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Abstract. This paper introduces a bounded model checking (BMC)
algorithm for hyperproperties expressed in HyperLTL, which — to the
best of our knowledge — is the first such algorithm. Just as the classic
BMC technique for LTL primarily aims at finding bugs, our approach
also targets identifying counterexamples. BMC for LTL is reduced to
SAT solving, because LTL describes a property via inspecting individual
traces. Our BMC approach naturally reduces to QBF solving, as Hyper-
LTL allows explicit and simultaneous quantification over multiple traces.
We report on successful and efficient model checking, implemented in our
tool called HyperQube, of a rich set of experiments on a variety of case
studies, including security, concurrent data structures, path planning for
robots, and mutation testing.

1 Introduction

Hyperproperties [10] have been shown to be a powerful framework for specifying
and reasoning about important classes of requirements that were not possible
with trace-based languages such as the classic temporal logics. Examples include
information-flow security, consistency models in concurrent computing [6], and
robustness models in cyber-physical systems [5, 35]. The temporal logic Hyper-
LTL [9] extends LTL by allowing explicit and simultaneous quantification over
execution traces, describing the property of multiple traces. For example, the
security policy observational determinism can be specified by the following Hy-
perLTL formula: ∀πA.∀πB .(oπA

↔ oπB
) W ¬(iπA

↔ iπB
) which stipulates that

every pair of traces πA and πB have to agree on the value of the (public) output
o as long as they agree on the value of the (secret) input i, where ‘W ’ denotes
the weak until operator.

There has been a recent surge of model checking techniques for HyperLTL
specifications [9, 12, 22, 24]. These approaches employ various techniques (e.g.,
alternating automata, model counting, strategy synthesis, etc) to verify hyper-
properties. However, they generally fall short in proposing a general push-button
method to deal with identifying bugs with respect to HyperLTL formulas involv-
ing quantifier alternation. Indeed, quantifier alternation has been shown to gen-
erally elevate the complexity class of model checking HyperLTL specifications in
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different shapes of models [2, 9]. For example, consider the simple Kripke struc-
ture K in Fig. 1 and HyperLTL formulas ϕ1 = ∀πA.∀πB . (pπA

↔ pπB
) and

ϕ2 = ∀πA.∃πB . (pπA
6↔ pπB

). Proving that K 6|= ϕ1 (where traces for πA
and πB are taken from K) can be reduced to building the self-composition of K
and applying standard LTL model checking, resulting in worst-case complexity
|K|2 in the size of the system. On the contrary, proving that K |= ϕ2 is not as
straightforward. In the worst case, this requires a subset generation to encode
the existential quantifier within the Kripke structure, resulting in |K| ·2|K| blow
up. In addition, the quantification is over traces rather than states, adding to
the complexity of reasoning.

{p}
s0

{p}
s1

{p}
s2

{p, halt}
s3

{q, halt}
s4

Fig. 1: A Kripke structure.

Following the great success of bounded
model checking (BMC) for LTL specifica-
tions [8], in this paper, we propose a BMC
algorithm for HyperLTL. To the best of
our knowledge this is the first such algo-
rithm. Just as BMC for LTL is reduced
to SAT solving to search for a counterex-
ample trace whose length is bounded by some integer k, we reduce BMC for
HyperLTL to QBF solving to be able to deal with quantified counterexam-
ple traces in the input model. More formally, given a HyperLTL formula, e.g.,
ϕ = ∀πA.∃πB .ψ, and a family of Kripke structures K = (KA,KB) (one per trace
variable), the reduction involves three main components. First, the transition re-
lation of Kπ (for every π) is represented by a Boolean encoding JKπK. Secondly,
the inner LTL subformula ψ is translated to a Boolean representation JψK in
a similar fashion to the BMC unrolling technique for LTL. This way, the QBF
encoding for a bound k ≥ 0 roughly appears as:

JK,¬ϕKk = ∃xA.∀xB .JKAKk ∧
(
JKBKk ! J¬ψKk

)
(1)

where the vector of Boolean variables xA (respectively, xB) are used to represent
the states and propositions of KA (resp. KB) for steps from 0 to k. Formulas
JKAKk and JKBKk are the unrollingsKA (using xA) andKB (using xB), and J¬ψK
(that uses both xA and xB) is the fixpoint Boolean encoding of ¬ψ. The proposed
technique in this paper does not incorporate a loop condition, as implementing
such a condition for multiple traces is not straightforward. This, of course, comes
at the cost of lack of a completeness result.

While our QBF encoding is a natural generalization of BMC for HyperLTL,
the first contribution of this paper is a more refined view of how to interpret
the behavior of the formula beyond the unrolling depth k. Consider LTL for-
mula ∀π. pπ. BMC for LTL attempts to find a counterexample by unrolling
the model and check for satisfiability of ∃π. ¬pπ up-to bound k. Now consider
LTL formula ∀π. pπ whose negation is ∃π. ¬pπ. In the classic BMC, due to
its pessimistic handling of , the unsatisfiability of the formula cannot be estab-
lished in the finite unrolling (handling these formulas requires either a looping
condition or to reach the diameter of the system). This is because ¬pπ is not
sometimes finitely satisfiable (SFS), in the terminology introduced by Havelund
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and Peled [27], meaning that not all satisfying traces of pπ have a finite prefix
that witness the satisfiability.

We propose a method that allows to interpret a wide range of outcomes of
the QBF solver and relate these to the original model checking decision problem.
To this end, we propose the following semantics for BMC for HyperLTL:
– Pessimistic semantics (like in LTL BMC) under which pending eventuali-

ties are considered to be unfulfilled. This semantics works for SFS temporal
formulas and paves the way for bug hunting.

– Optimistic semantics considers the dual case, where pending eventualities
are assumed to be fulfilled at the end of the trace. This semantics works
for sometimes finitely refutable (SFR) formulas, and allows us to interpret
unsatisfiability of QBF as proof of correctness even with bounded traces.

– Halting variants of the optimistic and pessimistic semantics, which allow
sound and complete decision on a verdict for terminating models.
We have fully implemented our technique in the tool HyperQube. Our exper-

imental evaluation includes a rich set of case studies, such as information-flow
security, linearizability in concurrent data structures, path planning in robotic
applications, and mutation testing. Our evaluation shows that our technique is
effective and efficient in identifying bugs in several prominent examples. We also
show that our QBF-based approach is certainly more efficient than a brute-force
SAT-based approach, where universal and existential quantifiers are eliminated
by combinatorial expansion to conjunctions and disjunctions. We also show that
in some cases our approach can also be used as a tool for synthesis. Indeed, a
witness to an existential quantifier in a HyperLTL formula is an execution path
that satisfies the formula. For example, our experiments on path planning for
robots showcase this feature of HyperQube.

In summary, the contributions of this paper are as follows. We (1) propose a
QBF-based BMC approach for verification and falsification of HyperLTL spec-
ifications; (2) introduce complementary semantics that allow proving and dis-
proving formulas, given a finite set of finite traces, and (3) rigorously analyze the
performance of our technique by case studies from different areas of computing.

2 Preliminaries

2.1 Kripke Structures

Let AP be a finite set of atomic propositions and Σ = 2AP be the alphabet. A
letter is an element of Σ. A trace t ∈ Σω over alphabet Σ is an infinite sequence
of letters: t = t(0)t(1)t(2) · · ·

Definition 1. A Kripke structure is a tuple K = 〈S, Sinit , δ, L〉, where
– S is a finite set of states;
– Sinit ⊆ S is the set of initial states;
– δ ⊆ S × S is a transition relation, and
– L : S ! Σ is a labeling function on the states of K.

We require that for each s ∈ S, there exists s′ ∈ S, such that (s, s′) ∈ δ.
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Fig. 1 shows a Kripke structure, where Sinit = {s0}, L(s0) = {p}, L(s4) =
{q, halt}, etc. The size of the Kripke structure is the number of its states. A loop
in K is a finite sequence s(0)s(1) · · · s(n), such that (s(i), s(i+ 1)) ∈ δ, for all
0 ≤ i < n, and (s(n), s(0)) ∈ δ. We call a Kripke frame acyclic, if the only loops
are self-loops on otherwise terminal states, i.e., on states that have no other
outgoing transition. Since Definition 1 does not allow terminal states, we only
consider acyclic Kripke structures with such added self-loops. We also label such
states by atomic proposition halt .

A path of a Kripke structure is an infinite sequence of states s(0)s(1) · · · ∈ Sω,
such that s(0) ∈ Sinit , and (s(i), s(i+ 1)) ∈ δ, for all i ≥ 0. A trace of a
Kripke structure is a trace t(0)t(1)t(2) · · · ∈ Σω, such that there exists a path
s(0)s(1) · · · ∈ Sω with t(i) = L(s(i)) for all i ≥ 0. We denote by Traces(K, s) the
set of all traces of K with paths that start in state s ∈ S, and use Traces(K) as
a shorthand for

⋃
s∈Sinit

Traces(K, s).

2.2 The Temporal Logic HyperLTL

Syntax. HyperLTL [9] is an extension of the linear-time temporal logic (LTL)
for hyperproperties. The syntax of HyperLTL formulas is defined inductively by
the following grammar:

ϕ ::= ∃π.ϕ | ∀π.ϕ | φ
φ ::= true | aπ | ¬φ | φ ∨ φ | φ ∧ φ | φ U φ | φR φ | φ

where a ∈ AP is an atomic proposition and π is a trace variable from an infinite
supply of variables V. The Boolean connectives ¬, ∨, and ∧ have the usual
meaning, U is the temporal until operator, R is the temporal release operator,
and is the temporal next operator. We also consider other derived Boolean
connectives, such as !, and ↔, and the derived temporal operators eventually
ϕ ≡ true U ϕ and globally ϕ ≡ ¬ ¬ϕ. Even though the set of operators

presented is not minimal, we have introduced this set to uniform the treatment
with the variants in Section 3. The quantified formulas ∃π and ∀π are read as
“along some trace π” and “along all traces π”, respectively. A formula is closed
(i.e., a sentence) if all trace variables used in the formula are quantified. We
assume, without loss of generality, that no variable is quantified twice. We use
Vars(ϕ) for the set of path variables used in formula ϕ.

Semantics. An interpretation T = 〈Tπ〉π∈Vars(ϕ) of a formula ϕ consists of a
tuple of sets of traces, with one set Tπ per trace variable π in Vars(ϕ), denoting
the set of traces assigned to π. Note that we allow quantifiers to range over
different models. We will use this feature in the verification of hyperproperties
such as linearizability, where different quantifiers are associated with different
sets of executions (in this case one for the concurrent implementation and one
for the sequential implementation). That is, each set of traces comes from a
Kripke structure and we use K = 〈Kπ〉π∈Vars(ϕ) to denote a family of Kripke
structures, so Tπ = Traces(Kπ) is the traces that π can range over, which comes
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from Kπ. Abusing notation, we write T = Traces(K). Note that picking a single
K and letting Kπ = K for all π is a particular case, which leads to the original
semantics of HyperLTL [9].

Our semantics of HyperLTL is defined with respect to a trace assignment,
which is a partial map Π : Vars(ϕ) ⇀ Σω. The assignment with the empty
domain is denoted by Π∅. Given a trace assignment Π, a trace variable π, and
a concrete trace t ∈ Σω, we denote by Π[π ! t] the assignment that coincides
with Π everywhere but at π, which is mapped to trace t. The satisfaction of
a HyperLTL formula ϕ is a binary relation |= that associates a formula to the
models (T , Π, i) where i ∈ Z≥0 is a pointer that indicates the current evaluating
position. The semantics is defined as follows:

(T , Π, 0) |= ∃π. ψ iff there is a t ∈ Tπ, such that (T , Π[π ! t], 0) |= ψ,
(T , Π, 0) |= ∀π. ψ iff for all t ∈ Tπ, such that (T , Π[π ! t], 0) |= ψ,
(T , Π, i) |= true
(T , Π, i) |= aπ iff a ∈ Π(π)(i),
(T , Π, i) |= ¬ψ iff (T , Π, i) 6|= ψ,
(T , Π, i) |= ψ1 ∨ ψ2 iff (T , Π, i) |= ψ1 or (T , Π, i) |= ψ2,
(T , Π, i) |= ψ1 ∧ ψ2 iff (T , Π, i) |= ψ1 and (T , Π, i) |= ψ2,
(T , Π, i) |= ψ iff (T , Π, i+ 1) |= ψ,
(T , Π, i) |= ψ1 U ψ2 iff there is a j ≥ i for which (T , Π, j) |= ψ2 and

for all k ∈ [i, j), (T , Π, k) |= ψ1,
(T , Π, i) |= ψ1 R ψ2 iff either for all j ≥ i, (T , Π, j) |= ψ2, or,

for some j ≥ i, (T , Π, j) |= ψ1 and
for all k ∈ [i, j] : (T , Π, k) |= ψ2.

This semantics is slightly different from the definition in [9], but equiv-
alent (see [30]). We say that an interpretation T satisfies a sentence ϕ, de-
noted by T |= ϕ, if (T , Π∅, 0) |= ϕ. We say that a family of Kripke structures
K satisfies a sentence ϕ, denoted by K |= ϕ, if 〈Traces(Kπ)〉π∈Vars(ϕ) |= ϕ.
When the same Kripke structure K is used for all path variables we write
K |= ϕ. For example, the Kripke structure in Fig. 1 satisfies HyperLTL for-
mula ϕ = ∀πA.∃πB . (pπA

6↔ pπB
).

3 Bounded Semantics for HyperLTL

We introduce now the bounded semantics of HyperLTL, used in Section 4 to
generate queries to a QBF solver to aid solving the model checking problem.

3.1 Bounded Semantics

We assume the HyperLTL formula is closed and of the form
QAπA.QBπB . . .QZπZ .ψ, where Q ∈ {∀,∃} and it has been converted into
negation-normal form (NNF) so that the negation symbol only appears in front
of atomic propositions, e.g., ¬aπA

. Without loss of generality and for the sake of
clarity from other numerical indices, we use roman alphabet as indices of trace
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variables. Thus, we assume that Vars(ϕ) ⊆ {πA, πB , . . . , πZ}. The main idea of
BMC is to perform incremental exploration of the state space of the systems by
unrolling the systems and the formula up-to a bound. Let k ≥ 0 be the unrolling
bound and let T = 〈TA . . . TZ〉 be a tuple of sets of traces, one per trace vari-
able. We start by defining a satisfaction relation between HyperLTL formulas
for a bounded exploration k and models (T , Π, i), where T is the tuple of set of
traces, Π is a trace assignment mapping (as defined in Section 2), and i ∈ Z≥0
that points to the position of traces. We will define different finite satisfaction
relations for general models (for ∗ = pes, opt, hpes, hopt):
– |=∗k, the common satisfaction relation among all semantics,
– |=pes

k , called pessimistic semantics,
– |=opt

k , called optimistic semantics, and
– |=hpes

k and |=hopt
k , variants of |=pes

k and |=opt
k for Kripke structures that encode

termination of traces (modeled as self-loops to provide infinite traces).
All these semantics coincide in the interpretation of quantifiers, Boolean connec-
tives, and temporal operators up-to instant k−1, but differ in their assumptions
about unseen future events after the bound of observation k.

Quantifiers. The satisfaction relation for the quantifiers is the following:

(T , Π, 0) |=∗k ∃π. ψ iff there is a t ∈ Tπ : (T , Π[π ! t], 0) |=∗k ψ, (1)
(T , Π, 0) |=∗k ∀π. ψ iff for all t ∈ Tπ : (T , Π[π ! t], 0) |=∗k ψ. (2)

Boolean operators. For every i ≤ k, we have:

(T , Π, i) |=∗k true, (3)
(T , Π, i) |=∗k aπ iff a ∈ Π(π)(i), (4)
(T , Π, i) |=∗k ¬aπ iff a 6∈ Π(π)(i), (5)
(T , Π, i) |=∗k ψ1 ∨ ψ2 iff (T , Π, i) |=∗k ψ1 or (T , Π, i) |=∗k ψ2, (6)
(T , Π, i) |=∗k ψ1 ∧ ψ2 iff (T , Π, i) |=∗k ψ1 and (T , Π, i) |=∗k ψ2. (7)

Temporal connectives. The case where (i < k) is common between the opti-
mistic and pessimistic semantics:

(T , Π, i) |=∗k ψ iff (T , Π, i+ 1) |=∗k ψ, (8)
(T , Π, i) |=∗k ψ1 U ψ2 iff (T , Π, i) |=∗k ψ2, or

(T , Π, i) |=∗k ψ1 and (T , Π, i+1) |=∗k ψ1Uψ2, (9)
(T , Π, i) |=∗k ψ1 R ψ2 iff (T , Π, i) |=∗k ψ2, and

(T , Π, i) |=∗k ψ1 or (T , Π, i+ 1) |=∗k ψ1 R ψ2. (10)

For (i = k), in the pessimistic semantics the eventualities (including ) are
assumed to never be fulfilled in the future, so the current instant k is the last
chance:
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(T , Π, i) |=pes
k ψ iff never happens, (P1)

(T , Π, i) |=pes
k ψ1 U ψ2 iff (T , Π, i) |=pes

k ψ2, (P2)
(T , Π, i) |=pes

k ψ1 R ψ2 iff (T , Π, i) |=pes
k ψ1 ∧ ψ2. (P3)

On the other hand, in the optimistic semantics the eventualities are assumed to
be fulfilled in the future:

(T , Π, i) |=opt
k ψ iff always happens, (O1)

(T , Π, i) |=opt
k ψ1 U ψ2 iff (T , Π, i) |=opt

k ψ1 ∨ ψ2, (O2)

(T , Π, i) |=opt
k ψ1 R ψ2 iff (T , Π, i) |=opt

k ψ2. (O3)

To capture the halting semantics, we use the predicate halt that is true
if the state corresponds to a halting state (self-loop), and define halted def

=∧
πVars(ϕ) haltπ which holds whenever all traces have halted (and their final state

will be repeated ad infinitum). Then, the halted semantics of the temporal case
for i = k in the pessimistic case consider the halting case to infer the actual
value of the temporal operators on the (now fully known) trace:

(T , Π, i) |=hpes
k ψ iff (T , Π, i) |=∗k halted and (T , Π, i) |=hpes

k ψ (HP1)

(T , Π, i) |=hpes
k ψ1 U ψ2 iff (T , Π, i) |=hpes

k ψ2 (HP2)

(T , Π, i) |=hpes
k ψ1 R ψ2 iff (T , Π, i) |=hpes

k ψ1 ∧ ψ2, or
(T , Π, i) |=∗k halted and (T , Π, i) |=hpes

k ψ2 (HP3)

Dually, in the halting optimistic case:

(T , Π, i) |=hopt
k ψ iff (T , Π, i) 6|=∗k halted or (T , Π, i) |=hopt

k ψ (HO1)

(T , Π, i) |=hopt
k ψ1 U ψ2 iff (T , Π, i) |=hopt

k ψ2, or
(T , Π, i) 6|=∗k halted and (T , Π, i) |=hopt

k ψ1 (HO2)

(T , Π, i) |=hopt
k ψ1 R ψ2 iff (T , Π, i) |=hpes

k ψ2 (HO3)

Complete semantics. We are now ready to define the four semantics:
− Pessimistic semantics: |=pes

k use rules (1)-(10) and (P1)-(P3).
− Optimistic semantics: |=opt

k use rules (1)-(10) and (O1)-(O3).
− Halting pessimistic semantics: |=hpes

k use rules (1)-(10) and (HP1)-(HP3).
− Halting optimistic semantics: |=hopt

k use rules (1)-(10) and (HO1)-(HO3).

3.2 The Logical Relation between Different Semantics

Observe that the pessimistic semantics is the semantics in the traditional BMC
for LTL.In the pessimistic semantics a formula is declared false unless it is wit-
nessed to be true within the bound explored. In other words, formulas can only
get “truer” with more information obtained by a longer unrolling. Dually, the
optimistic semantics considers a formula true unless there is evidence within the
bounded exploration on the contrary. Therefore, formulas only get “falser” with
further unrolling. For example, formula p always evaluates to false in the pes-
simistic semantics. In the optimistic semantics, it evaluates to true up-to bound
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k if p holds in all states of the trace up-to and including k. However, if the for-
mula evaluates to false at some point before k, then it evaluates to false for all
j ≥ k. The following lemma formalizes this intuition in HyperLTL.

Lemma 1. Let k ≤ j. Then,
1. If (T , Π, 0) |=pes

k ϕ, then (T , Π, 0) |=pes
j ϕ.

2. If (T , Π, 0) 6|=opt
k ϕ, then (T , Π, 0) 6|=opt

j ϕ.
3. If (T , Π, 0) |=hpes

k ϕ, then (T , Π, 0) |=hpes
j ϕ.

4. If (T , Π, 0) 6|=hopt
k ϕ, then (T , Π, 0) 6|=hopt

j ϕ.

In turn, the verdict obtained from the exploration up-to k can (in some cases)
be used to infer the verdict of the model checking problem. As in classical BMC,
if the pessimistic semantics find a model, then it is indeed a model. Dually, if
our optimistic semantics fail to find a model, then there is no model. The next
lemma formally captures this intuition.

Lemma 2 (Infinite inference). The following hold for every k,
1. If (T , Π, 0) |=pes

k ϕ, then (T , Π, 0) |= ϕ.
2. If (T , Π, 0) 6|=opt

k ϕ, then (T , Π, 0) 6|= ϕ.
3. If (T , Π, 0) |=hpes

k ϕ, then (T , Π, 0) |= ϕ.
4. If (T , Π, 0) 6|=hopt

k ϕ, then (T , Π, 0) 6|= ϕ.

Example 1. Consider the Kripke structure in Fig. 1, bound k = 3, and formula
ϕ1 = ∀πA.∃πB .

(
(pπA

6↔ pπB
) R ¬qπA

)
. It is easy to see that instantiating πA

with trace s0s1s2s4 falsifies ϕ1 in the pessimistic semantics. By Lemma 2, this
counterexample shows that the Kripke structure is a model of ¬ϕ1 in the infinite
semantics as well. That is, K |=pes

3 ¬ϕ1 and, hence, K |= ¬ϕ1, so K 6|= ϕ1.
Consider again the same Kripke structure, bound k = 3, and formula ϕ2 =

∀πA.∃πB . (pπA
↔ qπB

). To disprove ϕ2, we need to find a trace πA such that
for all other πB , proposition q in πB always disagrees with p in πA. It is straight-
forward to observe that such a trace πA does not exist. By Lemma 2, proving
the formula is not satisfiable up-to bound 3 in the optimistic semantics implies
that K is not a model of ¬ϕ2 in the infinite semantics. That is, K 6|=opt

3 ¬ϕ2

implies K 6|= ¬ϕ2. Hence, we conclude K |= ϕ2.
Consider again the same Kripke structure which has two terminating states,

s3 and s4, labeled by atomic proposition halt with only a self-loop. Let k = 3,
and ϕ3 = ∀πA.∃πB .(¬qπB

U ¬pπA
). Instantiating πA by trace s0s1s3, which is of

the form {p}ω satisfies ¬ϕ3. By Lemma 2, the fulfillment of formula implies that
in infinite semantics it will be fulfilled as well. That is, K |=hpes

3 ¬ϕ3 implies
K |= ¬ϕ3. Hence, K 6|= ϕ3.

Consider again the same Kripke structure with halting states and formula
ϕ4 = ∀πA.∃πB . (pπA

6↔ pπB
). A counterexample is an instantiation of πA

such that for all πB , both traces will always eventually agree on p. Trace s0s1s2s4,
which is of the form {p}{p}{p}{q, halt}ω with k = 3. This trace never agrees
with a trace that ends in state s3 (which is of the form {p}ω) and vice versa. By
Lemma 2, the absence of counterexample up-to bound 3 in the halting optimistic
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semantics implies that K is not a model of ¬ϕ4 in the infinite semantics. That
is, K 6|=hopt

3 ¬ϕ4 implies K 6|= ¬ϕ4. Hence, we conclude K |= ϕ4. ut

4 Reducing BMC to QBF Solving

Given a family of Kripke structures K, a HyperLTL formula ϕ, and bound k ≥ 0,
our goal is to construct a QBF formula JK, ϕKk whose satisfiability can be used
to infer whether or not K |= ϕ.

In the following paragraphs, we first describe how to encode the model and
the formula, and then how to combine the two to generate the QBF query. We
will illustrate the constructions using formula ϕ1 in Example 1 in Section 3,
whose negation is ∃πA.∀πB .¬ψ with ¬ψ = (pπA

↔ pπB
) U qπA

.

Encoding the models. The unrolling of the transition relation of a Kripke struc-
ture KA = 〈S, Sinit , δ, L〉 up to bound k is analogous to the BMC encoding for
LTL [8]. First, note that the state space S can be encoded with a (logarithmic)
number of bits in |S|. We introduce additional variables n0, n1, . . . to encode
the state of the Kripke structure and use AP∗ = AP ∪ {n0, n1, . . .} for the ex-
tended alphabet that includes the encoding of S. In this manner, the set of initial
states of a Kripke structure is a Boolean formula over AP∗. For example, for the
Kripke structure KA in Fig. 1 the set of initial states (in this case Sinit = {s0})
corresponds to the following Boolean formula:

IA := (¬n0 ∧ ¬n1 ∧ ¬n2) ∧ p ∧ ¬q ∧ ¬halt

assuming that (¬n0 ∧ ¬n1 ∧ ¬n2) represents state s0 (we need three bits to
encode five states.) Similarly, RA is a binary relation that encodes the transition
relation δ ofKA (representing the relation between a state and its successor). The
encoding into QBF works by introducing fresh Boolean variables (a new copy of
AP∗ for each Kripke structure KA and position), and then producing a Boolean
formula that encodes the unrolling up-to k. We use xiA for the set of fresh copies
of the variables AP∗ of KA corresponding to position i ∈ [0, k]. Therefore, there
are k|xA| = k|AP∗A| Boolean variables to represent the unrolling of KA. We use
IA(x) for the Boolean formula (using variables from x) that encodes the initial
states, and RA(x, x′) (for two copies of the variables x and x′) for the Boolean
formula whether x′ encodes a successor states of x. For example, for k = 3, we
unroll the transition relation up-to 3 as follows,

JKAK3 = IA(x0A) ∧RA(x0A, x
1
A) ∧R(x1A, x

2
A) ∧R(x2A, x

3
A)

which is the Boolean formula representing valid traces of length 4, using four
copies of the variables AP∗A that represent the Kripke structure KA.

Encoding the inner LTL formula. The idea of the construction of the inner LTL
formula is analogous to standard BMC as well, except for the choice of differ-
ent semantics described in Section 3. In particular, we introduce the following
inductive construction and define four different unrollings for a given k: J·Kpesi,k ,
J·Kopti,k , J·Khpesi,k , and J·Khopti,k .
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– Inductive Case: Since the semantics only differ on the temporal opera-
tors at the end of the unrolling, the inductive case is common to all un-
rollings and we use J·K∗i,k to mean any of the choices of semantic (for ∗ =
pes, opt, hpes, hopt). For all i ≤ k:

JpπK∗i,k := piπ
J¬pπK∗i,k := ¬piπ
Jψ1 ∨ ψ2K∗i,k := Jψ1K∗i,k ∨ Jψ2K∗i,k
Jψ1 ∧ ψ2K∗i,k := Jψ1K∗i,k ∧ Jψ2K∗i,k
Jψ1 U ψ2K∗i,k := Jψ2K∗i,k ∨

(
Jψ1K∗i,k ∧ Jψ1 U ψ2K∗i+1,k

)
Jψ1 R ψ2K∗i,k := Jψ2K∗i,k ∧

(
Jψ1K∗i,k ∨ Jψ1 R ψ2K∗i+1,k

)
J ψK∗i,k := JψK∗i+1,k

Note that, for a given path variable πA, the atom piπA
that results from

JpπA
K∗i,k is one of the Boolean variables in xiA.

– For the base case, the formula generated is different depending on the
intended semantics:

JψKpesk+1,k := false JψKoptk+1,k := true

JψKhpesk+1,k := Jhalted Khpesk,k ∧ JψKhpesk,k JψKhoptk+1,k := Jhalted Khoptk,k ! JψKhoptk,k

Note that the base case defines the value to be assumed for the formula after
the end k of the unrolling, which is spawned in the temporal operators in
the inductive case at k. The pessimistic semantics assume the formula to
be false, and the optimistic semantics assume the formula to be true. The
halting cases consider the case at which the traces have halted (using in this
case the evaluation at k) and using the unhalting choice otherwise.

Example 2. Consider again the formula ¬ψ = (pπA
↔ pπB

) U qπA
. Using the

pessimistic semantics J¬ψKpes0,3 with three steps is

q0πA
∨
(

(p0πA
↔ p0πB

) ∧
(
q1πA
∨
(

(p1πA
↔ p1πB

) ∧
(
q2πA
∨ (p2πA

↔ p2πB
) ∧ q3πA

))))
.

In this encoding, the collection x2A, contains all variables of AP
∗ of KA (that is

{p2πA
, q2πA

, . . .}) connecting to the corresponding valuation for pπA
in the trace

of KA at step 2 in the unrolling of KA. In other words, the formula J¬ψKpes0,3 uses
variables from x0A, x

1
A, x

2
A, x

3
A and x0B , x

1
B , x

2
B , x

3
B (that is, from xA and xB). ut

Combining the encodings. Now, let ϕ be a HyperLTL formula of the form
ϕ = QAπA.QBπB . . . . .QZπZ .ψ and K = 〈KA,KB , . . . ,KZ〉. Combining all the
components, the encoding of the HyperLTL BMC problem in QBF is the follow-
ing (for ∗ = pes, opt, hpes, hopt):

JK, ϕK∗k = QAxA.QBxB · · · .QZxZ
(
JKAKk ◦A JKBKk ◦B · · · JKZKk ◦Z JψK∗0,k

)
where JψK∗0,k is the choice of semantics, ◦j = ∧ if Qj = ∃, and ◦j = ! if Qj = ∀,
for j ∈ Vars(ϕ).
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Example 3. Consider again Example 2. To combine the model description with
the encoding of the HyperLTL formula, we use two identical copies of the given
Kripke structure to represent different paths πA and πB on the model, denoted
as KA and KB . The final resulting formula is:

JK,¬ϕK3 := ∃xA.∀xB .
(
JKAK3 ∧ (JKBK3 ! J¬ϕKpes0,3 )

)
The sequence of assignments (¬n2,¬n1,¬n0, p,¬q,¬halt)0 (¬n2,¬n1, n0, p,¬q,
¬halt)1 (¬n2, n1,¬n0, p,¬q,¬halt)2 (n2,¬n1,¬n0,¬p, q, halt)3 on KA,
corresponding to the path s0s1s2s4, satisfies J¬ϕKpes0,3 for all traces on KB . The
satisfaction result shows that JK,¬ϕKpes3 is true, indicating that a witness of vio-
lation is found. Theorem 1, by a successful detection of a counterexample witness,
and the use of the pessimistic semantics, allows to conclude that K 6|= ϕ. ut

The main result of this section is Theorem 1 that connects the output of the
solver to the original model checking problem. We first show an auxiliary lemma.

Lemma 3. Let ϕ be a closed HyperLTL formula and T = Traces(K) be an
interpretation. For ∗ = pes, opt, hpes, hopt, it holds that

JK, ϕK∗k is satisfiable if and only if (T , Π∅, 0) |=∗k ϕ.

Proof (sketch). The proof proceeds in two steps. First, let ψ be the largest
quantifier-free sub-formula of ϕ. Then, every tuple of traces of length k (one
for each π) is in one-to-one correspondence with the collection of variables piπ,
that satisfies that the tuple is a model of ψ (in the choice semantics) if and
only if the corresponding assignment makes JψK∗0. Then, the second part shows
inductively in the stack of quantifiers that each subformula obtained by adding
a quantifier is satisfiable if and only if the semantics hold. ut

Lemma 3, together with Lemma 2, allows to infer the outcome of the model
checking problem from satisfying (or unsatisfying) instances of QBF queries,
summarized in the following theorem.

Theorem 1. Let ϕ be a HyperLTL formula. Then,
1. For ∗ = pes, hpes, if JK,¬ϕK∗k is satisfiable, then K 6|= ϕ.
2. For ∗ = opt , hopt , if JK,¬ϕK∗k is unsatisfiable, then K |= ϕ.

Table 1 illustrates what Theorem 1 allows to soundly conclude from the
output of the QBF solver about the model checking problem of formulas from
Example 1 in Section 3.

5 Evaluation and Case Studies

We now evaluate our approach by a rich set of case studies on information-flow
security, concurrent data structures, path planning for robots, and mutation
testing. In this section, we will refer to each property in HyperLTL as in Table 2.
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Semantics

Formula Bound pessimistic optimistic halting

ϕ1
k = 2 UNSAT (inconclusive) SAT (inconclusive) UNSAT (inconclusive)

k = 3 SAT (counterexample) SAT (inconclusive) UNSAT (inconclusive)

ϕ2
k = 2 UNSAT (inconclusive) SAT (inconclusive) UNSAT (inconclusive)

k = 3 UNSAT (inconclusive) UNSAT (proved) UNSAT (inconclusive)

ϕ3
k = 2 UNSAT (inconclusive) UNSAT (inconclusive) non-halted (inconclusive)

k = 3 UNSAT (inconclusive) UNSAT (inconclusive) halted (counterexample)

ϕ4
k = 2 UNSAT (inconclusive) UNSAT (inconclusive) non-halted (inconclusive)

k = 3 UNSAT (inconclusive) UNSAT (inconclusive) halted (proved)

Table 1: Comparison of Properties with Different Semantics

We have implemented the technique described in Section 4 in our tool HyperQube.
Given a transition relation, the tool automatically unfolds it up to k ≥ 0 by a
home-grown procedure written in Ocaml, called genqbf. Given the choice of the
semantics (pessimistic, optimistic, and halting variants) the unfolded transition
relation is combined with the QBF encoding of the input HyperLTL formula to
form a complete QBF instance which is then fed to the QBF solver QuAbS [28].
All experiments in this section are run on an iMac desktop with Intel i7 CPU
@3.4 GHz and 32 GB of RAM. A full description of the systems and formulas
used can be accessed in the longer version of this paper [30].

Case Study 1: Symmetry in Lamport’s Bakery algorithm [12]. Symme-
try states that no specific process has special privileges in terms of a faster access
to the critical section (see different symmetry formulas in Table 2). In these for-
mulas, each process Pn has a program counter denoted by pc(Pn), select indicates
which process is selected to process next, pause if both processes are not selected,
sym_break is which process is selected after a tie, and sym(selectπA

, selectπB
) in-

dicates if two traces are selecting two opposite processes. The Bakery algorithm
does not satisfy symmetry (i.e. ϕsym1

), because when two or more processes are
trying to enter the critical section with the same ticket number, the algorithm al-
ways gives priority to the process with the smaller process ID. HyperQube returns
SAT using the pessimistic semantics, indicating that there exists a counterex-
ample in the form of a falsifying witness to πA in formula ϕsym1

. Table 3 includes
our result on other symmetry formulas presented in Table 2.

Case Study 2: Linearizability in SNARK [14]. SNARK implements a
concurrent double-ended queue using double-compare-and-swap (DCAS) and a
doubly linked-list that stores values in each node. Linearizability [29] requires
that any history of execution of a concurrent data structure (i.e., sequence of
invocation and response by different threads) matches some sequential order of
invocations and responses (see formula ϕlin in Table 2). SNARK is known to
have two linearizability bugs and HyperQube returns SAT using the pessimistic
semantics, identifying both bugs as two counterexamples. The bugs we identified
are precisely the same as the ones reported in [14].



Bounded Model Checking for Hyperproperties 13

Property Property in HyperLTL

Symmetry

ϕS1 = ∀πA.∀πB .
(
¬sym(selectπA , selectπB ) ∨ ¬(pauseπA

= pauseπB
)
)
R((

pc(P0)πA = pc(P1)πB

)
∧
(
pc(P1)πA = pc(P0)πB

))
ϕS2 = ∀πA.∀πB .

(
¬sym(selectπA , selectπB ) ∨ ¬(pauseπA

= pauseπB
) ∨

¬(selectπA < 3) ∨ ¬(selectπB < 3)
)
R((

pc(P0)πA = pc(P1)πB

)
∧
(
pc(P1)πA = pc(P0)πB

))
ϕS3 = ∀πA.∀πB .

(
¬sym(selectπA , selectπB ) ∨ ¬(pauseπA

= pauseπB
) ∨

¬(selectπA < 3) ∨ ¬(selectπB < 3) ∨
¬sym(sym_breakπA

, sym_breakπB
)
)
R((

pc(P0)πA = pc(P1)πB

)
∧
(
pc(P1)πA = pc(P0)πB

))
ϕsym1

= ∀πA.∃πB . sym(selectπA , selectπB ) ∧ (pauseπA
= pauseπB

) ∧(
pc(P0)πA = pc(P1)πB

)
∧
(
pc(P1)πA = pc(P0)πB

)
ϕsym2

= ∀πA.∃πB . sym(selectπA , selectπB ) ∧ (pauseπA
= pauseπB

) ∧
(selectπA < 3) ∧ (selectπB < 3) ∧(
pc(P0)πA = pc(P1)πB

)
∧
(
pc(P1)πA = pc(P0)πB

)
Linearizability ϕlin = ∀πA.∃πB . (historyπA

↔ historyπB
)

NI ϕNI = ∀πA.∃πB .
(
PIN πA 6= PIN πB

)
∧
(
(¬haltπA ∨ ¬haltπB )

U
(
(haltπA ∧ haltπB ) ∧ (ResultπA = ResultπB )

))
Fairness

ϕfair = ∃πA.∀πB . ( mπA) ∧ ( NRRπA) ∧ ( NROπA) ∧(
(
∧
act∈ActP

actπA ↔ actπB ) !
(
( NRRπB ) ↔ ( NROπB )

))
∧(

(
∧
act∈ActQ

actπA ↔ actπB ) !
(
( NRRπB ) ↔ ( NROπB )

))
Path Planning

ϕsp = ∃πA.∀πB .(¬goalπB
U goalπA

)

ϕrb = ∃πA.∀πB . (strategyπB
↔ strategyπA

) U (goalπA
∧ goalπB

)

Mutant ϕmut = ∃πA.∀πB(mutπA ∧ ¬mutπB ) ∧
(
(inπA ↔ inπB ) U (outπA 6↔ outπB )

)
Table 2: Hyperproperties investigated in case studies.

Case Study 3: Non-interference in multi-threaded Programs. Non-
interference [25] states that low-security variables are independent from the
high-security variables, thus preserving secure information flow. We consider
the concurrent program example in [32], where PIN is high security input and
Result is low security output. HyperQube returns SAT in the halting pessimistic
semantics, indicating that there is a trace that we can detect the difference of a
high-variable by observing a low variable, that is, violating non-interference. We
also verified the correctness of a fix to this algorithm, proposed in [32] as well.
HyperQube uses the UNSAT results from the solver (with halting optimistic se-
mantics) to infer the absence of violation, that is, verification of non-interference.

Case Study 4: Fairness in non-repudiation protocols. A non-repudiation
protocol ensures that a receiver obtains a receipt from the sender, called non-
repudiation of origin (NRO), and the sender ends up having an evidence, named
non-repudiation of receipt (NRR), through a trusted third party. A
non-repudiation protocol is fair if both NRR and NRO are either received or not
received by the parties (see formula ϕfair in Table 2). We verified two different
protocols from [31], namely, Tincorrect that chooses not to send out NRR after
receiving NRO , and a correct implementation Tcorrect which is fair. For Tcorrect
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(respectively, Tincorrect), HyperQube returns UNSAT in the halting optimistic se-
mantics (respectively, SAT in the halting pessimistic semantics), which indicates
that the protocol satisfies (respectively, violates) fairness.

Fig. 2: Shortest Path

Fig. 3: Robust path

Case Study 5: Path planning for robots. We have
used HyperQube beyond verification, to synthesize strate-
gies for robotic planning [34]. Here, we focus on produc-
ing a strategy that satisfies two control requirements for a
robot to reach a goal in a grid. First, the robot should take
the shortest path (see formula ϕsp in Table 2). Fig. 2 shows
a 10×10 grid, where the red, green, and black cells are ini-
tial, goal, and blocked cells, respectively. HyperQube returns
SAT and the synthesized path is shown by the blue arrows.
We also used HyperQube to solve the path robustness prob-
lem, meaning that starting from an arbitrary initial state,
a robot reaches the goal by following a single strategy (see
formula ϕrb in Table 2). Again, HyperQube returns SAT for
the grid shown in Fig. 3.

Case Study 6: Mutation testing. We adopted the
model from [15] and apply the original formula that de-
scribes a good test mutant together with the model (see formula ϕmut in Table 2).
HyperQube returns SAT, indicating successful finding of a qualified mutant. We
note that in [15] the authors were not able to generate test cases via ϕmut, as
the model checker MCHyper is not able to handle quantifier alternation in push-
button fashion.

Results and analysis. Table 3 summarizes our results including running times,
the bounded semantics applied, the output of the QBF solver, and the resulting
infinite inference conclusion using Theorem 1. As can be seen, our case studies
range over model checking of different fragments of HyperLTL. It is important
to note that HyperQube run time consists of generating a QBF formula by genqbf
and then checking its satisfiability by QuAbS. It is remarkable that in some cases,
QBF formula generation takes longer than checking its satisfiability. The models
in our experiments also have different sizes. The most complex case study is
arguably the SNARK algorithm, where we identify both bugs in the algorithm
in 472 and 1497 seconds. In cases 5.1 – 6.2, we also demonstrate the ability of
HyperQube to solve synthesis problems by leveraging the existential quantifier in
a HyperLTL formula.

Finally, we elaborate more on scalability of the path planning problem for
robots. This problem was first studied in [34], where the authors reduce the
problem to SMT solving using Z3 [13] and by eliminating the trace quantifiers
through a combinatorial enumeration of conjunctions and disjunctions. Table 4
compares our approach with the brute-force technique employed in [34] for differ-
ent grid sizes. Our QBF-based approach clearly outperforms the solution in [34],
in some cases by an order of magnitude.
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# Model K Formula bound k |AP∗| QBF semantics genqbf [s] QuAbS [s] Total [s]

0.1 Bakery.3proc ϕS1 7 27 SAT pes 0.44 0.04 0.48 7

0.2 Bakery.3proc ϕS2 12 27 SAT pes 1.31 0.15 1.46 7

0.3 Bakery.3proc ϕS3 20 27 UNSAT opt 2.86 4.87 7.73 3

1.1 Bakery.3proc ϕsym1 10 27 SAT pes 0.86 0.11 0.97 7

1.2 Bakery.3proc ϕsym2 10 27 SAT pes 0.76 0.17 0.93 7

1.3 Bakery.5proc ϕsym1 10 45 SAT pes 23.57 1.08 24.65 7

1.4 Bakery.5proc ϕsym2 10 45 SAT pes 29.92 1.43 31.35 7

2.1 SNARK-bug1 ϕlin 26 160 SAT pes 88.42 383.60 472.02 7

2.2 SNARK-bug2 ϕlin 40 160 SAT pes 718.09 779.76 1497.85 7

3.1 3-Thread incorrect ϕNI 57 31 SAT h-pes 19.56 46.66 66.22 7

3.2 3-Threadcorrect ϕNI 57 31 UNSAT h-opt 23.91 33.54 57.45 3

4.1 NRP : Tincorrect ϕfair 15 15 SAT h-pes 0.10 0.27 0.37 7

4.2 NRP : Tcorrect ϕfair 15 15 UNSAT h-opt 0.08 0.12 0.20 3

5.1 Shortest Path

(see Table 4)

sy
nt
he

si
s

5.2 Initial State
Robustness

6.1 Mutant ϕmut 8 6 SAT h-pes 1.40 0.35 1.75

Table 3: Performance of HyperQube, where column case# identifies the artifact, 3

denotes satisfaction, and 7 denotes violation of the formula. AP∗ is the set of Boolean
variables encoding K.

HyperQube [34]
Formula grid size bound k |AP∗| genqbf [s] QuAbS [s] Total [s] gensmt [s] Z3 [s] Total[s]

ϕsp

102 20 12 1.30 0.57 1.87 8.31 0.33 8.64
202 40 14 4.53 12.16 16.69 124.66 6.41 131.06
402 80 16 36.04 35.75 71.79 1093.12 72.99 1166.11
602 120 16 105.82 120.84 226.66 4360.75 532.11 4892.86

ϕrb

102 20 12 1.40 0.35 1.75 11.14 0.45 11.59
202 40 14 15.92 15.32 31.14 49.59 2.67 52.26
402 80 16 63.16 20.13 83.29 216.16 19.81 235.97

Table 4: Path planning for robots and comparison to [34]. All cases use the halting
pessimistic semantics and QBF solver returns SAT, meaning successful path synthesis.

6 Related Work

There has been a lot of recent progress in automatically verifying [12,22–24] and
monitoring [1,6,7,20,21,26,33] HyperLTL specifications. HyperLTL is also sup-
ported by a growing set of tools, including the model checker MCHyper [12,24], the
satisfiability checkers EAHyper [19] and MGHyper [17], and the runtime monitor-
ing tool RVHyper [20]. The complexity of model checking for HyperLTL for tree-
shaped, acyclic, and general graphs was rigorously investigated in [2]. The first
algorithms for model checking HyperLTL and HyperCTL∗ using alternating au-
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tomata were introduced in [24]. These techniques, however, were not able to deal
in practice with alternating HyperLTL formulas in a fully automated fashion.
We also note that previous approaches that reduce model checking HyperLTL—
typically of formulas without quantifier alternations—to model checking LTL
can use BMC in the LTL model checking phase. However, this is a different
approach than the one presented here, as these approaches simply instruct the
model checker to use a BMC after the problem has been fully reduced to an
LTL model checking problem while we avoid this translation. These algorithms
were then extended to deal with hyperliveness and alternating formulas in [12]
by finding a winning strategy in ∀∃ games. In this paper, we take an alterna-
tive approach by reducing the model checking problem to QBF solving, which
is arguably more effective for finding bugs (in case a finite witness exists).

The satisfiability problem for HyperLTL is shown to be undecidable in general
but decidable for the ∃∗∀∗ fragment and for any fragment that includes a ∀∃
quantifier alternation [16]. The hierarchy of hyperlogics beyond HyperLTL were
studied in [11]. The synthesis problem for HyperLTL has been studied in [3] in
the form of program repair, in [4] in the form of controller synthesis, and in [18]
for the general case.

7 Conclusion and Future Work

We introduced the first bounded model checking (BMC) technique for verifi-
cation of hyperproperties expressed in HyperLTL. To this end, we proposed
four different semantics that ensure the soundness of inferring the outcome of
the model checking problem. To handle trace quantification in HyperLTL, we re-
duced the BMC problem to checking satisfiability of quantified Boolean formulas
(QBF). This is analogous to the reduction of BMC for LTL to the simple propo-
sitional satisfiability problem. We have introduced different classes of semantics,
beyond the pessimistic semantics common in LTL model checking, namely op-
timistic semantics that allow to infer full verification by observing only a finite
prefix and halting variations of these semantics that additionally exploit the ter-
mination of the execution, when available. Through a rich set of case studies, we
demonstrated the effectiveness and efficiency of our approach in verification of
information-flow properties, linearizability in concurrent data structures, path
planning in robotics, and fairness in non-repudiation protocols.

As for future work, our first step is to solve the loop condition problem. This
is necessary to establish completeness conditions for BMC and can help cover
even more examples efficiently. The application of QBF-based techniques in the
framework of abstraction/refinement is another unexplored area. Success of BMC
for hyperproperties inherently depends on effectiveness of QBF solvers. Even
though QBF solving is not as mature as SAT/SMT solving techniques, recent
breakthroughs on QBF have enabled the construction of our tool HyperQube, and
more progress in QBF solving will improve its efficiency.
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