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Abstract

We present an efficient and practical (polynomial time) algorithm for online pre-
diction in unknown and partially observed linear dynamical systems (LDS) under
stochastic noise. When the system parameters are known, the optimal linear predic-
tor is the Kalman filter. However, in unknown systems, the performance of existing
predictive models is poor in important classes of LDS that are only marginally
stable and exhibit long-term forecast memory. We tackle this problem by bounding
the generalized Kolmogorov width of the Kalman filter coefficient set. This moti-
vates the design of an algorithm, which we call spectral LDS improper predictor
(SLIP), based on conducting a tight convex relaxation of the Kalman predictive
model via spectral methods. We provide a finite-sample analysis, showing that our
algorithm competes with the Kalman filter in hindsight with only logarithmic regret.
Our regret analysis relies on Mendelson’s small-ball method, providing sharp error
bounds without concentration, boundedness, or exponential forgetting assumptions.
Empirical evaluations demonstrate that SLIP outperforms state-of-the-art methods
in LDS prediction. Our theoretical and experimental results shed light on the
conditions required for efficient probably approximately correct (PAC) learning of
the Kalman filter from partially observed data.

1 Introduction

Predictive models based on linear dynamical systems (LDS) have been successfully used in a wide
range of applications with a history of more than half a century. Example applications in AI-related
areas range from control systems and robotics [11] to natural language processing [4], healthcare
[41], and computer vision [6, 7]. Other applications are found throughout the physical, biological,
and social sciences in areas such as econometrics, ecology, and climate science.

The evolution of a discrete-time LDS is described by the following state-space model with t ≥ 1:

ht+1 = Aht +Bxt + ηt,

yt = Cht +Dxt + ζt,

where ht are the latent states, xt are the inputs, yt are the observations, and ηt and ζt are process and
measurement noise, respectively.

When the system parameters are known, the optimal linear predictor is the Kalman filter. When
they are unknown, a common approach for prediction is to first estimate the parameters of a Kalman
filter and then use them to predict system evolution. Direct parameter estimation usually involves
solving a non-convex optimization problem, such as in the expectation maximization (EM) algorithm,
whose theoretical guarantees may be difficult [55]. Several recent works have studied finite-sample
properties of LDS identification. For fully observed LDS, system identification is shown to be possible
without a strict stability (ρ(A) < 1) assumption, where ρ(A) is the spectral radius of A [46, 43, 13].
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For partially observed LDS, methods such as gradient descent [19] and subspace identification [49]
are developed, whose performances degrade polynomially when ρ(A) is close to one.

We focus on constructing LDS predictors without identifying the parameters. For a stochastic LDS,
the recent work of Tsiamis and Pappas [48] is most related to our question. Their method performs
linear regression over a fixed-length lookback window to predict the next observation yt given its
causal history. Without using a mixing-time argument, [48] showed logarithmic regret with respect to
the Kalman filter in hindsight even when the system is marginally stable (ρ(A) ≤ 1). However, the
prediction performance deteriorates if the true Kalman filter exhibits long forecast memory.

To illustrate the notion of forecast memory, we recall the recursive form of the (stationary) Kalman
filter for 1 ≤ t ≤ T , where T is the final horizon [25, Chapter 9]:

ĥt+1|t = Aĥt|t−1 +Bxt +K(yt − Cĥt|t−1 −Dxt) (1)

= (A−KC)ĥt|t−1 +Kyt + (B −KD)xt, (2)

where ĥt|t−1 denotes the optimal linear predictor of ht given all the observations y1, y2, . . . , yt−1 and
inputs x1, x2, . . . , xt−1. The matrix K is called the (predictive) Kalman gain.1 The Kalman predictor
of yt given y1, y2, . . . , yt−1 and x1, x2, . . . , xt, denoted by ŷt|t−1, is Cĥt|t−1 +Dxt. Assume that
ĥ1|0 = 0. By expanding Equation (2), we obtain

mt , ŷt|t−1 =
t−1∑
i=1

CGt−i−1Kyi +
t−1∑
i=1

CGt−i−1(B −KD)xi +Dxt, (3)

where G = A−KC. In an LDS, the transition matrix A controls how fast the process mixes—i.e.,
how fast the marginal distribution of yt becomes independent of y1. However, it is G that controls
how long the forecast memory is. Indeed, it was shown in [25, chap. 14] that if the spectral radius
ρ(G) is close to one, then the performance of a linear predictor that uses only yt−k to yt−1 for fixed
k in predicting yt would be substantially worse than that of a predictor that uses all information y1 up
to yt−1 as t→∞. Conceivably, the sample size required by the algorithm of Tsiamis and Pappas
[48] explodes to infinity as ρ(G)→ 1, since the predictor uses a fixed-length lookback window to
conduct linear regression.

The primary reason to focus on long-term forecast memory is the ubiquity of long-term dependence
in real applications, where it is often the case that not all state variables change according to a similar
timescale2 [5]. For example, in a temporal model of the cardiovascular system, arterial elasticity
changes on a timescale of years, while the contraction state of the heart muscles changes on a
timescale of milliseconds; see Appendix I for a discussion on systems with long forecast memory.

Designing provably computationally and statistically efficient algorithms in the presence of long-
term forecast memory is challenging, and in some cases, impossible. A related problem studied
in the literature is the prediction of auto-regressive model with order infinity: AR(∞). Without
imposing structural assumptions on the coefficients of an AR(∞) model, there is no hope to guarantee
vanishing prediction error. One common approach to obtain a smaller representation is to make an
exponential forgetting assumption to justify finite-memory truncation. This approach has been used
in approximating AR(∞) with decaying coefficients [18], LDS identification [19], and designing
predictive models for LDS [48, 26]. Inevitably, the performance of these methods degrade by either
losing long-term dependence information or requiring very large sample complexity as ρ(G) (and
sometimes, ρ(A)) gets closer to one.

However, the Kalman predictor in (3) does seem to have a structure and in particular, the coefficients
are geometric in G, which gives us hope to exploit it. Our main contributions are the following:

1. Generalized Kolmogorov width and spectral methods: We analyze the generalized Kolmogorov
width (defined in Section 5.1) of the Kalman filter coefficient set. In Theorem 2, we show that when the
matrix G is diagonalizable with real eigenvalues, the Kalman filter coefficients can be approximated

1One can interpret the Kalman filter Equation (1) as linear combinations of optimal predictor given existing
data Aĥt|t−1, known drift Bxt, and amplified innovation K(yt − Cĥt|t−1 − Dxt), where the term yt −
Cĥt|t−1 − Dxt, called the innovation of process yt, measures how much additional information yt brings
compared to the known information of observations up to yt−1.

2Indeed, a common practice is to set the timescale to be small enough to handle the fastest-changing variables.
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by a linear combination of polylog (T ) fixed known filters with 1/ poly (T ) error. It then motivates
the algorithm design of linear regression based on the transformed features, where we first transform
the observations y1:t and inputs x1:t for 1 ≤ t ≤ T via these fixed filters. In some sense, we use
the transformed features to achieve a good bias-variance trade-off: the small number of features
guarantees small variance and the generalized Kolmogorov width bound guarantees small bias. We
show that the fixed known filters can be computed efficiently via spectral methods. Hence, we choose
spectral LDS improper predictor (SLIP) as the name for our algorithm.

2. Difficulty of going beyond real eigenvalues: We show in Theorem 2 that if the dimension of
matrix G in (3) is at least 2, then without assuming real eigenvalues one has to use at least Ω(T )
filters to approximate an arbitrary Kalman filter. In other words, the Kalman filter coefficient set is
very difficult to approximate via linear subspaces in general. This suggests some inherent difficulty
of constructing provable algorithms for prediction in an arbitrary LDS.

3. Logarithmic regret uniformly for ρ(G) ≤ 1, ρ(A) ≤ 1: When ρ(A) or ρ(G) is equal to
one the process does not mix and common assumptions regarding boundedness, concentration, or
stationarity do not hold. Recently, Mendelson [38] showed that such assumptions are not required and
learning is possible under a milder assumption referred to as the small-ball condition. In Theorem 1,
we leverage this idea as well as results on self-normalizing martingales and show a logarithmic regret
bound for our algorithm uniformly for ρ(G) ≤ 1 and ρ(A) ≤ 1.

4. Experimental results: We demonstrate in simulations that our algorithm performs better than
the state-of-the-art in LDS prediction algorithms. In Section 7, we compare the performance of our
algorithm to wave filtering [22] and truncated filtering [48].

2 Related work

Adaptive filtering algorithms are classical methods for predicting observations without the intermedi-
ate step of system identification [34, 15, 16, 51, 29, 35]. However, finite-sample performance and
regret analysis with respect to optimal filters are typically not studied in the classical literature. From
a machine learning perspective, finite-sample guarantees are critical for comparing the accuracy and
sample efficiency of different algorithms.

In designing algorithms and analyses for learning from sequential data, it is common to use mixing-
time arguments [54]. These arguments justify finite-memory truncation [19, 18] and support gen-
eralization bounds analogous to those in i.i.d. data [39, 28]. An obvious drawback of mixing-time
arguments is that the error bounds degrade with increasing mixing time. Several recent works
established that identification is possible for systems that do not mix [46, 13, 47]. For the problem
of the linear quadratic regulator, several recent results provided finite-sample regret bounds for
fully-observed systems [12, 40, 8, 2, 37, 45] and partially-observed stable systems [44, 31, 33].

For prediction without LDS identification, Hazan et al. [22, 23] have proposed algorithms for the case
of bounded adversarial noise. Similar to our work, they use spectral methods for deriving features.
However, the spectral method is applied on a different set and connections with k-width and difficulty
of approximation for the non-diagonalizable case are not studied. Moreover, the regret bounds are
computed with respect to a certain fixed family of filters and competing with the Kalman filter is left
as an open problem. Indeed, the predictor for general LDS proposed by Hazan et al. [23] without the
real eigenvalue assumption only uses a fixed lookback window. Furthermore, the feature norms are
of order poly (T ) in our formulation, which makes a naive application of online convex optimization
theorems [21] fail to achieve a sublinear regret.

We focus on a more challenging problem of learning to predict in the presence of unbounded
stochastic noise and long-term memory, where the observation norm grows over time. Most related
to our work are the recent works [48, 17], where the performance of an algorithm based on a finite
lookback window is shown to achieve logarithmic regret with respect to the Kalman filter. However,
the performance of this algorithm degrades as the forecast memory increases. In fact, this algorithm
can be viewed as a special case of our algorithm where the fixed filters are chosen to be standard
basis vectors.

We investigate the possibility of a tight convex relaxation of the Kalman predictive model by
analyzing a generalization of Kolmogorov width. Kolmogorov width is a notion from approximation
theory that measures how well a set can be approximated by a low-dimensional linear subspace
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[42]. Kolmogorov width has been used in a variety of problems such as minimax risk bounds for
truncated series estimators [10, 24], minimax rates for matrix estimation [36], density estimation [20],
hypothesis testing [52, 53], and compressed sensing [9]. In Section 5, we present a generalization of
Kolmogorov width, which facilitates measuring the convex relaxation approximation error.

3 Preliminaries and problem formulation

Notation. We denote by x1:t ∈ Rnt, the vertical concatenation of x1, . . . , xt ∈ Rn. We use xt(i)
to refer to the i-th element of the vector xt = [xt(1), . . . , xt(n)]>. We denote by ‖.‖2, the Euclidean
norm of vectors and the operator 2-norm of matrices. The spectral radius of a square matrix A is
denoted by ρ(A). The eigenpairs of an n × n matrix are {(σj , φj)}nj=1 where σ1 ≥ · · · ≥ σn and
{φj}kj=1 are called the top k eigenvectors. We denote by φj(t : 1) = [φj(t), . . . , φj(1)] the first t
elements of φj in a reverse order. The Kronecker product of matrices A and B is denoted by A⊗B.
Identity matrix of dimension n is represented by In. We write x .b y to represent x ≤ cy, where c is
a constant that only depends on b. We use the notation x �b y if c1, c2 > 0 exist that only depend on
b and c1|x| ≤ |y| ≤ c2|x|.

Problem statement. We consider the problem of predicting observations generated by the following
linear dynamical system with inputs xt ∈ Rn, observations yt ∈ Rm, and latent states ht ∈ Rd:

ht+1 = Aht +Bxt + ηt,

yt = Cht +Dxt + ζt,
(4)

whereA,B,C, andD are matrices of appropriate dimensions. The sequences ηt ∈ Rd (process noise)
and ζt ∈ Rm (measurement noise) are assumed to be zero-mean, i.i.d. random vectors with covariance
matrices Q and R, respectively. For presentation simplicity, we assume that ηt and ζt are Gaussian;
extension of our regret analysis to sub-Gaussian and hypercontractive noise is straightforward. We
assume that the discrete Riccati equation of the Kalman filter for the state covariance has a solution
P and the initial state starts at this stationary covariance. This assumption ensures the existence of
the stationary Kalman filter with stationary gain K; see [25] for details.

Define the observation matrix Ot and the control matrix Ct of a stationary Kalman filter as
Ot =

[
CGt−1K CGt−3K . . . CK

]
,

Ct =
[
CGt−1(B −KD) CGt−3(B −KD) . . . C(B −KD)

]
.

(5)

where G = A−KC is called the closed-loop matrix. The Kalman predictor (3) can be written as
mt+1 = Oty1:t + Ctx1:t +Dxt+1, (6)

The prediction error et = yt − mt, also called the innovation, is zero-mean with a stationary
covariance V . Our goal is to design an algorithm m̂t(y1:t−1, x1:t) such that the following regret

Regret(T ) ,
T∑
t=1

‖yt − m̂t‖22 − ‖yt −mt‖22 (7)

is bounded by polylog(T ) with high probability.

Improper learning. The standard objective (such as squared loss) for learning the parameters of a
Kalman predictive model is non-convex as apparent in (3). However, we aspire to an algorithm that
optimizes a convex objective for which theoretical guarantees of convergence and sample complexity
analysis are possible. This motivates developing an algorithm based on improper learning. Instead of
directly learning the model parameters in a hypothesis classH (such asH = (A,B,C,D,Q,R) in
an LDS), improper learning methods reparameterize and learn over a different class H̃. The class H̃ is
often a relaxation: it is chosen in a way that is easier to optimize and more computationally efficient
while being close to the original hypothesis class. Improper learning has been used to circumvent the
proper learning lower bounds [14] and is also deployed in [22, 23, 32, 48].

We develop an algorithm based on improper learning and a tight convex relaxation: we slightly
overparameterize the LDS predictive model such that the resulting objective is convex. Designing an
overparameterized model requires care as too few parameters may result in a large bias whereas too
many parameters may result in high variance. Section 5.3 presents our overparameterization approach
based on spectral methods that enjoys a small approximation error with relatively few parameters.
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4 SLIP: Spectral LDS improper predictor

Algorithm 1 presents a pseudocode for the SLIP algorithm. SLIP is based on an online regularized
least squares and a linear predictor m̂t = Θ̂(t)ft, where ft ∈ Rl is the feature vector and Θ̂(t) ∈ Rm×l
is the parameter matrix. The features are constructed from past observations and inputs using
eigenvectors of a particular T × T Hankel matrix with entries

Hij =
1 + (−1)i+j

2(i+ j − 1)
, 1 ≤ i, j ≤ T. (8)

Let φ1, . . . , φk for k ≤ T be the top k eigenvectors of matrix H , to which we refer as spectral filters.
At every time step, we obtain our feature vector by concatenating the current input xt to k output
features based on y1:t−1 and k input features based on x1:t−1. More specifically, we have

ỹt−1(j) , (φ>j (t− 1 : 1)⊗ Im)y1:t−1 = φj(1)yt−1 + · · ·+ φj(t− 1)y1 (output features),

x̃t−1(j) , (φ>j (t− 1 : 1)⊗ In)x1:t−1 = φj(1)xt−1 + · · ·+ φj(t− 1)x1 (input features),
(9)

for j ∈ {1, . . . , k}, resulting in a feature vector ft with dimension l = mk + nk + n. Upon
receiving a new observation, the parameter matrix is updated by minimizing the regularized loss∑t
i=1 ‖Θ̂ft − yt‖2 + α‖Θ̂‖22 for α > 0, which yields the following update rule

Θ̂(t+1) =
( t∑
i=1

yif
>
i

)( t∑
i=1

fif
>
i + αIl

)−1
. (10)

Importantly, Algorithm 1 requires no knowledge of system parameters, noise covariance, or state
dimension and the predictive model is learned online only through sequences of inputs and observa-
tions. Note that the spectral filters are computed by conducting a single eigendecomposition and are
fixed throughout the algorithm; matrix Ψt merely selects certain elements of the spectral filters used
for constructing features.

The next theorem analyzes the regret achieved by the SLIP algorithm. A proof sketch of the theorem
is provided in Section 6 and a complete proof is deferred to Appendix F.
Theorem 1. (Regret of the SLIP algorithm) Consider system (4) without inputs with initial state
covariance equal to P . Let mt be the predictions made by the best linear predictor (Kalman filter)
and m̂t be the predictions made by Algorithm 1. Fix the failure probability δ > 0 and assume:

(i) There exists a finite RΘ that ‖C‖2, ‖P‖2, ‖Q‖2, ‖R‖2, ‖V ‖2 ≤ RΘ and ‖Ot‖2 ≤ RΘt
β for a

bounded constant β ≥ 0. Let κ be the maximum condition number of R and Q.

(ii) The system is marginally stable with ρ(A) ≤ 1 and ‖At‖2 ≤ γtlog(γ) for a bounded constant
γ ≥ 1. Furthermore, the closed-loop matrix G is diagonalizable with real eigenvalues.

Algorithm 1 SLIP: Spectral LDS Improper Predictor

Inputs: Horizon T , number of filters k, regularization parameter α, dimensions m and n
Output: One-step-ahead predictions m̂t(x1:t, y1:t−1).

Compute the top k eigenvectors {φj}kj=1 of matrix H defined in (8).
Set vectors ψi = [φ1(i), . . . , φk(i)]> for i ∈ {1, . . . , T}, where φj(i) is the i-th element of φj .
Initialize Θ̂(1) ∈ Rm×l with l = (n+m)k + n.
for t = 1, . . . , T do

Set Ψt−1 = [ψt−1, . . . , ψ1], where Ψ0 = 0k, and compute the feature vector ft:

ft =

[
ỹt−1

x̃t−1

xt

]
=

[
(Ψt−1 ⊗ Im)y1:t−1

(Ψt−1 ⊗ In)x1:t−1

xt

]
.

Predict m̂t = Θ̂(t)ft.
Observe yt and update parameters Θ̂(t+1) =

(∑t
i=1 yif

>
i

)(∑t
i=1 fif

>
i + αIl

)−1
.
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(iii) The regularization parameter α and the number of filters k satisfy α � (RΘkT
β)−1 and

k � log2(T ) polylog(m, γ,RΘ, 1/δ).

(iv) There exists s .RΘ,m,γ,β,δ t/(k log k) and t0 such that for all t ≥ t0
tΩs/2(A;ψ)− Ωt+1(A;ψ) � 0. (11)

Ωt(A;ψ) is called the filter quadratic function of ψ with respect to A and is defined as

Ωt(A;ψ) = (ψ
(d)
1 )(ψ

(d)
1 )> + · · ·+ (ψ

(d)
t−1 + · · ·+ ψ

(d)
1 At−2)(ψ

(d)
t−1 + · · ·+ ψ

(d)
1 At−2)>,

where ψ(d)
i = [φ1(i), . . . , φk(i)]> ⊗ Id.

Then, for all T ≥ max{10, t0}, the following holds with probability at least 1− δ,

Regret(T ) ≤ polylog(T, γ,
1

δ
)κ poly(RΘ, β,m).

Remark 1. Note that for any matrixA, there exists a constant γ ≥ 1 such that ‖At‖2 ≤ γtlog(γ) [27].
We justify our assumption on diagonalizable G with real eigenvalues in the following section. The
filter quadratic condition is easily verified for s > 2(k + 1) and t0 &RΘ,m,γ,β,δ k

2 log(k) for all A
with ρ(A) ≤ 1 for the filters corresponding to truncated observations (a.k.a. basis vectors) such as in
[48]. WhenA is symmetric, this condition can be further simplified to tΩs/2(D;ψ)−Ωt+1(D;ψ) � 0
for all diagonal matrices D with |Dii| ≤ 1.

5 Approximation error: Generalized Kolmogorov width

5.1 Width of a subset

We now introduce a generalization of Kolmogorov k-width of a subset, which we later use as a
criterion to assess the quality of a function approximation method.
Definition 1. (Generalized Kolmogorov k-width) Let W be a subset in a normed linear space with
norm ‖.‖ whose elements are d× n matrices. Given d× n matrices u1, . . . , uk for k ≥ 1, let

U(u1, . . . , uk) ,
{
y
∣∣∣ y =

∑k

i=1
aiui, ∀ai ∈ Rd×d

}
.

For fixed k ≥ 1, let Uk ,
{
U(u1, . . . , uk)

∣∣ui ∈ Rd×n
}

. The generalized k-width of W is defined as

dk(W ) , inf
U∈Uk

sup
x∈W

dist(x;U) = inf
U∈Uk

sup
x∈W

inf
y∈U
‖x− y‖,

where dist(x;U) is the distance of x to subset U and the first infimum is taken over all U ∈ Uk.

In words, we are interested in approximating W with the “best” subset in the set Uk: the subset that
would minimize the worst case projection error of x ∈ W among all subsets in Uk. This minimal
error is given by the generalized k-width of W . The concept of k-width is illustrated in Figure 1.

Definition 1 generalizes the standard Kolmogorov width definition in two ways. First, in our definition
W , is a subset of matrices whereas, in the original Kolmogorov width, W is a subset of vectors. This
generalization is necessary as we wish to approximate the coefficient set of the Kalman predictive
model whose elements Ot and Ct are matrices. Second, we allow the coefficients ai to be matrices,
generalizing over the scalar coefficients used in the original Kolmogorov width. Allowing coefficients
to be matrices gives flexibility for finding a reparameterization with a small approximation error.

5.2 From a small width to an efficient convex relaxation

Before stating our approximation technique, we briefly describe how a small generalized k-width can
allow for an efficient convex relaxation.

To understand the main idea, consider system (4) with no inputs whose predictive model can be
written as mt+1 = Oty1:t. Matrix Ot belongs to a subset in Rm×mt restricted by the constraints on
system parameters. A naive approach for a convex relaxation is learning Ot directly. However in this
approach, the total number of parameters is m2t, which hinders achieving sub-linear regret.
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Now suppose that there exists k � t for which the generalized k-width is small, i.e. there exist fixed
known matrices u1, . . . , uk ∈ Rm×mt that approximate any Ot with a small error Ot ≈

∑k
i=1 aiui,

where a1, . . . , ak ∈ Rm×m are coefficient matrices. The predictive model can be approximated by
mt+1 ≈

∑k
i=1 aiuiy1:t, provided that the norm of y1:t (compared to the approximation error of Ot)

is controlled with high probability. Since ui are known, we only need to learn coefficients ai resulting
in a total of m2k parameters which is much smaller than the naive approach with m2t parameters.

5.3 Filter approximation

Figure 1: Approximating a 3D el-
lipsoid W by a 2D plane U(u1, u2)
among U2, the set of all planes.
Here, U has the smallest worst-case
projection error that is equal to the
2-width of W denoted by d2(W ).

Consider the matrix µ(G) , [I,G,G2, . . . , GT−1], where
G ∈ Rd×d is a real square matrix with spectral radius ρ(G) ≤ 1.
We seek to approximate µ(G) ≈ µ̃(G) =

∑k
i=1 aiui by a lin-

ear combination of k matrices u1, . . . , uk ∈ Rd×Td and coef-
ficient matrices a1, . . . , ak ∈ Rd×d. We evaluate the quality of
approximation in operator 2-norm ‖µ(G)−µ̃(G)‖2 by studying
the generalized k-width of µ(G).

We demonstrate a sharp phase transition. Precisely, we show
that when G is diagonalizable with real eigenvalues, the width
dk(W ) decays exponentially fast with k, but for a general G
with d ≥ 2 it decays only polynomially fast. In other words,
when d ≥ 2 the inherent structure of the set W is not easily
exploited by linear subspaces.
Theorem 2. (Kalman filter k-width) Let W , {[I,G,G2, . . . , GT−1] | ρ(G) ≤ 1, G ∈ Rd×d}
and endow the space of W with the 2-norm. The following bounds hold on the k-width of the set W :

1. If d ≥ 2, then for 1 ≤ k ≤ T , we have dk(W ) ≥
√
T − k.

2. Restrict G to be diagonalizable with real eigenvalues. If T ≥ 10, then for any d ≥ 1

dk(W ) ≤ C0d
√
T (log T )1/4c−k/ log T ,

where c = exp(π2/16) and C0 =
√

43. Moreover, there exists an efficient spectral method to
compute a k-dimensional subspace that satisfies this upper bound.

Proof. We only provide a proof sketch for the second claim; see Appendix C for a complete proof.
Let λ1, . . . λd ∈ [−1, 1] be the eigenvalues of G. Let vi be the right eigenvectors of G and w>i be the
left eigenvectors of G and write

µ(G) =

d∑
i=1

viw
>
i ([1, λi, . . . , λ

T−1
i ]⊗ Id) =

d∑
i=1

viw
>
i (µ(λi)⊗ Id).

We approximate the row vector µ(λ) for any λ ∈ [−1, 1] using principal component analysis (PCA).
The covariance matrix of µ(λ) with respect to a uniform measure is given by

H =

∫ 1

λ=−1

1

2
µ(λ)>µ(λ)dλ ⇒ Hij =

∫ 1

−1

1

2
λi−1λj−1dλ =

(−1)i+j + 1

2(i+ j − 1)
.

Let {φj}kj=1 be the top k eigenvectors of H . We approximate µ(λ) by µ̃(λ) =
∑k
j=1〈µ>(λ), φj〉φ>j :

µ(G) ≈ µ̃(G) =
k∑
j=1

[ d∑
i=1

〈µ>(λi), φj〉viw>i
]
(φ>j ⊗ Id) =

k∑
j=1

ajuj .

We show a uniform bound on ‖µ(G)− µ̃(G)‖ by first analyzing the PCA approximation error which
depends on the spectrum of H . Matrix H is a positive semi-definite (PSD) Hankel matrix, a square
matrix whose ij-th entry only depends on the sum i+ j. We leverage a recent result by Beckermann
and Townsend [3] who proved that the spectrum of PSD Hankel matrices decays exponentially fast.
This result, however, only guarantees a small average error but we need to prove that the maximum
error is small to ensure a uniform bound on regret. Observe that the PCA error r(λ) = µ(λ)− µ̃(λ)
is defined over a finite interval [−1, 1] with a small average. By computing the Lipschitz constant of
r(λ), we show that the maximum PCA error is small, resulting in an upper bound on dk(W ).
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The approximation technique used in the above theorem can readily be applied to approximate the
Kalman predictive model by mt ≈ m̃t , Õty1:t−1 + C̃tx1:t−1 + Dxt. A complete derivation of
convex relaxation along with an approximation error analysis is provided in Appendix D.

6 Proof roadmap of Theorem 1

In this section we present a proof sketch for Theorem 1; a complete proof is deferred to Appendix
E and Appendix F. Let et = yt −mt denote the innovation process, bt = m̃t −mt denote the bias
due to convex relaxation, and L(T ) ,

∑T
t=1 ‖m̂t −mt‖22 measure the difference between SLIP’s

predictions and the Kalman predictions in hindsight. Regret defined in (7) can be written as

Regret(T ) =
T∑
t=1

‖m̂t −mt‖22 −
T∑
t=1

2e>t (m̂t −mt) = L(T )−
T∑
t=1

2e>t (m̂t −mt). (12)

Using an argument based on self-normalizing martingales, the second term is shown to be of order√
L(T ) and thus, it suffices to establish a bound on L(T ). Define Zt , αI +

∑t
i=1 fif

>
i , Et ,∑t

i=1 eif
>
i , and Bt ,

∑t
i=1 bif

>
i . A straighforward decomposition of loss gives

L(T ) ≤ 3

T∑
i=1

‖Et−1Z
−1
t−1ft‖22︸ ︷︷ ︸

least squares error

+ 3

T∑
i=1

‖Bt−1Z
−1
t−1ft + bt‖22︸ ︷︷ ︸

improper learning bias

+ 3

T∑
i=1

‖αΘ̃Z−1
t−1ft‖22︸ ︷︷ ︸

regularization error

. (13)

Among all, it is most difficult to establish a bound on the least squares error. We restrict our attention
to this term and refer to appendix for bounds on improper learning bias and regularization error.

Least squares error. Consider the following upper bound
T∑
t=1

‖Et−1Z
−1
t−1ft‖2 ≤ max

1≤t≤T
‖Et−1Z

−1/2
t−1 ‖2

T∑
t=1

‖Z−1/2
t−1 ft‖2.

We show the first term is bounded by polylog(T ) for any δ ≥ 0. In particular,

max
1≤t≤T

‖Et−1Z
−1/2
t−1 ‖2 .RΘ,m,γ,β,δ max

1≤t≤T
log
(

det(Zt) det(αI)−1δ−1
)
.RΘ,m,γ,β,δ k log(T ).

Our argument is based on vector self-normalizing martingales, a similar technique used in [1, 43, 48].
det(Zt) is bounded by poly(T ) because (1) the feature dimension is polylog(T ) on account of
Theorem 2 and (2) ρ(A) ≤ 1 ensures that features and thus Zt grow at most polynomially in t.

We use an argument inspired by Lemma 2 in [30] and Schur complements [56] to conclude that
T∑
t=1

‖Z−1/2
t−1 ft‖22 �M polylog(T ) ⇔ Zt−1 −

1

cT
ftf
>
t � 0 for cT �M polylog(T ).

We show a high probability Löwner upper bound on ftf>t based on cov(ft) using sub-Gaussian
quadratic tail bounds [50]. To capture the excitation behavior of features, we establish a Löwner
lower bound on Zt by proving that the process {ft}t≥1 satisfies a martingale small-ball condition
[38, 46]. We leverage the small-ball condition lower tail bounds and prove the following lemma.
Lemma 1. (Martingale small-ball condition) Let φ1, . . . , φk ∈ RT be orthonormal and fix δ > 0.
Given system (4), let Ft = σ{η0, . . . , ηt−1, ζ1, . . . , ζt} be a filteration and for all t ≥ 1 define
ft = ψ1 ⊗ yt−1 + · · ·+ ψt−1 ⊗ y1, where ψi = [φ1(i), . . . , φk(i)]>.

1. Let Γi = cov(ft+i|Ft). For 1 ≤ s ≤ T , the process {ft}t≥1 satisfies a (s,Γs/2, p = 3/20)-block
martingale small-ball (BMSB) condition, i.e. for any t ≥ 0 and fixed ω in unit sphere Sl−1

1

s

s∑
i=1

P
(
|ω>ft+i| ≥

√
ω>Γs/2ω | Ft

)
≥ p.

2. Under the assumptions of Theorem 1, the following holds with probability at least 1− δ
T∑
t=1

‖Z−1/2
t−1 ft‖22 ≤ κk2 log(T ) poly(RΘ, β,m, log(γ), log

(1

δ

)
).
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Remark 2. While the algorithm derivation, convex relaxation approximation error, and most of the
regret analysis consider a system with control inputs, the excitation result of Lemma 1 is given without
inputs. We believe that extending our analysis for LDS with inputs is possible by characterizing the
input features and in light of the experiments. However, such an extension requires some care. For
instance, one needs to characterize the covariance between features constructed from observations
and features constructed from inputs to demonstrate a small-ball condition.

7 Experiments

We carry out experiments to evaluate the empirical performance of our provable method in three
dynamical systems with long-term memory. We compare our results against those yielded by the wave
filtering algorithm [22] implemented with follow the regularized leader and the truncated filtering
algorithm [48]. We consider ‖m̂t −mt‖2, the squared error between algorithms predictions and
predictions by a Kalman filtering algorithm that knows system parameters, as a performance measure.
For all algorithms, we use k = 20 filters and run each experiment independently 100 times and
present the average error with 99% confidence intervals.

0 5000 10000
t

10−6

10−4

10−2

||m
t
−
m̂
t||

2 2

System 1: A = 1

0 5000 10000
t

10−2

100

||m
t
−
m̂
t||

2 2

System 2: A = diag[1,−1]

0 5000 10000
t

10−1

||m
t
−
m̂
t||

2 2

System 3: A = [1, 0; 0.1, 1]

Wave filtering (Hazan et al., 2017) Truncated filtering (Tsiamis and Papas, 2020) SLIP (ours)

Figure 2: Performance of our algorithm compared with wave filtering and truncated filtering. System
1 is an scalar LDS with A = B = D = 1, C = Q = R = 0.001, and xt ∼ N (0, 2). System
2 is a multi-dimensional LDS with no inputs and A = diag[−1, 1], C = [0.1, 0.5], R = 0.5, and
Q = [4, 6; 6, 10] × 10−3. System 3 is another multi-dimensional LDS with A = [1, 0; 0.1, 1],
xi ∼ U(−0.01, 0.01), Q = 10−3I , R = I , C = [0, 0.1; 0.1, 1], and B,D are matrices of all ones.

In the first example (Figure 2, left), we consider a scalar marginally stable system with A = 1 and
Gaussian inputs. This system exhibits long forecast memory with G ≈ 0.999. Observe that the
truncated filter suffers from a large error which is due to ignoring long-term dependencies. The
wave filter predictions also deviates from optimal predictions as it only considers yt−1, x1:t for
predicting yt. The middle plot in Figure 2 presents the results for a multi-dimensional system with
A = diag[−1, 1] and no inputs. This system also has a long forecast memory (G has eigenvalues
≈ {0.991,−0.932}), resulting in poor performance of the truncated filter. The wave filter also
performs poorly in this system as it is only driven by stochastic noise. For the last example, we
consider another multi-dimensional system where A is a lower triangular matrix (Figure 2, right).
This is a difficult example where ρ(A) = 1 but ‖A‖2 > 1, resulting in a polynomial growth of the
observations over time. The results show that our algorithm outperforms both the wave filter, which
requires a symmetric A, and the truncated filter in the case of fast-growing observations.

Experiments on the hyperparameter sensitivity of our algorithm and comparison with the EM
algorithm are provided in Appendix H.

8 Discussion and future work

We presented the SLIP algorithm, an efficient algorithm for learning a predictive model of an unknown
LDS. Our algorithm provably and empirically converges to the optimal predictions of the Kalman
filter given the true system parameters, even in the presence of long forecast memory. We analyzed the
generalized k-width of the Kalman filter coefficient set with the closed-loop matrix G and obtained
a low-dimensional linear approximation of the Kalman filter when G is diagonalizable with real
eigenvalues. We proved that without assuming real eigenvalues, the Kalman filter coefficient set is
difficult to approximate by linear subspaces. Our approach of studying k-width as a measure for
the possibility of an efficient convex relaxation may be of independent interest. Important future
directions are to design efficient algorithms that handle arbitrary G and to provide theoretically
guaranteed uncertainty estimation for prediction.
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9 Broader impact

Because linear dynamical systems are a fundamental tool in essentially all quantitative disciplines
(engineering, physical sciences, life sciences, social sciences), advances in the capabilities for learning
and predicting such systems may have very significant positive consequences. (For example, currently
Google Scholar lists 912,000 papers that mention Kalman filter.) Our proposed algorithm is practical,
fast, easy to implement, and provably more robust to a wider range of conditions than previous
algorithms. In particular, many real-world systems exhibit long-term memory and a wide range of
time scales, which our approach handles well.

Like any very general computational tool, the algorithm can be applied in contexts where the
societal consequences may be negative. To our knowledge, the vast majority of uses for linear
dynamical systems involve human experts studying and predicting systems of interest, such as climate
systems or ecologies. In these contexts the effects of improved prediction and reliability would
typically be positive. It is specifically unlikely that LDS would be used to model individual humans
algorithmically, since humans are decidedly not linear systems.
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