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ABSTRACT
When multiple agents learn in a decentralized manner, the envi-
ronment appears non-stationary from the perspective of an in-
dividual agent due to the exploration and learning of the other
agents. Recently proposed deep multi-agent reinforcement learning
methods have tried to mitigate this non-stationarity by attempt-
ing to determine which samples are from other agent exploration
or suboptimality and take them less into account during learning.
Based on the same philosophy, this paper introduces a decentral-
ized quantile estimator, which aims to improve performance by
distinguishing non-stationary samples based on the likelihood of
returns. In particular, each agent considers the likelihood that other
agent exploration and policy changes are occurring, essentially
utilizing the agent’s own estimations to weigh the learning rate
that should be applied towards the given samples. We introduce a
formal method of calculating differences of our return distribution
representations and methods for utilizing it to guide updates. We
also explore the effect of risk-seeking strategies for adjusting learn-
ing over time and propose adaptive risk distortion functions which
guides risk sensitivity. Our experiments, on traditional benchmarks
and new domains, show our methods are more stable, sample ef-
ficient and more likely to converge to a joint optimal policy than
previous methods.
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1 INTRODUCTION
Many multi-agent reinforcement learning (MARL) methods have
been developed (e.g., recent deep methods [7–9, 19, 25, 26, 28, 30]),
but many of these approaches assume centralized training and de-
centralized execution. Unfortunately, many realistic multi-agent
settings will consist of agents that must (continue to or completely)
learn online. In this case, each agent will be an Independent Learner
which learns and executes in a decentralized manner using only
its own sensor and communication information. This decentraliza-
tion can be more scalable and is necessary in cases where online
(decentralized) learning takes place. Unfortunately, with high prob-
ability, the decentralized learning agents will not converge to an
optimal joint policy, but only optimal independent policies under
the effect of environment non-stationarity caused by other agents’
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optimal independent policies [10]. In other words, without con-
sidering other agent exploration, agents will not typically achieve
high performance.

Previous work, based on hysteretic Q-Learning [20] and leniency
[29], which limit negative value updates (possibly due to explo-
ration) have shown success in Deep reinforcement learning [26, 28]
based on Deep Q-Networks (DQN) [22]. Both approaches inject
optimism: limiting the decrease of value estimations to alleviate the
effect of other agents’ exploration strategies and to encourage ex-
ploration outside of equilibria which easily trap agents without any
injected optimism. The trade-off between environment stochasticity
biases and the aforementioned value overestimation, is considered
inevitable since domain stochasticity and teammate policy shifts are
traditionally indistinguishable. Empirically, leniency shows higher
learning stability compared to hysteretic learning, primarily due
to a temperature-enabled leniency at different stages of estima-
tion maturity [28]. The leniency decay allows for a more faithful
representation of domain dynamics during later stages of train-
ing, where it is probable that teammate policies become stable and
near-optimal, assuming the rate of decay is appropriate and value
maturity is synchronized across all states. Nevertheless, both hys-
teresis and leniency show only limited performance improvement
and leniency introduces hyper-parameters that are hard to tune for
new environments. A recent study proposes incorporating nega-
tive update intervals [27] to ignore sub-par episodes in a gradually
relaxed way. But this method is designed for two-player temporally
extended team games and requires an oracle mapping trajectories
to domain specific ‘meta-actions,’ making it inapplicable to the
general multi-agent learning setting.

Our work aims to develop a general method for improving decen-
tralized multi-agent reinforcement learning. The method not only
automatically identifies transitions involving sub-optimal team-
mate policies, especially explorations, but also adaptively schedules
the amount of optimism applied to each training sample based on
estimated value maturity, achieving improved performance with-
out hyper-parameter interventions [26, 28], scheduling tables [28]
or specialized experience buffers [27]. In particular, we develop a
novel method that extends a state-of-the-art deep distributional
single-agent RL method [6], Implicit Quantile Networks (IQN), to
multi-agent settings to improve training stability and show how
the auxiliary value distribution expectations can be used to iden-
tify exploratory teammates through what we call Time Difference
Likelihood (TDL). TDL, uses distribution information to identify
individual sub-par teammate explorations and guides the amount
of optimism injected into the Q distribution; we call the new archi-
tecture Likelihood IQN. We show empirically that our method is
more robust even in domains that are difficult for previous methods.
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In addition, we propose a Dynamic Risk Distortion operator, in
which risk distortion techniques can be applied in a scheduled fash-
ion to produce optimistic policies that are robust to environment
non-stationarity.

2 BACKGROUND
We start by providing a summary of the background literature. This
section includes introductions to MDPs, decentralized POMDPs and
DQN, as well as a brief discussion on the challenges of independent
learning in decentralized POMDPs.

2.1 MDPs and Deep Q-Networks
AMarkovDecision Process (MDP) is definedwith tuple ⟨S,A,T ,R⟩,
where S is a state space,A an action space, T (𝑠, 𝑎, 𝑠 ′) the probabil-
ity of transitioning from state 𝑠∈S to 𝑠 ′∈S by taking action 𝑎∈A,
and R(𝑠, 𝑎, 𝑠 ′) is the immediate reward for such a transition. The
problem is to find an optimal policy 𝜋★ : S → A which maximizes
the expected sum of rewards (i.e., values) over time.

Deep Q-Networks [22] consider a common practice where a
nonlinear function approximator is used for estimating values by
parameterizing the 𝑄 function 𝑄𝜃 (𝑠, 𝑎) with parameters 𝜃 using a
deep neural network, where 𝑄 (𝑠, 𝑎) is the expected maximum sum
of rewards achievable in the future given state 𝑠 and action 𝑎.

DQN uses experience replay [18] where each transition is stored
in a fixed-sized experience buffer

𝐷𝑡 =
{
(𝑠1, 𝑎1, 𝑟1, 𝑠2), ..., (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)

}
from which all training batches for the network are uniformly
sampled to balance the network’s tendency to bias towards more
recent samples. The update of the network follows the following
loss function:

𝐿𝑖 (𝜃𝑖 ) = E
𝑠,𝑎,𝑟,𝑠′∼𝑈 (𝐷)

[(𝑟 + 𝛾 max
𝑎′

𝑄𝜃
−
𝑖 (𝑠 ′, 𝑎′) −𝑄𝜃𝑖 (𝑠, 𝑎))2] (1)

where 𝜃−
𝑖
is the parameters for target network, an identical net-

work whose parameters are not updated, but copied from the main
network every 𝐶 steps as to maintain value stability.

2.2 Decentralized POMDPs (Dec-POMDPs)
General cooperative multi-agent reinforcement learning problems
can be represented as decentralized partially observable Markov de-
cision processes (Dec-POMDPs) [24]. In a Dec-POMDP, each agent
has a set of actions and observations, but there is a joint reward
function and agents must choose actions based solely on their local
observations. A Dec-POMDP is defined as: ⟨I,S,𝑨I ,Z,T ,𝑶I , 𝑹⟩
where I is a finite set of agents, 𝑨𝑖 is the action space for agent
𝑖 ∈ I, and 𝑶𝑖 is observation space of agent 𝑖 . At every time step,
a joint action 𝒂 = ⟨𝑎1, ..., 𝑎 |I |⟩ is taken, each agent sees it’s own
observation 𝑜𝑖 , and all agents receive joint rewards based on the
joint action 𝑹 (𝑠, 𝒂).

Earlier work has extended deep RL methods to partially observ-
able MDPs (POMDPs) [14] and Dec-POMDPs. For instance, Deep
Recurrent Q-Networks (DRQN) [12] extends DQN to partially ob-
servable (single-agent) tasks, where a recurrent layer (LSTM) [13]
was used to replace the first post-convolutional fully-connected
layer of DQN. Hausknecht and Stone argue that the recurrent layer
is able to integrate an arbitrarily long history which can be used

to infer the underlying state. DQN and DRQN form the basis of
many deep MARL algorithms (e.g., [7, 26, 28]). Our work’s basis
is IQN (which we discuss later), and the recurrent version that we
call IRQN.

Multi-Agent Reinforcement Learning methods are usually classi-
fied into two classes: Independent Learners (ILs) and Joint Action
Learners (JALs) [5]. ILs observe only local actions 𝑎𝑖 for agent 𝑖 ,
whereas JALs have access to joint action 𝒂. Our work is in line
with ILs, which may be more difficult, but resembles real-world
decentralized learning and may be more scalable.

2.3 Challenges of Independent Learners (ILs)
Even with perfect observability, ILs are non-Markovian due to un-
predictable and unobservable teammates’ actions, hence the envi-
ronment non-stationary problem [3]. Previous work has highlighted
prominent challenges when applying Markovian methods, such
as Q-Learning, to ILs: shadowed equilibria [10], stochasticity, and
alter-exploration [21].

Shadowed equilibria is the main issue we are addressing, which
must be balanced with the stochasticity problem. Without commu-
nication, independent learners who are maximizing their expected
returns are known to be susceptible to sub-optimal Nash equilibria
where the suboptimal joint policy can only be improved by chang-
ing all agents’ policies simultaneously. To battle this issue methods
typically put more focus on high reward episodes, with the hope
that all agents will be able to pursue the maximum reward possible,
forgoing the objective of maximizing the expected return.

Optimistic methods are more robust to shadowed equilibria, but
give up precise estimation of environment stochasticity. Therefore,
these methods can mistake a high reward resulting from stochastic-
ity as a successful cooperation [32]. This challenge is called stochas-
ticity. In environments where high reward exists at low probability,
the agents will fail to approach a joint optimal policy.

The alter-exploration problem arises from unpredictable team-
mate exploration. In order to estimate state values under stochas-
ticity, ILs have to consider agent exploration. For learners with an
𝜖-greedy exploration strategy, the probability of at least 1 out of
𝑛 agent exploring at an arbitrary time step is 1 − (1 − 𝜖)𝑛 . The
alter-exploration problem amplifies the issue of shadowed equilibria
[21].

3 RELATED WORK
In a Dec-POMDP, the reward for each agent depends on the joint
action chosen by the entire team I; so an agent will likely be
punished for an optimal action due to actions from non-optimal
teammates. Teammates’ policies are not only unobservable and non-
stationary, but are often sub-optimal due to exploration strategies.
As a result, vanilla Q-Learning would be forced to estimate the
exploratory dynamics which is less than ideal. We first discuss
related work for adapting independent learners for multi-agent
domains, and then discuss Implicit Quantile Networks, which we
will extend.

3.1 Hysteretic Q-Learning (HQL)
Hysteretic Q-Learning (HQL) [20] attempts to improve indepen-
dent learning by injecting overestimation into the value estimation
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by reducing the learning rate for negative updates. Two learning
rates 𝛼 and 𝛽 , named the increase rate and the decrease rate, are
respectively used for updating overestimated and underestimated
TD error 𝛿 :

𝑄 (𝑥, 𝑎) ←
{
𝑄 (𝑥, 𝑎) + 𝛽𝛿 if 𝛿 ≤ 0
𝑄 (𝑥, 𝑎) + 𝛼𝛿 otherwise

(2)

Hysteretic DQN (HDQN) [26] applies hysteresis to DQN, whose
TD error is given by

𝛿𝑡 := 𝑄𝜃𝑖 (𝑠𝑡 , 𝑎𝑡 ) − (𝑟 + 𝛾 𝑓 max
𝑎′

𝑄𝜃
−
𝑖 (𝑠𝑡+1, 𝑎′)). (3)

In practice, HDQN fixes the increase rate 𝛼 (e.g. 𝛼 = 0.001), and
scales the decrease rate as 𝛽𝛼 . We thus only discuss the effect of
tuning 𝛽 . In order to reason under partial observability, Hysteretic
Deep Recurrent Q-Networks (HDRQN) [26], uses a recurrent layer
(LSTM) and is trained using replay buffers featuring synchronized
agent samples (called CERTs) [26]. Our work utilizes the same buffer
structure.

3.2 Lenient Deep Q-Network (LDQN)
Lenient Deep Q-Network (LDQN) [28] incorporates lenient learning
[29] with DQN by encoding the high-dimensional state space into
lower dimensionswhere temperature values are feasible to be stored
and updated. Leniency, used to determine the probability of negative
value updates, is obtained from exponentially decaying temperature
values for each state encoding and action pair using a decay schedule
with a step limit 𝑛, the schedule 𝛽 is given by:

𝛽𝑡 = 𝑒
𝜌×𝑑𝑡

for each 𝑡 , 0 ≤ 𝑡 < 𝑛, where 𝜌 is a decay exponent which is
decayed using a decay rate 𝑑 . The decay schedule aims to prevent
the temperature from premature cooling. Given the schedule, the
temperature 𝑇 is folded and updated as follows:

𝑇𝑡+1 (𝜙 (𝑠𝑡 ), 𝑎𝑡 ) = 𝛽𝑡
(
(1 − 𝜐)𝑇𝑡 (𝜙 (𝑠𝑡 ), 𝑎𝑡 ) + 𝜐 E

𝑎∈𝐴
𝑇𝑡 (𝜙 (𝑠𝑡+1), 𝑎)

)
where 𝜐 is a fold-in constant. Then, the leniency of a state-action
pair is calculated by look up in the temperature table and given by:

𝑙𝑒𝑛𝑖𝑒𝑛𝑐𝑦 (𝑠, 𝑎) = 1 − 𝑒−𝐾×𝑇 (𝜙 (𝑠),𝑎) (4)

where 𝐾 is a leniency moderation constant.
LDQN schedules optimism injected in state-action estimates,

mitigating shadowed equilibria, and is able to be robust against over
optimism as leniency decreases over time. On the other hand, suc-
cessfully applying LDQN requires careful consideration for decay
and moderation parameters, whereas our approach requires fewer
hyper-parameters and is robust to different parameter values, yet
yields higher performance in terms of improved sample efficiency.

3.3 Implicit Quantile Network (IQN)
IQN [6] is a single-agent Deep RLmethod which we extend to multi-
agent partially observable settings. As a distributional RL method,
quantile networks represent a distribution over returns, denoted
𝑍𝜋 for some policy 𝜋 , where E(𝑍𝜋 ) = 𝑄𝜋 , by estimating the in-
verse c.d.f. of𝑍𝜋 , denoted 𝐹−1𝜋 . Implicit Quantile Networks estimate
𝐹−1𝜋,𝜏 (𝑠, 𝑎) for a given state-action pair, 𝑠, 𝑎, from samples drawn from
some base distribution ranging from 0 to 1: 𝜏 ∼ 𝑈 ( [0, 1]), where 𝜏

is the quantile value that the network aims to estimate. The esti-
mated expected return can be obtained by averaging over multiple
quantile estimates:

𝑄𝜔 (𝑠, 𝑎) := E
𝜏∼𝑈 ( [0,1])

[𝐹−1
𝜋,𝜔 (𝜏) (𝑠, 𝑎)] (5)

where 𝜔 : [0, 1] −→ [0, 1] distorts risk sensitivity. Risk neutrality is
achieved when 𝜔 = 1. In Section 4.3 we will discuss how we distort
risk in multi-agent domains and do so in a dynamic fashion where
risk approaches neutral as exploration probability approaches 0.

The quantile regression loss [17] for estimating quantile at 𝜏 and
error 𝛿 is defined using Huber lossH𝜅 with threshold 𝜅

𝜌𝜏 (𝛿) = (𝜏 − 1𝛿≤0)
H𝜅 (𝛿)
𝜅

(6)

which weighs overestimation by 1 − 𝜏 and underestimation by 𝜏 ,
𝜅 = 1 is used for linear loss. Given two sampled 𝜏, 𝜏 ′ ∼ 𝜔 (𝑈 ( [0, 1]))
and policy 𝜋𝜔 , the sampled TD error for time step 𝑡 follows distri-
butional Bellman operator:

𝛿
𝜏,𝜏 ′
𝑡 = 𝐹−1𝜏 (𝑠𝑡 , 𝑎𝑡 ) − (𝑟𝑡 + 𝛾𝐹−1𝜏′ (𝑠𝑡+1, 𝜋𝛽 (𝑠𝑡+1))).

Thus, with sampled quantiles 𝜏1:𝑁 and 𝜏1:𝑁 ′ , the loss is given by:

𝐿 =
1
𝑁 ′

𝑁∑
𝑖=1

𝑁 ′∑
𝑗=1

𝜌𝜏𝑖 (𝛿
𝜏𝑖 ,𝜏
′
𝑗 ) (7)

Distributional learning have long been considered a promising
approach due to reduced chattering [11, 15]. Furthermore, distribu-
tional RL methods have shown, in single agent settings, robustness
to hyperparameter variation and to have superior sample efficiency
and performance [2].

4 OUR APPROACH
We use IQN as the basis of our method since it has shown state-of-
the-art performance in single-agent benchmarks, but more impor-
tantly, because we believe that learning a distribution over returns
provides a richer representation of transitional stochasticity and
exploratory teammates in MARL. Consequently, the distributional
information can be utilized to encourage coordination, but also
properly distribute blames among agents, which has historically
been difficult to balance. We propose Time Difference Likelihood
(TDL) in this section and Dynamic Risk Distortion (DRD), both
utilize distributional information to foster cooperation.

Time Difference Likelihood (TDL) is a granular approach for
controlling the learning rate in a state-action specific fashion, but
without an explicit encoder. Instead, TDL measures the likelihood
of a return distribution produced by the target network given the
distribution produced by the main network. The motivation is
twofold: first, for similar distribution estimations, even with drastic
difference in specific quantile location, the learning rate should
remain relatively high to capture local differences and improve
sample efficiency; second, for teammate explorations, TDL will
more likely to be low, hence applying more hysteresis on non-
Markovian dynamics. Also, as we show from empirical evaluations,
TDL acts as a state-specific scheduler which causes the learning
rate to increase over time for states which have received enough
training, resulting in more recognition of environment stochasticity,
thus converging more robustly towards a joint optimal policy.
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Dynamic Risk Distortion (DRD), on the other hand, does not
impose value overestimation like hysteresis and leniency; instead,
DRD controls the way in which policies are derived from value
estimates, by distorting the base distribution from which quantile
estimation points 𝜏 are sampled. Empirically, DRD is robust to dif-
ferent scheduling hyper-parameters, and allows for faster learning
and better performances. Both approaches can be combined to gain
better performances.

4.1 Time Difference Likelihood (TDL)
We first discuss TDL, a measure which we propose to later guide
the magnitude of the network’s learning rate contingent on each
update. Motivated to reduce the learning rate when encountering
exploratory teammates, but properly updating for local mistakes,
we would like to find an indicator value distinguishing the two
scenarios. TDL is such an indicator. We scale the learning rate
using TDL as discussed later in section 4.2.

At a high level, to calculate the TDL, we first sample from es-
timated return distributions (using both the main network and
the target network) for given observation-action pairs. For sim-
plicity, we denote these as 𝑑1:𝑀 := 𝐹−1𝜏1:𝑀 (𝑠𝑡 , 𝑎𝑡 ) and 𝑡1:𝑀′ := 𝑟𝑡 +
𝛾𝑚𝑎𝑥
𝑎′
𝐹−1
𝜏′1:𝑀′
(𝑠𝑡 , 𝑎′), where 𝑀 and 𝑀 ′ are the number of samples

drawn from the base distribution. We call them distribution sam-
ples and target samples. Observe that obtaining these samples does
not add computational complexity, since we can reuse the samples
that were used for calculating losses.

Next, we formalize an approximation method for estimating the
likelihood of a set of samples, given a distribution constituted by
another set of samples. TDL, in particular, is the likelihood of target
samples given the distribution constituted by distribution samples.
We denote the probability density function given by the distribution
samples as P(𝑋 ) := 𝑃 (𝑋 | 𝑑1:𝑀 ). The intuition of calculating TDL
is to treat the discrete distribution samples as a continuous p.d.f.
on which the proximity intervals of target samples are calculated
for their likelihoods. More specifically, if given P, we estimate the
likelihood of target samples as follows:

𝑙𝑡1:𝑀′ ,𝑑1:𝑀 =
∑
𝑗 ∈1:𝑀′

P
( 𝑡 𝑗−1 + 𝑡 𝑗

2
≤ 𝑋 ≤

𝑡 𝑗 + 𝑡 𝑗+1
2

)
. (8)

Now we only need an approximation of the continuous p.d.f. P
which is represented by discrete samples. Our continuous represen-
tation is constructed by assuming the density between neighboring
samples 𝑑𝑖 and 𝑑𝑖+1 is linear for generalizability and implementa-
tion simplicity. We therefore obtain a set of continuous functions
𝐹𝑖 (𝑋 ) each with domain (𝑑𝑖 , 𝑑𝑖+1], where 𝐹𝑖 denotes a linearity fits
(𝑑𝑖 , 𝜏𝑖 ) and (𝑑𝑖+1, 𝜏𝑖+1).

Let F (𝑋 ) = 𝐹𝑖 (𝑋 ) iff 𝑋 ∈ (𝑑𝑖 , 𝑑𝑖+1]. In other words, F is ob-
tained by connecting all the distribution samples into a continuous
monotonically increasing probability density function, which con-
sists of 𝑀 − 1 connected linear segments. Using F as the c.d.f
approximation for P, by definition, for arbitrary 𝑎 and 𝑏: P(𝑎 <

𝑋 ≤ 𝑏) = F (𝑏) − F (𝑎), which can be obtained using the linearity
property we defined for F :

P(𝑎 < 𝑋 ≤ 𝑏) =
𝑀−1∑
𝑖=1

| (𝑎, 𝑏] ∩ (𝑑𝑖 , 𝑑𝑖+1] |
𝑑𝑖+1 − 𝑑𝑖

(𝜏𝑖+1 − 𝜏𝑖 ) . (9)

Note that intervals (−∞, 𝑑1] and (𝑑𝑖 ,∞] have no probability
density, hence are omitted. TDL can be calculated using an arbitrary
number of samples for all𝑀 > 1 and𝑀 ′ > 0.

We can view TDL as not only a noisy consistency measurement
between the main and target networks, but also an indicator of
information sufficiency in the return distribution estimation. The
latter is important for training MADRL agents because it aims to
differentiate stochasticity from non-stationary, which allows agent
to obtain a more faithful value estimates based on the environment
alone, not other peers.

4.2 Likelihood Hysteretic IQN (LH-IQN)
Hysteretic Learning [20] incorporates low returns in a delayed
fashion, by updating value estimations at a slower rate when de-
creasing. Hysteretic approaches show strong performance in both
tabular and deep learning evaluations, yet fail to delay value es-
timations synchronously across the state-action space. Leniency
[29] addresses this issue by recording temperature values in the
state-action space. Temperature values control the negative up-
date probability, which decrease when an update happens to the
corresponding state-action pair. However, when applied in large
or continuous state and action spaces, not only is state-action en-
coding required for computational tractability, but extra care is
required for scheduling the temperature [28]; Palmer et al. found it
necessary to apply temperature folding techniques to prevent the
temperature from prematurely extinguishing.

To combat these issues, we introduce Likelihood Hysteretic IQN
(LH-IQN) which incorporates TDL with hysteretic learning. Intu-
itively, LH-IQN is able to automatically schedule the amount of
leniency applied in the state-action space without careful tuning of
temperature values thanks to state-action specific TDL measure-
ments. While deep hysteretic learning uses 0 < 𝛽 < 𝛼 ≤ 1 to
scale learning rates, our LH-IQN uses the𝑚𝑎𝑥 of 𝛽 and TDL as the
decrease rate. More specifically, the learning rate 𝜇𝑡 is given by:

𝜇𝑡 =

{
𝑚𝑎𝑥 (𝛽, 𝑙𝑡1:𝑀′ ,𝑑1:𝑀 )𝜇, if 𝛿𝜏,𝜏

′
𝑡 ≤ 0

𝜇, otherwise
. (10)

where 𝜇 is a base learning rate suitable for learning assuming a sta-
tionary environment (e.g. 0.001), 𝑙𝑡1:𝑀′ ,𝑑1:𝑀 is the likelihood defined
in Section 4.1 and 𝛿𝜏,𝜏

′
𝑡 is the TD error defined in Section 3.3. To

explore the effect of likelihood and hysteresis during evaluation,
we also define L-IQN as an IQN architecture which only uses TDL
𝑙𝑡1:𝑀′ ,𝑑1:𝑀 as the decrease rate, and H-IQN which only uses 𝛽 as the
decrease rate. Empirically, 𝛽 ranging from 0.2 to 0.4 yields high
performance.

Since TDL generally increases as the network trains toward
consistency, the amount of optimism/overestimation added by hys-
teretic updates is reduced over time, which is analogous to leniency.
The key difference is that for domain non-stationarity (caused by
stochasticity and/or shifts in teammate policies), which remains
unpredictable forever, TDL remains small, effectively employing a
low learning rate toward such transitions.
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4.3 Dynamic Risk Sensitive IQN
Distributional RL has also been studied for designing risk sensitive
algorithms [23]. We introduce dynamic risk sensitive IQNwhich uti-
lizes what we call dynamic risk distortion operators. IQN has shown
to be able to easily produce risk-averse and risk-seeking policies
by integrating different risk distortion measures 𝜔 : [0, 1] → [0, 1]
[6, 33]. In single agent positive-sum games, risk-averse policies
are sometimes preferred to actively avoid terminal states for more
efficient exploration. In MARL, however, agents may benefit from
risk-seeking policies as seeking the highest possible utility helps
the team break out of sub-optimal shadowed equilibria. As we are
not boosting the value estimations directly, we say this approach
injects hope instead of optimism. In our work, we let IQN learn to
reflect the true perceived domain dynamics (no learning rate ad-
justments), but consider generally higher quantile locations (larger
values) when making decisions, producing optimistic policies with-
out raising value estimations. Again, to be robust to environment
stochasticity, we anneal the amount of distortion we apply so that
in the end we produce policies based on realistic (non-optimistic)
value estimations. We discuss two such distortion operators: CVnaR
and Wang [31].

CVnaR, Conditional Value-not-at-Risk, is inspired bywell studied
risk-averse operator Conditional Value-at-Risk (CVaR(𝜂, 𝜏) = 𝜂𝜏)
[4]. Our CVnaR is defined as follows:

CVnaR(𝜂, 𝜏) = 1 − 𝜂𝜏 . (11)

CVnaR maps 𝜏 ∼ 𝑈 ( [0, 1]) to CVnaR(𝜂, 𝜏) ∼ 𝑈 ( [𝜂, 1]), and as 𝜂
reduces, CVnaR become less risk-seeking.

Wang [31] is a distortion operator whose range always remains
[0, 1], but becomes exponentially increasing (probability density
shifted towards 1) when given positive bias parameter 𝜂. Wang is
defined as:

Wang(𝜂, 𝜏) = Φ(Φ−1 (𝜏) + 𝜂) (12)
where Φ is the standard Normal cumulative distribution function.
Observe that when𝜂 → 1, Wang almost always returns 1, becoming
the most risk-seeking distortion operator possible. Also, like CVnaR,
as 𝜂 → 0, risk-neutrality is observed.

We found it suitable to linearly anneal 𝜂 (for both Wang and
CVnaR) during training to achieve better stability as the agent be-
comes more and more risk-neutral, but behaves like a maximization
approach in the beginning. The aim is that during the initial risk-
seeking period when 𝜂 is high, agents are encouraged to explore
highly rewarding spaces, which supports them to better break out
of shadowed equilibra; whereas in the end, the risk-neutral dis-
tortion produces an unbiased policy which is unlikely to fall for
domain stochasticity. We show that, empirically, risk distortion not
only improves overall performance when applied alone, but also
when used in conjunction with TDL.

5 EVALUATION
In this section, we compare our methods with previous state-of-the-
art methods in multiple domains. We begin by comparing likelihood
hysteretic IQN (LH-IQN)with the previous state-of-the-art, HDRQN
and LDQN, and then analyze the effect of TDL as well as risk
distortion operators. Results shown in all Figures use decentralized
training with 20 random seeds.

5.1 Evaluation on meeting-in-a-grid
We first conduct experiments on a standard partially observable
meeting-in-a-grid domain [1] to be consistent with previous work
[26]. The meeting-in-a-grid task consists of one moving target and
two agents in a grid world. Agents get reward of 1 for simulta-
neously landing on the target location and 0 otherwise. Episodes
terminate after 40 transitions or upon successful meeting at the tar-
get. Agents have noisy transition probability of 0.1, where agents’
moves end up in an unintended position (uniformly left, right and
still) at the rate of 0.1. Observations include flickering locations of
the agents themselves and the target.

Again, to be consistent with previous work [26], we use recurrent
versions of our methods. We label the architecture with added
Recurrency as LH-IRQN. The network starts with 2 fully connected
layers of 32 and 64 neurons respectively, then has an LSTM layer
with 64 memory cells and a fully connected layer with 32 neurons
which then maps onto value estimates for each action. We use
𝛽 = 0.4,𝛾 = 0.95 andAdam [16] for training. For quantile estimators,
we sample 16 for 𝜏 and 𝜏 ′ to approximate return distributions, and
𝜏 embeddings are combined with the LSTM output.

We first evaluate LH-IRQN’s performance against HDRQN [26]
and H-IRQN on a 4×4 grid (Fig. 1(a)). H-IRQN is a version of LH-
IRQN that does not use TDL, but uses IRQN with hysteresis (Eq 10).
Both of our IRQN methods outperform HDRQN in both learning
rate and final performance. HDRQN has a large variance because it
does not robustly solve the task—only a portion of seeds reached
near-optimal policies. Our IRQN-based methods show more stabil-
ity concerning reaching optimality, but not utilizing TDL makes
agents susceptible to environment stochasticity, producing fewer
near-optimal joint policies over time. Our methods similarly out-
perform HDRQN in higher dimensional (5 × 5, 6 × 6) variations of
the benchmark , except for 3× 3 which is too simple to differentiate
the methods.

Directly applying LDQN, with convolution layers replaced by
fully-connected layers to better suit the observations, onmeeting-in-
a-grid failed to solve the tasks due to the high flickering probability
and the observation encoding. Additional comparisons with LDQN
are given in section 5.3 and 5.2, but this shows the sensitivity of
LDQN to the task and encoding.

As shown in Fig. 1(b), TDL increases over time during training,
while maintaining a high variance which resulted from domain non-
stationary as expected. Overall, the usage of TDL versus hysteresis
𝛽 increases significantly; as TDL is used when it is larger than 𝛽 ,
which can be considered a lower cap. The overall learning rate
for negative samples (i.e., those with non-positive TD error) is
increased over time, thus adding less hysteresis and optimism to
experiences deemed predictable by TDL, eventually theoretically
learning unbiased state value estimations [20]. While one would
expect methods with less optimism to be susceptible to action
shadowing, our Likelihood method nonetheless achieves better
stability and performance as shown in Fig. 1(a), from which we can
deduce that TDL is able to distinguish domain non-stationary from
stochasticity as we theorized. The spike (and dip) at the beginning
seen in Fig 1(b) is due to immature quantile estimations being used
to calculate TDL; during the start of training, these quantile values
are not guaranteed to represent a valid distribution—they may be

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

802



(a) Performance on 4 × 4 meeting-in-a-grid benchmark (b) TDL Value

Figure 1: (a) IRQNmodels perform better thanHDRQN, especially with TDL (b) TDL values during training of LH-IRQN, shows
clear increase of usage of TDL over hysteresis.

aggregated together or even reversed depending on the network
weight initializations. As a result, it is unstable to solely use TDL
as a decrease rate, a problem which we solved with maximizing
with hysteresis parameter 𝛽 , which is essentially a lower bound to
prevent the network from terminating the learning process when
estimations differ drastically from target estimates. This issue can
also also be mitigated using Dynamic Risk Distortion (DRD) which
can be used to achieve extremely optimistic distortion during the
beginning phase of training. We discuss empirical improvements
of DRD in Section 4.3.

5.2 Multi-Agent Object Transportation
Problems (CMOTPs)

We also evaluate LH-IQN on variations of Coordinated Multi-Agent
Object Transportation Problems (CMOTPs) [28], consistent with
Palmer et al.’s work on LDQN. CMOTPs require two agents carrying
a box to a desired location for a terminal reward; the box moves
when agents are adjacent andmove in the same direction. Variations
of the task include obstacles and stochastic rewards. CMOTPs have
16 × 16 observations with added noise.

Our network architecture mimics that of LDQN for comparabil-
ity: two convolutional layers with 32 and 64 kernels, a fully con-
nected layers with size 1024 which combines quantile embedding,
followed by another fully connected layer with size 1024, which
then maps onto value estimates for each action. Hyper-parameters
remain the same as original work which were found suitable for
training in CMOTPs.

As seen in Fig. 2, although bothmethods converge to a policy that
solves the problem consistently, our method shows an improved
sample efficiency. We hypothesize that the temperature is decaying
less aggressively than it should be in LDQN, which is likely due to
temperature folding techniques and/or that the hashing space of
the autoencoder is larger than the theoretical minimum.

Figure 2: CMOTP benchmark results with a total of 60 runs,
aggregated over all three CMOTP variants.

On the other hand, our method utilizes TDL to scale negative
updates and shows better sample efficiency. Initially the value es-
timations do not seem optimistic enough to perform coordinated
actions or to propagate to an earlier-stage state, but the likelihood
estimation has the added benefit of being able to produce small
values in under-explored state-action space, while hesitating less
to update negatively in explored spaces. TDL also helps to syn-
chronize optimism across state-action space; in other words, the
ability to estimate a distribution consistency adds less optimism to
state-action pairs which have received enough training to be able
to produce consistent distributions.

5.3 High dimensional meeting-in-a-grid task
Motivated to most fairly compare the performance of our approach
with LDQN and to compare on more than two agents, we modify
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(a) 4-agent high-dimensional meeting-in-a-grid benchmark (b) 5-agent high-dimensional meeting-in-a-grid benchmark

Figure 3: High dimensional meeting-in-a-grid 4×4 benchmark with more agents.

Figure 4: Evaluation of LH-IQN comparedwith LDQN on the
high-dimensionalmeeting-in-a-grid 4×4 benchmark. Figure
shows the number of steps taken to complete tasks (small
values preferred).

the existing 4×4meeting-in-a-grid benchmark to produce graphical
observations (16 × 16) with added noise, a type of task on which
LDQN is originally evaluated. Due to the difficulty of grid searching
numerous hyper-parameters for LDQN, the parameters used were
linearly searched individually while fixing others based on the
original work. We found reducing temperature schedule decay rate
𝑑 from 0.9 to 0.8 helps with convergence in our task, possibly due
to meeting-in-a-grid’s shorter scenarios. We used: 𝐾 = 3.0, 𝑑 =

0.8, 𝜉 = 0.25 and 𝜇 = 0.9995 along with the autoencoder, where
𝜉 is the exponent for temperature-based exploration, and 𝜇 is the
decrease rate for maximum temperature.

As seen in Fig. 4, our method shows higher sample efficiency
and performance. Noticing the y-axis is the number of steps needed
to complete the task. We see that LDQN was able to solve the task,
however it is not as stable and has less ideal performance compared

to LH-IQN. As the task becomes reliably solvable, LDQN slows
down learning and has a high variance, whereas LH-IQN achieves
the optimal solution on every run. We notice that the temperature
values of LDQN are low during the final stages of training, sug-
gesting minimal leniency is applied. Therefore, it appears the joint
policy reaches a shadowed equilibrum with less effective explo-
rations.

Benchmarking with more than two agents. Since the probability
of effective explorations decreases exponentially as the number of
agents increases due to alter-exploration [21], independent learners
often suffer from poor scalability in the number of agents. LH-IQN
mitigates this issue by putting more emphasis on non-exploratory
episodic samples which we show in 5.3 and Fig. 5. We evaluate our
method against LDQN in those scenarios involving more agents;
and as shown in Fig. 3(a), LDQN failed to solve the 4-agent environ-
ment reliably, persisting at a 50% fail rate, whereas our method’s fail
rate converges to 0 (return of 1). Moreover, in the 5-agent environ-
ment, shown in Fig. 3(b) LDQN failed to learn any effective policies
even though it does encounter cooperatively successful episodes.
On the contrary, while noisy, our method is able to successfully
learn in this large domain.

Explorations and TDL values. We inspect the TDL values during
training the 4 agent high-dimensional meeting-in-a-grid task and
plot training TDL values in Fig. 3(a) depending on whether the
agent was exploring or not. The TDL trends are shown in Fig. 5.
Self-exploring TDL refers to TDL values produced from training
batch transitions in which the agent is actually exploring (uniformly
action selection as opposed to greedilymaximizing expected return),
and non-self-exploring TDL refers to that of when teammates were
exploring but the agent is not. We observe that self-exploring TDL
values are much higher than that of non-self-exploring during the
active policy improvement period. This divergence of TDL values
when the agent is versus is not exploring suggests that TDL is able
to distinguish local mistakes (where it applies higher learning rate)
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Figure 5: TDL values in different exploration situations,
where self-exploring TDL refers to TDLs produced from
training sample transitions in which the agent is explor-
ing, and non-self-exploring TDL refer to teammates’ ex-
plorations. Exploration proportionality shows how much
agents are actively exploring.

from teammate explorations as we theorized. Note that the agent
does not have access to ground-truth exploration information in any
stage of training, therefore TDL is inferring exploratory information
only from the given transitions.

5.4 Dynamic Risk Sensitive IQN
We also demonstrate usage of dynamic risk distortion (DRD) oper-
ators to produce optimistic policies in an environment with even
more environment stochasticity, highlighting that DRD can be used
in conjunction with TDL for policy stability. As shown in Fig. 6,
both operators, CVnaR and Wang with 𝜂 = 𝜖 , when applied on top
of our IH-IQN approach, reach optimality more efficiently. Notice
that the environment is more challenging as the sliding probability
(probability of ending up in an unintended adjacent position upon
moving) increased from the previously used 0.1 to 0.3. TDL is un-
stable initially depending the weight initializations, often taking on
extreme values such as 0 or 1 in practice. Therefore, we reason that
the TDL-based agents are likely to fall for environment stochas-
ticity at the beginning of training like previous methods because
value estimations across states are not in the same learning stage
initially. However, risk distortion solves the issue that TDL can take
on extremely low TDL value in early stages of learning; since in
the early stage, high 𝜂 shifts the density of the distribution from
𝜏 towards 1, making the policy resemble a maximization-based
approach, yet still learning in an unbiased manner in terms of value
estimations. We also found that LH-DQN is robust to different 𝜂
values when using both Wang and CVnaR. We simply used the ex-
ploration parameter 𝜖 as the value for 𝜂 for our dynamic distortion
operator in our evaluation. Instead of using 𝜖 , a separate scheduling
can be adapted for 𝜂, and we found it to be more appropriate to
linearly anneal 𝜂 from 0.9 to 0.4, but we found that performance
differences are small in the benchmarking environment.

Figure 6: Performance of Risk Distortion methods applied
to IQN with and without Likelihood-Hysteresis on the 4 × 4
high-dimensional meeting-in-a-grid benchmark with high
environment stochasticity (sliding probability of 0.3 for
moving); shows that distortion operator works well with
and without TDL.

Also shown in Fig. 6 is that vanilla IQN yields limited perfor-
mance, but exceeds LDQN when simply applying a fixed risk dis-
tortion (CVnaR) without annealing. Overall, we observe that DRD
usually leads to faster policy improvements due to initially high
𝜂 making it overly optimistic, breaking shadowed equilibria and
reducing the initial inconsistencies in quantile estimates; on the
other hand, if applied without annealing, the agents’ policies are
subjected to environment stochasticity, since the derived policies
are not maximizing expected return. Therefore, it would be ad-
visable to reduce (either annealing 𝜂 or reduce the likelihood of
distortion) or turn off risk distortion in later stages of training.

6 CONCLUSION
This paper describes a novel distributional RL method for improv-
ing performance in cooperative multi-agent reinforcement learning
settings. In particular, we propose a likelihood measurement appli-
cable in distributional RL, TDL, that is used for comparing return
distributions in order to adaptively update an agent’s value esti-
mates. Through inspecting TDL values and usages, we conclude
that TDL plays a part in distinguishing domain non-stationary (e.g.,
from other agent learning and exploration) and domain stochas-
ticity (including teammate policy shifts), a long standing difficulty.
We compare and analyze our method along side state-of-the-art
methods on various benchmarks, and our approach demonstrates
improved stability, performance and sample efficiency. Further-
more, we demonstrate the effectiveness and adaptiveness of our
method when incorporating dynamic risk distortion operators, and
show risk distortion can also be applied to foster cooperation even
without incorporating TDL.
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