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Arithmeticity, superrigidity, and
totally geodesic submanifolds

By Uri Bader, David Fisher, Nicholas Miller, and Matthew Stover

Abstract

Let Γ be a lattice in SO0(n, 1). We prove that if the associated lo-

cally symmetric space contains infinitely many maximal totally geodesic

subspaces of dimension at least 2, then Γ is arithmetic. This answers a

question of Reid for hyperbolic n-manifolds and, independently, McMullen

for hyperbolic 3-manifolds. We prove these results by proving a superrigid-

ity theorem for certain representations of such lattices. The proof of our

superrigidity theorem uses results on equidistribution from homogeneous

dynamics, and our main result also admits a formulation in that language.

1. Introduction

In this paper, a totally geodesic subspace of a finite volume hyperbolic

manifold or orbifold will always mean a properly immersed, topologically closed,

totally geodesic subspace. A totally geodesic subspace is maximal if it is not

properly contained in another proper totally geodesic subspace. The main

result of this paper is the following.

Theorem 1.1. Let Γ be a lattice in SO0(n, 1). If the associated locally

symmetric space contains infinitely many maximal totally geodesic subspaces

of dimension at least 2, then Γ is arithmetic.

This answers a question, first posed informally by Alan Reid in the mid-

2000s. Independently, Curtis McMullen asked whether Theorem 1.1 is true in

the setting of hyperbolic 3-manifolds (see [12, Qn. 7.6] or [28, Qn. 8.2]). Theo-

rem 1.1 is also motivated in part by a question of Gromov and Piatetski-Shapiro

[17, Qn. 0.4]. In a prior paper with J.-F. Lafont, the last three authors proved

that a large class of nonarithmetic hyperbolic n-manifolds, including all the hy-

brids constructed by Gromov and Piatetski-Shapiro, have only finitely many

maximal totally geodesic submanifolds [14]. This provided the first known

Keywords: hyperbolic manifolds, arithmeticity, superrigidity

AMS Classification: Primary: 22E40.

© 2021 Department of Mathematics, Princeton University.

837

140.182.176.13 on Sat, 05 Jun 2021 18:50:49 UTC

http://annals.math.princeton.edu/about
https://doi.org/10.4007/annals.2021.193.3.4


838 U. BADER, D. FISHER, N. MILLER, and M. STOVER

examples of hyperbolic n-manifolds, n ≥ 3, for which the collection of totally

geodesic hypersurfaces is finite and nonempty. The case when M is a closed

hyperbolic 3-manifold was very recently and independently proved by Margulis

and Mohammadi [25]. Their proof and ours both use a superrigidity theorem

to prove arithmeticity, but the superrigidity theorems and their proofs are

quite different.

We now briefly give some applications of Theorem 1.1 and its proof. First,

combining Theorem 1.1 with a theorem of Reid [34] we obtain the following.

Corollary 1.2. Let K be a knot in S3 such that S3 �K admits a com-

plete hyperbolic structure. Then S3 � K contains infinitely many immersed

totally geodesic surfaces if and only if K is the figure-eight knot.

Combining Theorem 1.1 with results of Benoist–Oh [4, Thm. 10.1], Lee–

Oh [19, Thm. 1.9(3)], and the classification of arithmetic hyperbolic n-mani-

folds (e.g., see [29]), we also obtain the following.

Corollary 1.3.

(1) If M is a geometrically finite hyperbolic 3-manifold containing infinitely

many totally geodesic surfaces with finite area, then M has finite volume

and π1(M) is arithmetic.

(2) If M is a convex cocompact hyperbolic n-manifold containing infinitely

many maximal totally geodesic surfaces with finite area, then M is compact

and π1(M) is arithmetic.

(3) If n ≥ 4 is even and M is a finite volume hyperbolic n-manifold, then

M is arithmetic if and only if it contains infinitely many totally geodesic

hypersurfaces.

For convex cocompact acylindrical 3-manifolds, this result already follows

from work of McMullen–Mohammadi–Oh [26], [27] and Theorem 1.1. See

Section 5.2 for discussion of (3) in odd dimensions.

Methods analogous to those used in the proof of Theorem 1.1 can also be

used to show the following.

Theorem 1.4. Let M be a cusped hyperbolic 3-manifold of finite volume

with at least one torus cusp, and let N be a hyperbolic 3-manifold obtained

by Dehn filling on some nonempty subset of the torus cusps of M . Then only

finitely many totally geodesic surfaces in N are isotopic to the image of a totally

geodesic surface in M .

If either M or N is nonarithmetic, then this simply follows from Theo-

rem 1.1. However, there are examples where M and N are both arithmetic and

some totally geodesic surface in M remains totally geodesic in N , and hence

Theorem 1.1 is not relevant. See Section 5.1 for the proof of Theorem 1.4,

discussion, and examples.
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Our approach to proving Theorem 1.1 is inspired by the Margulis super-

rigidity and arithmeticity theorems [22], [23]. The superrigidity theorem gives

criteria for when a representation of Γ extends to a representation of the ambi-

ent Lie group G. Arithmeticity is then deduced using these criteria to control

the representations of Γ one obtains by varying embeddings of the adjoint trace

field of Γ into other local fields. See Section 3.2 for more discussion. A famous

example employing this strategy is the proof by Margulis of arithmeticity of

lattices with dense commensurator [22]. This theorem also holds in rank one

and is the full converse to a theorem of Borel [5]. Margulis proved this by

classifying representations of lattices that extend to representations of some

dense subgroup of G contained in the commensurator.

Relating dense commensurators of arithmetic lattices back to the existence

of infinitely many totally geodesic submanifolds, one can easily observe

Arithmetic geodesic submanifold dichotomy. For any dimension

1 ≤ k ≤ n − 1, an arithmetic hyperbolic n-manifold either contains no codi-

mension k geodesic submanifolds, or it contains infinitely many and they are

everywhere dense.

This observation is one of the motivations for the question answered by

Theorem 1.1 and was perhaps first made precise in dimension 3 by Maclachlan–

Reid and Reid [20], [35], who also exhibited the first hyperbolic 3-manifolds

with no totally geodesic surfaces. Note that an analogous statement holds for

any arithmetic locally symmetric space. See [14] for further discussion and

examples.

Our proof of Theorem 1.1 rests on two key points:

(1) From certain homomorphisms ρ : Γ → H, we construct a good measure

on a fiber bundle over G/Γ that is invariant under a proper noncompact

connected simple subgroup W < G. This is accomplished in Section 3.

(2) We prove a superrigidity theorem showing that the measure constructed

in (1) allows us to extend ρ, provided that H satisfies an additional com-

patibility condition. This is proved in Section 4.

In the standard language of superrigidity and its proofs, one can view (1) as

the analogue for constructing a boundary map and (2) as the analogue for

using the boundary map to show that the representation ρ extends.

We now discuss each of these steps briefly and begin by stating a version of

Theorem 1.1 in language from homogeneous dynamics. We consider a proper

noncompact connected closed simple subgroup W < G = SO0(n, 1). Then W

is isomorphic to SO0(m, 1) for some 1 < m < n. We have a W -action on G/Γ,

and results of Ratner classify the W -invariant ergodic measures for this action

[32], [33]. We say that a measure ν on G/Γ has proper support if its support

is a proper closed subset.
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Theorem 1.5. If there exists an infinite sequence {μi} of W -invariant,

ergodic measures with proper support for which Haar measure on G/Γ is a

weak-∗ limit of the μi, then Γ is arithmetic.

We show in Proposition 3.1 that Theorem 1.5 implies Theorem 1.1.

In proving arithmeticity we are given a local field k of characteristic zero,

a connected semisimple adjoint k-algebraic group H with k-points H(k), and a

representation ρ : Γ → H(k). We consider a certain irreducible representation

of H(k) on a finite dimensional k-vector space V and the associated projective

space P(V ). We then use the hypotheses of either Theorem 1.1 or Theorem 1.5

to build a W -invariant ergodic measure on the bundle (G × P(V ))/Γ that

projects to Haar measure on G/Γ.

We now state the superrigidity theorem that finishes the proof from the

existence of such a measure. This requires an additional technical assumption

on the pair k and H. Let P be a minimal parabolic subgroup of G and U its

unipotent radical. A pair consisting of a local field k and a k-algebraic group

H is said to be compatible with G if for every nontrivial k-subgroup J < H and

any continuous homomorphism τ : P → NH(J)/J(k), where NH(J) is the nor-

malizer of J in H, we have that the Zariski closure of τ(U ′) coincides with the

Zariski closure of τ(U) for every nontrivial subgroup U ′ < U (see Section 3.4).

Theorem 1.6. Let G be SO0(n, 1) for n ≥ 3, W < G be a noncompact

simple subgroup, and Γ < G be a lattice. Suppose that k is a local field and

H is a connected k-algebraic group such that the pair consisting of k and H

is compatible with G. Finally, let ρ : Γ → H(k) be a homomorphism with

unbounded, Zariski dense image. If there exist a k-rational faithful irreducible

representation H → SL(V ) on a k-vector space V and a W -invariant measure

ν on (G × P(V ))/Γ that projects to Haar measure on G/Γ, then ρ extends to

a continuous homomorphism from G to H(k).

Remark 1.7. We state the theorem for G = SO0(n, 1) for simplicity, but

the same theorem holds, with practically the same proof, for every connected

simple R-rank one Lie group. In particular, there is an analogue of Theorem 1.6

for lattices in SU(n, 1).

Understanding invariant measures for dynamical systems that are not ho-

mogeneous plays an important role in other recent results in rigidity theory.

For example, see work of Brown, Hurtado, and the second author on Zimmer’s

conjecture [7], [8]. In that context, Theorem 1.6 can be thought of as classi-

fying invariant measures in a nonhomogeneous setting. Indeed, Theorem 1.6

shows that either there is no extension of ρ and hence no such W -invariant

measures exist, or there is a simple classification of all invariant measures on

the projective bundle.
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We note in closing that Theorem 1.6 can be reformulated in several equiv-

alent ways. There is also an analogous superrigidity for cocycles that follows

from the same proof, and which provides some partial technical results towards

questions raised by results of Zimmer and Bader–Furman–Sauer [40], [2].
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2. Fixed Notation

We first fix some notation that will be used throughout our paper. Let

G0 denote SO(n, 1) for n ≥ 3, considered as a real algebraic group. We let G

be the connected component of the identity in G0(R), i.e., G = SO0(n, 1). Set

K = SO(n) < G and identify K\G with hyperbolic n-space. For a noncompact

almost simple subgroup W < G, fix a maximal R-split torus A < W . Since

W and G are both R-rank one, A is also a maximal R-split torus of G. Fix

a maximal unipotent subgroup U of G normalized by A, and let M be the

compact factor of the Levi decomposition of the connected component of the

identity in the centralizer of A. Then P = MAU is the Langlands decomposi-

tion of the maximal parabolic subgroup of G associated with the pair (A,U).

Set U ′ = W ∩ U , and note that it is a maximal unipotent subgroup of W .

Now, fix a lattice Γ < G. When considering the action of Γ on G, we

always consider the right action, g · γ = gγ−1, and XΓ = K\G/Γ will denote

the corresponding locally symmetric space. Let � be the trace field of Γ, that

is the subfield of R generated by all elements of the form Tr(Ad(γ)) for γ ∈ Γ,

where Ad denotes the adjoint representation. Denote the inclusion of � in R by

w : � → R. By work of Vinberg [39], there exist an �-group G and an R-isogeny

G → G0 such that the image ofG(�) inG0(R) contains a finite index subgroup
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of Γ. Passing to this finite index subgroup, we will assume throughout that Γ

is contained in the image of G(�). By [39], � is the minimal field of definition of

Γ. Moreover, it follows from work of Selberg [37], Calabi [9], Raghunathan [31],

and Garland [15] that � is in fact a number field.

3. Finding invariant measures and arithmeticity

In this section we show how Theorem 1.6 implies Theorem 1.1. We show in

Section 3.1 that the hypotheses of Theorem 1.5 are implied by the hypotheses

of Theorem 1.1, Section 3.2 recalls the overall strategy of deducing arithmetic-

ity from superrigidity, Section 3.3 finds the measure ν from the hypotheses

of Theorem 1.6 using the hypotheses of Theorem 1.5, and finally Section 3.4

shows that all the target groups considered for proving arithmeticity are com-

patible. In particular, this section reduces Theorem 1.1 to Theorem 1.5 and

Theorem 1.5 to Theorem 1.6.

3.1. Geodesic submanifolds and properly supported measures. Recall that

a finite measure μ on G/Γ is called homogeneous if there is a closed subgroup

S < G such that μ is Haar measure on a closed S-orbit in G/Γ. Such a

homogeneous measure is said to be W -ergodic when W is a closed subgroup

of S under which μ is ergodic. In this case, the support of the measure is

said to be a W -ergodic homogeneous subspace of G/Γ. For 1 < m ≤ n, we let

Wm ≤ G be the standard embedding of SO0(m, 1) into G. The entirety of this

subsection is devoted to proving the following proposition.

Proposition 3.1. For the real hyperbolic space XΓ = K\G/Γ, the fol-

lowing are equivalent :

(1) XΓ contains infinitely many maximal totally geodesic subspaces of dimen-

sion two or higher;

(2) for some 1 < m < n, there exists an infinite sequence {μi} of Wm-

invariant, ergodic measures with proper support for which Haar measure

on G/Γ is a weak-∗ limit of the μi;

(3) for some 1 < m < n, there exists an infinite sequence of homogeneous,

Wm-ergodic measures {μi} for which Haar measure on G/Γ is a weak-∗
limit of the μi.

That (3) implies (2) is clear, and the reverse implication is a theorem of

Ratner [32], [33] (see also Einsiedler [13]). It therefore suffices to show that (1)

and (3) are equivalent. Throughout this section we let π : G/Γ → XΓ be the

natural projection.

We start by clarifying the relationship between totally geodesic subspaces

and homogeneous measures. We first recall that a subspace Z of a hyperbolic

n-orbifoldX is totally geodesic if it is properly immersed and if one (hence any)
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lift to a map of orbifold universal covers Z̃ → ‹X is a totally geodesic isometric

embedding of hyperbolic m-space in hyperbolic n-space for some m ≤ n. In

particular, totally geodesic subspaces are by definition connected.

Lemma 3.2. Fix 1 < m ≤ n and XΓ = K\G/Γ. Then the following hold :

(1) Let S ≤ G be a closed subgroup containing Wm and h ∈ G be such that

ShΓ/Γ ⊂ G/Γ is a closed S-orbit. Then the subspace Z = π(ShΓ/Γ) of

XΓ is a closed totally geodesic m′-dimensional subspace for some m′ ≥ m

and, up to normalization, the m′-volume of Z is the push-forward of the

corresponding homogeneous measure on G/Γ.

(2) Furthermore, under the assumption above, m′ = n if and only if S = G

and m′ = m if and only if all unipotent elements of S are contained in Wm.

In the latter case S is a subgroup of the normalizer Nm of Wm in G, and

NmhΓ/Γ ⊂ G/Γ is also closed with projection π(NmhΓ/Γ) = Z .

(3) Conversely, every m-dimensional closed totally geodesic subspace Z in XΓ

has finite m-volume and, moreover, Z = π(ShΓ/Γ) for some closed in-

termediate subgroup Wm ≤ S ≤ Nm and some homogeneous, Wm-ergodic

subspace ShΓ/Γ ⊂ G/Γ.

Proof. We start by observing that for each m′, the image of Wm′ in K\G,

namely K\KWm′ , is an m′-dimensional closed totally geodesic subspace. As

G acts transitively on the collection of m′-dimensional closed totally geodesic

subspaces of K\G, any such subspace is of the form K\KWm′g for some g ∈ G.

Since Nm′ is contained in KWm′ , every intermediate subgroup Wm′ ≤S1≤Nm′

has the property that K\KS1g = K\KWm′g is an m′-dimensional closed

totally geodesic subspace of K\G, and the push-forward of the volume form

on the Lie group S1 is itsm
′-volume. Conversely, Nm′ is exactly the stabilizer of

K\KWm′ in G. Thus if K\KS1g is an m′-dimensional closed totally geodesic

subspace of K\G, then Wm′ ≤ S1 ≤ Nm′ .

We now prove Part (1). Let S ≤ G be a closed subgroup that contains

Wm, and let hΓ/Γ ∈ G/Γ be a point whose S-orbit is closed. Denote by

S+ ≤ S the closed normal subgroup generated by unipotent elements in S.

Then S+ is a connected semisimple subgroup of G that contains Wm, hence it

is conjugate to Wm′ for some m′ ≥ m. In fact, if Cm denotes the centralizer

of Wm in G, it is straightforward to see that there exists g ∈ Cm such that

Wm′ = (S+)g = gS+g−1. We fix such a g and set S1 = Sg.

Since S+ is normal in S, Wm′ is normal in S1, and thus Wm′ ≤ S1 ≤ Nm′ .

From the fact that Cm < K and g ∈ Cm, we get that

KS = Kg−1S1g = KS1g.

Since the projection π is proper, Z = π(ShΓ/Γ) is closed, and since

Z = K\KShΓ/Γ = K\KS1ghΓ/Γ ⊂ XΓ,
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we conclude that Z is m′-dimensional and totally geodesic, since it is the image

of K\KS1gh under the projection K\G → XΓ. Consequently, the m′-volume

on Z is the push forward of the S1-volume form. As the S1-volume form is the

g−1-conjugate of the S-volume form, the m′-volume of Z is the push forward

of Haar measure on ShΓ/Γ. This completes the proof of Part (1).

We now prove Part (2). Clearly, if S = G then m′ = n, and if m′ = n, then

S = G, as S contains a conjugate of G = Wm′ . Thus we discuss the second

part of the statement. If all unipotent elements of S are contained in Wm, then

S+ ≤ Wm, but Wm ≤ S+ by hypothesis, so we conclude that Wm = S+ and

m′ = m. Conversely, if m′ = m, then since Wm ≤ S+ = W g−1

m′ , we conclude

that S+ = Wm and all unipotent elements of S are contained in Wm. In this

case, Wm is normal in S and thus Wm ≤ S ≤ Nm. Since Wm is cocompact in

Nm, S is as well, and therefore the fact that ShΓ/Γ is closed in G/Γ implies

that the same holds for NmhΓ/Γ. Moreover, from the chain of equations

K\KWmh = K\KSh = K\KNmh,

we conclude that π(NmhΓ/Γ) = Z in XΓ. This proves Part (2).

Before turning to Part (3), we discuss m-dimensional closed totally geo-

desic immersed submanifolds of n-dimensional Riemannian manifolds in gen-

eral. Given such a pair M ⊂ N , we let F (N) be the oriented orthonormal

frame bundle of N and we let FN (M) be the subbundle where the fiber over

each point x ∈ M is the subset of frames in F (N)x whose first m vectors are

tangent to M . We note that FN (M) is a principal S(O(m)×O(n−m))-bundle

over M and it is closed in F (N), which itself is a principal SO(n)-bundle

over N . This construction is natural under covering maps.

Identifying G with F (K\G), one checks easily that Nm gets identified

with FK\G(K\KWm) and thus for every g ∈ G, Nmg gets identified with

FK\G(K\KWmg). In accordance with the identification of G with F (K\G)

we identify G/Γ with F (XΓ). For an m-dimensional closed totally geodesic

subspace Z ⊂ XΓ, the subbundle FXΓ
(Z) gets identified with a closed subset

of G/Γ. Finding g ∈ G such that K\KWmg ⊂ K\G projects to Z under the

natural map K\G → XΓ, we conclude by naturality under covering maps that

FXΓ
(Z) is identified with NmgΓ/Γ. In particular, the latter is a closed subset

of G/Γ whose image under π is Z.

We are now in a position to prove Part (3). Let Z ⊂ XΓ be an m-dimen-

sional closed totally geodesic subspace. The fact that it has a finite measure

is well known; see [16, Prop. 3.4] for a recent reference. By the discussion

above there exists g ∈ G such that NmgΓ/Γ is a closed subset of G/Γ whose

image under π is Z. Note that NmgΓ/Γ has a finite volume, as it is a compact

extension of Z. Since Wm ≤ Nm, NmgΓ/Γ is Wm-invariant, though it might

not be Wm-ergodic. Fix a Wm-ergodic measure μ in its ergodic decomposition,
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and let S be the stabilizer of μ in Nm. Clearly, Wm ≤ S ≤ Nm and μ is S-

homogeneous by Ratner’s Theorem. Let h ∈ G be such that μ is Haar measure

on the S-orbit ShΓ/Γ. It follows from Part (1) of the lemma that π(ShΓ/Γ) is

a closed totally geodesic subspace of XΓ of dimension m or higher. Since this

image is contained in the m-dimensional closed totally geodesic subspace Z, it

must coincide with it. This completes the proof of the lemma. �

We will also use the following theorem, which follows from combining

the existence of compact cores for hyperbolic manifolds with work of Dani–

Margulis [11, Thm. 6.1] and Mozes–Shah [30].

Theorem 3.3. Suppose that W < G is a closed connected semisimple

subgroup that is generated by unipotent elements. Let {μi} be a sequence of

homogeneous, W -ergodic probability measures on G/Γ that weak-∗ converges

in the space of all finite Radon measures to a measure μ. Then μ is a homoge-

neous, W -ergodic probability measure on G/Γ and there exist a sequence {gi}
in G and a natural number i0 such that, for each i ≥ i0, the measure giμ is a

homogeneous, W -ergodic probability measure on G/Γ whose support contains

the support of μi.

Proof. We first claim that μ is not the zero measure. This is trivial if G/Γ

is compact. As this claim is conjugation invariant, we will assume, as we may,

thatW = Wm for somem > 1. Using [14, Lem. 5.13] we fix a compact set C1 in

XΓ = K\G/Γ that meets every closed totally geodesic subspace of dimension

at least 2. Then, choose a compact set C2 that contains C1 in its interior and

consider its preimage in G/Γ, i.e., the compact subset F = π−1(C2) of G/Γ.

Fix a 1-parameter unipotent subgroup {ut} in W , and set ε = 1/2. Applying

[11, Thm. 6.1] we find a compact subset F ′ ⊂ G/Γ such that

(1)
1

T

∫ T

0

χF ′(uty)dt =
1

T
λ
{
t ∈ [0, T ] | uty ∈ F ′} ≥ 1

2

for every y ∈ F and every T ≥ 0, where χF ′ is the characteristic function of

F ′ and λ is the Lebesgue measure on R. The claim will follow once we show

that μi(F
′) ≥ 1/2 for every i, thus μ(F ′) ≥ 1/2. We now fix i and show that

indeed μi(F
′) ≥ 1/2.

By Lemma 3.2(1), π∗μi is the unit renormalization of the volume measure

associated with a closed totally geodesic subspace of dimension at least m ≥ 2.

This subspace intersects C1 nontrivially, by the choice of C1, thus it intersects

C2 in an open set. It follows that μi(F ) = π∗μi(C2) > 0, as π∗μi is proportional

to a volume measure. We note that μi is {ut}-ergodic by the Howe–Moore

theorem, and we let y ∈ F be a {ut}-generic point with respect to μi. Applying

the Birkhoff ergodic theorem to the function χF ′ we conclude by Equation (1)

that indeed μi(F
′) ≥ 1/2. This proves the claim.
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Using [30, Cor. 1.3] we therefore conclude that μ is a homogeneous,

S-ergodic probability measure onG/Γ, where S is the subgroup of the stabilizer

of μ generated by unipotent elements. The group S is not unipotent, as it con-

tains W , therefore it must be semisimple. We conclude by the Howe–Moore

theorem that μ is W -ergodic.

Let Yi = supp(μi) and Y = supp(μ) in G/Γ, and fix one dimensional

unipotent subgroups U1, . . . , Uk < W that generate W . Note that μi is

Uj-ergodic for every i and every 1 ≤ j ≤ k by the Howe–Moore theorem.

Thus, for any fixed i, the subset Y ′
i consisting of the points in Yi that are

Uj-generic for every 1 ≤ j ≤ k is of full μi-measure, hence it is dense in Yi.

We fix a point y ∈ Y . As μ = limμi, we can find a sequence of points {yi}
converging to y such that yi is in Yi for every i. By deforming such a sequence,

using the fact that Y ′
i is dense in Yi, we find and fix a sequence {y′i} converging

to y such that y′i is in Y ′
i for every i. We fix a sequence {gi} in G such that

lim gi = e and giy = y′i for all i.
By [30, Thm. 1.1], we conclude that for every 1 ≤ j ≤ k, there exists an ij

such that Yi ⊂ giY and μ is U
g−1
i

j -invariant for every i ≥ ij . Let i0 = max{ij},
and fix i ≥ i0. As giY = supp(giμ), we conclude that supp(μi) ⊆ supp(giμ). It

remains to show that giμ is W -ergodic or, equivalently, that μ is W g−1
i -ergodic.

Since μ is U
g−1
i

j -invariant for every 1 ≤ j ≤ k, it is W g−1
i -invariant. It follows

that W g−1
i is contained in S. Then W g−1

i -ergodicity follows from the Howe–

Moore theorem and S-ergodicity. This completes the proof. �

Proof of Proposition 3.1. As noted immediately after the statement of the

proposition, it is enough to show that (1) and (3) are equivalent. We begin

with the easier implication, namely that (3) implies (1). Fix 1 < m < n,

and suppose that {μi} is a sequence of homogeneous, Wm-ergodic measures

for which Haar measure on G/Γ is a weak-∗ limit. Let μ̄i = π∗μi be the push-

forward measures. By Lemma 3.2(1), each measure μ̄i is supported on a closed

totally geodesic subspace of XΓ, and we let Zi be a maximal totally geodesic

subspace of XΓ containing it. Since Haar measure on G/Γ is by hypothesis a

weak-∗ limit of the sequence {μi}, its push-forward is supported on the closure

of
⋃
Zi. Since the push forward of Haar measure on G/Γ is the volume form

on XΓ, it follows that
⋃
Zi is dense in XΓ and hence the sequence {Zi} consists

of infinitely many maximal totally geodesic subspaces. This implies (1).

Next we show that (1) implies (3). Assume that there exists an infinite

sequence {Zi} of distinct closed maximal totally geodesic subspaces of XΓ. By

passing to a subsequence we assume that they all have the same dimension

m for some 1 < m < n. By Lemma 3.2(3), each Zi is the image under

π : G/Γ → XΓ of a homogeneous, Wm-invariant subspace of G/Γ, which

we denote by Yi. Furthermore, each Yi is the support of a homogeneous,
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Wm-ergodic probability measure μi with stabilizer Si containing Wm. Passing

to a further subsequence, we can assume that the μi weak-∗ converge to a

measure μ. Note that Theorem 3.3 implies that μ is a homogeneous, Wm-

ergodic probability measure on G/Γ. We now want to show that μ is Haar

measure on G/Γ.

Assume for contradiction that μ is not Haar measure on G/Γ. If S denotes

the stabilizer of μ, which contains Wm, then Y∞ = supp(μ) = ShΓ/Γ for some

h ∈ G. By Theorem 3.3 there exist a sequence {gi} in G and a natural number

i0 such that for each i ≥ i0, giY∞ is a homogeneous, Wm-invariant subspace

of G/Γ that contains Yi. Once again passing to a subsequence we assume that

this holds for every i ≥ 1.

Fix any i ∈ N. Applying Lemma 3.2(1) to giY∞, we see that π(giY∞) is a

closed totally geodesic subspace. Our assumption that μ is not Haar measure

along with the case m′ = n in Lemma 3.2(2) implies that π(giY∞) ⊂ XΓ is a

proper subspace. Since Yi ⊆ giY∞, we deduce that Zi ⊆ π(giY∞) and hence

Zi = π(giY∞) by maximality. In particular, dim(π(giY∞)) = m.

Note that Sgi is the stabilizer of the measure giμ and hence Wm ≤ Sgi .

By the case m′ = m in Lemma 3.2(2) we conclude that the subgroup of Sgi

generated by unipotent elements is Wm and that Wm ≤ Sgi ≤ Nm. Since

Wm ≤ S, we also have thatW gi
m ≤ Sgi , and since the subgroup of Nm generated

by unipotents is exactly Wm, we see that Wm = W gi
m . Therefore gi ∈ Nm.

Applying Lemma 3.2(1) to the closed Sgi-orbit

SgigihΓ/Γ = giShΓ/Γ = giY∞,

the Nm-orbit NmgihΓ/Γ is also closed in G/Γ and we have Zi = π(NmgihΓ/Γ).

However, gi ∈ Nm, thus NmgihΓ/Γ = NmhΓ/Γ is independent of i. We con-

clude that Zi = π(NmhΓ/Γ) is independent of i, contradicting the assumption

that the spaces Zi are all distinct. This contradiction concludes the proof that

(1) implies (3). �

3.2. The proofs of Theorems 1.1 and 1.5. We now explain how to prove

Theorems 1.1 and 1.5 given Theorem 1.6. This closely follows Margulis’s

proof of arithmeticity from superrigidity. For more details, see [24, Ch. IX]

or [41, Ch. 6].

We are given a lattice Γ < G and want to show that it is arithmetic.

As in Section 2, we consider Γ as a subgroup of G(�), where � is the adjoint

trace field of Γ, embedded in R via w : � → R. Consider the collection S of all

places of �, that is, the equivalence classes of dense embeddings of � into a local

field. For v ∈ S, �v will denote the corresponding local field. In particular,

we have the aforementioned w ∈ S and w : � → �w = R. Considering the

various embeddings Γ → G(�) → G(�v) for all v ∈ S, it is standard that Γ is

arithmetic if and only if the image of Γ in G(�v) is precompact for every v 
= w.
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We let H be the adjoint group associated with G and claim that for v ∈ S,

v 
= w, the corresponding homomorphism Γ → G(�v) → H(�v) cannot be

extended to G(�w) � G → H(�v). By [24, Rem. 1.8.2(III)], such an extension

gives rise to a continuous field embedding �w → �v, and this field embedding

clearly agrees with v : � → �v on the set of elements of the form Tr(Ad(γ)) for

γ ∈ Γ. As � is generated by the above set, we get that �w → �v extends v, which

contradicts the assumption that v 
= w. To be precise, in [24, Rem. 1.8.2(III)]

the target group is assumed absolutely simple, which is not necessarily the

case for H. This can be remedied by passing to a certain finite field extension

�′v/�v, considering the corresponding homomorphism G(�v) → H(�v) → H(�′v),
taking the restriction of scalars of H from �′v back to �v, then projecting to a

simple factor. This procedure replaces the target group H with an absolutely

simple �v-group, thus proving our claim by the argument presented above. In

summary, we prove that Γ is arithmetic by showing that its image in G(�v)

is precompact, and we do that by proving that if this is not the case, then

Γ → H(�v) must extend to G. Note that the failure of precompactness of the

image of Γ in G(�v) implies the same holds for the image of Γ in H(�v), as the

map G → H is a finite isogeny.

The existence of the desired extension G → H(�v) will follow from Theo-

rem 1.6 once we verify its various assumptions in the specific settings of Propo-

sition 3.1. In this setting, in Section 3.3 we will produce an �v-vector space V ,

endowed with a faithful irreducible representation of H(�v), and a W -invariant

measure on (G×P(V ))/Γ, as required in Theorem 1.6. Our proof will be com-

plete once we show that the pair consisting of �v and H is compatible with G.

This will be done in Section 3.4.

3.3. Lifting measures to the projective bundle. Let � be the number field

and G the �-algebraic group associated with Γ as in Section 2, and let H be the

corresponding adjoint �-group. In this subsection we let k = �v be any local

completion of � for which the natural inclusion ρ′ : Γ → G(�) → G(k) is not

precompact. Consider the representation ρ : Γ → G(k) → H(k) whose image

is also not precompact. In this subsection we assume the hypotheses of Theo-

rem 1.1. By (1) ⇔ (2) in Proposition 3.1, the hypotheses of Theorem 1.5 hold.

That is, for some 1 < m < n, we have an infinite sequence of homogeneous,

Wm-ergodic measures {μi} for which Haar measure on G/Γ is a weak-∗ limit

of the μi. Passing to a subsequence, we assume, as we may, that μi actually

converges to Haar measure. As m is fixed, we set W = Wm. This subsection

is then devoted to proving the following.

Proposition 3.4. Under the hypotheses of Theorem 1.5 or Theorem 1.1,

there is a k-rational faithful irreducible representation H→SL(V ) on a k-vector

space V and a W -invariant measure on (G × P(V ))/Γ that projects to Haar

measure on G/Γ.
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Proof. We retain all notation from prior subsections. We note that, asH is

semisimple, each of its k-rational representation is into SL(V ) < GL(V ). We

will construct a faithful irreducible representation supporting a W -invariant

measure as required. By (2) ⇔ (3) in Proposition 3.1 we can assume that the

W -invariant, ergodic measures μi on G/Γ converging to Haar measure are in

fact homogeneous. Thus, for every i there exists a closed subgroup S′
i < G

such that μi is Haar measure on a closed S′
i-orbit in G/Γ.

By Lemma 3.2, for every i, S′
i ≤ Nm′ for some m ≤ m′ < n, thus S′

i is not

Zariski dense in G. Fixing xi ∈ G that project to a base point in this orbit, we

denote this orbit by S′
ixiΓ/Γ and rewrite it as xiSiΓ/Γ, where x−1

i Sixi = S′
i.

Let Γ′
i be the stabilizer in S′

i of the image of xi in G/Γ and then set

Γi = xiΓ
′
ix

−1
i . Thus Γi = Si ∩ Γ and Γi is a lattice in Si. We let Li be the

Zariski closure of ρ(Γi). As Si is not Zariski dense, neither is Γi, and we get

that Li <H is a proper k-subgroup such that ρ(Γi) < Li(k). We pass to a

subsequence such that dim(Li) is constant and denote this constant by d.

We first assume thatH is k-simple, which is automatic when G 
=SO0(3, 1),

and we note that in this case faithfulness of a k-linear representation is equiv-

alent to its nontriviality. We will consider the semisimple case at the end of

the proof, where faithfulness will require an additional argument.

Consider the dth exterior power ∧d(Ad) : H(k) → GL(
∧d h) of the ad-

joint representation of H(k) on its Lie algebra h. The Lie algebra li of Li(k)

determines a line li in
∧d h. Since the stabilizer of li in H(k) is the normal-

izer of Li(k) and hence a proper subgroup, this line is never H(k)-invariant.

Therefore each li projects nontrivially to some nontrivial irreducible summand

of ∧d(Ad) : H(k) → GL(∧dh). Since only finitely many irreducible representa-

tions can occur, one such irreducible representation V occurs infinitely often.

Passing to a further subsequence, we obtain an irreducible subrepresentation

V onto which each li projects nontrivially. The point stabilizer of li contains

the image of Li(k), and hence it contains ρ(Γi).

Given the closed W -invariant subset xi(Si/Γi), note that li determines an

invariant line bundle over xi(Si/Γi) and therefore defines a measurable section

si : xi(Si/Γi) → (G× P(V ))/Γi.

Identifying Haar measure on xi(Si/Γi) with μi we define νi = si∗μi. We then

construct a W -ergodic, W -invariant measure on (G × P(V ))/Γ by taking ν

to be any ergodic component of any weak-∗ limit of the νi on (G × P(V ))/Γ.

Since the μi converge to Haar measure on G/Γ and projection commutes with

taking weak-∗ limits, this implies that ν projects to Haar measure on G/Γ and

completes the proof when H is simple.

For G = SO0(3, 1), the group H(k) need not be k-simple due to the

exceptional isomorphism PO(4, k) ∼= PGL(2, k) × PGL(2, k). We therefore
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must find an irreducible representation V on which H(k) acts faithfully and

for which the above construction yields the necessary invariant measure. To

this end, we need to consider cases when

H(k) = PGL2(k)× PGL2(k),

where k is R, C, or a nonarchimedean local field of characteristic zero.

Notice that Γ is Zariski dense in the almost simple group G(R) and the

groups Γi have proper Zariski closure. In particular, Γi < Γ is not normal, and

it follows from injectivity of ρ that ρ(Γi) is not contained in a direct factor of

H(k). As the Zariski closure of Γi is almost simple in G(�) and ρ is given by

a field embedding, we conclude that ρ(Γi) is contained in a conjugate of the

diagonal subgroup Δ(PGL2(k)) of PGL2(k)× PGL2(k) for all i.

We take the adjoint representation of PGL2(k)× PGL2(k) on k6 and the

diagonal three dimensional subspace Δ(k3) < k3⊕k3 stabilized by Δ(PSL2(k)).

A computation shows that
∧3(k3⊕k3) splits as a direct sum of four irreducible

representations of PGL2(k)×PGL2(k), two that are trivial and two that are iso-

morphic to the faithful representation V (3, 3) on k3⊗k3. One also checks that∧3(Δ(k3)) projects nontrivially to each V (3, 3) (in fact, to all four summands).

Taking V = V (3, 3) and arguing as above, we also produce a W -invariant mea-

sure on (G× P(V ))/Γ when G = SO0(3, 1). This completes the proof. �

3.4. Compatibility. Let G, U , and P = MAU be as defined in Section 2.

Let k be a local field and H a k-algebraic group. Recall that the pair consisting

of k and H is compatible with G if for every nontrivial k-subgroup J < H and

any continuous homomorphism τ : P → NH(J)/J(k), where NH(J) is the

normalizer of J in H, we have that the Zariski closure of τ(U ′) coincides with
the Zariski closure of τ(U) for every nontrivial subgroup U ′ < U .

Note that if the pair (k′,H) is compatible, where k′/k is a finite field

extension, then the pair (k,H) is also compatible. Indeed, letting J < H

be a k-subgroup and τ : P → NH(J)/J(k) be a continuous homomorphism,

composing τ with the homomorphism NH(J)/J(k) → NH(J)/J(k′) defines a

continuous homomorphism τ ′ : P → NH(J)/J(k′). Compatibility of (k′,H)

implies that the Zariski closure of τ(U ′) coincides with the Zariski closure of

τ(U) for every nontrivial subgroup U ′ < U .

We note also that compatibility of (k,H) follows immediately if U < ker τ

for every τ as above. This is automatically the case when k is nonarchimedean,

since then the group NH(J)/J(k) is totally disconnected whereas U is con-

nected.

Lemma 3.5. We retain the notation of Section 2 and let H be the adjoint

group of G(k) for k a local field and � → k a field embedding. Then the pair

consisting of k and H is compatible with G.
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Proof. As mentioned above, we can and hence will assume that k is

archimedean and, passing to a finite extension, in fact assume that k = C.

In particular, we get that H is split and we identify it with PO(n + 1,C). In

what follows, we identify algebraic subgroups of H with their complex points.

Assume we have a nontrivial algebraic subgroup J < PO(n + 1,C) and

a continuous homomorphism τ : P → N/J, where we denote N = NH(J).

Fix a nontrivial subgroup U ′ < U . Letting U,U′,M,A and P be the Zariski

closures of the images of U,U ′,M,A and P in N/J correspondingly, we must

show that U′ = U. We can obviously assume that τ |U is nontrivial.

We first make an observation for later use. Since U is the derived subgroup

of the solvable group AU , U is contained in the derived subgroup of the solvable

group AU. It follows that U is a nontrivial unipotent group.

It is convenient to identify U with the additive group Rn−1 and MA with

its conformal group. In particular, we identify M with SO(n−1,R) and A with

the group of homotheties R∗. Using transitivity of the action of SO(n−1,R) on

Pn−2(R), one easily checks that every non-central subgroup of P contains U .

We conclude that τ has finite kernel.

We claim that n = 3. To prove this, we will assume that n ≥ 4 and argue

to show a contradiction.

As τ(M) is locally isomorphic to the compact group SO(n− 1,R), we see

that M is locally isomorphic to SO(n − 1,C). Thus M is almost simple and

it normalizes the solvable group AU, as M normalizes the solvable group AU

in P . Therefore M intersects the group AU almost trivially. As AU is not

nilpotent, we get that AU is not unipotent, thus rankAU ≥ 1. We conclude

that rankP ≥ rankM + 1. We note also that rankP/U = rankP, as U is

unipotent.

We let ‹U and ‹P be the corresponding preimages of U and P in N under

the map N → N/J. From the sequence of inequalities

rankH ≥ rank‹P ≥ rank‹P− rank‹U

= rank‹P/‹U = rankP/U = rankP

≥ rankM+ 1 = rank SO(n− 1,C) + 1

= rank SO(n+ 1,C) = rankH

we deduce that rank‹U = 0.

Next we consider the identity component J0 of J and the identity compo-

nent ‹U0 of ‹U. We note that J0 ≤ ‹U0 and that this is a proper inclusion by

nontriviality of the connected group U. As rank‹U = 0, we deduce that ‹U0

is a unipotent subgroup of N. We conclude that both J0 and ‹U0 are normal

unipotent subgroups of ‹P with J0 � ‹U0.
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By [6, §3], we see that ‹P is contained in a maximal parabolic subgroup

Q < H, as it contains a nontrivial normal unipotent subgroup. Note that the

maximal parabolic subgroups of SO(n + 1,C) are the stabilizers of isotropic

subspaces of Cn+1. For a k-dimensional isotropic subspace, the semisimple part

S < Q of the Levi subgroup is locally isomorphic to SLk(C)×SO(n+1−2k,C),

noting that 2k ≤ n + 1. Alternatively, this can be seen by removing a node

from the Dynkin diagram associated with SO(n + 1,C). Almost-simplicity of

M < P = ‹P/J implies that ‹P contains a group M′ locally isomorphic to M.

Thus M′ < Q, and upon conjugating S we can assume that M′ ≤ S. We

conclude that k = 1 and S is locally isomorphic to SO(n−1,C). In particular,

S = M′ < ‹P.

We denote the unipotent radical of Q by R and note that it has no proper,

nontrivial S-normalized subgroups. Indeed, this follows from the transitivity

of the action of PO(n + 1,C) on Pn−2(C). As S < ‹P and R consists of all

unipotent elements of Q, we get that J0 � ‹U0 are unipotent subgroups of R

that are normalized by S. We conclude that J0 is trivial and ‹U0 = R.

As ‹P ≤ Q contains both R and S, we see that ‹P = Q. As J0 is trivial, we

obtain that J is a finite normal subgroup of Q. However, Q is a parabolic sub-

group of the adjoint group H, and hence it contains no nontrivial finite normal

subgroup. This implies that J is trivial, which gives the desired contradiction

to the assumption n ≥ 4.

We thus have n = 3. That is, we have

H = PO(4,C) � PGL(2,C)× PGL(2,C).

We will assume U′ � U and derive a contradiction. By almost injectivity

of τ , U′ is a nontrivial unipotent subgroup, and it follows that U ≤ N/J is at

least two dimensional. We thus can find a two dimensional unipotent subgroup

V ≤ N. Note that H has no three dimensional unipotent subgroup. It follows

that J has no nontrivial unipotent subgroup, thus V is the unipotent radical

of VJ. As both V and J are normal in VJ and they have trivial intersection,

it follows that they commute. We note that all two dimensional unipotent

subgroups of H are conjugate and these are all unipotent radicals of Borel

subgroups. It follows thatNH(V) is a Borel subgroupB < H. As J normalizes

V, J < B. Up to conjugation, we may assume that B is the standard Borel

subgroup of PGL(2,C)×PGL(2,C), and it is easy to check that its unipotent

radical is its own centralizer. It follows that J < V. This forces J to be trivial,

as it has no unipotent subgroup. This gives the desired contradiction and thus

finishes the proof. �

Remark 3.6. Note that PO(n + 1,C) can also be viewed as an algebraic

group over R and for k = R, it is not compatible with G = SO0(n, 1). In
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the proof of arithmeticity, a Galois conjugate isomorphic to PO(n + 1,C) is

naturally given the real Zariski topology, but for the purposes of proving The-

orem 1.6 we may instead consider it in the complex Zariski topology.

4. Proof of Theorem 1.6

Throughout this section, we assume that we have a W -invariant measure

ν on the bundle (G× P(V ))/Γ that projects to Haar measure on G/Γ.

4.1. From measures to measurable maps to varieties. This subsection con-

verts our W -invariant measure into a measurable Γ-equivariant map between

varieties.

Proposition 4.1. Under the hypotheses of Theorem 1.6, there exist a

proper k-algebraic subgroup L < H and a measurable W -invariant, Γ-equi-

variant map φ : G → H/L(k). We can also view φ as a measurable Γ-equi-

variant map from W\G to H/L(k).

Proof. Via disintegration, the W -invariant measure ν on (G × P(V ))/Γ

yields a W -invariant, Γ-equivariant measurable map

φ̃ : G → P(P(V )),

where P(P(V )) is the space of probability measures on P(V ). By [41, Cor.

3.2.12 and Thm. 3.2.4], the image of this map lies in a single H(k)-orbit that

can be identified with H(k)/L̃ for L̃ a compact extension of the k-points of

a k-algebraic subgroup of H(k). Therefore we obatin a Γ-equivariant map

W\G → H(k)/L̃.

We claim that L̃ is not compact. If it were, we could find anH(k)-invariant

metric on H(k)/L̃, but by [3, Cor. 6.7] the action of Γ on W\G is metrically

ergodic (see [3, Def. 6.5] for the definition) and thus the map W\G → H(k)/L̃

would be essentially constant with Γ-invariant image. This would contradict

the assumption that ρ : Γ → H(k) is unbounded, hence L̃ cannot be compact.

Let L be the Zariski closure of L̃. Then [41, Prop. 3.2.15] implies that L

is a proper k-subgroup of H. We are then done by composing G → H(k)/L̃

with the natural map H(k)/L̃ → H/L(k). �
Remark 4.2. One can also prove the group L̃ is noncompact by showing

nontriviality of the Lyapunov spectrum of the W -action on (G×P(V ))/Γ using

[24, Thm. V.5.15]. This is delicate when Γ < G is nonuniform, relying on its

weak cocompactness and integrability of the standard cocycle α : G×G/Γ → Γ.

Note that the subgroup L of H might be a normal (even trivial) subgroup,

or, when H is semisimple but not simple, it might consist of a nontrivial factor

group. In the latter case the H action on H/L is not effective. However, these

caveats do not effect our proof.
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4.2. Algebraic representations. In this subsection, we introduce the ideas

from the work of Bader and Furman [1] used in the proof of our superrigidity

theorem.

Let k be a local field, fix a k-algebraic group H, and let H = H(k) denote

the k-points of H. To start, let G be a locally compact second countable group,

Γ < G be a lattice, and ρ : Γ → H be a Zariski dense representation.

Given a closed subgroup T < G, a T -algebraic representation of G consists

of the following:

• a k-algebraic group I;

• a k-(H× I)-algebraic variety V, which is considered as a left H-space and

a right I-space on which the I-action is faithful;

• a Zariski dense homomorphism τ : T → I(k);

• an algebraic representation of G on V, i.e., an almost-everywhere defined

measurable map φ : G → V(k) such that

φ(tgγ−1) = ρ(γ)φ(g)τ(t)−1

for every γ ∈ Γ, every t ∈ T , and almost every g ∈ G.

We denote the data for a T -algebraic representation of G by IV, τV, and φV.

A T -algebraic representation is called coset T -algebraic when V is the

coset space H/J for some k-algebraic subgroup J of H, and I is a k-subgroup

of NH(J)/J, where NH(J) denotes the normalizer of J in H. Given another

T -algebraic representation U, let IU,V be the Zariski closure of (τU×τV)(T ) in

IU× IV. Then a morphism π : U → V is an (H× IU,V)-equivariant k-regular

morphism such that φV agrees almost everywhere with π ◦φU. Recall that an

initial object in a category is an object that has exactly one morphism to all

other objects in the category. The proof of our superrigidity theorem uses the

following.

Theorem 4.3 ([1, Thm. 4.3]). The collection of T -algebraic representa-

tions of G forms a category. If the T -action on G/Γ is weakly mixing, then

this category has an initial object and this initial object is a coset T -algebraic

representation.

An initial object is characterized by the fact that J is the minimal sub-

group, up to conjugacy, that can arise as a stabilizer in any coset T -algebraic

representation in the category.

Though not stated explicitly, the following is also implicit in [1]. Given

two subgroups S and T of G, we say that their initial objects φS : G → V(k)

and φT : G → W(k) have the same map if V = W as k-varieties and if φS

and φT agree away from a set of measure zero.
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Lemma 4.4. Assume that the action of T on G/Γ is weakly mixing. Then

initial objects for T and NG(T ) have the same map. Moreover, the initial object

for T and for the iterated normalizer NG(NG(· · · (NG(T )) · · · )) have the same

map.

Proof. For the first claim, the forward direction is the content of [1, Thm.

4.6]. For the backward direction, if φ : G → H/J(k) is an initial object in the

category of NG(T )-algebraic representations with associated homomorphism τ

from T to NH(J)/J(k), then φ and τ |T form a T -algebraic representation and

this representation must be initial by minimality. Indeed, otherwise another

application of the forward direction contradicts minimality of J. The second

claim follows immediately from the first. �

4.3. From measurable maps to extension of homomorphisms.We now com-

plete the proof of Theorem 1.6. More specifically, we show that the existence of

the map φ : G → H/L(k) from Proposition 4.1 implies that the representation

ρ of Γ extends to G.

Proof of Theorem 1.6. Observe that the action of G on G/Γ is mixing

by the Howe–Moore theorem. In particular, the action of each noncompact

subgroup of G is weakly mixing on G/Γ. This allows us to freely apply the

discussion and results of Section 4.2 regarding T -algebraic representations of

G for an arbitrary noncompact closed subgroup T of G.

Recall our setting from Section 2, and first consider T = U ′ = U ∩ W ,

which is noncompact. Given an initial object in the category of U ′-algebraic
representations of G, Theorem 4.3 implies that there is a k-algebraic subgroup

J of H such that this object is a measurable map Ψ : G → H/J(k) that is

(U ′ × Γ)-equivariant for a continuous homomorphism τ : U ′ → NH(J)/J(k).

Since U ′ is normal in U and U is normal in P , Lemma 4.4 implies that τ

extends to a continuous homomorphism τ : P → NH(J)/J(k) making the map

Ψ an initial object in the category of P -algebraic representations of G.

We claim that J is trivial. Assume this is not the case. Since the pair

consisting of k and H is compatible with G, we know that the Zariski closure of

τ(U ′) coincides with the Zariski closure of τ(U). We note that the W -invariant

map φ is also U ′-invariant, as U ′ < W , thus it factors via Ψ : G → H/J(k)

and via

G → H/J(k) → (H/J)/τ(U ′)(k) = (H/J)/τ(U)(k)

by U ′-invariance, where τ(U ′) and τ(U) are the Zariski closures. Then, Ψ is

U -equivariant, so the latter composed map is U -invariant, and it follows that

φ is also U -invariant. Since φ is also W -invariant and 〈U,W 〉 = G, we obtain

that φ : G → H/L(k) is an essentially constant Γ-equivariant map, hence ρ(Γ)

has a fixed point on H/L(k). This is impossible since ρ(Γ) is Zariski dense in
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H and L is a proper algebraic subgroup of the connected adjoint group H. We

conclude that J is indeed trivial.

Since J is trivial and A < P , we view τ as a morphism τ : P → H and Ψ

as a (P ×Γ)-equivariant map Ψ : G → H(k). In particular, Ψ is A-equivariant

via the homomorphism τ |A, and therefore it must be an initial object for the

category of A-algebraic representations by Lemma 4.4. Once again, Lemma 4.4

implies that τ |A extends to a homomorphism τ ′ : NG(A) → H(k) for which Ψ

is NG(A)-equivariant, where NG(A) is the normalizer of A in G.

Note thatNG(A) contains aWeyl element w forA and thus 〈P,NG(A)〉=G.

Since Ψ is equivariant for both P and NG(A), using [1, Prop. 5.1] and following

the end of the proof of [1, Thm. 1.3], we deduce that ρ : Γ → H(k) extends to

a continuous homomorphism ρ̂ : G → H(k). This proves the theorem. �

5. Theorem 1.4 and final remarks

In this section, we adapt the proof of Theorem 1.1 to prove Theorem 1.4,

then make some final remarks and ask some questions related to our main

results.

5.1. The proof of Theorem 1.4. Let M and N be connected, orientable

hyperbolic 3-manifolds of finite volume, and suppose that N is obtained by

Dehn filling on a nonempty subset of the torus cusps of M . If Γ = π1(M) and

Λ = π1(N), the map M → N induced by the filling determines a surjective

homomorphism ρ : Γ → Λ. Since Γ and Λ are naturally lattices in SO0(3, 1), we

can consider ρ as a homomorphism from Γ to SO0(3, 1) with ρ(Γ) isomorphic

to Λ. Note that ρ has nontrivial kernel.

If either of M or N is nonarithmetic, then Theorem 1.1 immediately im-

plies that M and N contain only finitely many totally geodesic surfaces. How-

ever, Theorem 1.1 is not applicable with both M and N are arithmetic. Before

giving the proof of Theorem 1.4, we give an example to show that the theorem

is indeed nontrivial.

Example 5.1. Let N be the complement in S3 of the 3-chain link, which

is also called 631 in the Rolfsen tables [36]. Then N is arithmetic [21, §9.2].
Moreover, N is obtained from trivial Dehn filling on one component of the four

component arithmetic link complement given in [38, Ex. 6.8.10], also known

as L12n2210. See Figure 1. Using symmetries of the link diagrams, one sees

that there are totally geodesic 4-punctured spheres in M that fill to become

totally geodesic 3-punctured spheres in N . Therefore, the collection of totally

geodesic surfaces in M that fill to a totally geodesic surface in N is nonempty.

One can easily find other examples of this nature. We now prove Theo-

rem 1.4.
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Figure 1. The arithmetic links 631 and L12n2210

Proof of Theorem 1.4. GivenM andN as in the statement of the theorem,

let ρ : Γ → SO0(3, 1) be the representation defined above. We will prove that if

infinitely many totally geodesic surfaces in N are the images of totally geodesic

surfaces in M , then ρ must extend to a homomorphism SO0(3, 1) → PO0(3, 1).

Since ρ has a nontrivial kernel, this is impossible. We let G denote SO0(3, 1)

containing Γ as a lattice and H denote PO0(3, 1) as the target for ρ. Note that

ρ has unbounded and Zariski dense image.

To apply Theorem 1.6, we take W = SO0(2, 1) and then must produce an

H-representation V and a W -invariant measure ν on the bundle (G×P(V ))/Γ

that projects to Haar measure on G/Γ. Then Theorem 1.6 implies that ρ

extends to a representation of G, which gives the desired contradiction.

As in the proof of Theorem 1.1, we produce this measure by finding an

invariant line bundle over each closed W -orbit in G/Γ. Let V be a nontrivial,

faithful, irreducible summand of the third exterior power of so(3, 1) with the

adjoint action of H. Let {Δi} be Fuchsian subgroups of Γ associated with

totally geodesic surfaces of M that remain totally geodesic under Dehn filling.

Then ρ(Δi) is a Fuchsian subgroup of Λ = ρ(Γ), and hence it is contained in

a subgroup Wi of H conjugate to the standard embedding of Isom+(H2) in

SO0(3, 1). Moreover, Wi stabilizes a line in V under the adjoint action, and

the construction of ν proceeds exactly as in the proof of Proposition 3.4. Thus

Theorem 1.6 applies and the proof is complete. �

Remark 5.2. We also note that it is frequently the case that a π1-injective

surface in a 3-manifold remains π1-injective under Dehn filling (e.g., see [10]).

Therefore, infinitely many totally geodesic surfaces in M may descend to

π1-injective surfaces in N . Our results say that these surfaces are very rarely

totally geodesic.

5.2. Final remarks and questions. We begin by noting that every known

construction of a nonarithmetic hyperbolic n-manifold for n ≥ 4 contains a

totally geodesic hypersurface. Theorem 1.1 implies that the set of such hyper-

surfaces is always finite.
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Question 5.3. For each n ≥ 4 and 1 ≤ k < n − 1, does there exist a

nonarithmetic hyperbolic n-manifold for which the set of totally geodesic sub-

spaces of codimension k is empty?

Answering this question in the positive will require a genuinely new con-

struction of hyperbolic manifolds. Perhaps more tractable is

Question 5.4. For each m ≥ 1, is there a hyperbolic 3-manifold contain-

ing exactly m totally geodesic surfaces?1

Finally, we ask about asymptotic properties of our results:

Question 5.5. Let Hn,m(v) be the number of lattices Γ<SO0(n, 1) such

that Hn/Γ contains exactly m totally geodesic hypersurfaces and vol(Hn/Γ)<v.

What is the growth type of Hn,m(v) as a function of v?

Remark 5.6. In part (3) of Corollary 1.3, we note that having infinitely

many totally geodesic hypersurfaces gives a geometric characterization of arith-

meticity in even dimensions. For n 
= 3, 7 odd, there is a similar statement.

In this case, every arithmetic hyperbolic manifold contains maximal totally

geodesic submanifolds of codimension 1 or 2 (see [29]), hence having infin-

itely many such submanifolds again characterizes arithmeticity. There are

arithmetic and nonarithmetic hyperbolic 3-manifolds that contain no totally

geodesic surfaces, so such a characterization is not possible; see [14, §6.1] for
discussion and examples. For n = 7, one must classify the geodesic subman-

ifolds of the arithmetic manifolds arising from triality; for those arithmetic

manifolds not arising from that construction, the situation is the same as for

other odd dimensions greater than 3.
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[39] È. B. Vinberg, Rings of definition of dense subgroups of semisimple linear

groups, Izv. Akad. Nauk SSSR Ser. Mat. 35 no. 1 (1971), 45–55. MR 0279206.

Zbl 0252.20043.

[40] R. J. Zimmer, Strong rigidity for ergodic actions of semisimple Lie groups, Ann.

of Math. (2) 112 no. 3 (1980), 511–529. MR 0595205. Zbl 0468.22011. https:

//doi.org/10.2307/1971090.

[41] R. J. Zimmer, Ergodic Theory and Semisimple Groups, Monogr. Math. 81,
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