that the expected
suboptimality of the learner results only from trajectories where the learner visits states unobserved
in the expert dataset, and carefully bounding the probability of this event.

We next discuss the setting where the learner is not only provided expert demonstrations, but the
state transitions functions of the MDP. The “known-transition” model appears frequently in robotics
applications [ZWM+18], capturing the scenario where the learner has access to accurate models /
simulators representing the dynamics of the system, but the rewards of the experts are difficult to
summarize. Our key contribution here is to propose the MIMIC-MD algorithm which breaks the
lower bound in Theorem (informal) 1.1 and suppresses the issue of error compounding which the
covariate shift problem entails. Recent works [BSH20] propose algorithms that claim to bypass the
covariate shift problem. However to the best of our knowledge, this is the first result that provably
does so in the general tabular MDP setting without additional assumptions.
Theorem (informal) 1.4 (Formal version: Theorem 4.1 (a)). In the known-transition setting, if the
expert is deterministic, the expected suboptimality of a learner π̂ playing MIMIC-MD is bounded by
J(π∗)− E[J(π̂)] . min{H

√
|S|/N, |S|H3/2/N}.

The novel element of MIMIC-MD is a hybrid approach which mimics the expert on some states,
and uses a minimum distance (MD) functional [Yat85, DL88] to learn a policy on the remaining
states. The minimum distance functional approach was recently considered in [SVBB19], proposing
to sequentially learn a policy by approximately minimizing a notion of discrepancy between the
learner’s state distribution and the expert’s empirical state distribution. We remark that our approach
is fundamentally different from matching the state distributions under the expert and learner policy:
it crucially relies on exactly mimicking the expert actions on states visited in the dataset, and only
applying the MD functional on the remaining states.

Next we establish a lower bound on the error of any algorithm in the known-transition setting.
Theorem (informal) 1.5 (Formal version: Theorem 5.1 (b)). In the known-transition setting, for any
learner π̂, there exists an instance such that the expected suboptimality J(π∗)− E[J(π̂)] & |S|H/N .
This result applies even if the expert is constrained to be deterministic.

Note that our suboptimality lower bounds corresponding to the no-interaction, active and known-
transition settings (Informal Theorems 1.1 and 1.5) are universal and apply for any learner’s policy
π̂. In contrast, the lower bound example in [RB10] constructs an MDP showing that there exists a
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particular learner policy which plays an action different than the expert with probability ε and has
suboptimality & H2ε. However, it turns out that the suboptimality incurred by behavior cloning is
exactly 0 on the example provided in [RB10], given just a single expert trajectory.

1.2 Organization

In Section 1.3 we review related literature. In Section 2, we introduce necessary notations and
definitions. In Section 3 we discuss the performance of behavior cloning and MIMIC-EMP in the
no-interaction setting. In Section 4 we introduce and discuss our novel algorithm MIMIC-MD in the
known transition setting. In Section 5 we complement the discussion in the previous sections with
lower bounds. Technical proofs of our results are deferred to the supplementary material.

1.3 Related Work

The classical approach to IL focuses on learning from fixed expert demonstrations, e.g., [AN04,
SBS08, RBZ06, ZMBD08, FLA16, HE16, PCS+17]. The reduction approach has also received
much attention for theoretical analysis of IL [RB10, BSH20]. In the active setting, [RGB11] propose
DAGGER, [RB14] propose AGGREVATE, and [SVG+17] propose AggreVaTeD which learn policies
by actively interact with the environment and the expert during training. [LXM20] propsose a
value function approach that is able to self-correct in IL. IL has also received attention from the
general approach of minimizing f-divergences [KBS+19]. Very recently, [ADK+20] studies the
imitation learning problem using a representation learning approach, where multiple agents’ datasets
are available for learning a common representation of the environment. While our results mainly
focus on the case where both expert states and actions are observable, there are approaches e.g.
[NCA+17, TWS18, SVBB19, ADK+20], studying the setting with observations of states alone. The
statistical limits of IL in this setting is an interesting direction and is left as future work.

2 Preliminaries

An MDPM = (S,A, ρ, P, r, H) describes the decision problem over state space S and action space
A. The initial state s1 is drawn from a distribution ρ, and the state evolution at each time t > 1 is
specified by unknown transition functions, P = {Pt(·|s, a) : (s, a) ∈ S ×A}Ht=1.

In addition, there is an unknown reward function r = (r1, · · · , rH) where each rt : S ×A → [0, 1].
Choosing the action a at state s at time t, returns the reward rt(s, a). Interaction with the MDP
happens by rolling out a policy π, which is a non-stationary mapping from states to distributions over
actions. Namely, π = (π1, · · · , πH) where πt : S → ∆1(A) and ∆1(A) is the probability simplex
over A. We operate in the episodic setting and recall that the value of a policy π, defined in eq. (1), is
the expected cumulative reward collected over an episode of length H . Here the Eπ[·] operator (resp.
Prπ[·]) defines expectation (resp. probability) computed with respect to the trajectory generated
by rolling out π, namely {s1 ∼ ρ; ∀t ∈ [H], at ∼ πt(·|st), st+1 ∼ Pt(·|st, at)}.Som etimes we
instead use JM(·) or Jr(·) in order to make the underlying MDP or reward function explicit. The
suboptimality, J(π∗)− J(π̂), is the difference in value of the expert (π∗) and learner (π̂) policies.

Starting from the inital state s1 ∼ ρ, the learner interacts with the MDP by sequentially choosing
actions at at visited states st, with the MDP transitioning the learner to the next state st+1 sampled
from Pt(·|st, at). In the imitation learning framework, the reward function rt(st, at) is unobserved
at each time t in an episode. However, the learner can access demonstrations from an expert π∗ with
the objective of learning a policy that has value comparable to the expert. We study imitation learning
in the following 3 settings:

(a) No-interaction: The learner is provided a dataset D of N independent rollouts of the expert
policy. The learner is not otherwise allowed to interact with the MDP.

(b) Known-transition: As in the no-interaction setting, the learner is provided an expert dataset
D of N independent roll outs of the expert’s policy. The learner additionally knows the
MDP state transition functions P , as well as the initial distribution over states ρ.

(c) Active: The learner is not given a dataset of expert demonstrations in advance; however
is allowed to interact with the MDP for N episodes and can access an oracle, which upon
being queried, returns the expert’s action distribution π∗t (·|s) at the learner’s current state s.
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In addition, we use the notation Πdet to denote the family of all deterministic policies. The notation
π∗t (s) denotes the action played by a deterministic expert at state s at time t.

3 No-interaction setting

We first study the setting where the expert policy π∗ is deterministic. The empirical 0-1 risk is the
empirical frequency of the learner choosing an action different from the expert:

Iemp(π̂, π∗) =
1

H

∑H

t=1
Est∼ftD

[
Ea∼π̂t(·|st)

[
1(a 6= π∗t (st))

]]
. (2)

Here f tD is the empirical distribution over states at time t averaged across trajectories in D. Analo-
gously, we define the population 0-1 risk as,

Ipop(π̂, π∗) =
1

H

∑H

t=1
Est∼ftπ∗

[
Ea∼π̂t(·|st)

[
1(a 6= π∗t (st))

]]
. (3)

where f tπ∗ is the distribution over states at time t induced by rolling out the expert’s policy π∗. Note
that a policy that carries out behavior cloning and minimizes the empirical 0-1 risk to 0 in fact mimics
the expert at all states observed in D. Since the policy on the remaining states is not specified, we
define Πmimic(D) as the set of all candidate deterministic policies that carry out behavior cloning,

Πmimic(D) ,
{
π ∈ Πdet : ∀t ∈ [H], s ∈ St(D), πt(·|s) = δπ∗t (s)

}
, (4)

where St(D) denotes the set of states visited at time t in some trajectory in D Indeed, the reduction
approach in [RB10] shows that any policy π̂ that minimizes the population 0-1 loss to be ≤ ε ensures
that J(π∗) − J(π̂) ≤ H2ε. We first analyze behavior cloning which minimizes the empirical 0-1
risk, and establish a generalization bound for the expected population 0-1 risk. We defer detailed
proofs of the results in this section to Appendix A.1.
Lemma 3.1 (Population 0-1 risk of Behavior Cloning). Consider the no-interaction setting, and
assume the expert policy π∗ is deterministic. Consider any policy π̂ ∈ Πmimic(D) (defined in eq. (4)).
Then, the expected population 0-1 risk of π̂ (defined in eq. (3)) is bounded by,

E [Ipop(π̂, π∗)] . min {1, |S/N} . (5)

Proof Sketch. The bound on the population 0-1 risk of behavior cloning relies on the following
observation: at each time t, the learner exactly mimics the expert on the states that were visited in the
expert dataset at least once. Therefore the contribution to the population 0-1 risk only stems from
states that were never visited at time t in any trajectory in D. Finally we identify that for each t, the
probability mass contributed by such states has expected value upper bounded by |S|/N .

With this result, invoking [RB10, Theorem 2.1] immediately results in the upper bound on the
expected suboptimality of a learner carrying out behavior cloning in Theorem 3.2 (a). We use a
similar approach to establish a high probability bound on the population 0-1 risk of behavior cloning.
Theorem 3.2 (Upper bounding suboptimality of Behavior Cloning). Consider any policy π̂ which
carries out behavior cloning (i.e. π̂ ∈ Πmimic(D)).

(a) The expected suboptimality of π̂ is upper bounded by,

J(π∗)− E [J(π̂)] . min
{
H, |S|H2/N

}
. (6)

(b) For δ ∈ (0,min{1, H/10}], with probability 1− δ the suboptimality of π̂ is bounded by,

J(π∗)− J(π̂) . |S|H2/N +
√
|S|H2 log(H/δ)/N. (7)

Proof Sketch. We utilize the key observation in the proof of Lemma 3.1: for each t = 1, · · · , H ,
the contribution to the population 0-1 risk in eq. (3) stems only from states that were never visited
at time t in any trajectory in D. For each t, we show that the mass contributed by such states up
to constants does not exceed |S|/N +

√
|S| log(H/δ)/N with probability ≥ 1− δ/H . Summing

over t = 1, · · · , H results in an upper bound on the population 0-1 loss that holds with probability
≥ 1− δ (by the union bound). Invoking [RB10, Theorem 2.1] proves the high probability bound.
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3.1 Stochastic expert

We now move to the case where the expert policy is general and could be stochastic. Here, we
consider MIMIC-EMP (Algorithm 1) where the learner minimizes the empirical risk under log-loss.
This approach in fact corresponds to the learner playing the expert’s empirical action distribution at
states observed in the expert dataset.

Algorithm 1 MIMIC-EMP

1: Input: Expert dataset D
2: for t = 1, 2, · · · , H do
3: for s ∈ S do
4: if s ∈ St(D) then
5: π̂t(·|s) = πDt (·|s). . πDt (·|s) is the empirical estimate of π∗t (·|s) in dataset D
6: else
7: π̂t(·|s) = Unif(A).
8: Return π̂

Theorem 3.3. In the no-interaction setting, the learner’s policy π̂ returned by MIMIC-EMP (Algo-
rithm 1) has expected suboptimality upper bounded by,

J(π∗)− E [J(π̂)] . min
{
H, |S|H2 log(N)/N

}
(8)

for a general expert π∗ which could be stochastic.

We defer the formal analysis of Theorem 3.3 to Appendix A.2 and discuss some intuitions for the
result below. In contrast to the setting where the expert is determinstic, it is no longer true that
the learner is error-free as long as all states visited are observed in the expert dataset. However,
by virtue of playing an empirical estimate of the expert’s policy at these states it is plausible the
expected suboptimality of the learner is 0. However, a proof of this claim is not straightforward since
the empirical distribution played by the learner at different states is not independent across time as
functions of the dataset D.

We circumvent this problem by constructing a coupling between the expert’s and learner’s policies.
Under the coupling it turns out the expected suboptimality of the learner is in fact 0 when the visited
states are all observed in the dataset. The remaining task is to bound the probability that at some
point in the episode the learner visits a state unobserved in the expert dataset. A careful analysis of
this probability term shows that it is bounded by . |S|H log(N)/N under the coupling.

4 Known-transition setting

We next study imitation learning in the known-transition model where the initial state distribution ρ
and transition functions P are known to the learner. To indicate this, we denote the learner’s policy by
π̂(D,P, ρ). In this setting, mimicking the expert on states where the expert’s policy is known is still
a good approach, since there is no contribution to the learner’s suboptimality as long as the learner
only visits such states in an episode. With the additional knowledge of P , however, the learner can
potentially do better on states that are unobserved in the demonstrations, and correct its mistakes
even after it takes a wrong action, to avoid error compounding.
Theorem 4.1. Consider the learner’s policy π̂ returned by MIMIC-MD (Algorithm 2). When the
expert policy π∗ is deterministic, in the known-transition setting,

(a) The expected suboptimality of the learner is upper bounded by,

J(π∗)− E [J(π̂(D,P, ρ))] . min
{
H,
√
|S|H2/N, |S|H3/2/N

}
. (9)

(b) For δ ∈ (0,min{1, H/5}), with probability 1− δ, the suboptimality of the learner satisfies,

J(π∗)− J(π̂) . |S|H3/2/N
(

1 + 3 log(2|S|H/δ)/
√
|S|
)1/2√

log(2|S|H/δ). (10)
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Algorithm 2 MIMIC-MD

1: Input: Expert dataset D.
2: Choose a uniformly random permutation of D,

Define D1 to be the first N/2 trajectories of D and D2 = D \D1.
3: Define T D1

t (s, a) , {{(st′ , at′)}Ht′=1|st=s, at=a, ∃τ ≤ t : sτ 6∈ Sτ (D1)} as trajectories that
visit (s, a) at time t, and at some time τ≤t visit a state unvisited at time τ in any trajectory in D1.

4: Define the optimization problem OPT below and return π̂ as any optimizer of it:

min
π∈Πmimic(D1)

H∑
t=1

∑
(s,a)∈S×A

∣∣∣∣∣Prπ

[
T D1
t (s, a)

]
− 1

|D2|
∑

tr∈D2

1

(
tr ∈ T D1

t (s, a)
)∣∣∣∣∣ . (OPT)

. Πmimic(D1) is the set of policies that mimics the expert on the states visited in D1 (eq. (4))
5: Return π̂

Theorem 4.1 (a) shows that MIMIC-MD (Algorithm 2) breaks the |S|H2/N error compounding
barrier which is not possible in the no-interaction setting, as discussed later in Theorem 5.1 (a). We
defer the formal analysis of Theorem 4.1 to Appendix A.3 and provide intuitions for the result below.

MIMIC-MD inherits the spirit of mimicking the expert by exactly copying the expert actions in
dataset D1: as a result, the learner only incurs suboptimality upon visiting a state unobserved in D1

at some point in an episode. Let E≤tD1
be the event that the learner visits a state at some time τ ≤ t

which has not been visited in any trajectory in D1 at time τ . In particular, for any policy π̂ which
mimics the expert on D1, we show,

J(π∗)−J(π̂) ≤
∑

s∈S

∑
a∈A

∑H

t=1

∣∣∣Prπ∗
[
E≤tD1

, st=s, at=a
]
−Prπ̂

[
E≤tD1

, st=s, at=a
]∣∣∣ . (11)

In the known-transition setting the learner knows the transition functions {Pt : 1 ≤ t ≤ H} and
the initial state distribution ρ, and can exactly compute the probability Prπ[E≤tD1

, st = s, at = a] for
any known policy π. However, unfortunately the learner cannot compute Prπ∗ [E≤tD1

, st = s, at = a]
given only D1. This is because the expert’s policy on states unobserved in D1 is unknown and the
event ED1 ensures that such states are necessarily visited. Here we use the remaining trajectories in
the dataset, D2 to compute an empirical estimate of Prπ∗ [E≤tD1

, st = s, at = a]. The form of eq. (11)
exactly motivates Algorithm 2, which replaces the population term Prπ∗ [E≤tD1

, st = s, at = a] by its
empirical estimate in the MD functional.
Remark 4.1. In the known-transition setting, the maximum likelihood estimate (MLE) for π∗ does not
achieve the optimal sample complexity. When the expert is deterministic, all policies in Πmimic(D)
have equal likelihood given D. This is because the probability of observing a trajectory does not
depend on the expert’s policy on the states it does not visit. From Theorem 3.2 (a) and Item 5.1 (a)
the expected suboptimality of the worst policy in Πmimic(D) is � |S|H2/N . Since the MLE does not
give a rule to break ties, this implies that it is not optimal.
Remark 4.2. We conjecture that the conventional minimum distance functional approach, which
matches the empirical distribution of either states or state-action pairs does not achieve the rate in
Theorem 4.1 (a). Conventional distribution matching approaches do not take into account the fact
that the expert’s action is known at states visited in the dataset and may choose to play a different
action at a state, even if the expert’s action was seen in the dataset. In contrast, MIMIC-MD returns
a policy that mimics the expert at states visited in the expert dataset, avoiding this issue.

We also provide a guarantee when the learner returns any policy which solves the optimization
problem OPT approximately to an additive accuracy of ε.
Theorem 4.2. Consider any policy π̂ that minimizes the optimization problem OPT to an additive
error of ε. Then, the expected suboptimality of the learner is upper bounded by,

J(π∗)− E [J(π̂(D,P ))] . min
{
H, H

√
|S|/N + ε, |S|H3/2/N + ε

}
. (12)

Remark 4.3. As stated, it is not clear that MIMIC-MD is an efficient algorithm as it involves con-
strained optimization over high degree polynomials (in the learner’s policy). However, Theorem 4.2
shows that it suffices to approximately minimize OPT to return a policy with small suboptimality.
This can indeed be carried out efficiently and will be reported in a future work.
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1

∼ρ

· · · |S|−1

∼ρ

b

(a) MDP template when in the no-interaction setting,
Upon playing the expert’s action at any state except
b, learner is renewed in the initial distribution,
ρ = {ξ, · · ·, ξ, 1−(|S|−2)ξ, 0} where ξ= 1

N+1

1 · · · |S|

(b) MDP template in the known-transition setting,
Each state is absorbing, initial distribution is given by
{ξ, · · ·, ξ, 1− (|S|−1)ξ} where ξ = 1

N+1

Figure 1: MDP templates for lower bounds under different settings: green arrows indicate state
transitions under the expert’s action, red arrows indicate state transitions under other actions

5 Lower bounds

Theorem 5.1. For any learner π̂, for each |S| ≥ 3 and |A| ≥ 2 there exists an MDPM and a
deterministic expert policy π∗ such that the expected suboptimality of π̂ is lower bounded in the:

(a) no-interaction and active settings by, JM(π∗)− E[JM(π̂)] & min
{
H, |S|H2/N

}
.

(b) known-transition setting by, JM(π∗)− E[JM(π̂)] & min {H, |S|H/N}.

We construct the worst case MDP templates for the no-interaction and active settings in Figure 1a
and that for the known-transition setting in Figure 1b and defer the formal analysis to Appendix A.4.

In Figure 1a, at any state of the MDP, except one, every other action, moves the learner to the
absorbing state b. Suppose a learner independently plays an action different from the expert at a state
with probability ε. Upon making a mistake, the learner is transferred to b and collects no reward for
the rest of the episode. Thus the suboptimality of the learner is ≥ Hε + (H − 1)ε(1 − ε) + · · · +
(1− ε)H & min{H,H2ε}. By construction of ρ, we identify that any learner must make a mistake
with probability ε & |S|/N , resulting in the claim.
Remark 5.1. The lower bound construction in Figure 1a applies even if the learner can actively
query the expert while interacting with the MDP. If the expert’s queried action is not followed at any
state, the learner is transitioned to b with probability 1. Upon doing so, the learner no longer can get
any meaningful information about the expert’s policy at states for the rest of the episode. Seeing that
the “most informative” dataset the learner can collect involves following the expert at each time, it
is no different had an expert dataset of N trajectories been provided in advance. This reduces the
active case to the no-interaction case for which the existing construction applies.

The lower bound construction in the known-transition setting is illustrated in Figure 1b: each state in
the MDP is absorbing so a policy stays at a single state in an episode. If the initial state of the MDP
was not visited in the dataset, the learner does not see the expert’s action for the rest of the episode
which is the only one to offer non-zero reward: at such states the learner’s suboptimality is & H . By
construction of ρ, the probability of initialization in such a state is & |S|/N , resulting in the claim.

6 Conclusion

We show that behavior cloning is in fact optimal in the no-interaction setting, when the expert is
determinstic. In addition, we show that minimizing empirical risk under log-loss results in a policy
which is optimal up to logarithmic factors even when the expert is stochastic. In the known-transition
setting we propose the first policy that provably breaks the H2 error compounding barrier, and show
a lower bound which it matches up to a

√
H-factor. An important question we raise is to bridge

this gap between the upper and lower bounds in the known-transition setting. We study IL at two
opposing ends of the spectrum: when the learner cannot interact with the MDP, and when the learner
exactly knows the transition structure. It is a fundamental question to ask is how much improvement
is possible when the learner is allowed to interact with the MDP a finite number of times. It is also an
interesting question to extend these results beyond the tabular setting.
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Broader Impact

An important conclusion of our work is that algorithms that require an expert that can be actively
queried, in the worst case, do not break the error compounding barrier. While it is plausible that
such algorithms do indeed perform better in practical problems, it still raises an important point that
compounding errors is fundamental to IL and requires a better understanding in practice. Furthermore,
our proposed algorithm MIMIC-MD in the known-transition setting reveals some new algorithmic
primitives that can hopefully inspire practitioners to design algorithms that perform better.
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