PATRON: A Pragmatic Approach for Encoding
Laser Fault Injection Resistant FSMs

Muhtadi Choudhury*, Shahin Tajik?, and Domenic Forte*
* University of Florida, Gainesville, FL, USA
I Worcetser Polytechnic Institute, Worcester, MA, USA

Abstract—Since Finite State Machines (FSMs) regulate the
overall operations in majority of the digital systems, the security
of an entire system can be jeopardized if the FSM is vulnerable
to physical attacks. By injecting faults into an FSM, an attacker
can attain unauthorized access to sensitive states, resulting in
information leakage and privilege escalation. One of the powerful
fault injection techniques is laser-based fault injection (LFI),
which enables an adversary to alter states of individual flip-flops.
While standard error correction/detection techniques have been
used to protect the FSMs from such fault attacks, their significant
overhead makes them unattractive to designers. To keep the
overhead minimal, we propose a novel FSM encoding scheme
based on decision diagrams that utilizes don’t-care states of the
FSM. We demonstrate that PATRON outperforms conventional
encoding schemes in terms of both security and scalability
for popular benchmarks. Finally, we introduce a vulnerability
metric to aid the security analysis, which precisely manifests the
susceptibility of FSM designs.

Index Terms—Laser Fault Injection, Fault Tolerance, Coding
Theory, Decision Diagram.

I. INTRODUCTION

The security and integrity of microprocessors, system-on-
chips (SoCs), and cryptographic hardware can be threatened by
physical attacks, e.g., side-channel, fault injection, and probing
attacks. Fault injection attacks are particularly powerful due
to their active nature. For example, by varying the supply
voltage or the clock frequency, an attacker can cause erroneous
operation of a target device. Among different classes of fault
injection attacks, laser fault injection (LFI) attacks are the most
sophisticated ones in terms of accuracy and effectiveness. The
primary targets of LFI attacks are the memory components,
such as SRAM cells and flip-flops, which are essential in
the finite state machines (FSMs) of an SoC. By inducing
a fault into an FSM, attackers may bypass certain states,
referred to as authorized states, and get access to so-called
protected states [1]. As a result, they might be able to extract
a cryptographic key, gain privileged access to a service, or
merely mount a denial of service attack.

Several countermeasures have been proposed to mitigate
the shortcomings of conventional FSMs against LFI. While
physical countermeasures, such as tamper-proof packaging and
light sensors, can be effective, the cost and extra manufacturing
steps make the logical circuit-based countermeasures more
attractive to designers. For logical countermeasures, CAD
tools can be deployed to improve the FSM resiliency. For
instance, by duplicating the FSM or changing the encoding,
an FSM can become more resilient against fault attacks.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including reprint-
ing/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Due to the similarity of the fault concept in the test and
reliability community, security designers have started to adopt
coding-based and information-theoretic mitigation techniques
(e.g., self-checking circuits [2], and extend them to match
the security requirement of a design against different fault
attacks. However, in contrast to self-checking circuits, where
natural faults occur randomly in a unidirectional way, an
adversary can cause bidirectional non-uniform faults using
LFI. Therefore, several linear and non-linear coding schemes
have been proposed to transform the encoding of an FSM to
a fault-resilient FSM encoding [3] [4].

While the fault resilient coding schemes are provably se-
cure, their main disadvantage is the large overhead in terms
of consumed area on the chip. Using coding schemes to make
an FSM fault-resilient could mean the number of flip flops
(and potentially the associated decoding logic) is substantially
increased. Moreover, the extra circuitry for the detection and
correction of the faults impose nontrivial timing constraints
on the design. The primary reason for this large overhead is
the inadequacy of these schemes to differentiate the degrees
of sensitivity of states — even though only a few states in
an FSM might be security-critical, the conventional encoding
schemes protect all states equally. This equality stems from
the fact that these coding techniques are designed primarily
for communication systems, where all possible states (i.e.,
transferred messages) have to be protected from a noisy
channel to avoid potential errors on the receiver side. However,
in an FSM, a considerable number of states are not security-
critical and do not expose any confidential information if they
are breached by fault injection. If these states are regarded as
critical, it may substantially impact the design overhead.

Our Contribution. A key question is whether there exists
a scalable and low overhead scheme that can be tuned to
protect only specific states against an adversary capable of
inducing simultaneous LFI into multiple flip-flops. In this
paper, we introduce pragmatic encoding that uses decision
diagrams to enforce a strong and well-defined LFI model for
an FSM. PATRON, i.e., a pragmatic approach for encoding
LFI resistant FSMs, incorporates minimum encoding length,
number of required normal and sensitive states, number of bit-
flips by the attacker, code rate, and their interrelationships,
which were previously unexplored. Moreover, we compare
the efficiency of our proposed approach with conventional
encoding schemes. We also propose a novel metric, namely,
vulnerability metric (VM) that provides a new perspective on

Note: This is the authors’ version of the article accepted for publication at Design,
Automation and Test in Europe Conference (DATE) 2021.

FSM susceptibility due to LFI. Note that our intention is not
to detect or correct any faults in the FSM; rather, we wish
to guarantee the protection of sensitive states from an adver-
sary with a pre-defined laser setup by re-encoding the FSM.
This differentiates PATRON from traditional approaches, that
require intricate logic for error detection/correction.

II. BACKGROUND AND TERMINOLOGY
A. FSM and FSM Encoding

An FSM is defined as a 5-tuple (S, 1,0, p,), where S is
a finite set of states, I is a finite set of input symbols, O is a
finite set of output symbols, ¢ : S x I — S is the next-state
function and A : S x I — O is the output function. Let | - |
denote cardinality in a set, and thus | S| is the number of states
in the FSM. Typically, an FSM is conveniently depicted as a
directed graph G = (S, T), referred to as state transition graph
(STG), where each state s € .S represents a vertex and each
edge t,. € T represents a transition or edge from state y to
the state z. In the STG, each state can be accessed from only
the accessible set of states

A(z) ={y|ty- € T} (D

State encoding assigns a unique pattern of Os and 1s for each
state. Two common encoding strategies are discussed below.

Binary Encoding: Here, states are allocated in a binary se-
quence starting from 0. The number of state flip-flops (FFs),
k = log, ||, provides the most efficient utilization of FFs.

One-Hot Encoding: Here, only one bit of the state variable
is ‘I’ while all others are ‘0’ for every state in the FSM.
For this scheme, k = |S|, where the number of state FFs
is clearly larger than binary encoding. However, it requires
simpler decoding logic than binary.

Note that these popular FSM encoding schemes are unpro-
tected. The impact of encoding practices on security will be
discussed more in Section III-B

B. Error-Detection/Correction Codes

Due to their sound theoretical basis, information redun-
dancy techniques based on error-detecting/correction codes
have become the most common countermeasure to protect
cryptographic hardware implementations against fault attacks.
The design of error-detecting codes assumes that faults can be
modeled as additive errors. In the presence of fault, a code
c becomes ¢ @ e, where e is an error vector. These encoding
approaches enable one to detect/correct up to a certain number
of errors by assuring a minimum hamming distance (HD),
d between codewords after encoding. For an (n,k,d) code
where k-bit message (number of unprotected FSM bits or FFs
in our case) is encoded to an n-bit code, using r redundant
bits. The primary metric to compare the overhead of different
codes is called code rate (CR),

CR = E 2)

n

As a result, larger values of C'R means more efficient
code. However, the theoretical Hamming bound represents

© 2021 IEEE

maximum value of k. Hamming bound provides limitation
on the efficiency of error-correcting codes. Codes achieving
Hamming bound are called perfect codes. Hamming, Extended
Hamming, Golay, and Extended Golay are such codes.

C. Binary Decision Diagrams (BDDs)

A BDD data structure represents Boolean functions. Con-
ceptually, BDDs can be thought of as representing compressed
sets. Common operations of Boolean functions can be per-
formed on this compressed representation. Graphically, a BDD
is a directed, rooted, and acyclic graph which may contain
multiple decision nodes and two terminal nodes. Decision
nodes are variables in the Boolean equation. The two types of
terminal nodes are terminal-O node and terminal-1 node. There
are only two types of edges: 0-edge and 1-edge that represent
the decision node values of logic 0 and logic 1, respectively.

III. FSM SECURITY ANALYSIS
A. Threat Model

Since the original work of [5], substantial research has
been done on LFI. Still, a well-accepted threat model is
lacking in the literature because of laser dependence on circuit
technology, beam features, and setup (wavelength, spot size,
pulse width, etc.), and the type of injection (frontside vs.
backside) [6]. Admitting that the fault model, adversary, and
the intended level of security vary by situation, cost, and
performance have been the motivating factors in designing
FSMs. Hence, from the designer’s perspective, it is necessary
to outline the details of the fault model and generalize the
countermeasures as much as possible.

Lasers can cause faults in state elements in two ways.
First, the laser can be focused on combinational logic, thereby
letting the fault transient propagate to the memory cell in the
memorization time window. This is known as Single Event
Transient (SET). Alternatively, there is no time factor involved
when the laser beam directly affects the memory cell. The
logical value in the memory cell is instantaneously overturned;
this is known as Single Event Upset (SEU). Further, when a
single laser beam upsets several FFs concurrently, it is known
as multiple bit errors.

The threat model considered here is one of a strong attacker
who has physical access and a high-precision LFI system.
More specifically, we consider the following assumptions:

1) FSM knowledge: The attacker is well-versed on the FSM
functionality and the state encoding. All this information
can be obtained through an insider or reverse-engineering.
This class of attacks is vital as they can be easily
performed by any knowledgeable entity with access to
the right equipment.

2) Bidirectionality of bit flips: Errors can be unidirectional
for at least some experimental conditions [7]. This means
that some bits in the design may not share an equal
probability of faulting to logic 0 and 1. Such effects lead
to the models being known as “bit set” or “bit reset.”
However, in this paper, we consider a bidirectional model
as it is comprehensive and represents a more realistic

threat model [8]. Thus, any countermeasure proposed here
can cover faults in either direction or both directions.

3) Number of simultaneous bit flips and their locations:
Without loss of generality, we assume that the attacker
can precisely and simultaneously flip up to number of
FFs in one clock cycle. In practice, depends on the
number of lasers in the LFI setup and the FF locations in
the IC layout [9]. Thus, our threat model is generalized
so it could be extended to more constrained conditions.

Note that setup time violation based attacks have already

been investigated in the literature [1] [10] and are considered
out of scope in this paper. In those attacks, the attacker hopes
to trigger a security policy issue by violating setup time in flips
flops by overclocking, heating, altering the supply voltage, etc.
Such attacks assume a weaker attacker who has less knowledge
about the design and less precision in injecting faults, i.e.,
bit flips depend on race conditions in the decoding logic. On
the other hand, LFI poses a greater threat as the attacker can
easily access protected states by controlling the location of
single bits [9]. Nevertheless, any countermeasure that covers
our strong attack model will also cover weaker attacks.

B. Vulnerability of State Encoding

Given the above threat model, we analyze common FSM
encoding schemes and identify their limitations. As in [10],
the designer specifies a set P of protected states and a set
L of authorized states. A state s € L is allowed access to
P, such that A(L) = {p|p € P}. If s ¢ L accesses P then
security is breached (e.g., secret key is leaked or privileges are
escalated). If a fault results in a normal state transitioning to a
state s € L, there is a potential vulnerability in the FSM [11].
Thus, in this paper, we define two sets of states

NS={seS|s¢ LUP} 3)
SS={seS|seLUP} “4)

where NS and SS denote the sets of normal states and
sensitive states, respectively. Consider two FSM states s; and
s; which are encoded to binary values of ¢ and j respectively.
Let HD(a,b) denote the Hamming distance between two
binary strings a and b. In our threat model, if HD(i,j) < z,
s; € S, and s; € S5, then the FSM may be exploitable by LFI
in one clock cycle. Since an attacker can simultaneously flip
any z bits, the normal state s; can be changed into a sensitive
state s; by laser. We define a subsets of states V.S, C S as

VS, ={s; € S|HD(i,j) <z, ,s; €SS} (5

where V'S, represents the set of states vulnerable to z faults.
We refer to these as vulnerable states. Clearly, the goal of a
fault tolerant scheme should be V.S, | = 0.

Binary encoding is the most susceptible to LFI. Fig. 1(a)
shows an FSM with |S| = 8 and state ”111” is in set S.S. For
successful LFI, the attacker needs to focus the laser beam and
shot-instant tune [9] at the respective bit positions that cause
an access violation. If z = 3, then the attacker can change
any 3 bits in the current state and extract critical information
from the design. To this end, the attackers could obtain

© 2021 IEEE

(@ (b)
Fig. 1: LFI model for binary and one-hot encoding respectively
(a)-(b). The red bits represent the state FF positions for LFI;
the edge values represent H D from the sensitive state.

concurrent multiple flips by directly focusing the beams onto
the respective FFs or they could utilize the cone partitioning
technique with maximum multiplicity [12]. In this way, it is
possible to access the SS from all the 7 states in N.S. For
Binary encoding, if for example = = 1, |V .S1|=3C, where C
refers to the combination function. Note that Gray encoding
has the same weakness as binary encoding.

In one-hot encoding, states have maximum HD of 2 from
each other. Hence, if £ = 1, the FSM is not vulnerable
as |V.S1| = 0. However, if 2 > 1, every state becomes
reachable from every other state, |V'S,.| = |S|. For example, in
Fig. 1(b), the attacker can access S5 = 00001, from “00100”
by overturning FFO and FF2 through LFIL.

C. Related Work

There is considerable work on fault-tolerant FSMs for
different purposes. The main assumption for self-checking cir-
cuits is that the faults occur randomly in a unidirectional way
(e.g., a flash memory cell is more susceptible to set to zero than
one). Hence, unidirectional error correction codes, such as m-
out-of-n codes have been proposed as solutions [2]. However,
with the deployment of Random Access Memory, especially in
aerospace applications, bidirectional faults caused by cosmic
rays have been considered a more realistic scenario. Therefore,
the linear error detection/correction techniques, such as cyclic
redundancy check codes [13] have been proposed. Other
techniques, such as the popular triple modular redundancy,
address many hardware implementations. However, the fault
model is still assumed to be random single bit upsets. Hence,
this is not suitable for a strong adversary who can precisely
and concurrently overturn multiple bit flips.

The main disadvantage of linear codes is that they can only
guarantee the detection of all errors with a multiplicity less
than d, i.e., the minimum H D of the code. As a result, non-
linear codes have been proposed to improve the detection
capability [14] [15] [16]. However, for an attacker, who is
knowledgeable of the precise FSM states and its encoding, an
undetectable fault pattern can be calculated and inserted into
the FSM. Hence the entire validity of this scheme banks on
the attacker not being able to anticipate the next FSM states in
the same clock cycle as the fault injection happens [17]. This
premise may not always hold true as an adversary can make
smart FSM predictions. For instance, in AES controller an
adversary can predict the Initial and Final round by detecting

when the plaintext is inputted in the encryption module and
when the ciphertext output is engendered [1]. Although some
of these non-linear codes are capable of detecting all possible
errors with a probability close to 1, they impose very large
overhead to the original FSM in terms of the number of
redundant flip-flops [15].

Hence, these techniques are not applicable due to their
weaker fault models and large overhead (i.e., large number of
redundant flip-flops and extra detection/correction circuitry).

IV. PROPOSED ENCODING SCHEMES
A. Conservative Approaches

In this approach, the encoding requires H D > z between
all states. Specifically, all FSM states are considered sensitive
states, and thus, trivially results in |V'S,| = 0. There are
several ways to accomplish this. A naive way, which is
an adaptation of the “repetition” error-detection code, is as
follows. From Section III-B, we know that one-hot encoding
can resist x = 1 fault because the HD between all states is
2. By doubling the number of flip flops, the HD can be also
doubled as each state is encoded with an additional ‘1’. For
example, the one-hot encoding for an FSM with 4 states is
{0001, 0010, 0100, 1000}. With naive extension, the new en-
coding would be {00000011, 00001100, 00110000, 11000000}
where the H D between all states is now 4. The latter encoding
can, thus, resist * < 4 faults. While this approach is simple
and easy to scale to any z, its shortcoming is the increase in
the number of FFs by a factor of 2 to resist 2 additional faults.

An alternative approach is to use perfect code schemes that
provide necessary HD (d > z). Options include Hamming
codes, Golay codes, etc. For perfect codes, all states are
still treated equally so the overhead is expected to be high.
Moreover, perfect codes exist only for specific parameters, and
therefore, they might not match any arbitrary FSM design. It
is noteworthy that codes such as Reed-Solomon(RS) code can
achieve rates higher than 0.9. However, they behave poorly
in terms of overhead unless the FSM size is unrealistically
large, e.g. RS codes for CDs can be 256 bits. Hence, while
these codes are efficient for transferring massive data through
communication channels, they are not well suited for FSMs,
since the number of available bits in the hardware is much
less than that of a message in a communication channel.

B. Pragmatic Approach (PATRON)

The pragmatic approach is more efficient and flexible for
achieving |V S| = 0 by ignoring the HD between N Ss and
only focusing on the H D between all states and states in S'S.
Thus, it minimizes n. Faults that result in transitions between
NSs are permitted. If the attacker has x laser capability, all
the SS's in the FSM need to be a minimum HD of x4+ 1 away
from all the N.Ss. Moreover, the S.S elements need to be a
HD of a multiple of x + 1 away from each other; this ensures
that the attacker cannot access and transition between any of
these S'S's using LFIL.

From the example shown in Fig. 2, assume that the at-
tacker can flip 1 FF (i.e., x = 1) and the FSM requires 4

© 2021 IEEE

Fig. 2: Pragmatic approach illustrated for FSM with n = 4
states, SS = {0000,0011}, and = = 1: (left) states with
HD > 2 for {0000} and (right) states with HD > 2 for
{0011}. Orange denotes S.S. Green denotes N.S' candidates
with HD > 2 and red denotes states that have HD < 1 for
at least one of the SSs (i.e., ¢ NS).

NSs and 2 SSs. When n = 4 and SS = {0000,0011},
there can be as many as 8 NSs in the fault tolerant FSM.
Specifically, the set of NS with HD > 1 from states in SS
consists of {0101,0110,1001,1010,1100,1101,1110,1111}.
Although the states {1101,1110} are only a HD of 1 away
from the state {1100} and the attacker can inject a fault to
transfer between them, this poses no threat to the states in
5SS, and thus, can be considered secure. This is the major
difference from the conservative approaches.

For a given = and n, in order to determine the total number
of sensitive states the following two equations are used:

ZZ—O n Ch(x+1), ifr=1
SS| = = 6
s {m/ww o1 ©

where h € Z, h(x + 1) <n, and C refers to the combination
function. For n = 4 and x = 1, |SS| = 4Cy + 4Cs + 4C}.
When = > 1, for n = 4 and 2 = 2, we will have |2%/3] = 2.
As inferred from the above discussion, given certain con-
straints in terms of |S.S|, PATRON outstretches n for accom-
modating x + 1, to fulfill the requirement of |NS|. Given S5
and z as inputs, we find encoding for N.S by solving a combi-
natorial problem. Each state in IVS is represented by a vector
of length n: [v1, va, ... v,],v;{0, 1}Vi, where v; represent the
variable associated with the ith FF in the FSM. A Boolean
function over these n variables should yield logic 1 for states
in NS when HD is large enough. The general formula to
calculate all the NSs, where SS = {ss1, $s2,...,88m} is

NS ={z€(0,1)": HD(z,s81) > xN
HD(z,882) >x N ... HD(z,88) >z} (7)

For certain FSMs, exploring relatively higher n might be
necessary to meet the constraints in which case these boolean
expressions might have scalability issues. Therefore, we pro-
pose a BDD data structure to represent each of these Boolean
functions that correspond to HD calculations with respect to
each state in SS shown in Equation 7. After obtaining the
BDDs for each of the SS, the BDD data structures are ANDed
together, in order to get the intersected sets of combinations,
NS. Fig. 3 depicts the individual steps-BDDs representing
the Boolean functions for each SS (Fig. 3 (a) and Fig. 3 (b)

(a) ss1 = 0000 (b) ss3 = 0011

(c) NS

Fig. 3: (a-b)BDDs representing Boolean functions for each S.S
(c) BDD representing N S.

and the subsequent BDD representing the NS, obtained after
ANDing the BDDs in Fig. 3 (c).

C. Comparison of Approaches

We propose C'R for overhead comparison and introduce
the vulnerability metric. In Equation (2), CR represents the
percentage of useful data bits. We extend this definition of
0 < CR < 1 to additional FF consumption associated with
protecting the FSM!. In our case, k is the number of state
FFs in the original unprotected FSM encoded in binary and n
represents the total fault tolerant state FFs. When C'R is closer
to 1 (0), the number of extra FFs needed is low (high) and the
overhead is, therefore, low (high). For example, if a designer
wants 6 states altogether with 4 NSs that are a HD = 2
away from 2 §SSs, the original FSM can be encoded with
k = 3 (23 states), since it consists of 6 states. However, with
the HD requirement, the pragmatic approach demands that we
increase to n = 4 (2% states). Hence, CR = % = 0.75.

For binary encoding, C R = 1, but the FSM is susceptible to
fault attacks. To capture this, we introduce vulnerability metric
(VM) for measuring the FSM’s degree of susceptibility to x
laser-based faults in one clock cycle,

VS
VM(z) = | 5] |

Intuitively, V M is the percentage of states where = faults can
lead to a sensitive state (e.g., consider z = 2 for a binary FSM
design consisting of all 2° states, VM (2) = 291£3C2),
Hence if the designer is confident about the SSs, then
PATRON is recommended. In situations where the SSs are
difficult to be correctly identified, the conservative approach
for appropriate x is recommended as it protects all states
equally. While it requires larger overheads, it will provide
an LFI-tolerant-FSM. However, with FSM designs requiring
increasing x resistance, all coding approaches start to show
limitations as shown in the next section. Hence, for high x
resistant designs, only naive may be readily applicable.

®)

V. RESULTS AND DISCUSSION

The proposed approaches are investigated on five controller
benchmark circuits, namely AES, SHA, MIPS Processor,

'Note that an FSM includes both state FFs and decoding logic. CR
captures worst case in decoding logic assuming that the increase is roughly
in proportion to number of FFs

© 2021 IEEE

TABLE I: Code Rate (CR) and Vulnerability Metric (VM)
analysis for different encoding schemes; Hamming represents
Hamming (7,4). Red and green color denote vulnerable and
non-vulnerable FSMs, respectively.

‘ Binary ‘ One-hot ‘ Hamming ‘ Naive ‘ Pragmatic ‘
| Benchmark |x|CR VM |CR VM| CR VM| CR VM| CR VM|
AES 1| 1 06]06 0.57 0.6 0.8

|SS|=2 201 1 |06 1 |057 0.3 0.6
INS|=3 31 1]06 1]057 1 |03 0.5

| Average | 1 086 06 066|057 033] 04 | 0.63 |
SHA-256 1| 1 04]o04 0.57 0.4 0.8
|SS|=3 201 09|04 1 |057 0.2 0.5
|NS|=4 31 1]04 1]057 1 |02 0.4

\ Average | 1 076] 04 066]057 033]026 | 0.56 \
RSA 1] 1 04104 0.57 0.4 0.8
|SS|=4 201 09|04 1 |057 0.2 0.4
INS|=3 31 1 J04 1]057 1 |02 0.4

| Average | 1 076] 04 066]057 033]026 | 0.53 |
MIPS processor | 1| 1 0.2 | 0.1 - - 0.1 0.5
|SS|=5 201 08|01 1 - - 008 0.3
INS|I=14 3|1 1 |01 1 - 0.08 0.3

| Average | 1 066]01 066] - | 0.09 | 0.36 |
Mem. Controller | 1 | 1 0.1 |0.04 0.04 0.3
|SS|=8 20 104|004 1 - 0.02 0.2
[N S|=58 3/ 1 09]004 1 - 0.02 0.1

| Average | 1 046|004 066] - | 0.03 | 0.2 |

Memory Controller and RSA in terms of CR and VM with
increasing x. Pertinent discussion on error detection-based
approaches, non-linear codes and their inadequacy to LFI
underscores the efficiency of PATRON. All benchmark circuits
are collected from OpenCores and synthesized using Synopsys
Design Compiler with 65-nm library from TSMC and their
Power Delay Products (PDPs) are compared. The controller
circuit of AES, SHA, and RSA contain FSMs with less than
8 states. For AES, the states “Do Round” and “Final Round”
and for SHA-256 the states “Data input”, “Block next”, and
“Valid” are in SS [1]. For RSA among the seven states,
“Result”, “Square”, “Multiply” and “Load2” are regarded as
in SS. Note that the proposed approach has the flexibility to
increase the |SS| to | S| for all these benchmarks, if intended
by the designer. Since most cryptographic algorithms tend to
have small number of states (based on designs at OpenCores),
we also demonstrate the scalability of PATRON on large
controller circuits like memory controller FSM with 66 states.

Table I shows a comprehensive demonstration of PATRON
outperforming conservative approaches in every aspect. Of
the conservative approaches, except the naive approach, all
schemes deliver encoding that is limited to a certain HD
boundary. For example, Hamming (7,4) cannot generate any
|V S| = 0 encoding beyond HD > 3; for HD < 3, CR is
comparatively lower than pragmatic. Another limitation is that
the |S| required for MIPS Processor and Memory Controller
exceed the number of codewords in Hamming (7,4). For one-
hot, once the attacker can control x = 2, VM (2) becomes
1 and all the encodings turn unsafe; hence, its C'R becomes
irrelevant. Similarly for binary encoding, all encodings have
VM(x) > 0, indicating susceptibility to LFI, rendering the

TABLE II: Power Delay Product (PDP) Normalized with PDP
of Binary encoding; O=0One-hot, H=Hamming(7,4), N=Naive,
P=Pragmatic.

AES SHA RSA MIPS Mem. Cont.
x[T[2[3 [1231 [2[3[1[2[3[1][2]3
0 2 14 2.6 29 09
H 25 21 43 - -
N[18] 21] 1[26][26[34[38]38|42[5[5 | 1 [12]12
P[14[19 21| 11|16 18] 15| 17] 2 | 15|18 |24 [L1|1.1]12

high C'Rs futile. With large benchmarks (MIPS and Mem.
Controller), PATRON performs even better compared to naive
with an average improvement of 366% in C'R than smaller
benchmarks (87%). The reason is that pragmatic utilizes the
don’t-care states whereas naive’s treatment of all states as
SS is costlier. Note that along with Hamming (7.4), the
applicability for Extended Hamming, Perfect Binary Golay
and Extended Binary Golay were also evaluated but not
tabulated as they share similar limitations as Hamming (7,4)
i.e., in terms of limited codewords availability and low CR.
From the table, the following conclusions can be confirmed:

o For designs requiring high z resilience to LFI, only
pragmatic approach is projected to achieve the highest
CR and with VM (z) = 0 (i.e, no vulnerable states).
PATRON has average improvement of 54% in C'R com-
pared to naive.

o VM takes precedence before C'R as the state encoding
should have VM (z) = 0 first, after which C R compari-
son becomes relevant.

With regard to nonlinear codes, robust and partially robust
codes are seen as promising [14]. However, these codes
both have minimum HD of 1. This trait alone makes them
inapplicable for LFI where HD flexibility is of paramount
importance. Most of these codes have relatively low C'R too
[15]. The C'Rs for only Quadratic Sum code and Punctured
Cubic Code measure up to 0.5 [16].

Table II shows post synthesis results indicating PDP nor-
malized by the PDP of Binary encoding. Area and power
are highly correlated, so PDP is a comprehensive metric for
comparison in this case. The table validates that pragmatic
approach has much lower PDP on average than the alternatives
only varying from 10% to 240% from binary encoding; hence,
PATRON manifests the least overhead. One-hot for Mem.
Controller has PDP< 1 because of simpler decoding logic.
Comparing both the tables, C'R is confirmed to be the worst
case estimate; in reality, the overhead is much less, e.g., for
RSA with increasing z, C'R is halved for PATRON whereas
PDP only increases 1.3 times.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed and compared fully secure LFI-
tolerant-FSM schemes. Due to the lack of a well-accepted
threat model for LFI, we defined a general strong threat model
that is extendable to other weaker models. We demonstrated
how the existing encoding approaches fail to meet this partic-
ular threat model, especially as the attacker’s LFI capabilities
improve, which necessitates our low overhead PATRON. Our
proposed decision diagram based scheme allows the designer

© 2021 IEEE

to quantitatively compare the degree of vulnerability using a
proposed metric. If vulnerabilities exist in the design then ap-
propriate measures with pragmatic or conservative approaches
(depending on the FSM knowledge of the designer) can be
applied to obtain an LFI-resistant FSM. For future work, we
plan to demonstrate LFI on protected/unprotected FSMs on
FPGAs along with investigating LFI effects on layout.

REFERENCES

[1] A. Nahiyan, F. Farahmandi, P. Mishra, D. Forte, and M. Tehranipoor.
”Security-aware FSM design flow for identifying and mitigating vulner-
abilities to fault attacks.” IEEE Transactions on Computer-aided design
of integrated circuits and systems 38, no. 6 (2018): 1003-1016.

[2] D. Anderson, and G. Metze. "Design of totally self-checking check
circuits for m-out-of-n codes.” IEEE Transactions on Computers 100,
no. 3 (1973): 263-269.

[3] K. Akdemir, G. Hammouri, and B. Sunar. "Non-linear error detection
for finite state machines.” In International Workshop on Information
Security Applications, pp. 226-238. Springer, Berlin, Heidelberg, 2009.

[4] V. Tomashevich, Y. Neumeier, R. Kumar, O. Keren, and 1. Polian. ’Pro-
tecting cryptographic hardware against malicious attacks by nonlinear
robust codes.” In 2014 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 40-
45. IEEE, 2014.

[5] S. Skorobogatov, and R. Anderson. ”Optical fault induction attacks.”
In International workshop on cryptographic hardware and embedded
systems, pp. 2-12. Springer, Berlin, Heidelberg, 2002.

[6] R. Leveugle, et al. “Laser-induced fault effects in security-dedicated
circuits.” In 2014 22nd International Conference on Very Large Scale
Integration (VLSI-SoC), pp. 1-6. IEEE, 2014.

[7]1 C. Roscian, J. Dutertre, and A. Tria. "Frontside laser fault injection
on cryptosystems-Application to the AES’last round.” In 2013 IEEE
International Symposium on Hardware-Oriented Security and Trust
(HOST), pp. 119-124. IEEE, 2013.

[8] F. Courbon, P. Moundi, J. Fournier, and A. Tria. ”Adjusting laser
injections for fully controlled faults.” In International workshop on
constructive side-channel analysis and secure design, pp. 229-242.
Springer, Cham, 2014.

[9] Agoyan, M., J. M. Dutertre, A. P. Mirbaha, and A. Tria. "How to Flip
a Bit?, On-Line Testing Symposium (IOLTS).” (2010).

[10] A. Nahiyan, K. Xiao, K. Yang, Y. Jin, D. Forte, and M. Tehranipoor.
”AVFSM: a framework for identifying and mitigating vulnerabilities
in FSMs.” In Proceedings of the 53rd Annual Design Automation
Conference, pp. 1-6. 2016.

[11] V. Rathor, B. Garg, and G. Sharma. "New Lightweight Architectures
for Secure FSM Design to Thwart Fault Injection and Trojan Attacks.”
Journal of Electronic Testing 34, no. 6 (2018): 697-708.

[12] A. Papadimitriou, D. Hély, V. Beroulle, P. Maistri, and R. Leveugle. A
multiple fault injection methodology based on cone partitioning towards
RTL modeling of laser attacks.” In 2014 Design, Automation Test in
Europe Conference & Exhibition (DATE), pp. 1-4. IEEE, 2014.

[13] W. Peterson, and D. Brown. ”Cyclic codes for error detection.” Proceed-
ings of the IRE 49, no. 1 (1961): 228-235.

[14] M. Karpovsky, and A. Taubin. "New class of nonlinear systematic error
detecting codes.” IEEE Transactions on Information Theory 50, no. 8
(2004): 1818-1819.

[15] K. Kulikowski, Z. Wang, and M. Karpovsky. “Comparative analysis
of robust fault attack resistant architectures for public and private
cryptosystems.” In 2008 5th Workshop on Fault Diagnosis and Tolerance
in Cryptography, pp. 41-50. IEEE, 2008.

[16] Y. Neumeier, and O. Keren. ”Punctured Karpovsky-Taubin binary robust
error detecting codes for cryptographic devices.” In 2012 IEEE 18th
International On-Line Testing Symposium (IOLTS), pp. 156-161. IEEE,
2012.

[17] B. Sunar, G. Gaubatz, and E. Savas. “Sequential circuit design for
embedded cryptographic applications resilient to adversarial faults.”
IEEE Transactions on Computers 57, no. 1 (2007): 126-138.

https://www.researchgate.net/publication/347440615

	Introduction
	Background and Terminology
	FSM and FSM Encoding
	Error-Detection/Correction Codes
	Binary Decision Diagrams (BDDs)

	FSM Security Analysis
	Threat Model
	Vulnerability of State Encoding
	Related Work

	Proposed Encoding Schemes
	Conservative Approaches
	Pragmatic Approach (PATRON)
	Comparison of Approaches

	Results and Discussion
	Conclusion and Future Work
	References

