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Abstract

Many real-world systems, such as moving planets, can be considered as multi-agent
dynamic systems, where objects interact with each other and co-evolve along with
the time. Such dynamics is usually difficult to capture, and understanding and
predicting the dynamics based on observed trajectories of objects become a critical
research problem in many domains. Most existing algorithms, however, assume the
observations are regularly sampled and all the objects can be fully observed at each
sampling time, which is impractical for many applications. In this paper, we pro-
pose to learn system dynamics from irregularly-sampled and partial observations
with underlying graph structure for the first time. To tackle the above challenge,
we present LG-ODE, a latent ordinary differential equation generative model for
modeling multi-agent dynamic system with known graph structure. It can simulta-
neously learn the embedding of high dimensional trajectories and infer continuous
latent system dynamics. Our model employs a novel encoder parameterized by
a graph neural network that can infer initial states in an unsupervised way from
irregularly-sampled partial observations of structural objects and utilizes neural
ODE to infer arbitrarily complex continuous-time latent dynamics. Experiments
on motion capture, spring system, and charged particle datasets demonstrate the
effectiveness of our approach.

1 Introduction

Learning system dynamics is a crucial task in a variety of domains, such as planning and control
in robotics [1], predicting future movements of planets in physics [2], etc. Recently, with the rapid
development of deep learning techniques, researchers have started building neural-based simulators,
aiming to approximate complex system interactions with neural networks [1, 3, 2, 4, 5] which can
be learned automatically from data. Existing models, such as Interaction Networks (IN) [3], usually
decompose the system into distinct objects and relations and learn to reason about the consequences
of their interactions and dynamics based on graph neural network (GNN). However, one major
limitation is that they only work for fully observable systems, where the individual trajectory of each
object can be accessed at every sampling time. In reality, many applications have to deal with partial
observable states, meaning that the observations for different agents are not temporally aligned. For
example, when a robot wants to push a set of blocks into a target configuration, only the blocks in the
top layer are visible to the camera [1]. More challengingly, the visibility of a specific object might
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change over time, meaning that observations can happen at non-uniform intervals for each agent, i.e.
irregularly-sampled observations. Such data can be caused by various reasons such as broken sensors,
failed data transmissions, or damaged storage [6]. How to learn an accurate multi-agent dynamic
system simulator with irregular-sampled partial observations remains a fundamental challenge.

Tang et al. [6] recently have studied a seemingly similar problem which is predicting the missing
values for multivariate time series (MTS) as we can view the trajectory of each object as a time series.
They assumed there exist some close temporal patterns in many MTS snippets and proposed to jointly
model local and global temporal dynamics for MTS forecasting with missing values, where the global
dynamics is captured by a memory module. However, it differs from multi-agent dynamic systems in
that the model does not assume a continuous interaction among each variable, i.e. the underlying
graph structure is not considered. Such interaction plays a very important role in multi-agent dynamic
systems which drives the system move forward.

Recently Rubanova et al. [7] has proposed a VAE-based latent ODE model for modeling irregularly-
sampled time series, which is a special case of the multi-agent dynamic system where it only handles
one object. They assume there exists a latent continuous-time system dynamics and model the state
evolution using a neural ordinary differential equation (neural ODE) [8]. The initial state is drawn
from an approximated posterior distribution which is parameterized by a neural network and is
learned from observations.

Inspired by this, we propose a novel model for learning continuous multi-agent system dynamics
under the same framework with GNN as the ODE function to model continuous interaction among
objects. However, the main challenge lies in how to approximate the posterior distributions of latent
initial states for the whole system, as now the initial states of agents are closely coupled and related
to each other. We handle this challenge by firstly aggregating information from observations of
neighborhood nodes, obtaining a contextualized representation for each observation, then employ
a temporal self-attention mechanism to capture the temporal pattern of the observation sequence
for each object. The benefits of joint learning of initial states is twofold: First, it captures the
complex interaction among objects. Second, when an object only has few observations, borrowing
the information from its neighbors would facilitate the learning of its initial state. We conduct
extensive experiments on both simulated and real datasets over interpolation and extrapolation tasks.
Experiment results verify the effectiveness of our proposed method.

2 Problem Formulation and Preliminaries

Consider a multi-agent dynamic system as a graph G = 〈O,R〉, where vertices O = {o1, o2 · · · oN}
represent a set of N interacting objects, R = {〈i, j〉} represents relations. For each object, we have
a series of observations oi = {oti} at times {tji}

Ti
j=0,where oti ∈ RD denotes the feature vector of

object i at time t, and {tji}
Ti
j=0 can be of variable length and values for each object. Observations are

often at discrete spacings with non-uniform intervals and for different objects, observations may not
be temporally aligned. We assume there exists a latent generative continuous-time dynamic system,
which we aim to uncover. Our goal is to learn latent representations zti ∈ Rd for each object at any
given time, and utilize it to reconstruct missing observations and forecast trajectories in the future.

2.1 Ordinary differential equations (ODE) for multi-agent dynamic system

In continuous multi-agent dynamic system, the dynamic nature of state is described for continuous
values of t over a set of dependent variables. The state evolution is governed by a series of first-order
ordinary differential equations: żti :=

dzti
dt = gi(z

t
1, z

t
2 · · · ztN ) that drive the system states forward

in infinitesimal steps over time. Given the latent initial states z00, z
0
1 · · · z0N ∈ Rd for every object, zti

is the solution to an ODE initial-value problem (IVP), which can be evaluated at any desired times
using a numerical ODE solver such as Runge-Kutta [9]:

zTi = z0i +

∫ T

t=0

gi(z
t
1, z

t
2 · · · ztN )dt (1)

The ODE function gi specifies the dynamics of latent state and recent works [8, 7, 10] have proposed
to parameterize it with a neural network, which can be learned automatically from data. Different
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from single-agent dynamic system, gi should be able to model interaction among objects. Existing
works [3, 1, 2, 11] in discrete multi-agent dynamic system employ a shared graph neural network
(GNN) as the state transition function. It defines an object function fO and a relation function fR to
model objects and their relations in a compositional way. By adding residual connection and let the
stepsize go to infinitesimal, we can generalize such transition function to the continuous setting as
shown in Eqn 2, where Ni is the set of immediate neighbors of object oi.

żti :=
dzti
dt

= gi(z
t
1, z

t
2 · · · ztN ) = fO(

∑
j∈Ni

fR([zti, z
t
j ])) (2)

Given the ODE function, the latent initial state z0i for each object determine the whole trajectories.

2.2 Latent ODE model for single-agent dynamic system

Continuous single-agent dynamic system is a special case in our setting. Recent work [7] has
proposed a latent ODE model following the framework of variational autoencoder [12], where they
assume a posterior distribution over the latent initial state z0. The encoder computes the posterior
distribution q

(
z0| {oi, ti}Ni=0

)
for the single object with an autoregressive model such as RNN, and

sample latent initial state z0 from it. Then the entire trajectory is determined by the initial state z0
and the generative model defined by ODE. Finally the decoder recovers the whole trajectory based
on the latent state at each timestamp by sampling from the decoding likelihood p(oi|zi).

We model multi-agent dynamic system under the same framework with GNN as the ODE function to
model continuous interaction among objects. Since the latent initial states of each object are tightly
coupled, we introduce a novel recognition network in the encoder to infer the initial states of all
objects simultaneously.

3 Method

In this section, we present Latent Graph ODE (LG-ODE) for learning continuous multi-agent system
dynamics. Following the structure of VAE, LG-ODE consists of three parts that are trained jointly:
1.) An encoder that infers the latent initial states of all objects simultaneously given their partially-
observed trajectories; 2.) a generative model defined by an ODE function that learns the latent
dynamics given the sampled initial states. 3.) a decoder that recovers the trajectory based on the
decoding likelihood p(oti|zti). The overall framework is depicted in Figure 1. In the following, we
describe the three components in detail.

3.1 Encoder

Let Zt ∈ RN×d denotes the latent state matrix of all N objects at time t. The encoder returns a
factorized distribution of initial states: qφ(Z0|o1, o2 · · · oN ) =

∏N
i=1 qφ(z0i |o1, o2 · · · oN ). In multi-

agent dynamic system, objects are highly-coupled and related. Instead of encoding temporal pattern

for each observation sequence oi = {oti}
t
Ti
i

t=t0i
independently using an RNN [7], we incorporate

structural information by first aggregating information from neighbors’ observations, then employ a
temporal self-attention mechanism to encode observation sequence for each object. Such process
can be decomposed into two steps: 1.) Dynamic Node Representation Learning, where we aim to
learn an encoding function fupdate that outputs structural contextualized representation hti for each
observation oti. 2.) Temporal Self-Attention, where we learn an function faggre that aggregates the
structural observation representations into a fixed-dimensional sequence representation ui for each
object. ui is then utilized to approximate the posterior distribution for each latent initial state z0i .

hti = fupdate(oi, {oj |if j ∈ Ni}), ui = faggre(h
t1
i ,h

t2
i · · ·h

tTi
i ) (3)

Dynamic Node Representation Learning. One naive way to incorporate structural information is
to construct a graph snapshot at each timestamp [13, 14]. However, when system is partially observed,
each snapshot may only contain a small portion of objects. For example in Figure 1 (a), 6 out of 7
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Figure1:Overallframework.

timestampsonlycontainsoneobjectthusabundantstructuralinformationacrossdifferentsnapshots
isignored.Wethereforepreservetemporaledgesandnodesacrosstimestoformatemporalgraph,
whereeverynodeisanobservation,everyedgeexistswhentwoobjectsareconnectedviaarelation
r∈R{i,j}.SupposeonaverageeveryobjecthasKobservations,andthereareErelationsamong
objects.TheconstructedtemporalgraphhasO(EK2+(K−1)KN)edges,whichgrowsrapidly
withtheincreaseofaverageobservationnumberK. Wethereforesetaslicingtimewindowthat
filtersoutedgeswhentherelativetemporalgapislargerthanapresetthreshold.

Tolearnastructuralrepresentationforeachobservation,weproposeatemporal-awaregraphneural
networkcharacterizedbytheinformationpropagationequationinEqn4,wherehl−1t ,h

l−1
s arethe

representationsoftargetandsourcenodefromlayerl−1respectively.

hlt=h
l−1
t +σ(

s∈Nt

(Attention(hl−1s ,h
l−1
t )·Message(h

l−1
s )) (4)

Tomodeltemporaldependenciesamongnodes,asimplealternativeistointroduceatime-dependent
attentionscore[15]multiplybyalineartransformationofthesendernodeW vh

l−1
s .However,the

informationlossofasendernodew.r.tdifferenttemporalgapislinear,astheMessageofasender
nodeistime-independent.RecentlyTransformer[15]hasproposedtoaddpositionalencodingto
thesendernodehl−1s andobtainatime-dependentMessage.Asaddingisalinearoperator,we
hypothesizethattakinganonlineartransformationofthesendernodeastime-dependentMessage
wouldbemoresufficienttocapturethecomplexnatureofinformationlosscausedbytemporalgap
betweennodes.Wedefinethenonlineartransformationw.r.tthetemporalgap∆t(s,t)asfollows:

Message(hl−1s ,∆t(s,t))=W v̂h
l−1

s , ĥ
l−1

s =σ(W t[h
l−1
s ||∆tst])+TE(∆tst)

TE(∆t)2i+1=cos(∆t/10000
2i/d), TE(∆t)2i=sin(∆t/10000

2i/d)

Attention(hl−1s ,h
l−1
t ,∆t(s,t))=(W k̂h

l−1

s )
T(W qh

l−1
t )·

1√
d

(5)

where||istheconcatenationoperationandσ(·)isanon-linearactivationfunction.disthedimension
ofnodeembeddingsandW tisalineartransformationappliedtotheconcatenationofthesendernode
andtemporalgap.Weadoptthedot-productformofattentionwhereW v,W k,W qprojectsinput
noderepresentationsintovalues,keysandqueries.Thelearnedattentioncoefficientisnormalizedvia
softmaxacrossallneighbors.Additionally,todistinguishthesenderfromobservationsoftheobject
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itself, and observations from its neighbors, we learn two sets of projection matrices W k,W v for
each of these two types. Finally, we stack L layers to get the final representation for each observation
as hti = hL(oti). The overall process is depicted in Figure 1 (b).

Temporal Self-Attention. To encode temporal pattern for each observation sequence, we design
a non-recurrent temporal self-attention layer that aggregates variable-length sequences into fixed-
dimensional sequence representations ui, which is then utilized to approximate the posterior distribu-
tion for each latent initial state z0i . Compared with traditional recurrent models such as RNN,LSTM,
self-attention mechanism can be better parallelized for speeding up training process and alleviate
the vanishing/exploding gradient problem in these models [13, 15]. Note that we have introduced
inter-time edges when creating temporal graph, the observation representations hti already preserve
temporal dependency across timestamps. To encode the whole sequence, we introduce a global
sequence vector ai to calculate a weighted sum of observations as the sequence representation :

ai = tanh((
1

N

∑
t

ĥ
t

i)W a), ui =
1

N

∑
t

σ(aTi ĥ
t

i)ĥ
t

i (6)

where ai is a simple average of node representations with nonlinear transformation towards the
system initial time tstart followed by a linear projectionW a. The nonlinear transformation is defined
as ĥ

t

i = σ(W t[h
t
i||∆t]) + TE(∆t) with ∆t = (t − tstart), which is analogous to the Message

calculation in step 1. Note that if we directly use the observation representation hti from step 1, the
sequence representation ui would be the same when we shift the timestamp for each observation
by T , as we only utilize the relative temporal gap between observations. By taking the nonlinear
transformation, we actually view each observation has an underlying inter-time edge connected to the
virtual initial node at system initial time tstart. In this way, the sequence representation ui reflects
latent initial state towards a given time tstart, and varies when the initial time changes. The process is
depicted in Figure 1 (c). Finally, we have the approximated posterior distribution as in Eqn7 where f
is a neural network translating the sequential representation into the mean and variance of z0i .

qφ(z0i |o1, o2 · · · oN ) = N
(
µz0i ,σz0i

)
, where µz0i , σz0i = f(ui) (7)

3.2 Generative model and decoder

We consider a generative model defined by an ODE whose latent initial state z0i is sampled from
the approximated posterior distribution qφ(z0i |o1, o2 · · · oN ) from the encoder. We employ a graph
neural network (GNN) in Eqn 2 as the ODE function gi to model the continuous interaction of objects.
A decoder is then utilized to recover trajectory from the decoding probability p(oti|zti), characterized
by a neural network.

z0i ∼ p(z0i ) ≈ qφ(z0i |o1, o2 · · · oN )
z0i , z

1
i · · · zTi = ODESolve(gi, [z

0
1, z

0
2 · · · z0N ], (t0, t1 · · · tT ))

oti ∼ p(oti|zti)
(8)

3.3 Training

We jointly train the encoder, decoder and generative model by maximizing the evidence lower bound
(ELBO) as shown below. As observations for each object are not temporally aligned in a minibatch,
we take the union of these timestamps and output the solution of the ODE at them.

ELBO(θ, φ)
= EZ0∼qφ(Z0|o1,···oN )[log pθ(o1, . . . , oN )]−KL[qφ(Z0|o1, · · · , oN )‖p(Z0)]

= EZ0∼
∏N
i=1 qφ(z

0
i |o1,··· ,oN )[log pθ(o1, · · · , oN )]−KL[

∏N
i=1 qφ(z0i |o1, · · · , oN )‖p(Z0)]

(9)
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4 Experiments

4.1 Datasets

We illustrate the performance of our model on three different datasets: particles connected by springs,
charged particles ( Kipf et al. [2]) and motion capture data ( CMU [16]). The first two are simulated
datasets, where each sample contains 5 interacting particles in a 2D box with no external forces
(but possible collisions with the box). The trajectories are simulated by solving two types of motion
PDE for spring system and charged system respectively [2] with the same number of forward steps
6000 and then subsampling each 100 steps. To generate irregularly-sampled partial observations, for
each particle we sample the number of observations n from U(40, 52) and draw the n observations
uniformly from the PDE steps to get the training trajectories. To evaluate extrapolation task, we
additionally sample 40 observations following the same procedure from PDE steps [6000, 12000]
for testing. The above sampling procedure is conducted independently for each object. We generate
20k training samples and 5k testing samples for these two datasets respectively. For motion capture
data, we select the walking sequences of subject 35. Every sample is in the form of 31 trajectories,
each tracking a single joint. Similar as simulated datasets, for each joint we sample the number
of observations n from U(30, 42) and draw the n observations uniformly from first 50 frames for
training trajectories. For testing, we additionally sampled 40 observations from frames [51, 99]. We
split the different walking trials into non-overlapping training (15 trials) and test sets (7 trials).

We conduct experiment on both interpolation and extrapolation tasks as proposed in Rubanova et al.
[7]. For all experiments, we report the mean squared error (MSE) on the test set. For all datasets, we
rescale the time range to be in [0, 1]. Our implementation is available online1. More details can be
found in the supplementary materials.

4.2 Baselines and Model Variants

Baselines. To the best of our knowledge, existing works on modeling multi-agent dynamic system
with underlying graph structure cannot handle irregularly-sampled partial observations, in which
these models require full observation at timestamp t in order to make prediction at timestamp
t+ 1 [2, 3]. Therefore, we firstly compare our model with different encoder structures to infer the
initial states. Specifically, we consider Latent-ODE (Rubanova et al. [7]) which has shown to be
successful for encoding single irregularly-sampled time series without considering graph interaction
among agents. Edge-GNN (Gong and Cheng [17]) incorporates temporal information by viewing
time gap as an edge attribute. Weight-Decay considers a simple exponential decay function for time
gap as similar in Cao et al. [18], which models h(t + ∆t) = exp{−τ∆t} · h(t) with a learnable
decay parameter τ . The sequence representation of Edge-GNN and Weight-Decay is the weighted
sum of observations within a sequence. We additionally compare LG-ODE against an RNN-based
MTS model for handling irregularly-sampled missing values [19] where the graph structure is not
considered. It jointly imputes missing values for all agents by simple concatenation of their feature
vectors. We compare it in the Interpolation Task which is to imputes missing values within the
observed sequences. After imputation, we employ NRI [2] which is a multi-agent dynamic system
model with regular observations and graph input to predict future sequences. We refer to this task as
Extrapolation Task. In what follows, we refer to the combination of these two models as RNN-NRI.

Model Variants. Our proposed encoder contains two modules: dynamic node representation network
followed by a temporal self-attention. To further analyze the components within each module, we
conduct an ablation study by considering five model variants. Firstly, module one contains two
core components: attention mechanism and learnable positional encoding within GNN for capturing
temporal and spatial dependency among nodes. We therefore remove them separately and get LG-
ODE-no att, LG-ODE-no PE respectively. We additionally compare our learnable positional encoding
with manually-designed positional encoding [15] denoted as LG-ODE-fixed PE. Secondly, we apply
various sequence representation methods to test the efficiency of module two: LG-ODE-first takes the
first observation in a sequence as sequence representation and LG-ODE-mean uses the mean pooling
of all observations as sequence representation.

1https://github.com/ZijieH/LG-ODE.git
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Table 1: Mean Squared Error(MSE) ×10−2 on Interpolation task.

Springs Charged Motion
Observed ratio 40% 60% 80% 40% 60% 80% 40% 60% 80%

Latent-ODE 0.5454 0.5036 0.4290 1.1799 1.1198 0.8332 0.7709 0.4826 0.3603
Weight-Decay 1.1634 1.1377 1.6217 2.8419 2.2547 1.5390 1.9007 2.0023 1.6894
Edge-GNN 1.3370 1.2786 0.8188 1.5795 1.5618 1.1420 2.7670 2.6582 1.8485
NRI + RNN 0.5225 0.4049 0.3548 1.3913 1.1659 1.0344 0.5845 0.5395 0.5204
LG-ODE 0.3350 0.3170 0.2641 0.9234 0.8277 0.8046 0.4515 0.2870 0.3414
LG-ODE-first 1.3017 1.1918 1.0796 2.5105 2.6714 2.3208 1.4904 1.3702 1.2107
LG-ODE-mean 0.3896 0.3901 0.3268 1.1246 1.0050 0.9133 0.6415 0.5834 0.5549
LG-ODE-no att 0.5145 0.4198 0.4510 0.9372 0.9503 0.9752 0.6991 0.6998 0.7452
LG-ODE-no PE 0.4431 0.4278 0.3879 1.0450 1.0350 0.9621 0.4677 0.4808 0.4799
LG-ODE-fixed PE 0.4285 0.4445 0.4083 0.9838 0.9775 0.9524 0.4215 0.4371 0.4313

Figure 2: Visualization of interpolation results for spring system.

4.3 Results on Interpolation Task

Set up. In this task, we condition on a subset of observations (40%, 60%, 80%) from time (t0, tN )
and aim to reconstruct the full trajectories in the same time range. We subsample timepoints for each
object independently.

Table 1 shows the interpolation MSE across different datasets and methods. Latent-ODE performs
well on encoding single timeseries but fails to consider the interaction among objects, resulting in
its poor performance in the multi-agent dynamic system setting. Weight-Decay and Edge-GNN
utilize fixed linear transformation of sender node to model information loss across timestamps,
which is not sufficient to capture the complex temporal dependency. RNN-NRI though handles
the irregular temporal information by a specially designed decay function, it conducts imputation
without considering the graph interaction among objects and thus obtaining a poor performance.
By comparing model variants for temporal self-attention module, we notice that taking the first
observation as sequence representation produces high reconstruction error, which is expected as the
first observable time for each sequence may not be the same so the inferred latent initial states are not
aligned. Averaging over observations assumes equal contribution for each observation and ignores
the temporal dependency, resulting in its poor performance. For module one, experiment results
on model variants suggest that distinguishing the importance of nodes w.r.t time and incorporating
temporal information via learnable positional encoding would benefit model performance. Notably,
the performance gap between LG-ODE and other methods increases when the observation percentage
gets smaller, which indicates the effectiveness of LG-ODE on sparse data. When observation
percentage increases, the reconstruction loss of all models tends to be smaller, which is expected.
Figure 2 visualizes the interpolation results of our model under different observation percentage for
the spring system. Figure 3 visualizes the interpolation results for motion capture data with 60%
observation percentage.

4.4 Results on Extrapolation Task

Set up. In this task we split the time into two parts: (t0, tN1) and (tN1 , tN ). We condition on the
first half of observations and reconstruct the second half. For training, we condition on observations
from (t1, t2) and reconstruct the trajectories in (t2, t3). For testing, we condition on the observations
from (t1, t3) but tries to reconstruct future trajectories within (t3, t4). Similar to interpolation task,
we experiment on conditioning only on a subset of observations in the first half and run the encoder
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(a) Groundtruth.

(b) Predictions with 0.6 observation ratio.

Figure 3: Visualization of interpolation results for walking motion data.

on the subset to estimate the latent initial states. We evaluate model’s performance on reconstructing
the full trajectories in the second half.

Table 2: Mean Squared Error(MSE) ×10−2 on Extrapolation task.

Extrapolation Springs Charged Motion
Observed ratio 40% 60% 80% 40% 60% 80% 40% 60% 80%

Latent-ODE 6.6923 4.2478 4.3192 13.5852 12.7874 20.5501 2.4186 2.9061 2.6590
Weight-Decay 6.1559 5.7416 5.3712 9.4764 9.1008 9.0886 16.8031 13.6696 13.6796
Edge-GNN 6.0417 4.9220 3.2281 9.2124 9.1410 8.8341 13.2991 13.9676 9.8669
NRI + RNN 2.6638 2.4003 2.5550 7.1776 6.9882 6.6736 3.5380 3.0119 2.6006
LG-ODE 1.7839 1.8084 1.7139 6.5320 6.4338 6.2448 1.2843 1.2435 1.2010
LG-ODE-first 6.5742 6.3243 5.7788 9.3782 9.2107 8.4765 3.8864 3.2849 3.0001
LG-ODE-mean 2.2499 2.1165 2.2516 9.1355 8.7820 8.4422 1.3169 1.3008 1.2534
LG-ODE-no att 2.3847 2.1216 1.9634 7.2958 7.3609 6.7026 3.4510 3.2178 3.9917
LG-ODE-no PE 1.7943 1.8172 1.7332 6.9961 6.7208 6.5852 1.5054 1.2997 1.2029
LG-ODE-fixed PE 1.7905 1.7634 1.7545 6.4520 6.4706 6.3543 1.4624 1.2517 1.1992

Figure 4: Visualization of extrapolation results for spring system. Semi-transparent paths denote
observations from first-half of time, from which the latent initial states are estimated. Solid paths
denote model predictions.

Table 2 shows the MSE on extrapolation task. The average MSE in extrapolation task is greater than
interpolation task, which is expected as predicting the future is a more challenging task. Similar
as in interpolation task, when observation percentage increases, the prediction error of all models
tends to become smaller. LG-ODE achieves better results across different datasets and settings,
which verifies the effectiveness of our design to capture structural dependency among objects, and
temporal dependency within observation sequence. Specifically, RNN-NRI is a two-step model that
first imputes each time series into regular-sampled one to make it a valid input for NRI, and then
predict trajectories with the graph structure. LG-ODE instead is an end-to-end framework. The
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prediction error for RNN-NRI is large and one possible reason is that we use estimated imputation
values for missing data which would add noise to NRI. We also notice that the performance drop due
to the sparsity of observations is small in LG-ODE compared with other baselines, which shows our
model is more powerful especially when data is sparse. We illustrate the predicted trajectories of
spring system under different observation percentage as shown in Figure 4.

5 Related Work

Neural Physical Simulator. Existing works have developed various neural-based physical simulators
that learn the system dynamics from data [1, 3]. In particular, Kipf et al. [2] and Battaglia et al. [3]
have explored learning a simulator by approximating pair-wise object interactions with graph neural
networks. These approaches restrict themselves to learn a fixed-step state transition function that
takes the system state at time t as input to predict the state at time t+ 1. However, they can not be
applied to the scenarios where system observations are irregularly sampled. Our model handles such
issue by combining a neural ODE [8] to model continuous system dynamics and a temporal-aware
graph neural network followed by a temporal self-attention module to estimate system initial states.
Another issue lies in that they need to observe the full states of a system; but in reality, system states
are often partially observed where number and set of observable objects vary over time. A recent
work [1] tackled this issue where system is partially observed but observations are regularly sampled
by learning the dynamics over a latent global representation for the system, which is for example
an average over the sets of object states. However it cannot directly learn the dynamic state for
each object. In our work, we design a dynamic model that explicitly operates on the latent dynamic
representations over each object. This allows us to define object-centric dynamics, which can better
capture system dynamics compared to the coarse global system representation.

Dynamic Graph Representation. Our model takes the form of variational auto-encoder. The
encoder which is used to infer latent initial states is closely related to dynamic graph representation.
Most existing methods [13, 20, 14] learn the dynamic representations of nodes by splitting the input
graph into snapshot sequence based on timestamps [21]. Each snapshot is passed through a graph
neural network to capture structural dependency among neighbors and then a recurrent network is
utilized to capture temporal dependency by summarizing historical snapshots. However recurrent
methods scale poorly with the increase in number of time-steps [13]. Moreover, when system states
are partially observed, each timestamp may only contain a small portion of objects and abundant
structural information across different snapshots is ignored. A recent work [21] proposed to maintain
all the edges happening in different times as a whole and introduced relative temporal encoding
strategy (RTE) to model structural temporal dependencies with any duration length. RTE utilizes
a linear transformation of the sender node with regard to a given timestamp based on positional
encoding [15]. In our work, we explored a more complex nonlinear transformation to capture complex
temporal dependency in dynamic physical system.

6 Discussion and Conclusion

In this paper, we propose LG-ODE for learning continuous multi-agent system dynamics from
irregularly-sampled partial observations. We model system dynamics through a neural ordinary
differential equation and draw the latent initial states for each object simultaneously through a novel
encoder that is able to capture the interaction among objects. The joint learning of initial states
not only captures interaction among objects but can benefit the learning when an object only has
few observations. We achieve state-of-the-art performance in both interpolating missing values and
extrapolating future trajectories. An limitation of current model is that we assume the underlying
interaction graph is fixed over time. In the future, we plan to learn the system dynamics when the
underlying interaction graph is evolving.
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Broader Impact

Learning system dynamics is an important task in various of fields such as biology, physics, robotics,
etc. Existing models only work for fully observable systems, requiring the observations of all object
at each sample timestamp. However in reality, data is usually incomplete due to various reasons
such as broken sensors. More challengingly, observations can happen at non-uniform intervals. Our
model is able to learn system dynamics from such irregularly-sampled partial observations, and can
be applied to various applications such as planning and control in robotics especially when data is
incomplete.

Acknowledgement

This work is partially supported by NSF III-1705169, NSF CAREER Award 1741634, NSF 1937599,
DARPA HR00112090027, Okawa Foundation Grant,Amazon Research, NSF DBI-1565137, DGE-
1829071, IIS-2031187, NIH R35-HL135772, NEC Research Gift, and Verizon Media Faculty
Research and Engagement Program.

References
[1] Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B Tenenbaum, Antonio Torralba, and Russ Tedrake.

Propagation networks for model-based control under partial observation. In ICRA, 2019.

[2] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural
relational inference for interacting systems. arXiv preprint arXiv:1802.04687, 2018.

[3] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, and koray kavukcuoglu.
Interaction networks for learning about objects, relations and physics. In Advances in Neural
Information Processing Systems 29, pages 4502–4510. 2016.

[4] Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A compositional
object-based approach to learning physical dynamics. ICLR, 2016.

[5] Sainbayar Sukhbaatar, arthur szlam, and Rob Fergus. Learning multiagent communication with
backpropagation. In Advances in Neural Information Processing Systems 29, pages 2244–2252.
2016.

[6] Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Charu Aggarwal, Prasenjit Mitra, and Suhang Wang.
Joint modeling of local and global temporal dynamics for multivariate time series forecasting
with missing values. In AAAI. 2020.

[7] Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential
equations for irregularly-sampled time series. In Advances in Neural Information Processing
Systems 32, pages 5320–5330. 2019.

[8] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems 31, pages 6571–
6583. 2018.

[9] Simo Särkkä Michael Schober and Philipp Hennig. A probabilistic model for the numerical
solution of initial value problems. In Statistics and Computing, pages 99–122. 2019.

[10] Cagatay Yildiz, Markus Heinonen, and Harri Lahdesmaki. Ode2vae: Deep generative second
order odes with bayesian neural networks. In Advances in Neural Information Processing
Systems 32, pages 13412–13421. 2019.

[11] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning. In
Advances in Neural Information Processing Systems 30, pages 4967–4976. 2017.

[12] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

10



[13] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural
representation learning on dynamic graphs via self-attention networks. In Proceedings of the
13th International Conference on Web Search and Data Mining, pages 519–527, 2020.

[14] L. Zhu, D. Guo, J. Yin, G. V. Steeg, and A. Galstyan. Scalable temporal latent space inference
for link prediction in dynamic social networks. IEEE Transactions on Knowledge and Data
Engineering, 28(10):2765–2777, 2016.

[15] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems 30, pages 5998–6008. 2017.

[16] CMU. Carnegie-mellon motion capture database. 2003. URL http://mocap.cs.cmu.edu.

[17] L. Gong and Q. Cheng. Exploiting edge features for graph neural networks. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 9203–9211, 2019.

[18] Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirectional recurrent
imputation for time series. In Advances in Neural Information Processing Systems 31, pages
6775–6785. 2018.

[19] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan. Liu. Recurrent
neural networks for multivariate time series with missing values. In Scientific Reports, page
6085, 2018.

[20] Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna Narayanan, Nick Duffield, Mingyuan
Zhou, and Xiaoning Qian. Variational graph recurrent neural networks. In Advances in Neural
Information Processing Systems 32, pages 10701–10711. 2019.

[21] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
Proceedings of the 2020 World Wide Web Conference, 2020.

11

http://mocap.cs.cmu.edu

	Introduction
	Problem Formulation and Preliminaries
	Ordinary differential equations (ODE) for multi-agent dynamic system
	Latent ODE model for single-agent dynamic system

	Method
	Encoder
	Generative model and decoder
	Training

	Experiments
	Datasets
	Baselines and Model Variants
	Results on Interpolation Task
	Results on Extrapolation Task

	Related Work
	Discussion and Conclusion

