Finite-Word Hyperlanguages

Borzoo Bonakdarpour! [0000—0003—1800—-5419] 5pq
Sarai Sheinvald2 [0000—0002—0524—"7390]

1 Department of Computer Science and Engineering, Michigan State University, USA
2 Department of Software Engineering, ORT Braude College, Israel

Abstract. Formal languages are in the core of models of computation and their
behavior. A rich family of models for many classes of languages have been widely
studied. Hyperproperties lift conventional trace-based languages from a set of
execution traces to a set of sets of executions. Hyperproperties have been shown
to be a powerful formalism for expressing and reasoning about information-flow
security policies and important properties of cyber-physical systems. Although
there is an extensive body of work on formal-language representation of trace
properties, we currently lack such a general characterization for hyperproperties.
We introduce hyperlanguages over finite words and models for expressing them.
Essentially, these models express multiple words by using assignments to quan-
tified word variables. Relying on the standard models for regular languages,
we propose hyperregular expressions and finite-word hyperautomata (NFH), for
modeling the class of regular hyperlanguages. We demonstrate the ability of reg-
ular hyperlanguages to express hyperproperties for finite traces. We explore the
closure properties and the complexity of the fundamental decision problems such
as nonemptiness, universality, membership, and containment for various frag-
ments of NFH.

1 Introduction

Formal languages along with the models that express them are in the core of model-
ing, specification, and verification of computing systems. Execution traces are formally
described as words, and various families of automata are used for modeling systems of
different types. Regular languages are a classic formalism for finite traces and when the
traces are infinite, w-regular languages are used.

There are well-known connections between specification logics and formal lan-
guages. For example, LTL [15] formulas can be translated to w-regular expressions,
and CTL* [8] formulas can be expressed using tree automata. Accordingly, many ver-
ification techniques that exploit these relations have been developed. For instance, in
the automata-theoretic approach to verification [17, 18], the model-checking problem is
reduced to checking the nonemptiness of the product automaton of the model and the
complement of the specification.

Hyperproperties [6] generalize the traditional trace properties [2] to system prop-
erties, i.e., a set of sets of traces. A hyperproperty prescribes how the system should
behave in its entirety and not just based on its individual executions. Hyperproperties
have been shown to be a powerful tool for expressing and reasoning about information-
flow security policies [6] and important properties of cyber-physical systems [19] such

2 Borzoo Bonakdarpour and Sarai Sheinvald

as sensitivity and robustness, as well as consistency conditions in distributed comput-
ing such as linearizability [4]. While different types of logics have been suggested for
expressing hyperproperties, their formal-language counterparts and the models that ex-
press them are currently missing.

In this paper, we establish a formal-language theoretical framework for hyperlan-
guages, that are sets of sets of words, which we term hyperwords. Our framework is
based on an underlying standard automata model for formal languages, augmented with
quantified word variables that are assigned words from a set of words in the hyperlan-
guage. This formalism is in line with logics for hyperproperties (e.g., HyperLTL [5]
and HyperPCTL [1]). These logics express the behavior of infinite trace systems. How-
ever, a basic formal model for expressing general hyperproperties for finite words has
not been defined yet. Hyperlanguages based on finite words have many practical appli-
cations. For instance, path planning objectives for robotic systems often stipulate the
existence of one or more finite paths that stand out from all other paths.

To begin with the basics, we focus this paper on a regular type of hyperlanguages
of sets consisting of finite words, which we call regular hyperlanguages. The models
we introduce and study are based on the standard models for regular languages, namely
regular expressions and finite-word automata. We explain the idea with two examples.

Example 1. Consider the following hyperregular expression (HRE) over the alphabet

{a}.

ry = Vo.dy. ({ax,ay}*{#m,ay}*>

T1

The HRE r; uses two word variables x and y, which are assigned words from a hy-
perword. The HRE r; contains an underlying regular expression 71, whose alphabet is
({a} U {#})1¥}, and whose (regular) language describes different word assignments
to x and y, where # is used for padding at the end if the words assigned to x and y are of
different lengths. In a word in the language of 71, the ¢’th letter describes both i’th let-
ters in the words assigned to « and y. For example, the word {ag, a, }{as, ay } {#<z, ¢y}
describes the assignment x +— aa,y — aaa. The regular expression 7 requires that
the word assigned to y be longer than the word assigned to x. The quantification con-
dition ¥Yx.3y of ry requires that for every word in a hyperword S in the hyperlanguage
of 71, there exists a longer word in S. This holds iff S contains infinitely many words.
Therefore, the hyperlanguage of 7 is the set of all infinite hyperwords over {a}. O

Example 2. Robotics applications are often concerned with finding the shortest path
that reaches a goal g, starting from an initial location ¢. The shortest path requirement
can be expressed by the following HRE over an alphabet 3

ro = Jo5yLias iy {0} ({000} | {00090}) {08}

where g € X — {g} and § € Y. That is, there exists a path x that is shorter than any
other path y in reaching g. O

Although there is an ongoing line of research on model-checking hyperproper-
ties [11, 3, 7], the work on finite-trace hyperproperties is limited to [9], where the au-

Finite-Word Hyperlanguages 3

Property Result
Closure Complementation, Union, Intersection (Theorem 1)
V34 Undecidable (Theorem 2)
Nonemptiness 3 /v NL-complete (Theorem 2)
ElA PSPACE-complete (Theorem 2)
awv Undecidable (Theorem 3)
Universality 3 /v PSPACE-complete (Theorem 3)
v 3* EXPSPACE (Theorem 3)
Finite membership NFH PSPACE (Theorem 4)
O(log(k)) V NP-complete (Theorem 4)
Regular membership Decidable (Theorem 5)
NFH Undecidable (Theorem 6)
Containment I* CVv* /v* C 3*|PSPACE-complete (Theorem 7)
J*V* C vV I* EXPSPACE (Theorem 7)

Table 1. Summary of results on properties of hyperregular languages.

thors construct a finite-word representation for the class of regular k-safety hyperprop-
erties. We make the following contributions:

— Introduce regular hyperlanguages and HREs, and demonstrate the ability of HREs
to express important information-flow security policies such as different variations
of noninterference [13] and observational determinism [20].

— Present nondeterministic finite-word hyperautomata (NFH), an automata-based model
for expressing regular hyperlanguages.

— Conduct a comprehensive study of the properties of regular hyperlanguages (see
Table 1). We show that regular hyperlanguages are closed under union, intersec-
tion, and complementation. We further prove that the nonemptiness problem is in
general undecidable for NFH. However, for the alternation-free fragments (which
only allow one type of quantifier), as well as for the 3V fragment (in which the quan-
tification condition is limited to a sequence of 3 quantifiers followed by a sequence
of V quantifiers), nonemptiness is decidable. We also study the universality, mem-
bership and containment problems. These results are aligned with the complexity
of HyperLTL model checking for tree-shaped and general Kripke structures [3].
This shows that the complexity results in [3] mainly stem from the nature of quan-
tification over finite words and depend on neither the full power of the temporal
operators nor the infinite nature of HyperL'TL semantics.

2 Preliminaries

An alphabet is a nonempty finite set X' of letters. A word over X is a finite sequence of
letters from 3. The empty word is denoted by ¢, and the set of all words is denoted by
2. A language is a subset of 2*. We assume that the reader is familiar with the syntax
and semantics of regular expressions (RE). We use the standard notations {-, |, *} for
concatenation, union, and Kleene star, respectively, and denote the language of an RE
r by L(r). A language L is regular if there exists an RE r such that £(r) = L.

4 Borzoo Bonakdarpour and Sarai Sheinvald

Definition 1. A nondeterministic finite-word automaton (NFA) is a tuple
A = (X,Q,Q0,9, F), where X is an alphabet, Q) is a nonempty finite set of states,
Qo C Q is a set of initial states, F' C @) is a set of accepting states, and § C Q x X' X @
is a transition relation.

Given a word w = o109 -+ 0, over X, a run of A on w is a sequence of states
(go,q1, - - - qn),such that gy € Q, and for every 0 < ¢ < n, itholds that (¢;—1, 04, q;) €
0. The run is accepting if q, € F. We say that A accepts w if there exists an accepting
run of A on w. The language of A, denoted L(A), is the set of all words that A accepts.
It holds that a language L is regular iff there exists an NFA A such that £(A) = L.

3 Hyperregular Expressions

Definition 2. A hyperword over X' is a set of words over X and a hyperlanguage over
X is a set of hyperwords over 2.

Before formally defining hyperregular expressions, we explain the idea behind them.
A hyperregular expression (HRE) over X uses a set of word variables X = {x1,xa, .. .,
When expressing a hyperword S, these variables are assigned words from S. An HRE
r is composed of a quantification condition o over X, and an underlying RE #, which
represents word assignments to X. An HRE r defines a hyperlanguage £(r). The con-
dition « defines the assignments that should be in £(7). For example, o = Jz1.Vzo
requires that there exists a word w; € S (assigned to x1), such that for every word
wy € S (assigned to x3), the word that represents the assignment 1 — w1, T2 — wo,
isin £(#). The hyperword S is in £(r) iff S meets these conditions.

We represent an assignment v : X — S as a word assignment w,,, which is a word
over the alphabet (XU {#})% (that is, assignments from X to X U{#}), where the i’th
letter of w,, represents the k ¢’th letters of the words v(x1), ..., v(x) (in case that the
words are not of equal length, we “pad” the end of the shorter words with # symbols).
We represent these k i’th letters as an assignment denoted {014,, 0240, -, Okay s
where x; is assigned ¢;. For example, the assignment v(x1) = aa and v(x2) = abb is
represented by the word assignment w,, = {ay, , Gzy {0z, s bzy H{Fay) bus }-

Definition 3. A hyperregular expression is a tuple r = (X, X, a,), where oo = Q171
where Q; € {3,V} for every i € [1, k], and where 7 is an RE over X = (X U {#})*.

Let S be a hyperword and let v : X — S be an assignment of the word variables of
r to words in S. We denote by v[z — w] the assignment obtained from v by assigning
the word w € S to x € X. We represent v by w,. We now define the membership
condition of a hyperword S in the hyperlanguage of r. We first define a relation + for
S, 7, a quantification condition «, and an assignment v : X — 5, as follows.

— For a = ¢, define S+, (o, 7) if w,, € L(7).
— For o = 3z.0/, define S I, (o, 7) if there exists w € S s.t. S Fy [z (¢, 7).
- For o = V.o, define S b, (a,7) if S Fyppyu) (o ,7) foreveryw € S .3

3 In case that o begins with ¥, membership holds vacuously with an empty hyperword. We
restrict the discussion to nonempty hyperwords.

xk}.

- Qug,

Finite-Word Hyperlanguages 5

Since all variables are under the scope of o, membership is independent of v, and so if
S+ (a,), we denote S € £(r). The hyperlanguage of r is £(r) = {S | S € £(r)}.

Definition 4. We call a hyperlanguage £ a regular hyperlanguage if there exists an
HRE r such that £(r) = £.

Application of HRE in Information-flow Security

Noninterference [13] requires high-secret commands be removable without affecting
observations of users holding low clearances:

oni = Vo Jy{ls, N},

where [denotes a low state and [\ denotes a low state such that all high commands are
replaced by a dummy value A.

Observational determinism [20] requires that if two executions of a system start
with low-security-equivalent events, they should remain low equivalent:

P00 =Yy (o b} 1 (T H80, 8,1 | sl 182801 | {1y HS28,1)

where [denotes a low event, [€ X'\ {I}, and $ € X. We note that similar policies such
as Boudol and Castellani’s noninterference [12] can be formulated in the same fashion.
4

Generalized noninterference (GNI) [14] allows nondeterminism in the low-observable
behavior, but requires that low-security outputs may not be altered by the injection of
high-security inputs:

o — Va:.Vy.EIz.({hx,ly,hlz} | {hasly, B2} | {hosly, B} | {hx,ly,hlz}>

where h denotes the high-security input, I denotes the low-security output, [€ X'\ {l},
and h € ¥\ {h}.

Declassification [16] relaxes noninterference by allowing leaking information when
necessary. Some programs must reveal secret information to fulfill functional require-
ments. For example, a password checker must reveal whether the entered password is
correct or not:

Gde = Vo Vy{liy, liy }{pw,, pwy }Hlox, lo,} T
where /i denotes low-input state, pw denotes that the password is correct, and [o denotes
low-output states. We note that for brevity, 4. does not include behaviors where the
first two events are not low or, in the second event, the password is not valid.

Termination-sensitive noninterference requires that for two executions that start
from low-observable states, information leaks are not permitted by the termination be-
havior of the program (here, [denotes a low state and § € X):

Prsni = vx~vy-({lwaly}{way}*{lwaly} ‘ {Zwaiy}{way}* |
{la Ty H82, 8y} | (T 1y 82,8, 1)

* This policy states that every two executions that start from bisimilar states (in terms of memory
low-observability), should remain bisimilarly low-observable.

6 Borzoo Bonakdarpour and Sarai Sheinvald

Ay, Ay §,
{ax)}

(be by} ()bl
VxVy
o) @‘ {by, #,}

Fig. 1. The NFH A, (left) and A (right).

4 Nondeterminsitic Finite-Word Hyperautomata

We now present a model for regular hyperlanguages, namely finite-word hyperautomata.
A hyperautomaton is composed of a set X of word variables, a quantification condition,
and an underlying finite-word automaton that accepts representations of assignments to
X.

Definition 5. A nondeterministic finite-word hyperautomaton (NFH) is a tuple
A= (X, X,Q,Q0, F,d,«), where X, X and « are as in Definition 3, and where
(X,Q,Qo, F,5) forms an underlying NFA over 3 = (X U {#})X

The acceptance condition for NFH, as for HRE, is defined with respect to a hyper-
word S, the NFH A, the quantification condition «, and an assignment v : X — S. For
the base case of & = ¢, we define S -, («, A) if A accepts w,,. The cases where « is of
the type Jz.o’ and V.o’ are defined similarly as for HRE, and if S + (o, .A), we say
that A accepts S.

Definition 6. Ler A be an NFH. The hyperlanguage of A, denoted £(A), is the set of
all hyperwords that A accepts.

Example 3. Consider the NFH A, in Figure 1 (left), whose alphabet is X = {a,b},
over two word variables and y. The NFH A, contains an underlying standard NFA
Aj. For two words w1, wy that are assigned to x and y, respectively, Ay requires that
(1) wy, wy agree on their a (and, consequently, on their b) positions, and (2) once one
of the words has ended (denoted by #), the other must only contain b letters. Since the
quantification condition of A; is Vz1.Vxs, in a hyperword S that is accepted by A4,
every two words agree on their a positions. As a result, all the words in .S must agree on
their a positions. The hyperlanguage of A; is then all hyperwords in which all words
agree on their a positions.

Example 4. The NFH A; of Figure 1 (right) depicts the translation of the HRE of Ex-
ample 1 to an NFH.

Since regular expressions are equivalent to NFA, we can translate the underlying
regular expression 7 of an HRE r to an equivalent NFA, and vice versa — translate the
underlying NFA Aofan NFA Atoa regular expression. It is then easy to see that every
HRE has an equivalent NFH over the same set of variables with the same quantification
condition.

Finite-Word Hyperlanguages 7

We consider several fragments of NFH, which limit the structure of the quantifi-
cation condition . HREy is the fragment in which a contains only V quantifiers, and
similarly, in HRE3, « contains only 3 quantifiers. In the fragment HREgy, « is of the
form E|IL'1 s E'(EiVLCZ'Jrl cee V$k

5 Properties of Regular Hyperlanguages

5.1 Closure Properties

We now consider closure properties of regular hyperlanguages. We show, via construc-
tions on NFH, that regular hyperlanguages are closed under all the Boolean operations.

Theorem 1. Regular hyperlanguages are closed under union, intersection, and com-
plementation.

proof sketch. Complementing an NFH A amounts to dualizing its quantification con-
dition by replacing 3 with V and vice versa, and complementing A via the standard
construction for NFA. Since complementing Ais exponential in its state space, A is
exponential in the size of A.

Now, let A; and A5 be two NFH over Y, with the variables X and Y, respectively.
The NFH A for £(A;) N £(A) is based on the product construction of A; and
Ag The quantification condition of An is Qg - Qg The underlying NFA Am advances
simultaneously on both A; and As: when Ay and A, run on word assignments w1
and wo, respectively, .Am runs on a word assignment wy U wo, which represents both
assignments wq and wo, and accepts only if both fll and flg accept. To run on both
assignments simultaneously, every letter in An is of the type f1 U fa, where f1 : X —
(DU{#)})isaletterin Xy, and fo : Y — (XU{#}) is aletter in X This construction
is polynomial in the sizes of .A; and Aj.

Similarly, the NFH Ay for £(A;) U £(Az2) is based on the union construction of
A1 and Aj. The quantification condition of A, is again a; - az. The underlying NFA
Ay advances either on A; or Aj. For ‘every word word assignemt w read by Al, the
NFH .AU reads w Uw’, for every w’ € E 5, and dually, for every word w read by As, the
NFH AU reads w' U w, for every w’ € Z‘ 1. The state space of Ay is linear in the state
spaces of A;, As. However, the size of the alphabet of A may be exponentially larger
than that of A; and As. O

5.2 Decision Procedures

We now turn to study several decision problems for the various fragments of NFH.
Throughout this section, .4 is an NFH (X', X, Q, Qq, J, F,), where X = {x1,...z}.

Nonemptiness. The nonemptiness problem is to decide, given an NFH A, whether
£(A) = (). In [10], a reduction from the Post correspondence problem is used for prov-
ing the undecidability of HyperLTL satisfiability. A roughly similar reduction shows
that the nonemptiness problem for NFH is, in general, undecidable. However, nonempti-
ness is decidable for the fragments we consider, with varying complexities.

8 Borzoo Bonakdarpour and Sarai Sheinvald

For the alternation-free fragments, we show that a simple reachability test on their
underlying automata suffices to verify nonemptiness.

For NFH3y, we show that the problem is decidable, by checking the nonemptiness
of an exponentially larger equi-empty NFA. To summarize, we have the following.

Theorem 2. The nonemptiness problem for

1. NFH3 and NFH+y is NL-complete,
2. NFHsy is PSPACE-complete, and
3. NFH is undecidable.

proof sketch. NFHy and NFH3. The lower bound follows from the NL-hardness of
NFA nonemptiness. For the upper bounds, an NFH3 .45 is nonempty iff As accepts
some word assignment w,,. Indeed, any hyperword that contains the words in v is ac-
cepted by A3. We can therefore run a restricted reachability test on As, that considers
only consecutive transitions in which for every x € X, a letter o, never follows #,,
which guarantees a run on a legal word assignment.

We can show that an NFHy Ay is nonempty iff Ay accepts a hyperword of size
1. Accordingly, Ay is nonempty iff A accepts a word that represents an assignment
that assigns all variables the same word. We thus restrict the transitions of Ay to fixed
functions, and check the nonemptiness of the restricted NFA.

NFH3y. We begin with a PSPACE upper bound. Let .4 be an NFH3y with m ex-
istential quantifiers, and let S € £(.A). Then, there exist w1, ..., w,, € S, such that
for every assignment v : X — S in which v(z;) = w; forevery 1 < i < m, we
have that A accepts w,,. In particular, A accepts every assignment that agrees with v
on Zi,...%m, and assigns only words from {wy, ..., w,,}. Therefore, A accepts the
hyperword {w1, ..., w,,}. Thatis, A is nonempty 1ff it accepts a hyperword of size at
most m. We can construct an NFA A based on A that is nonempty iff A accepts all
appropriate assignments of a hyperword of size m. The size of A is exponential in the
size of A, and the result follows from the NL upper bound for NFA nonemptiness.

Next, we prove the lower-bound for NFH3y by a reduction from a polynomial ver-
sion of the corridor tiling problem, defined as follows. We are given a finite set 7" of
tiles, two relations V- C T'x T'and H C T x T, an initial tile ¢, a final tile ¢7, and
a bound n > 0. We have to decide whether there is some m > 0 and a tiling of a
n X m-grid such that (1) The tile ¢ is in the bottom left corner and the tile ¢y is in the
top right corner, (2) Every pair of horizontal neighbors is in H, and (3) Every pair of
vertical neighbors is in V. When n is given in unary notation, the problem is known to
be PSPACE-complete.

Given an instance C' of the tiling problem, we construct an NFHgy A that is nonempty
iff C has a solution. We encode a solution to C as a word wgo = w1 - Wo - Wy, $ over
Y =TuU{l1,2,...n,$}, where the word w;, of the form 1 - ¢1; -2 -to,,...n - ty,,
describes the contents of row 7. To check that w,,; indeed encodes a solution, we need
to make sure that: (1) wy begins with ¢y and w,, ends with t;$, (2) Every w; is of the
correct form, (3) Within every w;, it holds that (¢;;,¢;11,) € H, and (4) For w;, wi41,
it holds that (t;;,t;+1) € V forevery j € [1,n].

Verifying conditions (1) — (3) above is easy via an NFA of size O(n|H|). The main
obstacle is condition (4). We describe an NFHay A = (TU{0, 1, ...7n,$}, {y1,v2, y3, 71,

Finite-Word Hyperlanguages 9

o Trogm) 1 @5 {0}, 0, Fy oo = 3y13y2FysVay ... Vaieg(n)) that is nonempty iff there
exists a word that satisfies conditions (1) — (4). The NFH .4 only proceeds on letters
whose assignments to yi1,y1,ys is 7,0, 1, respectively, where r € T U {1,...n,$}.
Then A requires the existence of the words 0lwsotl and 1lwsotl (the 0 word and 1 word,
henceforth). .4 makes sure that the word assigned to y; matches a correct solution w.r.t.
conditions (1) — (3) above. Now, we need to make sure that for every position j in
a row, the tile in position j in the next row matches the current one w.r.t. V. We can
use a state g; to remember the tile in position j, and compare it to the tile in the next
occurrence of j. To avoid checking all positions simultaneously (which would require
exponentially many states), we use log(n) copies of the 0 and 1 words to encode j. The
log(n) V conditions make sure that every position within 1 — n is checked.

We limit the checks to words in which z1, . . . Z1o4(n) are the 0 or 1 words, by having

A accept every word in which some z variable is not assigned O or 1. This accepts all
cases in which the word assigned to ; is also assigned to one of the x variables.

To check that x1, . .. Tiog(n) are the 0 or 1 words, A checks that the letter assign-
ments to these variables remain constant throughout the run. In these cases, upon read-
ing the first letter, A remembers the value j that is encoded by the assignments to
T1, ... Tlog(n) 1N a state, and makes sure that throughout the run, the tile that occurs in
the assignment to y; in position j in the current row matches the tile in position j in the
next row.

We construct a similar reduction for the case that the number of V quantifiers is
fixed: instead of encoding the position by log(n) bits, we can directly specify the posi-
tion by a word of the form j*, for every j € [1, n], and we construct a matching NFHzy
over O(n) variables under 3, and a single variable under V. O

Universality. The universality problem is to decide whether a given NFH A accepts ev-
ery hyperword over X. Notice that A is universal iff A is empty. Since complementing
an NFH involves an exponential blow-up, we conclude the following from the results
in Section 5.2, combined with the PSPACE lower bound for the universality of NFA.

Theorem 3. The universality problem for

1. NFH is undecidable,
2. NFH5 and NFHy is PSPACE-complete, and
3. NFHy3 is in EXPSPACE.

Membership. We turn to study the membership problem for NFH: given an NFH .4
and a hyperword S, is S € £(.A)? When § is finite, so is the set of assignments from X
to S, and so the problem is decidable. We call this case the finite membership problem.

Theorem 4. — The finite membership problem for NFH is in PSPACE.
— The finite membership problem for NFH with O(log(k)) V quantifiers is NP-complete.

Proof. We can decide the membership of a finite hyperword S in £(.A) by iterating
over all relevant assignments from X to .S, and for every such assignment v, checking

10 Borzoo Bonakdarpour and Sarai Sheinvald

on-the-fly whether w,, € £(.A). The space size of this algorithm is polynomial in k£ and
logarithmic in |.A| and in |S].

When the number of V quantifiers in A is |O(log(k))|, we can iterate over all as-
signments to the V variables in polynomial time, while guessing assignments to the
variables under 3. Thus, membership in this case is in NP.

We show NP-hardness for this case by a reduction from the Hamiltonian cycle prob-

lem. Given a graph G = (V, E) where V' = {v1,...,v,} and |E| = m, we construct
an NFH3 A over {0, 1} with n states, n variables, ¢ of size m, and a hyperword S of
size n, as follows. S = {w1, ..., w,}, where w; = 0°~1.1.0"~% The structure of A

is identical to that of G, and we set Qo = F' = {v; }. For every (v;,v;) € E, we have
(vi, fi,vj) € 6, where f;(x;) = 1 and f;(z;) = O for every z; # x;. Intuitively, the
1’th letter in an accepting run of A marks traversing v;. Assigning w; to x; means that
the j’th step of the run traverses v;. Since the words in w make sure that every v € V is
traversed exactly once, and are all of length n, we have that A accepts S iff there exists
some ordering of the words in .S that matches a Hamiltonian cycle in G.

Note: For a hyperword of size > 2, the size of ¢ must be exponential in the number £k’ of
V quantifiers, to account for all the assignments to these variables. Thus, if & = O(k’),
an algorithm that uses a space of size k is in fact logarithmic in the size of .A. O

When S is infinite, it may still be finitely represented, allowing for algorithmic
membership testing. We now address the problem of deciding whether a regular lan-
guage L (given as an NFA) is accepted by an NFH. We call this the regular membership
problem for NFH. We show that this problem is decidable for the entire class of NFH.

Theorem 5. The regular membership problem for NFH is decidable.

Proof. Let A = (X, P, Py, p, F') be an NFA with n states. We first extend the alphabet
of A to X U {#}, and extend its language to L(A) - {#}*. We describe a recursive
procedure (iterating over «) for deciding whether L(A) € £(A).

For the case that k = 1, if & = Jaq, then £(A) € £(A) iff L(A) N L(A) # 0.
Otherwise, if o = Vaq, then £(A) € £(A) iff L(A) ¢ £(A), where A is the NFH for
£(A). The quantification condition for Ais 3xq, conforming to the base case.

For k > 1, we construct a sequence of NFH A1, As, ..., Ag. If Q; = 3 then we set
A; = A, and otherwise we set A; = A. Let A; = (2, {z;,... 21}, Qi, QV, 6, Fiy).
If «; starts with 3, then we construct A; 1 as follows.

The variables of A, are {z;41,..., 2k}, and ;11 = Q12541 -+ Qgay, for
a; = Q;z; -+ - Qrry. The set of states of A;4+1 is @; X P, and the set of initial states

is QY x Py. The set of accepting states is F; x F. For every (g ER q') € &; and every

(p ECON p’) € p, we have ((¢,p) M (¢/,p')) € 8;41. Then, A, accepts a
word assignment w,, iff there exists a word u € L(A), such that A,; accepts WoU{a;—u}-

Letv : {z;,...,x} = L(A). Then L(A) F, (ay, A;) iff there exists w € L(A)
such that £(A) bz, 5] (g1, A;). For an assignment v’ : {z;41,..., 21} — L(A),
it holds that w., is accepted by A, ;1 iff there exists w € L£(A) such that w, € L(A;),
where v = v' U {z; — w}. Therefore, we have that L(A) 5w (a4, As) iff

ﬁ(A) For (OéH_l, Ai+1), that is, E(A) S E(.Al) iff ﬁ(A) € S(-AHJ)

Finite-Word Hyperlanguages 11

If o; starts with V, then we have that £(A) € £(A;) iff L(A) ¢ £(A;). We con-
struct A; for £(A;) as described in Theorem 1. The quantification condition of A;
begins with Jx;. We then construct A; 1 w.r.t. A;, and check for non-membership.

Every V quantifier requires complementation, which is exponential in n.Therefore,
Ll)
in the worst case, the complexity of this algorithm is O(22), where the tower is of

height k. If the number of V quantifiers is fixed, then the complexity is O(|Q||A|*). O

Containment. The containment problem is to decide, given NFH A; and A;, whether
£(A;1) C £(Az). Since we can reduce the nonemptiness problem to the containment
problem, we have the following as a result of Theorem 2.

Theorem 6. The containment problem for NFH is undecidable.

However, the containment problem is decidable for various fragments of NFH.

Theorem 7. The containment problem of NFH3 C NFHy and NFHy C NFH3 is
PSPACE-complete. The containment problem of NFHzy C NFHy3 is in EXPSPACE

Proof. A lower bound for all cases follows from the PSPACE-hardness of the contain-
ment problem for NFA. For the upper bound, for two NFH 4; and A5, we have that
£(A1) C £(Az) iff £(A1)NL(As) = (). We can compute an NFH A = A; N Ay (The-
orem 1), and check its nonemptiness. Complementing 4, is exponential in its number
of states, and the intersection construction is polynomial.

If Ay € NFH5 and A, € NFHy or vice versa, then A is an NFH5 or NFHy,
respectively, whose nonemptiness can be decided in space that is logarithmic in |.A|.

The quantification condition of an NFH for the intersection may be any interleaving
of the quantification conditions of the two intersected NFH. (Theorem 1). Therefore,
for the rest of the fragments, we can construct the intersection such that .4 is an NFHzy.
The exponential blow-up in complementing A5, along with The PSPACE upper bound
of Theorem 2 gives an EXPSPACE upper bound for the rest of the cases. O

6 Discussion and Future Work

We have introduced and studied hyperlanguages and a framework for their modeling,
focusing on the basic class of regular hyperlanguages, modeled by HRE and NFH. We
have shown that regular hyperlanguages are closed under set operations and are capa-
ble of expressing important hyperproperties for information-flow security policies over
finite traces. We have also investigated fundamental decision procedures for various
fragments of NFH. Some gaps, such as the precise lower bound for the universality and
containment problems for NFH3y, are left open.

Since our framework does not limit the type of underlying model, it can be lifted
to handle hyperwords consisting of infinite words, with an underlying model designed
for such languages, such as nondeterministic Biichi automata, which model w-regular
languages. Just as Biichi automata can express LTL, such a model can express the entire
logic of HyperLTL [5].

12

Borzoo Bonakdarpour and Sarai Sheinvald

As future work, we plan on studying non-regular hyperlanguages (e.g., context-

free), and object hyperlanguages (e.g., trees). Another direction is designing learning
algorithms for hyperlanguages, by exploiting known canonical forms for the underlying
models, and basing on existing learning algorithms for them. The main challenge would
be handling learning sets and a mechanism for learning word variables and quantifiers.

References

10.
11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

. Abraham, E., Bonakdarpour, B.: HyperPCTL: A temporal logic for probabilistic hyperprop-

erties. In: QEST. pp. 20-35 (2018)

. Alpern, B., Schneider, F.: Defining liveness. Information Processing Letters pp. 181-185

(1985)

. B. Bonakdarpour, B., Finkbeiner, B.: The complexity of monitoring hyperproperties. In: CSE.

pp. 162-174 (2018)

. Bonakdarpour, B., Sanchez, C., Schneider, G.: Monitoring hyperproperties by combining

static analysis and runtime verification. In: ISoLA. pp. 8-27 (2018)

. Clarkson, M., Finkbeiner, B., Koleini, M., Micinski, K., Rabe, M., Sanchez, C.: Temporal

logics for hyperproperties. In: POST. pp. 265-284 (2014)

. Clarkson, M., Schneider, F.: Hyperproperties. Journal of Computer Security pp. 1157-1210

(2010)

. Coenen, N., Finkbeiner, B., C. Sanchez, C., Tentrup, L.: Verifying hyperliveness. In: CAV.

pp. 121-139 (2019)

. Emerson, E.A., Halpern, J.: “sometimes” and “not never” revisited: on branching versus

linear time temporal logic. Journal of the ACM pp. 151-178 (1986)

. Finkbeiner, B., Haas, L., Torfah, H.: Canonical representations of k-safety hyperproperties.

In: CSF 2019. pp. 17-31 (2019)

Finkbeiner, B., Hahn, C.: Deciding hyperproperties. In: CONCUR. pp. 13:1-13:14 (2016)
Finkbeiner, B., Rabe, M., Sanchez, C.: Algorithms for model checking HyperLTL and Hy-
perCTL*. In: CAV. pp. 30-48 (2015)

G. Boudol, G., Castellani, I.: Noninterference for concurrent programs and thread. In: TCS
2002. pp. 109-130 (2002)

Goguen, J., Meseguer, J.: Security policies and security models. In: IEEE Symp. on Security
and Privacy. pp. 11-20 (1982)

McCullough, D.: Noninterference and the composability of security properties. In: Proceed-
ings of the 1988 IEEE Symposium on Security and Privacy. pp. 177-186 (1988)

Pnueli, A.: The temporal logic of programs. In: FOCS. pp. 46-57 (1977)

Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs. In:
CSFW. pp. 200-214 (2000)

Vardi, M., Wolper, P.: Automata theoretic techniques for modal logic of programs. Journal
of Computer and System Sciences pp. 183-221 (1986)

Vardi, M., Wolper, P.: Reasoning about infinite computations. Information and Computation
pp- 1-37 (1994)

Wang, Y., Zarei, M., Bonakdarpour, B., Pajic, M.: Statistical verification of hyperproperties
for cyber-physical systems. ACM Transactions on Embedded Computing systems (TECS)
pp. 92:1-92:23 (2019)

Zdancewic, S., Myers, A.: Observational determinism for concurrent program security. In:
CSFW. p. 29 (2003)

Finite-Word Hyperlanguages 13
Appendix

A Proofs

We present several terms and notations which we use throughout the following proofs.
Recall that we represent an assignment v : X — S as a word assignment w,,. Con-
versely, a word w over (X U {#})% represents an assignment v, : X — X*, where
vy (x;) is formed by concatenating the letters of X that are assigned to x; in the letters
of w We denote the set of all such words {vy, (1), ..., vy (zx)} by S(w). Since we only
allow padding at the end of a word, if a padding occurs in the middle of w, then w does
not represent a legal assignment. Notice that this occurs iff w contains two consecutive
letters w;w; 1 such that w;(x) = # and w;11(z) # # for some z € X. We call w
legal if v, represents a legal assignment from X to X*.

Consider a function g : A — B where A, B are some sets. The range of g, denoted
range(g) is the set {g(a)|a € A}.

A sequence of g is a function ¢’ : A — B such that range(g’) C range(g). A
permutation of g is a function ¢’ : A — B such that range(g’) = range(g). We extend
the notions of sequences and permutations to word assignments. Let w be a word over
5. A sequence of w is a word w’ such that S(w’) C S(w), and a permutation of w is a
word w’ such that S(w') = S(w).

Theorem 1

Proof. Complementation. Let A be an NFH. The NFA A can be complemented with
respect to its language over g:‘ to an NFA A. Then for every assignment v : X — .5, it

holds that A accepts w,, iff A does not accept w,,. Let & be the quantification condition
obtained from « by replacing every 3 with V and vice versa. We can prove by induction
on « that A, the NFH whose underlying NFA is A, and whose quantification condition
is @, accepts £(A). The size of A is exponential in |Q|, due to the complementation
construction for A.

Now, let A; = <Z, X,Q,Qq, 01, F1, 041> and Ay = <2, Y, P, Py, do, F5, 012> be
two NFH with | X | = k and |Y'| = k/ variables, respectively.

Union. We construct an NFH Ay = (X, X UY,Q U P U {p1,p2},Qo U Py, 6, F1 U
F> U {p1,p2},a), where & = ajap (that is, we concatenate the two quantification
conditions), and where ¢ is defined as follows.

— Forevery (q1 L qo) € 6, weset (g1 2% o) € 6 forevery g € (S U {#})".

— For every (¢1 EN q2) € 02 we set (g1 EEIN q2) € d forevery g € (X U {#})X.

X X
— For every g € Fy, we set (g {#}—Ug> 1), (p1 {#}—u% p1) € ¢ forevery g €

(ZU{#}".
Y Y
— For every ¢ € F3, we set (g %) D2), (P2 % p2) € § forevery g €

(ZU{#H*.

14 Borzoo Bonakdarpour and Sarai Sheinvald

Let S be a hyperword. For every v : (X UY') — S, it holds that if w,|, € L(A),
thenw, € E(/lu). Indeed, according to our construction, every word assigned to the Y
variables is accepted in the A; component of the construction, and so it satisfies both
types of quantifiers. A similar argument holds for v|y and As.

Also, according to our construction, forevery v : (X UY) — S, ifw, € E(flu),
then either w,|, € L(Ay), or Wyly € L(A5). As a conclusion, we have that £(A,) =
L£(A1) UL(Ay).

The state space of A is linear in the state spaces of A1, As. However, the size of the
alphabet of A may be exponentially larger than that of A; and A, since we augment
each letter with all functions from Y to X' U {#} (in A;) and from X to X' U {#} (in
Aa).

Intersection. The proof follows the closure of regular hyperlanguages under union and
complementation. However, we also offer a direct translation, which avoids the need to
complement. We construct an NFH Aq = (¥, X UY, (Q U {q}) x (P U{p}), (Qo %
Py), 4, (F1 U{q}) x (F2 U{p}), a12), where § is defined as follows.

— For every (¢1 ER ¢2) € 01 and every (p; EN p2) € 02, we have

((thl) EER (Qmpz)) €4

— Forevery ¢1 € F1, (p1 EN p2) € do we have

((ql,pl) 70, (q,pz)), ((q,pl) e, (CLPQ)) €6

— For every (1 i) q2) € 61 and p; € F5, we have

((Q1,p1) M) (Q2,p)), ((ql,p) M) (qg,p)) €

Intuitively, the role of ¢, p is to keep reading {#}* and {#}Y after the word read by
A; or A,, respectively, has ended.

The NFH A, simultaneously reads two word assignments that are read along A
and Aj, respectively, and accepts iff both word assignments are accepted. The correct-
ness follows from the fact that for v : (X UY) — S, we have that w, is accepted
by A iff Wy and w,,. are accepted by A; and A, respectively. This construction is
polynomial in the sizes of A; and A,.

O

Theorem 2

Proof. NFH3 and NFHy,. The lower bound for both fragments follows from the NL-
hardness of the nonemptiness problem for NFA.

We turn to the upper bound, and begin with NFH3. Let A5 be an NFH5. We claim
that A5 is nonempty iff As accepts some legal word w. The first direction is trivial. For

Finite-Word Hyperlanguages 15

the second direction, let w € £(.A3). By assigning v(z;) = v, (z;) for every z; € X,
we get w, = w, and according to the semantics of 3, we have that Az accepts S(w).
To check whether A5 accepts a legal word, we can run a reachability check on-the-fly,
while advancing from a letter o to the next letter o’ only if o’ assigns # to all variables
for which o assigns #. While each transition T' = ¢ ER pin A is of size k, we can

encode 7' as a set of size k of encodings of transitions of type g M p with a binary

encoding of p,q,o;, as well as ¢,t, where ¢ marks the index of T within the set of
transitions of .A. Therefore, the reachability test can be performed within space that is
logarithmic in the size of As.

Now, let Ay be an NFHy over X. We claim that Ay is nonempty iff Ay accepts a
hyperword of size 1. For the first direction, let S € £(.Ay). Then, by the semantics of
V, we have that for every assignment v : X — S, it holds that w,, € E(Av). Letu € S,
and let v, (z;) = u for every x; € X. Then, in particular, w,,, € E(/fv). Then for every
assignment v : X — {u} (which consists of the single assignment v,,), it holds that Ay
accepts w,,, and therefore Ay accepts {u}. The second direction is trivial.

To check whether Ay accepts a hyperword of size 1, we restrict the reachability test
on Ay to letters over 5 that represent fixed functions.

NFHsy. We prove a PSPACE upper bound. Let m be the number of 3 quantifiers
in o, and let S € £(A). Then, according to the semantics of the quantifiers, there exist
Wy, ... Wy, €5, such that for every assignment v : X — S in which v(x;) = w; for
every 1 < ¢ < m, it holds that A accepts w,,. Let v : X — S be such an assignment.
Then, A accepts w, for every sequence v’ of v that agrees with v on its assignments
to x1,..., &, and in particular, for such sequences whose range is {w1, ..., Wy, }.
Therefore, by the semantics of the quantifiers, we have that {wy, ..., wy,} isin £(A).
The second direction is trivial.

We call w,,r as described above a witness to the nonemptiness of A. We construct an
NFA A based on A that is nonempty iff A accepts a witness to the nonemptiness of .A.

Let I" be the set of all functions of the type ¢ : [1,k] — [1,m] such that {(i) = i
for every i € [1,m], and such that range(¢) = [1,m]. For a letter assignment f =
{o1.,,--- 0Ok, }, we denote by f¢ the letter assignment {o¢ (1), ;- 0¢(k),, I

For every function (€ I", we construct an NFA A, = (fj, Q, Qo, d¢, F), where

for every q s ¢ in 6, we have ¢ i> ¢’ in d¢, for every f that occurs in A for which
f¢ = g. Intuitively, for every run of A; on a word w there exists a similar run of A on

the sequence of w that matches (. Therefore, A accepts a witness w to the nonemptiness
of Aiff w € L(A¢) forevery ¢ € I

We define A = (. A¢. Then A accepts a witness to the nonemptiness of A iff A
1S nonempty.
Since |I'| = m*~™, the state space of A is of size O(nmkfm), where n = |Q|,
and its alphabet is of size | . Notice that for A to be nonempty, § must be of size at
least |(X U #)|*~™), to account for all the sequences of letters in the words assigned
to the variables under V quantifiers (otherwise, we can immediately return “empty”).

Therefore, | A| is O(n - |2|¥). We then have that the size of A is O(|.A|¥). If the number

16 Borzoo Bonakdarpour and Sarai Sheinvald
k — m of V quantifiers is fixed, then m*~™ is polynomial in k. However, now |:,21| may
be polynomial in n, k, and | 2|, and so in this case as well, the size of A is O(|A[*).

Since the nonemptiness problem for NFA is NL-complete, the problem for NFHzy
can be decided in space of size that is polynomial in |.AJ.

General NFH. We mimic the proof idea in [10], which uses a reduction from the
Post correspondence problem (PCP), which is known to be undecidable. A PCP in-
stance is a collection C' of dominoes of the form:

o)
Uk

(]2

where for all ¢ € [1, k], we have v;,u; € {a,b}*. The problem is to decide whether
there exists a finite sequence of the dominoes of the form

vil /Ui2 Uim,
where each index i; € [1, k], such that the upper and lower finite strings of the dominoes
are equal, i.e.,

Uy Uiy ** Uj

m

For example, if the set of dominoes is

o ={). [2]- 2]

Then, a possible solution is the following sequence of dominoes from Ceymp:

o = [[][]
~laballallp)"
Given an instance C of PCP, we encode a solution as a word w,,; over the following
alphabet:

Y= {% | 0,0’ € {a,b,d,i),&?}}.

Intuitively, & marks the beginning of a new domino, and $ marks the end of a sequence
of the upper or lower parts of the dominoes sequence.
We note that w,; encodes a legal solution iff the following conditions are met:

1. For every % that occurs in w,, it holds that o, ¢’ represent the same domino letter
(both a or both b, either dotted or undotted).

2. The number of dotted letters in the upper part of ws,; is equal to the number of
dotted letters in the lower part of ws,;.

3. wge starts with two dotted letters, and the word u; between the ¢’th and 7 + 1’th
dotted letters in the upper part of ws,;, and the word v; between the corresponding

dotted letters in the lower part of w;,; are such that [:j—l] € C, for every i.

i

Finite-Word Hyperlanguages 17

We call a word that represents the removal of the first £ dominoes from wy,; a
partial solution, denoted by w,,; ;. Note that the upper and lower parts of w,.,); are
not necessarily of equal lengths (in terms of a and b sequences), since the upper and
lower parts of a domino may be of different lengths, and so we use letter $ to pad the
end of the encoding in the shorter of the two parts.

We construct an NFH A, which, intuitively, expresses the following ideas: (1) There
exists an encoding wy,; of a solution to C, and (2) For every wso, 1 7 € in a hyperword
S accepted by A, the word w41 i alsoin S.

£(\A) is then the set of all hyperwords that contain an encoded solution wy,;, as well
as all its suffixes obtained by removing a prefix of dominoes from w,,;. This ensures
that wy,; indeed encodes a legal solution. For example, a matching hyperword S (for
the solution sol discussed earlier) that is accepted by A is:

o _abaabd _baab _ab B
— {wsol - 577577’“)801,1 - ag§§7wsol,2 — Egawsol,S — 6}

Thus, the quantification condition of A is a = Vxi3xo3x3, where x; is to be
assigned a potential partial solution w1, and xg is to be assigned w141, and T3 is
to be assigned wyg,;.

During a run on a hyperword S and an assignment v : {x,z2,23} — S, the NFH
A checks that the upper and lower letters of ws,; all match. In addition, A checks that
the first domino of v(z) is indeed in C, and that v(z2) is obtained from v(x1) by
removing the first tile. A performs the latter task by checking that the upper and lower
parts of v(xs) are the upper and lower parts of v(z1) that have been “shifted” back
appropriately. That is, if the first tile in v(z2) is the encoding of [%%], then A uses states
to remember, at each point, the last |w;| letters of the upper part of v(z2) and the last
|v;| letters of the lower part of v(x2), and verifies, at each point, that the next letter in
v(x1) matches the matching letter remembered by the state. O

