Hardware Vulnerability Description, Sharing and
Reporting: Challenges and Opportunities

Jeremy Bellay*, Domenic Fortef, Robert Martin? and Christopher Taylor*
*Battelle Memorial Institute, Columbus, OH
Email: {bellayj, taylorcp} @battelle.org
TUniversity of Florida, Gainesville, FL
Email: dforte@ece.ufl.edu
IMITRE Corporation, Bedford, Massachusetts
Email: ramartin @mitre.org

Abstract—Hardware, once deemed an immutable root-of-trust,
has recently come under scrutiny as hardware vulnerability
researchers have uncovered weaknesses, which can be exploited
remotely, in the supply chain, or through through physical
access. Given this revelation, interest has manifested in the
concept of sharing hardware vulnerabilities and mitigations.
Borrowing from the software domain, this work surveys the
existing frameworks for public vulnerability and weakness
sharing, examines their efficacy for hardware, and also
identifies potential gaps. Additionally, due to the inherent
apprehensiveness of sharing hardware vulnerabilities which
is attributed to the fear of revealing hard to patch exploits,
this work intends to address those potential risks and presents
possibly benefits. Furthermore, the authors also analyze current
hardware vulnerability reporting efforts and discuss how to
quantify security for hardware.

I. INTRODUCTION

The field of computer and communications security has
traditionally viewed hardware as an immutable root-of-trust.
However, the last decade of hardware security research has
led to the discovery of hardware-oriented weaknesses that can
be exploited remotely, in the supply chain, through physical
access, or through any combination of the three. In particular,
the last few years have seen hardware vulnerabilities in several
top processor vendors. By and large, these vulnerabilities were
complicated to mitigate and incurred significant performance
degradation as well as other unintended side effects [1].

In addition to simply offering an alternative attack surface
beyond software, hardware has other attractions to attack-
ers that will make it an increasingly common target. Since
hardware is the foundation of computing and operates at the
lowest abstraction layer, common software mitigations such as
system updates and patches are inadequate. Moreover, while
hardware attacks require physical access and have long been
considered too expensive, the landscape is starting to change
in the attacker’s favor. As part of the emerging internet of
things (IoT), the number of “smart things” is soon expected

This work was performed for AFRL, Contract No. FA8650-20-F-1894/Task
Order 0003 under Nimbis IDIQ Contract No. FA8650-18-D-1604. DISTRI-
BUTION STATEMENT A: Approved for Public Release PA AFRL-2021-
1524 ©2021 Battelle Memorial Institute

to dwarf mobile computing devices [2]. IoT products are often
deployed in hostile environments where they can operate for
years with minimal intervention. Furthermore, improvements
in the capabilities of failure analysis tools, especially semi-
invasive ones, coupled with lower barriers to their access
make on-chip assets, secrets, and IP more vulnerable to fault
injection, probing, and reverse engineering than ever before
[3]. Finally, hardware itself is also evolving rapidly in new
node sizes, neuromorphic computing, Carbon-Nanotube FET,
and quantum computing. These advances create fundamentally
new attack surfaces, many of which will probably never be
entirely secured.

Left unaddressed, vulnerabilities expose critical systems,
their information, and the people who rely on them. However,
in order to be fixed, they must first be identified, and critical
information must be shared among stakeholders. The rise of
viruses, malware, and remote attacks in the 80’s, 90’s, and
early 2000’s led to efforts aimed at supporting and coordinat-
ing vulnerability education, discovery, advisories, and allevi-
ation. These included a common language and taxonomies to
describe software and software-related weaknesses [4], attack
patterns [5] and vulnerabilities [6], [7], avenues for responsible
disclosure of vulnerabilities and exposures [7], [8], entities
to coordinate responses between researchers, vendors, and
deployers, and approaches to prioritize mitigations [9]. MITRE
has recently begun a major effort to extend CWE to hardware
applications, but the particulars of hardware have made the
wholesale transition of the software system to hardware diffi-
cult.

In addition to discussing current vulnerability databases, this
work also analyses the current landscape of hardware vulner-
ability reporting, characterization, disclosing, as well as their
risks and benefits to potential stakeholders. Moreover, this
work also investigates the future of hardware vulnerabilities
and weaknesses in relation to security estimations.

II. SURVEY OF EXISTING VULNERABILITY REPORTING

The idea of a public national hardware vulnerability
database is comparatively recent and comes two decades
after the establishment of a vulnerability database focused on

software. For context, in the late 1990’s there were several
groups trying to discuss and share information surrounding
software vulnerabilities, how they occurred, how they were
attacked, how to recognize them, what to do about them, and
how to prioritize them. Against this backdrop, the MITRE
Corporation [10], a not-for-profit company that runs Federally
Funded Research and Development Centers (FFRDCs) for
multiple departments of the US Government, came up with
the idea of a Common Enumeration of Vulnerabilities (CVE).
The CVE was launched in September of 1999, however, years
later the need to enumerate the weaknesses in software which
created those vulnerabilities and how they could be attacked
became apparent. As a result, MITRE launched Common
Weakness Enumeration (CWE) and the Common Attack Pat-
tern Enumeration and Classification (CAPEC) efforts while
NIST established the National Vulnerability Database [11]
to support a broader access to the CVE information and
incorporate additional types of related information.

A. Common Vulnerabilities and Exposures (CVE®)

The CVE website provides the widest used publicly avail-
able dictionary of known vulnerabilities in commercial and
open source software, where a vulnerability is a specific type
of weakness or weaknesses in a product that is exploitable by
a threat. Furthermore, the CVE helps individuals and orga-
nizations correlate the numerous types of public and private
information about public vulnerabilities in applications and
other cyber-enabled capabilities. The dictionary is organized in
an intuitive manner based on known vantage points and abides
by a concise schema for describing related public information,
while also offering a mechanism for correlating shared infor-
mation. CVE’s organization is based on the concept of a simple
list of identifiers for publicly known vulnerabilities. which
helps to correlate entries that are referring to or discussing
the same issues [12]. Entries into the database, referred to
as CVEs, are publicly known issues that need to be patched
or mitigated to address an exploitable vulnerability. New
CVEs are created through CVE Naming Authorities (CNAs),
which is comprised of a web of organizations sharing the
responsibilities of associating CVE identifiers with security
issues. While MITRE is currently the root CNA, there are
over 127 other organizations that have been identified as the
preferred CNA which the community should work with to
assign CVE identifiers. These organizations constitute security
researchers and have specific products, product types, or other
specified domains for which they address CVEs associated
with their specific area.

Vulnerabilities characterized in the CVE are concrete exam-
ples of items described in the catalog of Common Weakness
Enumeration (CWE) and exploitable by the attack patterns
captured in the Common Attack Pattern Enumeration and
Classification (CAPEC) collection. It is through the linking
of public vulnerabilities in a specific product to the weakness
in the CWE and attack patterns in CAPEC, organizations can
leverage those collections and the information in them in their
assessment and investigation into newly discovered examples

of vulnerabilities. Additionally, the linked information also
offers opportunities for organizations to examine their own
code base for the same type of vulnerability.

B. Common Weakness Enumeration (CWE™)

The CWE website provides a publicly available catalog
of the weaknesses that occur in software architecture, de-
sign, code, or during deployment, where a weakness is a
description of the common attributes and susceptibilities an
adversary can capitalize on. These weaknesses can result in
exploitable vulnerabilities and are meant to help individuals
and organizations understand how weaknesses in applications
and other cyber-enabled capabilities occur. The origin of CWE
is derived from working with the real-world examples of the
types of vulnerabilities that appear in software applications.
These vulnerabilities are meant to generalize those real-world
flaws into conceptual patterns of what makes software ex-
ploitable. Furthermore, the patterns allow people to learn and
recognize them early in the lifecycle of software to either
avoid introducing them or finding them quickly to address
them before the software is put into operation. CWE entries,
or CWEs, are a mixture vulnerability types found by exploiting
them “in the wild” or through examination and testing of
software by hackers, developers, and testers. New CWEs are
created by generalizing a specific vulnerability in a particular
product or through the examination of software architecture,
design, code, or deployed applications and finding constructs
that allow someone to do something that was not intended.

Weaknesses define the opportunities that an adversary may
leverage and how the builder or defender can go about
finding and removing them. In addition, if an organization
is concerned with specific weaknesses because of the possible
consequences from a successful attack on them, the relation-
ships between CWEs and CAPECs can be used to identify
likely attacks for a CWE which can inform the defender on
options for defense. Moreover, CWE are organized by their
properties where a list of possible properties is located in Table
I, and definitions of the properties can be found on MITRE’s
website [13].

TABLE I
PROPERTIES OF WEAKNESSES IN CWE

Notes

Alternate Terms
Memberships
References
Detection Methods

Description

Extended Description
Taxonomy Mappings
Background Details
Modes of Introduction
Applicable Platforms

Common Consequences
Likelihood of Exploit
Observed Examples
Potential Mitigations
Related Attack Patterns

C. Common Attack Pattern Enumeration and Classification
(CAPEC™)

The CAPEC website provides a publicly available catalog
of common attack patterns that helps individuals and orga-
nizations understand how adversaries exploit weaknesses in
applications and other cyber-enabled capabilities. CAPEC’s
origin is based on the concept of software design patterns

or templates for the design and implementation of commonly
used software techniques. CAPEC entries or CAPECs are
a mixture of attack patterns actively seen “in the wild”,
through proof-of-concept, or based on research surrounding
what is theoretically possible to do. CAPECs are created by
generalizing adversarial behaviors and can be thought of as an
extrapolation of things that could happen or be observed. For
instance, CAPEC aims to answer the following questions: how
does an adversary take advantage of a software weakness, what
are the steps taken, what is the knowledge needed to follow
those steps, how difficult is it to achieve, and how likely is
success.

Attack patterns define the challenges that an adversary may
face and how they go about solving them. They derive from
the concept of design patterns applied in a destructive rather
than constructive context and are generated from in-depth
analysis of specific real-world exploit examples, research, and
technologies. If an organization is concerned with attacks on
specific weaknesses because of the possible consequences, the
relationships between CWEs and CAPECs can be used to
identify the likely CAPECs for a CWE and that knowledge
can inform the defender on options for mitigation. Table II
shows a list of the properties of attack patterns in CAPEC!.

TABLE II
ATTACK PATTERNS FOUND IN CAPEC DATABASE

Description

Alternate Terms
Likelihood of Attack
Typical Severity
Related Attack Patterns
Mitigations

Prerequisites

Skills Required
Resources Required
Indicators
Consequences

Example Instances
Related Weaknesses
Taxonomy Mappings
References
Execution Flow

D. CMU CERT/CC

The CERT Coordination Center (CERT/CC) is the coordina-
tion center of the computer emergency response team (CERT)
for the Software Engineering Institute (SEI), a non-profit
United States FFRDC. The CERT/CC researches software
bugs that impact software and internet security, publishes
research and information on its findings, and works with
business and government to improve security of software and
the internet as a whole. Furthermore, CERT/CC works directly
with software vendors in the private sector as well as govern-
ment agencies to address software vulnerabilities and provide
fixes to the public. Through this process CERT/CC promotes
a particular process of coordination known as Responsible
Coordinated Disclosure. In this case, the CERT/CC works
privately with the vendor to address the vulnerability before
a public report is published, usually jointly with the vendor’s
own security advisory. However, in extreme cases when the
vendor is unwilling to resolve the issue or cannot be contacted,
the CERT/CC typically discloses information publicly after 45
days since first contact attempt [14]. Software vulnerabilities
coordinated by the CERT/CC may come from internal research

! definitions of each of these
https://capec.mitre.org/documents/schema/index.html.

properties see

or from outside reporting. Moreover, depending on severity
of the reported vulnerability, the CERT/CC may take further
action to address the vulnerability and coordinate with the
software vendor. Additionally, CERT/CC coordinates infor-
mation with US-CERT in cases that concern US national
security, whereas CERT/CC handles more general cases, often
internationally.

E. National Vulnerability Database (NVD)

The NVD is a comprehensive cybersecurity vulnerability
database that allows the tracking of vulnerability trends over
time. This trending service allows users to assess changes in
vulnerability discovery rates within specific products or within
specific types of vulnerabilities. NVD data is represented
using Security Content Automation Protocol (SCAP), which
is a suite of specifications that standardize the format and
nomenclature by which software flaw and security configu-
ration information is communicated, both to machines and
humans. Furthermore, the NVD includes databases of security
configuration checklists for the National Checklist Program,
listings of publicly known software flaws, product names, and
impact metrics. Additionally, as of the end of July 2020,
the NVD contained over 145,000 vulnerability advisories,
over 150 SCAP-expressed checklists across 153 platforms
and a product dictionary with over 500,000 operating system,
application, and hardware name entries.

NVD is hosted and maintained by the National Institute of
Standards and Technology (NIST) and is sponsored by the
Department of Homeland Security’s US-CERT. Despite being
sponsored by a government entity, thousands of organizations
worldwide use of SCAP data has effectively extended NVD’s
reach. Additionally, increasing demand for NVD XML data
feeds (i.e., mechanisms that provide updated data from data
sources) and SCAP-expressed content from the NVD website
demonstrates an increased adoption of SCAP. Furthermore, in
the past year, the NVD continued to see a significant upward
trend in the number of vulnerabilities received. To support this
increased workload, several strategies are in progress, includ-
ing longer-term efforts to focus on vulnerability ontology and
natural language processing to manage future growth. Overall,
the NVD continues to experience an average download growth
rate of over 10% per month.

A key component of the NVD is the Common Vulnerability
Scoring System (CVSS), used for measuring the relative sever-
ity of software flaws. In 2017, the NVD began providing CVSS
base scores following the CVSS v3 specification within the
data feeds. Currently, NIST is working with the vulnerability
community to enable the automated analysis of metrics, such
as CVSS, establishing a baseline of the minimum information
needed to properly inform the vulnerability management pro-
cess, and facilitating the sharing of vulnerability information
across language barriers. To assist in this work, a public
draft of NISTIR 8138, Vulnerability Description Ontology
(VDO): A Framework for Characterizing Vulnerabilities, was
created to foster a conversation and collect feedback on the
best mechanisms to improve the degree of automation within

vulnerability management processes. In FY 2019, NIST started
to develop the VDO iteratively through collaboration with the
security automation community on GitHub?. This approach
will allow participation from as many stakeholders in the
vulnerability community as possible.

III. HARDWARE PARTICULARS
A. Trust-Hub

Trust-hub is a web portal® for the hardware security com-
munity to exchange of ideas, benchmarks, platforms, tools,
and educational resources, which is led by the University of
Florida and has been supported by funds from the National
Science Foundation (NSF) for the last eight years. In 2018,
Trust-hub added a Vulnerability Database sub-portal, which
currently consists of a physical attack taxonomy that highlights
the mechanisms used by attackers in IC and PCB reverse
engineering, hardware Trojan insertion, fault injection, side
channel analysis, etc. Additionally, Trust-hub contains a list of
academic and commercial computer aided design (CAD) tools
available for protecting hardware IP and assessing system-
on-chip (SoC) susceptibility to information leakage, hardware
Trojans, side channel attacks, fault injection, and probing.

While this sub-portal is a promising joint initiative from
academia and industry that aligns well with the goals outlined
in this paper, it remains a work-in-progress. For one, an
additional SoC vulnerability database is mentioned as “coming
soon”, and physical attack taxonomy only includes attacks
categorized in one manner. Furthermore, the sub-portal can
be improved by adding short descriptions, execution steps,
consequences, and details about the time, skills, and resources
required for each attack. Moreover, the CAD tool list provides
just the right amount of information about each tool, but it
is not yet exhaustive. To expand its capabilities researchers
and vendors are encouraged to send details to the Trust-hub
Vulnerability Database organizers to gain exposure for their
tools and so that community has a better idea of which tools
still need to be developed. The University of Florida aims to
upgrade the Trust-hub portal over the next several years in
order to accept submissions, take requests, and facilitate more
communication between users.

B. Trusted Silicon Stratus

The Nimbis Services Trusted Silicon Stratus (TSS)* is a
secure cloud services infrastructure intended to allow gov-
ernment agencies to design integrated circuits (ICs) in a
private community cloud. The creation of the TSS had 4
main objectives. First is to enable the design and creation
of Tech readiness level 8 ASIC and FPGA designs all the
way through design, manufacture, and life cycle management
through access to EDA tools and data repositories. Second,
is to provide DoD Information Assurance Certification and
Accreditation Process (DIACAP) cloud solutions for inter-
agency collaboration for not only the Air Force but the rest of

Zhttps://github.com/usnistgov/vulntology
3available at www.trust-hub.org
“available at www.trustedstratus.com/

the DoD community. Third, the TSS is to function as a secure
data repository which will enable the storing of data related
to manufacturing, test, supply, field defects, fatigue analysis,
inventory, deployment, re-fit and upgrade, and data provenance
in the DoD supply chain and acquisition cycle. Finally, the
TSS is an attempt to merge the disparate nature of the current
DoD IC infrastructure to better enable leveraging economies of
scale and help foster collaboration among the DoD community.

The TSS offers a secure user configurable Trusted Mi-
croelectronics chip design ecosystem hosted on Amazon’s
AWS GovCloud. This cloud based service enables the afford-
able multi-organizational chip design and verification platform
required for today’s complex microelectronics development
cycle. Some of the features the TSS provides are as follows.

« EDA tools

« Scalable computing resources
« Life cycle management

o PDK and IP libraries

« Metered billing

« Tiered levels of security

o Archiving and version control

C. Hardware Differentiation

1) Overview of Hardware Security Taxonomies: As de-
scribed above, there are several description frameworks avail-
able for characterizing computer vulnerabilities in the form of
the CVE ecosystem such as CVE, CVSS, CWE, CWSS, and
CAPEC. CVE and CVSS have been used by the community
to document well known vulnerabilities such as Spectre,
Meltdown and Rowhammer on the NVD. While the CVE
ecosystem is increasingly capable of usefully characterizing
hardware vulnerabilities, there are many hardware specific
attack and weakness concepts that have been already defined
in the literature.

Taxonomies of hardware attacks and attackers have a long
history [15], [16], and outside of the CVE ecosystem, there
have been several efforts to create more detailed taxonomies
for particular domains of hardware vulnerabilities. Currently
the most well-known effort is Trust-Hub, (described in Section
III-A) which contains taxonomies of physical vulnerabilities,
hardware trojans, and hardware obfuscation. Additionally, in
2014 Guin, DiMase, and Tehranipoor [17], published a taxon-
omy of counterfeit ICs. Furthermore, there have been a variety
of specialized taxonomies around specific weaknesses includ-
ing a taxonomy of attacks based on speculative execution (e.g.,
Spectre/Meltdown) [18], general fault attacks [19], differential
power analysis [20], and injection attacks [21] to name a few
(as shown in Table III).

Altogether, these taxonomies give a detailed picture of the
world of hardware security. However, with a few exceptions
[22], the focus is on the definition of concepts for attacks,
weaknesses, and attackers. Consequently, the attributes of
these attacks are often missing that which would allow model-
ing and the development of best practices around each kind of
attack. For example, while optical fault injection (OFI) attacks
are well studied, no description framework, to the authors best

knowledge, has included the concepts necessary to describe
when an OFI attack would be successful on what device.

TABLE III
EXAMPLES OF HARDWARE SECURITY TAXONOMIES
Hardware Topic Reference
Physical Vulnerabilities Trust-Hub
Hardware Trojans Trust-Hub
Obfuscation Trust-Hub

Fault Attacks

Speculative Execution
Counterfeits

Biased-Fault Attacks

DPA Analysis and Countermeasures
Fault Injection and Simulation
Signal Injection Attacks
Attackers

Hardware Attacks and Attackers
Hardware Attacks and Attackers
Smartcard

Karaklajic et al. 2013 [19]
Canella et al. 2019 [18]

Guin et al. 2013 [17]
Farhardy et al. 2015 [23]
Marzouqi and Salah 2013 [20]
Piscitelli [24]

Giechaskiel et al. 2019 [21]
Anderson and Kuhn 1996 [15]
Rae and Wildman 2003 [25]
Keommerling et al. 1999 [16]
Yahay and Omar 2010 [22]

2) Hardware Weakness and Attack Pattern Descriptions:
The concepts necessary to describe software weaknesses are
well documented in the CWE description framework described
in Section II-B. In addition to software specific weaknesses,
CWE includes many concepts required for computer security.
Moreover, along with its taxonomies of concepts, it includes
an ontology which allows for relations between those concepts
and the concepts from CAPEC. This allows for the detailed
description of hardware errors, even if hardware specific
concepts are missing.

For example, the CWE concept “CWE-325: Missing Re-
quired Encryption Step” is described as “The software does not
implement a required step in a cryptographic algorithm, result-
ing in weaker encryption than advertised by that algorithm.”
While this effect could be caused by an inherent software
weakness it is often the end result of hardware glitching at-
tacks. The CWE ontology contains the relation “resultant” and
CWE-325 in its definition, can be described by that relation.
Thus, CWE contains the concepts and relations to describe
the action of a, for example, fault injection attack that causes
an encryption algorithm to prematurely dump the plaintext
to a recoverable media. However, CWE and CAPEC do not
contain a concept for “Optical Fault Injection”, though CAPEC
does have a concept for the broader term “Fault Injection”.
From the hardware perspective, differentiating between types
of fault injection is important, considering that timing faults
and optical faults will have drastically different mitigation
strategies.

A simple first step towards making the CVE ecosystem
more relevant to hardware would be the incorporation of
existing taxonomic concepts (e.g., those of Trust-Hub) into
CWE and CAPEC. Additionally, once hardware vulnerabilities
can be added, the process and procedures of how to properly
disclosure new vulnerabilities into the CVE ecosystem, while
taking into account the difficulties hardware vulnerabilities
pose, must also be established. Notwithstanding, CWE re-
leased three updates in 2020 including many new hardware
weaknesses. For example, version 4.0 added many hard-

ware specific nodes such as “CWE-1247: Missing Protec-
tion Against Voltage and Clock Glitches” and “CWE-1239:
Improper Zeroization of Hardware Register”. Additionally,
version 4.0 saw the introduction of a new “Hardware Design”
view, which organizes weaknesses associated specifically with
hardware. In version 4.3, a total of 95 additional hardware
weaknesses were added to the CWE, which now are separated
into a hardware section on the summary of changes page.
However, these updates have not surfaced in CAPEC as of
this writing.

IV. VULNERABILITY DISCLOSURE

Once a vulnerability in a public system has been discovered,
the question remains on how to best alert the relevant parties
in order to produce a mitigation before the vulnerability can
be exploited. In the event that a vulnerability is discovered
internally, often a patch is developed and distributed with-
out any public acknowledgement. However, even internally
discovered vulnerabilities are often given CVEs and pub-
licly acknowledged. Nonetheless, most cases of vulnerability
disclosure arise when a 3rd party makes the discovery. In
this situation, the reporting party must decide on how to
proceed and whether to alert the product manufacturer or to
disclose the vulnerability without input of the vendor (e.g.,
public disclosure). Historically, vulnerability disclosure was
an extremely sensitive process with reporters being concerned
about lawsuits brought on by vendors.

In the software domain, a formal vulnerability disclosure
process has been largely recognized to be a benefit to both
vendor and reporter [26]. However, this is not to say that
disclosure is uncontroversial or without problems. Namely, the
case has been made that disclosing vulnerabilities provides
attackers with both a training ground and ammunition [27].
Moreover, due to the prestige associated with discovering ma-
jor vulnerabilities, their exploitability can be exaggerated, and
in some cases turn out not to be true [28]. However, without
a disclosure process, users may be unaware of unpatched
vulnerabilities within their system. This not only puts them
at risk, but any network into which they have privilege as
well, while also making them a target for botnet recruitment.
Additionally, lack of disclosure also leaves system integrators
at risk, as well as those who may use software without
acknowledgement (often as a legally questionable practice).
Several best practices have been published and collated in
ISO/IEC report 29147 on Vulnerability Disclosure and the
related report 30111 on Vulnerability handling.

Vulnerability disclosure can take one of several routes.
The vender may discover the vulnerability and handle the
disclosure and mitigation completely independently. A non-
vender party may discover the vulnerability and report it to
the vendor, who then handles the mitigation and disclosure
independently. The discover may disclose the vulnerability
without consulting the vender. Finally, the vender, discoverer
and other stake holders may work together in mitigation and
disclosure of the vulnerability in a process usually referred to
as “Coordinated Disclosure”.

Coordinated disclosure is of particular interest to hardware,
where hardware vulnerability mitigation includes not only the
already complicated ecosystem required for software vulner-
ability mitigation, but also the original equipment manufac-
turers (OEMs) and their network or suppliers. Additionally,
researchers who report a hardware vulnerability often have
already expended extensive effort to discover and characterize
the vulnerability and would like to receive credit through
publicity or other reward. Using a coordinated disclosure
process allows the reporter to continue to participate in the
process.

The mitigation of a hardware vulnerability often requires
coordination between three types of technical parties: OEMs,
which are the companies that brand and distribute the products
in which a vulnerability may occur, but might not manufacture
all (or even most) of the component parts; Hardware vendors,
who manufacture the components but may have limited un-
derstanding of the larger functioning of the integrated product;
and Software distributers, who produce the operating systems
(and often firmware) that utilize the device, and as such,
play a primary role in developing and testing software based
mitigations.

V. HARDWARE SECURITY ESTIMATION

Estimating the security and risk of electronic devices is key
to addressing hardware security concerns. Notably, security
estimates will allow for a rational distribution of resources
towards high impact security problems. Additionally, such
estimations are necessary to incentivize the adoption of secure
designs by industry as a quantification of security can be used
to justify the trade-offs. Ultimately security estimates must
take several factors into account:

o Hardware security issues range from remotely accessible
vulnerabilities such as Spectre/Meltdown, to counterfeit
production, to subversion via fault injection. Therefore,
generic security estimation is impossible, and a threat
model must be specified.

o Security estimates must take preventative measures into
account such as secure design practices, and test-
ing/verification.

o Hardware has a distinct and complex lifecycle, which
begins with multiple layers of design abstraction, and
multiple phases of the design process leading to fabri-
cation. Additionally, hardware can be used in multiple
environments with various levels of physical security.

o Hardware usually consists of integrated components be-
ginning with the inclusion of 3rd party IP at during
IC design, to various components on printed circuit
boards, and finally inclusion different hardware into large
systems.

Integration poses an interesting problem for security esti-
mation due to the possibility of combining relatively secure
components with other (potentially much less secure) compo-
nents. This situation presents both risk and opportunity, where
restricting secure processes through trusted and secure compo-
nents may allow for compensation for less secure components.

However, an unsecure component may also serve as a “weakest
link” for an otherwise secure system. Regardless, the ability
to integrate security estimates across a system is essential to
most applications.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

Hardware vulnerability and weakness sharing has been a
controversial topic due to their hard-to-patch nature. However,
we identify several fruitful directions for research and collab-
oration that can improve the hardware security landscape. We
have shown that the CVE ecosystem (CVE, CWE, CAPEC,
etc.) has the underlying structure necessary for the reporting
of hardware vulnerabilities, weakness, and attack patterns.
However, the current concepts need to be expanded to better
represent hardware specific weaknesses and vulnerabilities
such as physical attacks. In fact, since the TAME forum
and the publication of the accompanying report, MITRE has
begun a vigorous effort to expand the CWE database to better
cover hardware vulnerability concepts. Furthermore, another
expansion is planned, and MITRE has volunteered to add the
new hardware CWE terms to existing CVE instances.

Perhaps the common thread throughout all hardware differ-
entiation is its immutability. While this raises real concerns
around vulnerability sharing and disclosure, it also has a
fundamental impact on the use cases around vulnerability
and threat model usage. Because of the immutability of
hardware, vulnerabilities almost always must be prevented
and mitigated during design and manufacture. The current
descriptive frameworks are primarily focused on reporting
upon discovery, which is a fundamentally different application
than prevention. Prevention requires detailed descriptions of
the vulnerabilities/weakness, their parameterizations, and how
they relate to verification and assurance tools. The Accellera
Systems Initiative is working in this direction by developing a
standard towards understand IP vulnerabilities between OEMs
and their suppliers [30]. However, the space mapping hardware
weaknesses to assurance tools and data is largely unmapped.

REFERENCES

[1] L. H. Newman, “The hidden toll of fixing meltdown and spectre,” Jan
2018. [Online]. Available: https://www.wired.com/story/meltdown-and-
spectre-patches- take-toll/

[2] L. Columbus. (2018, 12) 2018 roundup of inter-
net of things forecasts and market estimates. [On-
line]. Available: https://www.forbes.com/sites/louiscolumbus/2018/12/
13/2018-roundup-of-internet-of- things- forecasts-and- market-estimates/

[3] C. Boit, C. Helfmeier, and U. Kerst, “Security risks posed by modern ic
debug and diagnosis tools,” in 2013 Workshop on Fault Diagnosis and
Tolerance in Cryptography, 2013, pp. 3—11.

[4] CWE - common weakness enumeration. [Online]. Available: https:
/lcwe.mitre.org/

[5] CAPEC - common attack pattern enumeration and classification
(CAPECQ). [Online]. Available: https://capec.mitre.org/

[6] J. D. Howard and T. A. Longstaff. (1998, 10) A common
language for computer security incidents. [Online]. Available: https:
//digital.library.unt.edu/ark:/67531/metadc706351/

[71 CVE - common vulnerabilities and exposures (CVE).
Available: https://cve.mitre.org/

[8] R. Pethia, “Computer emergency responsed€”an international problem,”
in Proceedings of the 13th International Conference on Software Engi-
neering, ser. ICSE a€™9]1. Washington, DC, USA: IEEE Computer
Society Press, 1991, p. 313.

[Online].

[9]

[10]

(11]

(12]

[13]
[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

P. M. Mell, K. A. Scarfone, and S. Romanosky, “The
common vulnerability scoring system (CVSS) and its applicability
to federal agency systems,” 08 2007. [Online]. Avail-
able: https://www.nist.gov/publications/common-vulnerability-scoring-
system-cvss-and-its-applicability-federal-agency-systems

“We operate ffrdcs.” [Online]. Available: https://www.mitre.org/centers/
we-operate-ffrdcs

L. Brownsword, C. Woody, C. Alberts, and A. Moore, “A framework for
modeling the software assurance ecosystem: Insights from the software
assurance landscape project,” 08 2010.

T. L. S. D. Committee, “Test methods standard; general requirements,
suspect/counterfeit, electrical, electronic, and electromechanical parts,”
04 2018. [Online]. Available: https://www.sae.org/content/as6171
“Common weakness enumeration.” [Online]. Available: https:
/lcwe.mitre.org/documents/glossary/index.html

A. Manion, “Vulnerability disclosure policy.” [Online]. Available: https:
/Ivuls.cert.org/confluence/display/Wiki/VulnerabilityDisclosurePolicy
R. Anderson and M. Kuhn, Tamper Resistance G€*“ a Cautionary Note,
1996.

O. Kémmerling and M. G. Kuhn, “Design principles for tamper-resistant
smartcard processors,” in Proceedings of the USENIX Workshop on
Smartcard Technology on USENIX Workshop on Smartcard Technology,
ser. WOSTa€™99. USA: USENIX Association, 1999, p. 2.

U. Guin, D. Dimase, and M. Tehranipoor, “A comprehensive framework
for counterfeit defect coverage analysis and detection assessment,”
J. Electron. Test., vol. 30, no. 1, p. 25a€*“40, Feb. 2014. [Online].
Available: https://doi.org/10.1007/s10836-013-5428-2

C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation of
transient execution attacks and defenses,” in Proceedings of the 28th
USENIX Conference on Security Symposium, ser. SECA€™19. USA:
USENIX Association, 2019, p. 2493€266.

D. KaraklajiAi:, J. Schmidt, and 1. Verbauwhede, “Hardware designer’s
guide to fault attacks,” IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, vol. 21, no. 12, pp. 2295-2306, 2013.

H. Marzougi, M. Al-Qutayri, and K. Salah, “Review of gate-level
differential power analysis and fault analysis countermeasures,” [ET
Information Security, vol. 8, no. 1, pp. 51-66, 2014.

I. Giechaskiel and K. B. Rasmussen, “Sok: Taxonomy
and challenges of out-of-band signal injection attacks and
defenses,” CoRR, vol. abs/1901.06935, 2019. [Online]. Available:
http://arxiv.org/abs/1901.06935

S. Yahya and N. A. N. Omar, “Security validation of smartcard: Mcos,”
2010.

P. S. Nahid Farhady Ghalaty, Bilgiday Yuce, “Analyzing the efficiency of
biased-fault based attacks,” Cryptology ePrint Archive, Report 2015/663,
2015, https://eprint.iacr.org/2015/663.

R. Piscitelli, S. Bhasin, and F. Regazzoni, Fault Attacks, Injection
Techniques and Tools for Simulation. Cham: Springer International
Publishing, 2017, pp. 27-47. [Online]. Available: https://doi.org/
10.1007/978-3-319-44318-8_2

A. Rae and L. Wildman, “A taxonomy of attacks on secure devices,”
p. 14.

A. D. Householder, G. Wassermann, A. Manion, and C. King, “The cert
guide to coordinated vulnerability disclosure,” Carnegie-Mellon Univ
Pittsburgh Pa Pittsburgh United States, Tech. Rep., 2017.

G. Uht, “Leta€™s keep it to ourselves: Dona€™t disclose
vulnerabilities,” Jan 2019. [Online]. Available: https://www.sigarch.org/
lets-keep-it-to-ourselves-dont-disclose- vulnerabilities/

B. Dickson, “Software vulnerability disclosure is a real
mess,” Aug 2019. [Online]. Available: https://www.pcmag.com/
opinions/software- vulnerability-disclosure-is-a-real-mess#:~:text=
Thistypeofvulnerabilityallows, maliciouspayloads,andstealinginformation.
“Common weakness enumeration.” [Online]. Available: https:
/lcwe.mitre.org/data/definitions/1194.html

B. Sherman, M. Borza, J. Pangburn, A. Sarkar, W. Chen, A. Nordstrom,
K. H. Hayashi, M. Munsey, J. Hallman, A. Althoff, J. Valamehr,
A. Sherer, 1. Sobanski, S. Aftabjahani, and S. Nimmagadda, “Ip security
assurance standard,” Accellera, Tech. Rep., 09 2019.

