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Abstract. Independent agents learning by reinforcement must over-
come several difficulties, including non-stationarity, miscoordination, and
relative overgeneralization. An independent learner may receive different
rewards for the same state and action at different time steps, depending
on the actions of the other agents in that state. Existing multi-agent
learning methods try to overcome these issues by using various tech-
niques, such as hysteresis or leniency. However, they all use the latest
reward signal to update the Q function. Instead, we propose to keep track
of the rewards received for each state-action pair, and use a hybrid app-
roach for updating the Q) values: the agents initially adopt an optimistic
disposition by using the maximum reward observed, and then transform
into average reward learners. We show both analytically and empirically
that this technique can improve the convergence and stability of the
learning, and is able to deal robustly with overgeneralization, miscoor-
dination, and high degree of stochasticity in the reward and transition
functions. Our method outperforms state-of-the-art multi-agent learn-
ing algorithms across a spectrum of stochastic and partially observable
games, while requiring little parameter tuning.

Keywords: Multi-agent reinforcement learning - Markov games -
Independent learners - Distributed Q-learning

1 Introduction

Many real-world problems involve environments that contain a group of inde-
pendently learning agents working towards a common goal. Examples include
air traffic control [1], adaptive load-balancing of parallel applications [14], and
multi-robot systems [19]. Reinforcement learning (RL) [13] has been a popu-
lar approach to solving multi-agent learning problems, since it does not require
any a-priori knowledge about the dynamics of the environment, which can be
stochastic and partially observable.

Two main multi-agent reinforcement learning (MARL) approaches have been
proposed for handling multi-agent domains [3]. In joint-action learners (JALS),
every agent is aware of the actions of the other agents. Thus, the state and action
spaces of all agents can be merged together, defining a sort of super-agent in the
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joint space. Any single-agent RL algorithm can be used to learn the optimal
joint policy for such super agent. On the other hand, independent learners (ILs)
do not know the actions the other agents are performing, thus each agent has
to learn and act independently. Independent learning is an appealing approach,
since it does not have the scalability problem with increasing the number of
agents, and each agent only needs its local history of observations during the
training and the inference time.

However, independent learners must overcome a number of pathologies in
order to learn optimal joint policies [4,8]. These include credit assignment, the
moving target problem, stochasticity, relative overgeneralization, miscoordina-
tion, and the alter-exploration problem. Due to these pathologies, reinforcement
learning algorithms that converge in a single-agent setting often fail in coopera-
tive multi-agent systems with independent learning agents.

Various methods have been proposed in the MARL literature to help ILs
cope with the outlined pathologies. However, addressing one pathology often
leaves agents vulnerable towards others. Distributed Q-learning [5] is an opti-
mistic learning approach, which only increases the Q-values and ignores nega-
tive updates. It solves the relative overgeneralization and miscoordination prob-
lems, but is vulnerable to games with stochastic rewards or transitions. Other
approaches, such as hysteretic Q-learning [8] and lenient learning [12] are based
on varying the “degree of optimism” of agents. Hysteretic Q-learning uses a vari-
able learning rate to minimize the influence of poor actions of other agents on the
agent’s own learning, while lenient Q-learning initially ignore rewards that lead
to negative updates, until the state-action pair has been encountered frequently
enough (see Sect.5 for a more detailed description).

All previous methods use the latest joint reward signal received for each
state-action pair to update the Q function. Since the joint reward depends both
on the behavior of the other agents (which initially are mostly exploring the
environment), and the noise in the environment, updating the Q values and
the corresponding policy using only the latest reward signal may destabilize the
learning.

Instead, we propose to keep track of the rewards received for each state-action
pair, and use the reward statistics for the policy updates. Similar to the hysteretic
and lenient approaches, we use a hybrid approach for the learning: initially, the
agents adopt an optimistic approach by using the maximum reward observed
for the updates, which helps minimize the effect of shadowed equilibria. After a
predefined period of time, the agents transform into average reward learners in
order to handle stochasticity. We call this approach Hybrid Q-learning.

We first analyze the Hybrid Q-learning algorithm, and show that it is able
to handle each of the outlined MARL pathologies. We then compare it against
baseline algorithms from the literature, including traditional Q-learning, Dis-
tributed Q-learning [5], Hysteretic Q-learning [8], and a recent version of Lenient
Q-Learning called LMRL2 [18]. For the comparison we use a diverse array of sit-
uations, including: stochastic and repeated games, deterministic and stochastic
rewards, stochastic state transition functions, partial observability, miscoordi-
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nation, and relative overgeneralization. Our method outperforms the baseline
algorithms on all tested problems.

2 Theoretical Framework

2.1 Markov Games

Markov games (also called Stochastic games) [7] are the foundation for much of
the research in multi-agent reinforcement learning. Markov games are a superset
of Markov decision processes (MDPs) and matrix games, including both multiple
agents and multiple states.

Formally, a Markov game counsists of a tuple (N, S, A, T, R) where:

— N is a finite set of agents, n = |N|

— S is a set of states

- A=Ay x ... x A, is the set of joint actions.

-~ T:5xAxS —[0,1] is the transition probability function, with T'(s, a, s’) =
P(s'|s, a) being the probability of transitioning to state s’ after taking joint
action a in state s.

- R:S x A— R" is the joint reward function, with R;(s,a) being the reward
of agent i in state s after taking the joint action a.

In a Markov game, each agent is independently choosing actions and receiving
rewards, while the state transitions with respect to the full joint-action of all
agents. If all agents receive the same rewards (R; = ... = R,, = R) the Markov
game is fully-cooperative.

2.2 Policies and Nash Equilibria

For agent i, the policy m; represents a mapping from a state to a probability
distribution over actions: m; : S x A — [0,1]. A solution to a stochastic game
is a joint policy m—a set of policies, one for each agent. Joint policies excluding
agent i are defined as 7_;. The notation (m;, m_;) refers to a joint policy with
agent i following m; while the remaining agents follow 7_;.

Given a joint policy 7, the value (or gain) of state s for agent 7 is defined as
the expected sum of discounted future rewards, when all agents follow 7 from
state s:

VTi(s) = Eq [Z vkri)t+k’st = s] (1)
k=0

where r; ¢ is the reward received by agent ¢ at time step ¢, and v € (0,1] is a
discount factor.

From a game theoretic point of view, two common concepts of equilibrium are
used to define solutions in Markov games. A joint policy 7* is a Nash equilibrium
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[10], if and only if no agent can improve its gain by unilaterally deviating from
", i.e., for agent i

Vi, Vs € 8, Vmimid (5) > v{mem=i) () (2)

In contrast, a Pareto-optimal equilibrium is a joint policy @ from which no
agent can improve its gain without decreasing the expected gain of any other
agent. In cooperative games, every Parto-optimal equilibrium is also a Nash
equilibrium. Thus, the objective in cooperative games is to find the Paerto-
optimal Nash equilibria, also called optimal equilibria. Since there can be several
optimal equilibria, some coordination mechanisms are necessary.

2.3 Q-Learning

Q-learning [17] is one of the most popular single-agent reinforcement learning
algorithms, due to its simplicity and robustness. That is why it was one of the
first algorithms to be applied to multi-agent settings.

Let Q;(s,a;) be the value of the state-action pair (s, a;) for agent i, where a;
is the agent’s chosen action.! The update equation for agent i is:

Qi(s,a;) — (1 —a)Qi(s,a;) + a|r + Y max Qi(s',a) (3)

where s’ is the new state, r = R(s, (a;,a—;)) is the global reward received,
a € [0,1] is the learning rate, and « € [0, 1] is the discount factor.

3 Hybrid Q-Learning

In this section we present our Hybrid Q-learning approach for solving cooperative
stochastic games (shown in Algorithm 1). The algorithm combines between two
types of independent learners, that attempt to estimate the quality of an action
a, when paired with the actions A’ of the other agents [18]:

— Mazximum-based learners estimate the quality of a based on the maximum
reward observed:
quality(a) = max R;(a,a’)
a’ €A’

— Awverage-based learners estimate the quality of a based on the average reward:

. Za’ 4 Ri (a’ a’l)
quality(a) = eﬁT

1 We sometimes omit the subscript ¢, when it is clear that we are referring to a specific
agent.
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Our agents start as maximum-based learners, by using the maximum reward
obtained in each state-action pair for the Q updates. This allows the agents to be
initially forgiving towards suboptimal actions by teammates, which are mostly
doing exploration in that phase. It also prevents premature convergence of the
agents upon a sub-optimal joint policy (see Sect. 4 for a formal analysis).

After the agents have gained enough information about the potential rewards
that may be obtained in each state-action pair, they transition into using the
average rewards for the Q updates. This allows the agents to learn whether the
variation in the observed rewards is caused due to the noise in the environment
or to the behaviors of the other agents, thus making them more robust against
stochastic rewards and transitions.

Note that the average rewards are being computed from the beginning of the
game, thus all the knowledge the agents have accumulated during the exploration
phase is being utilized. This is in contrast to other types of learners which initially
ignore rewards that lead to negative updates.

A parameter denoted by p (0 < p < 1) controls the number of “optimistic”
steps, during which the maximum reward is used for the Q updates. After pT
number of steps is reached (T is the time horizon of the game), the agents move
to using the average rewards for the updates. In our experiments p was set to
be within the range of [0.1-0.2].

In order to keep track of the reward estimates, each agent maintains four
tables:

Q(s,a), a table of Q-values per state and action

Rpax(8,a), a table of maximum rewards per state and action
R(s,a), a table of average rewards per state and action
N(s,a), the number of visits to each state and action

Ll

To compute the average rewards in a computationally efficient manner, we
make incremental updates to the average rewards received at a state-action pair
(s, a) using the following equation:

R,11(s,a) = Ry(s,a) + %H (rn41 — Ru(s,a)) (4)

where 7,41 is the reward received after the (n + 1)th visit to (s,a).

Q(s,a) is updated in Q-learning style to incorporate both the immediate
reward and the expected future utility. However, instead of using the current
reward signal, which may be unreliable due to noise from the environment and
the other agents’ actions, we use either the maximum reward Rpyax(s,a) or the
average reward R(s,a), depending on the current stage of the learner.

The extension of Algorithm 1 to partially observable environments is pretty
straightforward. In the Q and R tables, instead of using the state variable we
use the agent’s observation history, e.g., Q(s, a) changes into Q(h,a).
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Algorithm 1. Hybrid Q-Learning for agent ¢
Input: Max steps T', ratio of optimistic updates p, learning rate «, discount factor
v, exploration ratio €
for s€¢ Sanda € A; do
Q(s,a) — 0
Rmax(s,a) «— —o0
R(s,a) «— 0
N(s,a) <0
s < initial state
fort— 1to T do
From s select a using an e-greedy selection rule
Apply a and observe reward r and next state s’
Rumax(s,a) «— max(Rmax(s,a),r)
N(s,a) «— N(s,a)+1
R(s,a) « R(s,a) + ﬁ(r — R(s,a))
if ¢ < p then
R — Rmax(s,a)
else
R« R(s,a)
Q(Sv a) — (1 - a)Q(Sa a) + a[R + Y maXareq, Q(Slv a/)]

s« s

4 Pathologies in Multi-Agent RL

In this section we discuss typical pathologies found in multi-agent learning prob-
lems, and describe how our approach tackles each one of them.

4.1 Relative Overgeneralization

Relative overgeneralization is a type of equilibrium shadowing, occurring when a
sub-optimal Nash equilibrium yields a higher payoff on average, when an agent’s
selected action is paired with arbitrary actions chosen by the other agents. As
a result of the shadowed equilibrium, average-based learners converge upon the
sub-optimal Nash equilibrium, that is pareto-dominated by at least one other
Nash equilibrium.

For example, in the Climb game (Table 1), the joint action (a,a) defines a
Pareto-optimal Nash equilibrium. However, if the agents sampled their actions
randomly and based their decisions on the average reward, action a would have
the worst score (—6.333), action ¢ would have the best score (1.667), and b would
be in the middle (—5.667). Thus, average-based learners would tend to converge
to the joint action (c,c), i.e., the Nash equilibrium is shadowed by the joint
action (¢, c).

On the other hand, maximum-based learners would have evaluated action a
as the best action, c¢ as the second best, and b as the worst. Hence, these agents
would tend to converge to the proper equilibrium (a, a).
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In our hybrid approach, the agents start as maximum-based learners. Thus,
given enough time for initial exploration, once both agents choose action a, it
will become their preferred action. Transitioning into average-based learners will
not change their policy, since after both agents’ policies have converged to the
joint action (a,a), the average reward for taking action a will be significantly
higher than taking any other action.

Table 1. The Climb game

4.2 The Stochasticity Problem

In stochastic games, the difficulty for independent learners is to distinguish
whether the variation in the observed rewards is due to the noise in the environ-
mnet or to the other agent’s behaviors.

For example, in the partially stochastic Climb game (Table2a) the joint
action (b, b) yields stochastic rewards of 14 and 0 with 50% probability. An IL
must distinguish if distinct rewards received for action b are due to various behav-
iors of the other agent or to stochastic rewards. In this case, maximum-based
learners are drawn towards (b, b), despite each agent only receiving a reward of
7 on average. On the other hand, average-based learners learn that the average
reward of the joint action (b,b) is 7, and thus that the action b is sub-optimal.

Table 2. Stochastic variations of the climb game. The probability of each reward is
50%.

Agent 2
a b c
~a| 10[12 5](—65) 8[(—8)
Sb|5/(—65) 14/0  12[0
2| 8](=8) 1200 10[0

(a) Climb-PS

(b) Climb-FS

Using our hybrid learning approach can solve this problem. In the optimistic
training phase, each agent will learn the maximum attainable reward for each
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action, i.e., 11 for a, 14 for b, and 5 for c¢. Then, after the transition into using
the average rewards, the reward for action b will start to drop off towards 7,
thus the agents will switch to the second best action a and stick to it (since its
average reward will be the same as the maximum).

Stochastic transitions present an additional hurdle. As was the case for
stochastic rewards, stochastic transitions are largely overcome by the agents’
gradual shift from being maximum-based to being average-based.

4.3 Miscoordination

Miscoordination occurs when there are multiple Pareto-optimal equilibria, and
they are offset in such a way that agents, each selecting what appears to be
an optimal action, end up with poor joint actions. For example, in the Panelty
game (Table 3), both actions @ and ¢ are reasonable for each agent, but if one
agent chooses a and the other one chooses ¢, they receive a low reward.

Table 3. The penalty game

With our Hybrid-Q approach, if Agent 1 keeps choosing action a and Agent
2 keeps choosing action ¢, when they turn into average-reward learners, they
will both receive an average reward of 5. At that point, when one of the agents
tries the other action (as exploration continues with a small probability), both
agents will start receiving an average reward that is greater than 5, which will
keep them selecting the same action.

4.4 The Alter-Exploration Problem

In multi-agent settings, the exploration of one agent induces noise in received
rewards of other agents and can destabilize their learned policies. This alter-
exploration problem amplifies the issue of shadowed equilibria, as a high global
exploration can result in agents converging upon a sub-optimal joint policy [9].

Our approach handles the alter-exploration issue by adopting a maximum-
based learning approach during the exploration phase, i.e., it allows the learning
of individual policies while other agents are exploring. By the time the agents
have gathered enough data about the rewards, they can change into average-
based learners without having the risk of being trapped in a sub-optimal policy
due to the other agents’ exploring actions.
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5 Independent Learner Baselines

We compare our Hybrid Q-learning against four other independent learner algo-
rithms in several cooperative test problems. We briefly discuss these algorithms
below.

5.1 Independent Q-Learning

In a MARL context, standard Q-learning is also known as Independent Q-
learning (IQL) or Decentralized Q-learning. In IQL, each agent runs an indepen-
dent Q-learning algorithm with its own Q value estimates, and there is no mech-
anism for addressing coordination problems. This algorithm has a low robust-
ness face to exploration, since explorative actions by other agents can cause
the agent’s learned policy to oscillate. Nevertheless, IQL has been successfully
applied in some domains [1,6,16].

5.2 Distributed Q-Learning

In Distributed Q-learning [5], the agents optimistically assume that all the other
agents will act to maximize their reward. Thus, they update the Q-value of an
action only if it is greater than the previous one. This optimistic update avoids
sub-optimal policies caused by shadowed equilibria.

To deal with miscoordination, an additional procedure is used to solve the
Pareto-optimal equilibria selection problem: the current policy 7; is only updated
when the Q-value of the policy’s chosen action is no longer the highest such value.
The idea is to cause agents to lock onto the earliest-discovered good action (and
Nash equilibrium) even when other equivalent equilibria exist.

Distributed Q-learning was proved to find optimal policies in deterministic
cooperative Markov games. However, this approach generally does not converge
in stochastic environments. In such environments, optimistic learners ignore
penalties in the update which are caused by noise in the environment, thus
they overestimate the real Q values.

5.3 Hysteretic Q-Learning

Hysteretic Q-learning is an optimistic MARL algorithm introduced to address
maximum based learner’s vulnerability towards stochasticity [8]. The idea is that
agents on one hand should not be blind to penalties, and on the other hand they
must be optimistic to minimize the effect of shadowed equilibria.

Hysteretic Q-learning uses two learning rates o and [ for positive and nega-
tive updates of the Q values, where 5 < «. The smaller [ learning rate reduces
the impact of negative QQ-value updates.

However, hysteretic Q-learners still have a tendency to converge to sub-
optimal policies when receiving misleading stochastic rewards. [18]
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5.4 LMRL2

LMRL2 (Lenient Multiagent Reinforcement Learning 2) [18] is an extension of
the lenient learning algorithm, LMRL [12], for stochastic games. LMRL2 is a
modified version of Q-learning which maintains per-action temperatures, that
are slowly decreased throughout the learning process. An action’s temperature
affects two things. First, it affects the lenience of the algorithm: high temper-
atures cause the algorithm to be lenient towards negative policy updates, and
so only mix rewards into Q-values if they are better than the current Q-value.
With a low temperature, LMRL2 mixes all rewards into the Q value.

Second, the temperature affects the degree of exploration: with high tem-
peratures, action selection is largely random, and with low temperatures, action
selection is greedily based on the actions with the highest Q-values. However,
when the average temperature drops below a certain minimum temperature,
then LMRL2’s action selection will suddenly become purely greedy.

5.5 Parameters

All the mentioned techniques have a variety of tunable parameters. For the
benchmarks used in our experiments, we have applied the same parameter set-
tings as in [18] (also shown in Table4). Note that some of these parameters are
unique to specific algorithms, e.g., the temperature parameters are relevant only
for lenient learning. Furthermore, some parameter values had to be tuned for
specific problems in order to obtain the best policy.

Table 4. Default parameter settings

Discount factor 0% 0.9
Learning rate @ 0.1
Exploration ratio € 0.1
Hysteretic learning rate 154 0.02
Temprature diffusion coefficient T 0.1
Temprature decay coefficient ) 0.995
Minimum temprature MinTemp | 50.0
Maximum temprature MaxTemp | 2.0
Action selection moderation factor | w 0.1
Leniency moderation factor 0 1

6 Experiments

We compared our method against all the aforementioned algorithms using four
types of test problems with various degrees of stochasticity and partial observ-
ability. Each of these problems exhibits some degree of the multi-agent patholo-
gies discussed in Sect. 4.
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6.1 Climb Games

First, we apply our algorithm to the three versions of the Climb game presented
in Tables1 and 2. These games have received considerable attention from the
community [3,5,9,11,18], as they remain challenging for state-of-the-art algo-
rithms despite their apparent simplicity.

The partially stochastic and fully stochastic versions, here designated Climb-
PS and Climb-FS respectively, define the reward for a joint action as one of
two different values with certain probabilities. However, the expected reward is
always the same as in the original Climb game. Stochasticity greatly complicates
the problem: past learners have failed to coordinate in the fully-stochastic Climb
game [9,18].

For the baseline algorithms, some of the parameters were tuned according to
the values suggested in [18]. For the Hybrid-Q algorithm, we have used the same
parameter values for all three versions of the game: p = 0.1, « = 0.1, v = 0.9, and
€ = 0.01. We have found out that higher exploration rates destabilize the learned
policy when the agents transition into average-based learners (interestingly, small
exploration rates have also been used in [18] for the baseline algorithms).

We have tested each algorithm on 10,000 trials of the game with different
random seeds. A trial consists of 10,000 repetitions of the game (7" = 10000).
At the end of each trial, we determine if the greedy joint action is the optimal
one. Table 5 shows the percentage of trials converging to the optimal joint action
according to the algorithm and the game.

Table 5. Percentage of trials that converged to the optimal joint action in the Climb
games (averaged over 10,000 trials). Boldface values indicate the highest-performing
methods for a given problem.

Climb | Climb-PS | Climb-FS
Hybrid Q 100% |99.65% |99.45%
IQL 58.80%  58.93% | 50.34%
Distributed Q | 100% |28.83% | 38.11%
Hysteretic Q |100% |93.92% | 94.98%
LMRL2 100% | 71.30% 35.11%

We can notice that our Hybrid-Q approach outperforms all baseline algo-
rithms in the stochastic versions of the game, and on par with the best algorithms
in the deterministic version.

6.2 Heaven and Hell Game

The Heaven and Hell game [18] is a deterministic game with four states and two
actions for each player (Table 6). This game has a high-reward state (“heaven”),
a low-reward state (“hell”), and two medium (“purgatory”) states of different
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levels of reward. Choice of a high-reward action will deceptively transition to a
lower-reward future state, and the converse is also true.

Table 6. Heaven and Hell game. The optimal joint action in each state is indicated
with boldface.

S |A1 | As Reward | S’
S1|a a 20 S2
s1 | any | other | 10 S1
s1|b b 15 S3
Sso | a a 0 S4
s2 | any | other | —10 S1
S2 b b -5 S2
S3 | a a 10 S4
s3 | any | other |0 S1
s3|b b 5 S2
S4|a a —10 S4
s4 | any | other | —20 S3
s4|b b —15 S2

In this game, it is easy for all algorithms to find that the best state for the
agents to be in is s1, thus any joint action that keeps the agents in that state
(either (a,b) or (b,a)) is optimal. Therefore, we have also checked which of the
algorithms has found the more general complete policy, meaning a policy that
determines the correct joint action for every state, even ones which would never
be visited if it followed a correct policy.

As in the Climb games, each trial consisted of 10,000 repetitions of the game.
This time we have conducted 1,000 trials for each algorithm. Table 7 shows the
percentage of trials converging to a complete and optimal joint policy according
to the algorithm.

Table 7. Percentage of trials that converged to the complete and optimal joint policy
in the heaven and hell problem (averaged over 1,000 trials)

Hybrid Q | IQL | Distributed Q | Hysteretic Q | LMRL2
71.0% 17.2% 1 23.1% 56.8% 63.7%

We can see that the success ratio in finding complete policies is lower than
what was achieved in the Climb games, since in this game a complete policy is
not needed for maximizing the total accumulated reward.
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6.3 Common Interest Game

In contrast to the previous games, the Common Interest game [15] is a stochastic
game with two states and stochastic transitions between these states. Table8
shows the rewards and the transition probabilities for each state and joint action.
This game poses a miscoordination challenge, as there are two Pareto-optimal
equilibria in the game. In the first, the agents play joint action (a,b) in state 1
and again (a,b) in state 2, while in the second they play (b,a) in state 1 and
(a,b) in state 2.

Table 8. Common interest game

S | Ay | Ay | Reward | S

sija |a |05 51(10%), s52(90%)
sijla |b |06 51(10%), $2(90%)
s1b la 06 51(10%), $2(90%)
s1'b |b 0.7 s1 (90%), s2 (10%)
s2la |a |0 51(10%), $2(90%)
s2la |b 1.0 51(10%), $2(90%)
s2'b la |05 51(10%), $2(90%)
s2/b |b |0 51(90%), s2(10%)

Similarly to the Climb games, we have executed the Common Interest game
for 10,000 time steps, and tested each algorithm on 10,000 instances of the game
with different random seeds. At the end of each game, we checked if the final joint
policy is one of the two Pareto-optimal equilibria. Table 9 shows the percentage
of trials converging to an optimal joint policy according to the algorithm. As can
be seen, the Hybrid-Q algorithm has achieved the highest percentage of optimal
solutions.

Table 9. Percentage of trials that converged to the optimal joint action in the Common
Interest problem (averaged over 10,000 trials)

Hybrid Q| IQL | Distributed Q | Hysteretic Q | LMRL2
99.91% | 91.70%  30.58% 59.90% 98.79%

6.4 Meeting in a Grid

In our last experiment, we have tested our algorithm on a partially observable
and stochastic environment. We used a variation of the meeting-in-a-grid Dec-
POMDP benchmark [2]. The environment consists of a static target and two
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agents in a 8 x 8 toroidal grid world (Fig.1). The agents get a reward of 1
for simultaneously landing on the target location, otherwise a reward of -0.01
(which encourages the agents to reach the target as quickly as possible). Episodes
terminate after 40 transitions or upon successful capturing of the target. Each
agent observes its own location and the location of the target, but does not know
where the other agent is located.

Each agent can execute one of the five possible actions: move North, South,
Fast, West, or stand still. Actions result in stochastic transitions: each action
succeeds with probability 1 — p, but with probability p, the agent moves at right
angles to the intended direction. For example, if p = 0.2, and the agent is located
at cell (2, 2) and chooses to move North, then with probability 0.8 it will move
to cell (2, 1), but with probability 0.1 it will move left to cell (1, 2), and with
probability 0.1 it will move right to cell (3, 2).

Fig. 1. The meeting-in-a-grid environment.

We ran 50 experiments with different random locations of the agents and
the target, each consisting of 1,000 episodes. For each experiment we measure
the total return over all the episodes. Therefore, the maximum score that can
be obtained in each experiment is 1,000, which occurs when the agents learn to
capture the target on the first episode, and keep capturing it in all subsequent
episodes.

We have varied the action noise probability p from 0.1 to 0.5 by intervals of
0.05. Figure 2 shows the average return achieved by the various algorithms for
the different values of p. As the action noise level increases, the gap between
the Hybrid-Q method and the other algorithms widens, which indicates that our
approach can better handle higher levels of stochasticity in the environment.
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Fig. 2. Average return in meeting-in-a-grid task for various action noise levels.

7 Conclusions

We presented a new hybrid approach for multi-agent reinforcement learning,
which is based on agents transitioning from being maximum-based learners into
average-based learners. We have shown that our approach consistently converges
towards the optimal joint policy in several benchmarks from the multi-agent
learning literature.

Despite the simplicity of our approach, it can serve as a basis for a general
framework that could be easily extended to other settings as well, e.g., integrating
it with deep reinforcement learning, or using smooth transitions from maximum-
based learning to average-based learning.
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