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Abstract

We propose a novel learning framework based on neural mean-field dynamics for
simultaneous inference and estimation problems of diffusions on networks. Our
new framework is derived from the Mori-Zwanzig formalism to obtain an exact
evolution of the node infection probabilities, which renders a delay differential
equation with memory integral approximated by learnable time convolution op-
erators, resulting in a highly structured and interpretable RNN. Directly using
cascade data, our framework can jointly learn the structure of the diffusion network
and the evolution of infection probabilities, which are cornerstone to important
downstream applications such as influence maximization. Connections between
parameter learning and optimal control are also established. Empirical study shows
that our approach is versatile and robust to variations of the underlying diffusion
network models, and significantly outperforms existing approaches in accuracy
and efficiency on both synthetic and real-world data.

1 Introduction

Continuous-time information diffusion on heterogeneous networks is a prevalent phenomenon [4, 39,
43]. News spreading on social media [13, 15, 49], viral marketing [23, 25, 52], computer malware
propagation, and epidemics of contagious diseases [3, 36, 43, 47] are all examples of diffusion on
networks, among many others. For instance, a piece of information (such as a tweet) can be retweeted
by users (nodes) with followee-follower relationships (edge) on the Twitter network. We call a user
infected if she retweets, and her followers see her retweet and can also become infected if they retweet
in turn, and so on. Such information diffusion mimics the epidemic spread where an infectious virus
can spread to individuals (human, animal, or plant) and then to many others upon their close contact.

In this paper, we are mainly concerned with the estimation of individual node infection probabilities
as well as inference of the underlying diffusion network structures directly using cascade data of
historical diffusion events on the network. For infection probability estimation, our goal is to compute
the evolution of the probability of each node being infected during a diffusion initiated from a set of
source nodes. For network structure inference, we aim at learning the edges as well as the strength of
interactions (through the edges) between the nodes on the diffusion network. Not surprisingly, both
problems are very challenging due to the extremely large scale of modern networks, the heterogeneous
inter-dependencies among the nodes, and the randomness exhibited in cascade data. Most existing
works focus on one problem only, e.g., either to solely infer the network structure from cascade data,
or to estimate influence without providing insights into the underlying network structure.

We propose a novel learning framework, called neural mean-field (NMF) dynamics, to simultaneously
tackle both of the estimation and inference problems mentioned above. Specifically: (i) We develop a
neural mean-field dynamics framework to model the evolution of diffusion on a network. Our new
framework is derived from the Mori-Zwanzig formalism to obtain an exact time evolution of the node
infection probability with dimension linear in the network size; (ii) We show that the memory term of
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the Mori-Zwanzig equation can be approximated by a trainable convolution network, which renders
the dynamical system into a delay differential equation. We also show that the time discretization of
such system reduces to a recurrent neural network. The approximate system is highly interpretable,
and in particular, the training accepts sample cascades as input, and returns both individual probability
estimates (and hence the influence function) as well as structure information of the diffusion network
as outputs; (iii) We show that the parameters learning in NMF can be reduced to an optimal control
problem with the parameters as time invariant control inputs, maximizing the total Hamiltonian of
the system; and (iv) Our empirical analysis shows that our approach is robust to the variation of the
unknown underlying diffusion models, and it also significantly outperforms existing approaches for
both synthetic and real-world diffusion networks.

The remainder of this paper is organized as follows. In Section 2, we introduce the diffusion
network models and related background information, including the influence predication and structure
inference problems. In Section 3, we develop the proposed framework of neural mean-field dynamics
for inference and prediction on diffusion networks, as well as an optimal control formulation for
parameter learning. We demonstrate the performance of the proposed method on influence estimation
and maximization on a variety of synthetic and real-world networks in Section 4. A discussion of the
related work is given in Section 5. Section 6 concludes the paper.

2 Preliminaries on Diffusion Networks

Throughout this paper, we use boldfaced lower (upper) letter to denote vector (matrix) or vector-
valued (matrix-valued) function, and (·)k (or (·)ij) for its kth component (or (i, j)-th entry). All
vectors are column vectors unless otherwise noted. We follow the Matlab syntax and use [x;y] to
denote the vector that stacks x and y vertically. We denote inner product by x ·y and component-wise
multiplication by x � y. Time is denoted by t in either continuous (t ∈ [0, T ]) or discrete case
(t = 0, 1, . . . , T ) for some time horizon T ∈ R+ (N in discrete case). Derivative ′ is with respect to t,
and gradient∇x is with respect to x. Probability is denoted by Pr(·), and expectation with respect to
X (or pX ) is denoted by EX [ · ].

Diffusion network models Consider a diffusion network model, which consists of a network
(directed graph) G = (V , E) with node set V = [n] := {1, . . . , n} and edge set E ⊂ V × V , and a
diffusion model that describes the distribution p(t;αij) of the time t node i takes to infect a healthy
neighbor j ∈ {j′ : (i, j′) ∈ E} for every (i, j) ∈ E . Then, given a source (seed) set S of nodes that
are infected at time 0, they will infect their healthy neighbors with infection time following p, and the
infected neighbors will then infect their healthy neighbors, and so on, such that the infection initiated
from S at time 0 propagates to other nodes of the network.

Typical diffusion network models are assumed to be progressive where infected node cannot recover
and the infections on different edges are independent. For example, the standard diffusion model
with exponential distribution p(t;α) = αe−αt is mostly widely used; other distributions can also
be considered, as is done in this paper. For simplicity, we focus on uni-parameter distributions
or distributions with multiple parameters but only one can vary across different edges with the
consequence that the parameter αij ≥ 0 indicates the strength of impact node i has on node j.

Cascade data Observation data D of a diffusion network are often in the form of sample cascades
D := {Ck = (Sk, τk) ∈ 2V × Rn

+ : k ∈ [K]}, where the kth cascade Ck records its source set
Sk ⊂ V and the time (τk)i ≥ 0 which indicates when node i was infected (if i was not infected
during Ck then (τk)i = ∞). We also equate Ck with {x̂(k)(t) ∈ {0, 1}n : i ∈ [n], t ≥ 0} such
that (x̂(k)(t))i = 1 if the node i is in the infected status at time t and 0 otherwise. For example,
x̂(k)(0) = χSk

where (χSk
)i = 1 if i ∈ Sk and 0 otherwise. Such cascade data are collected from

historical events for training purposes.

Influence prediction and inference of diffusion network Given the network G = (V, E), as well
as the diffusion model and A, where (A)ji = αij is the parameter of p(t;αij) for edge (i, j), the
inference prediction (or influence estimation) is to compute

x(t;χS) = [x1(t;χS), . . . , xn(t;χS)]
> ∈ [0, 1]n (1)
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for all time t ≥ 0 and any source set S ⊂ V . In (1), xi(t;χS) is the probability of node i being
infected at time t given a source set S (not necessarily observed as a source set in D). Note that we
use χS and S interchangeably hereafter. The probability x(t;χS) can also be used to compute the
influence function σ(t;S) := 1>

nx(t;χS), the expected number of infected nodes at time t. Note
that an analytic solution of (1) is intractable due to the exponentially large state space of the complete
dynamical system of the diffusion problem [19, 48].

On the other hand, network inference refers to learning the network connectivity E and A given
cascade data D. The matrixA is the distribution parameters if the diffusion model p is given, or it
simply qualitatively measures the strength of impact node i on j if no specific p is known.

Influence prediction may also require network inference when only cascade data D are available,
resulting in a two-stage approach: a network inference is performed first to learn the network structure
E and the diffusion model parameters A, and then an influence estimation is used to compute the
influence for the source set S. However, approximation errors and biases in the two stages will
certainly accumulate. Alternatively, one can use a one-stage approach to directly estimate x(t;χS)
of any S from the cascade data D, which is more versatile and less prone to diffusion model
misspecification. Our method is a such kind of one-stage method. Additionally, it allows knowledge
of E and/orA, if available, to be integrated for further performance improvement.

Influence maximization Given cascade data D, influence maximization is to find the source set
S that generates the maximal influence σ(t;S) at t among all subsets of size n0, where t > 0 and
1 ≤ n0 < n are prescribed. Namely, influence maximization can be formulated as

max
S

σ(t;S), s.t. S ⊂ V , |S| ≤ n0. (2)

There are two main ingredients of an influence maximization method for solving (2): an influence
prediction subroutine that evaluates the influence σ(t;S) for any given source set S, and an (ap-
proximate) combinatorial optimization solver to find the optimal set S of (2) that repeatedly calls
the subroutine. The combinatorial optimization problem is NP-hard and is often approximately
solved by greedy algorithms with guaranteed sub-optimality when σ(t;S) is submodular in S. In
our experiment, we show that a standard greedy approach equipped with our proposed influence
estimation method outperforms other state-of-the-art influence maximization algorithms.

3 Neural Mean-Field Dynamics

Modelling diffusion by stochastic jump processes We begin with the jump process formulation
of network diffusion. Given a source set χS , let Xi(t;χS) denote the infection status of the node i at
time t. Namely, Xi(t) = 1 if node i is infected by time t, and 0 otherwise. Then {Xi(t) : i ∈ [n]}
are a set of n coupled jump processes, such that Xi(t;χS) jumps from 0 to 1 when the node i is
infected by any of its infected neighbors at t. Let λ∗

i (t) be the conditional intensity of Xi(t;χS)
given the historyH(t) = {Xi(s;χS) : s ≤ t, i ∈ [n]}, i.e.,

λ∗
i (t) := lim

τ→0+

E[Xi(t+ τ ;χS)−Xi(t;χS)|H(t)]
τ

. (3)

Note that the numerator of (3) is also the conditional probability Pr(Xi(t+ τ) = 1, Xi(t) = 0|H(t))
for any τ > 0. In influence prediction, our goal is to compute the probability x(t;χS) = [xi(t;χS)]
in (1), which is the expectation of Xi(t;χS) conditioning onH(t):

xi(t;χS) = EH(t)[Xi(t;χS)|H(t)]. (4)

To this end, we adopt the following notations (for notation simplicity we temporarily drop χS in this
subsection as the source set S is arbitrary but fixed):

xI(t) = EH(t)

[∏
i∈I Xi(t;χS)

∣∣H(t)] , yI(t) =
∏

i∈I xi(t), eI(t) = xI(t)− yI(t) (5)

for any I ⊂ [n] and |I| ≥ 2. Then we can derive the evolution of z := [x; e]. Here x(t) ∈ [0, 1]n

is the resolved variable whose value is of interests and samples can be directly observed from the
cascade data D, and e(t) = [· · · , eI(t), · · · ] ∈ RN−n where N = 2n − 1 is the unresolved variable
that captures all the second and higher order moments. The complete evolution equation of z is given
in the following theorem, where the proof is provided in Appendix B.1.
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Theorem 1. The evolution of z(t) = [x(t); e(t)] follows the nonlinear differential equation:

z′ = f̄(z), where f̄(z) = f̄(x, e) =
[
f(x;A)− (A�E)1; · · · , fI(x, e); · · ·

]
, (6)

with initial value z0 = [χS ;0] ∈ RN , E = [eij ] ∈ Rn×n, and

f(x;A) = Ax− diag(x)Ax, (7)

fI(x, e) =
∑
i∈I

∑
j /∈I

αji(yI − yI∪{j} + eI − eI∪{j})−
∑
i∈I

yI\{i}
∑
j 6=i

αji(xj − yij − eij). (8)

The evolution (6) holds true exactly for the standard diffusion model with exponential distribution, but
also approximates well for other distributions p, as shown in the empirical study below. In either case,
the dimension N of z grows exponentially fast in network size n and hence renders the computation
infeasible in practice. To overcome this issue, we employ the Mori-Zwanzig formalism [7] to derive
a reduced-order model of x with dimensionality n only.

Mori-Zwanzig memory closure We employ the Mori-Zwanzig (MZ) formalism [7] that allows to
introduce a generalized Langevin equation (GLE) of the x part of the dynamics (6). The GLE of x is
derived from the original equation (6) describing the evolution of z = [x; e], while maintaining the
effect of the unresolved part e. This is particularly useful in our case, as we only need x for infection
probability estimation and influence prediction.

Define the Liouville operator L such that L[g](z) := f̄(z) ·∇zg(z) for any real-valued function g of
z. Let etL be the Koopman operator associated with L such that etLg(z(0)) = g(z(s)) where z(t)
solves (6). ThenL is known to satisfy the semi-group property for all g, i.e., etLg(z) = g(etLz). Now
consider the projection operator P as the truncation such that (Pg)(z) = (Pg)([x; e]) = g([x; 0])
for any z = [x; e], and its orthogonal complement as Q = I − P where I is the identity operator.
The following theorem describes the exact evolution of x(t), and the proof is given in Appendix B.2.
Theorem 2. The evolution of x specified in (6) can also be described by the following GLE:

x′ = f(x;A) +

∫ t

0

k(t− s,x(s)) ds, (9)

where f is given in (7), and k(t,x) := PLetQLQLx.

Note that, (9) is not an approximation—it is an exact representation of the x part of the original
problem (6). The equation (9) can be interpreted as a mean-field equation, where the two terms on the
right hand side are called the streaming term (corresponding to the mean-field dynamics) and memory
term, respectively. The streaming term provides the main drift of the evolution, and the memory term
in the convolution form is for vital adjustment. This inspires us to approximate the memory term as a
time convolution on x, which naturally yields a delay differential equation and further reduces to a
structured recurrent neural network (RNN) after discretization, as shown in the next subsection.

Delay differential equation and RNN To compute the evolution (9) of x, we consider an approxi-
mation of the Mori-Zwanzig memory term by a neural net ε with time convolution of x as follows,∫ t

0

k(t− s,x(s)) ds ≈ ε(x(t),h(t);η) where h(t) =

∫ t

0

K(t− s;w)x(s) ds. (10)

In (10),K(·;w) is a convolutional operator with parameterw, and ε(x,h;η) is a deep neural net
with (x,h) as input and η as parameter. Both w and η are to be trained by the cascade data D.
Hence, (9) reduces to a delay differential equation which involves a time integral h(t) of past x:

x′ = f̃(x,h;θ) := f(x;A) + ε(x,h;η). (11)

The initial condition of (11) with source set S is given by

x(0) = χS , h(0) = 0, and x(t) = h(t) = 0, ∀ t < 0. (12)

We call the system (11) with initial (12) the neural mean-field (NMF) dynamics.

The delay differential equation (11) is equivalent to a coupled system of (x,h). In addition, we show
that the discretization of this system reduces to a structured recurrent neural network ifK(t;w) is a
(linear combination of) matrix convolutions in the following theorem.
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Theorem 3. The delay differential equation (11) is equivalent to the following coupled system:

x′ = f̃(x,h;A,η) = f(x;A) + ε(x,h;η) (13a)

h′ =
∫ t

0
K(t− s;w)f̃(x(s),h(s);A,η) ds (13b)

with initial condition (12). In particular, if K(t;w) =
∑L

l=1Ble
−Clt for some L ∈ N with

w = {(Bl,Cl)l : BlCl = ClBl, ∀ l ∈ [L]}, then (13) can be solved by a non-delay system of
(x,h) with (13a) and h′ =

∑L
l=1(Blx − Clh). The discretization of such system (with step size

normalized to 1) reduces to an RNN with hidden layers (xt,ht) for t = 0, 1, . . . , T − 1:

xt+1 = xt + f(xt;A) + ε(xt,ht;η) (14a)

ht+1 = ht +
∑L

l=1(Blxt+1 −Clht) (14b)

where the input is given by x0 = χS and h0 = 0.

The proof is given in Appendix B.3. The matrices Bl and Cl in (14b) correspond to the weights
on xt+1 and ht to form the linear transformation, and the neural network ε wraps up (xt,ht) to
approximate the nonlinear effect of the memory term in (10).

We here consider a more general convolution kernelK(·;w) than the exponential kernel. Note that,
in practice, the convolution weight K on older state x in (10) rapidly diminishes, and hence the
memory kernelK can be well approximated with a truncated history of finite length τ > 0, or τ ∈ N
after discretization. Hence, we substitute (14b) by

ht =K
wmt where Kw = [Kw

0 , . . . ,Kw
τ ] and mt = [xt; . . . ;xt−τ ]. (15)

Then we formulate the evolution of the augmented statemt defined in (15) and follow (14a) to obtain
a single evolution ofmt for t = 0, . . . , T − 1:

mt+1 = g(mt;θ), where g(m; θ) := [J0m+ f̃(J0m,Kwm;θ);J0m; . . . ;Jτ−1m] (16)

and Js := [· · · , I, · · · ] ∈ Rn×(τ+1)n has identity I as the (s + 1)th block and 0 elsewhere (thus
Jsmt extracts the (s+1)th block xt−s ofmt) for s = 0, . . . , τ −1. If (14b) is considered, a simpler
augmented state mt = [xt;ht] can be formed similarly; we omit the details here. We will use the
dynamics (16) of the augmented statemt in the training below.

An optimal control formulation of parameter learning Now we consider the training of the
network parameters θ = (A,η,w) of (16) using cascade dataD. Given a sample cascade x̂ = (S, τ )
from D, we can observe its value in {0, 1}n at each of the time points t = 1, . . . , T and obtain the
corresponding infection states, i.e., x̂ = {x̂t ∈ {0, 1}n : t ∈ [T ]} (see Section 2). Maximizing the
log-likelihood of x̂ for the dynamics xt = xt(θ) ∈ [0, 1]n induced by θ is equivalent to minimizing
the loss function `(x, x̂):

`(x, x̂) =
∑T

t=1 x̂t · logxt + (1− x̂t) · log(1− xt), (17)

where the logarithm is taken componentwisely. We can add a regularization term r(θ) to (17) to
impose prior knowledge or constraint on θ. In particular, if E is known, we can enforce a constraint
such thatA must be supported on E only. Otherwise, we can add ‖A‖1 or ‖A‖0 (the l1 or l0 norm
of the vectorizedA) if E is expected to be sparse. In general,A can be interpreted as the convolution
to be learned from a graph convolution network (GCN) [26, 53]. The support and magnitude ofA
imply the network structure and strength of interaction between nodes, respectively. We provide more
details of our numerical implementation in Section 4 and Appendix D.1.

The optimal parameter θ can be obtained by minimizing the loss function in (17) subject to the NMF
dynamics (16). This procedure can also be cast as an optimal control problem to find θ that steers
mt to fit data D through the NMF in (16):

min
θ

J (θ) := (1/K) ·
∑K

k=1 `(x
(k), x̂(k)) + r(θ) (18a)

s.t. m
(k)
t+1 = g(m

(k)
t ;θ), m

(k)
0 = [χSk

,0, . . . ,0], t ∈ [T ]− 1, k ∈ [K], (18b)

where x(k)
t = J0m

(k)
t for all t and k. The problem of optimal control has been well studied in

both continuous and discrete cases in the past decades [2]. In particular, the discrete optimal control
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with nonlinear difference equations and the associated maximum principle have been extensively
exploited. Recently, an optimal control viewpoint of deep learning has been proposed [32]—the
network parameters of a neural network play the role of control variable in a discretized differential
equation, and the training of these parameters for the network output to minimize the loss function
can be viewed as finding the optimal control to minimize the objective function at the terminal state.

The Pontryagin’s Maximum Principle (PMP) provides an important optimality condition of the
optimal control [2, 32]. In standard optimal control, the control variable can be chosen freely in the
allowed set at any given time t, which is a key in the proof of PMP. However, the NMF dynamics
derived in (13) or (14) require a time invariant control θ throughout. This is necessary since θ
corresponds to the network parameter and needs to be shared across different layers of the RNN,
either from the linear kernel case with state [x;h] in (14) or the general case with state m in (16).
Therefore, we need to modify the original PMP and the optimality condition for our NMF formulation.
To this end, consider the Hamiltonian function

H(m,p;θ) = p · g(m; θ)− 1
T r(θ), (19)

and define the total Hamiltonian of the system (14) as
∑T−1

t=0 H(mt,pt+1;θ). Then we can show
that the optimal solution θ∗ is a time invariant control satisfying a modified PMP as follows.

Theorem 4. Let x∗ be the optimally controlled state process by θ∗, then there exists a co-state
(adjoint) p∗ which satisfies the backward differential equation

m∗
t+1 = g(m∗

t ;θ
∗), m∗

0 = [χSk
;0; . . . ;0], t = 0, . . . , T − 1, (20a)

p∗t = p∗t+1 · ∇mg(m
∗
t ;θ

∗), p∗T = −∇mT
`, t = T − 1, . . . , 0. (20b)

Moreover, the optimal θ∗ maximizes the total Hamiltonian: for any θ, there is∑T−1
t=0 H(m∗

t ,p
∗
t+1;θ

∗) ≥
∑T−1

t=0 H(m∗
t ,p

∗
t+1;θ). (21)

In addition, for any given θ, there is ∇θJ (θ) = −
∑T−1

t=0 ∂θH(mθ
t ,p

θ
t+1;θ), where {mθ

t ,p
θ
t :

0 ≤ t ≤ T} are obtained by the forward and backward passes (20a)-(20b) with θ.

The proof is given in Appendix B.4. We introduced the total Hamiltonian
∑T−1

t=0 H(mt,pt+1;θ) in
Theorem 4 since the NMF dynamics (14) (or (16)) suggest a time invariant control θ independent
of t, which corresponds to θ shared by all layers in an RNN. This is particularly important for time
series analysis, where we perform regression on data observed within limited time window, but
often want to use the learned parameters to predict events in distant future. Theorem 4 also implies
that performing gradient descent to minimize J in (18a) with back-propagation is equivalent to
maximizing the total Hamiltonian in light of (21).

Our numerical implementation of the proposed NMF is summarized in Algorithm 1. From training
cascade data D, NMF can learn the parameter θ = (A,η,w). The support (indices of nonzero
entries) of the matrixA reveals the edge E of the diffusion network G = (V, E), and the values ofA
are the corresponding infection rates on the edges. In addition to the diffusion network parameters
inferred by A, we can also estimate (predict) the influence {xt : t ∈ [T ]} of any new source set
x0 ∈ Rn by a forward pass of NMF dynamics (16) with the learned θ. Note that this forward pass
can be computed on the fly, which is critical to those downstream applications (such as influence
maximization) that call influence estimation as a subroutine repeatedly during the computations.

4 Numerical Experiments

Infection probability and influence function estimation We first test NMF on a set of synthetic
networks that mimic the structure of real-world diffusion network. Two types of the Kronecker
network model [27] are used: hierarchical (Hier) [8] and core-periphery (Core) [28] networks with
parameter matrices [0.9,0.1;0.1,0.9] and [0.9,0.5;0.5,0.3], respectively. For each type of network
model, we generate 5 networks consisting of 128 nodes and 512 edges. We simulate the diffusion
where the infection times are modeled by exponential distribution (Exp) and Rayleigh distribution
(Ray). For each distribution, we draw αji from Unif[0.1,1] to simulate the varying interactions
between nodes. We generate training data consists of K=10,000 cascades, which is formed by 10
sample cascades for each of 1,000 source sets (a source set is generated by randomly selecting 1 to
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Algorithm 1 Neural mean-field (NMF) algorithm for network inference and influence estimation

Input: D = {Ck : k ∈ [K]} where Ck = {x̂(k)(t) ∈ {0, 1}n : t = 0, 1, . . . , T}.
Initialization: Parameter θ = (A,η,w).
for k = 1, . . . ,K do

Sample a mini-batch D̂ ⊂ D of cascades.
Compute {mt : t ∈ [T ]} using (16) with θ andm0 = [χS ;0] for each C ∈ D̂. (Forward pass)
Compute ∇̂θJ =

∑
C∈D̂∇θ`(x, x̂) with ` in (17). (Backward pass)

Update parameter θ ← θ − τ∇̂θJ .
end for
Output: Network parameter θ.

10 nodes from the network). All networks and cascades are generated by SNAP [29]. Our numerical
implementation of NMF is available at https://github.com/ShushanHe/neural-mf.

We compare NMF to two baseline methods: InfluLearner [12] which is a state-of-the-art method that
learns the coverage function of each node for any fixed time, and a conditional LSTM (LSTM for
short) [22], which are among the few existing methods capable of learning infection probabilities
of individual nodes directly from cascade data as ours. For InfluLearner, we set 128 as the feature
number for optimal accuracy as suggested in [12]. For LSTM, we use one LSTM block and a dense
layer for each t. To evaluate accuracy, we compute the mean absolute error (MAE) of node infection
probability and influence over 100 source sets for each time t. More details of the evaluation criteria
are provided in Appendix D.1. The results are given in Figure 1, which shows the mean (center line)
and standard deviation (shade) of the three methods. NMF generally has lowest MAE, except at
some early stages where InfluLearner is better. Note that InfluLearner requires and benefits from the
knowledge of the original source node for each infection in the cascade (provided in our training
data), which is often unavailable in practice and not needed in our method.

We also tested NMF on a real dataset [54] from Sina Weibo social platform consisting of more that
1.78 million users and 308 million following relationships among them. Following the setting in
[12], we select the most popular tweet to generate diffusion cascades from the past 1,000 tweets of
each user. Then we recreate the cascades by only keeping nodes of the top 1,000 frequency in the
pooled node set over all cascades. For testing, we uniformly generate 100 source sets of size 10 and
use t = 1, 2, . . . , 10 as the time steps for observation. Finally, we test 100 source sets and compare
our model NMF with the InfluLearner and LSTM. The MAE of all methods are shown in Figure 2a
which shows that NMF significantly outperforms LSTM and is similar to InfluLearner. However,
unlike InfluLearner that requires re-training for every t and is computationally expensive, NMF learns
the evolution at all t in a single sweep of training and is tens of time faster.

We also test robustness of NMF for varying network density |E|/n. The MAE of influence and
infection probabilty by NMF on a hierarchical network with n = 128 are shown in Figure 2c and 2b,
respectively. NMF remains accurate for denser networks, which can be notoriously difficult for other
methods such as InfluLearner.

Network structure inference The interpretable parameterization of NMF allows us to explicitly
learn the weight matrixA. In this test, we examine the quality of the learnedA. We set the recovered
adjacency matrix E to the binary indicator matrix A> ≥ ε, i.e., (E)i,j = 1 if (A)ji ≥ 0.01. To
evaluate the quality of E andA, we use four metrics: precision (Prc), recall (Rcl), accuracy (Acc),
and correlation (Cor), defined as follows,

Prc(E , E∗) = |E∩E∗|
|E∗| , Rcl(E , E∗) = |E∩E∗|

|E| , Acc(E , E∗) = 1− |E−E∗|
|E|+|E∗| , Cor(A,A∗) = tr(A>A∗)

‖A‖F ‖A∗‖F
.

where E∗ and A∗ are their true values, respectively. In Acc, the edge set E is also interpreted as
a matrix, and |E| counts the number of nonzeros in E . In Cor, ‖A‖2F = tr(A>A) is the Frobenius
norm of the matrix A. Prc is the ratio of edges in E∗ that are recovered in E . Rcl is the ratio of
correctly recovered edges in E . Acc indicates the ratio of the number of common edges shared by
E and E∗ against the total number of edges in them. Cor measures similarity between A and A∗

by taking their values into consideration. All metrics are bounded between [0, 1], and higher value
indicates better result. For comparison, we also test NETRATE [16] to the cascade data and learnA
with Rayleigh distribution. Evaluation by four metrics are shown in Table 1, which indicates that
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Figure 1: MAE of influence (top row) and node infection probability (bottom row) by LSTM,
InfluLearner, and NMF on different combinations of Hierarchical (Hier) and Core-periphery (Core)
networks, and exponential (Exp) and Rayleigh (Ray) diffusion models. Mean (centerline) and
standard deviation (shade) over 100 tests are shown.

Table 1: Performance of structure inference using NETRATE and the proposed NMF on Random,
Hierarchical, and Core-periphery networks with Rayleigh distribution as the diffusion time model
on edges. Quality of the learned edge set E and distribution parameterA are measured by precision
(Prc), recall (Rcl), accuracy (Acc), and correlation (Cor). Higher value indicates better quality.

Network Method Prc Rcl Acc Cor

Random NETRATE 0.481 0.399 0.434 0.465
NMF 0.858 0.954 0.903 0.950

Hierarchical NETRATE 0.659 0.429 0.519 0.464
NMF 0.826 0.978 0.893 0.938

Core-periphery NETRATE 0.150 0.220 0.178 0.143
NMF 0.709 0.865 0.779 0.931

NMF outperforms NETRATE in all metrics. Note that NMF learnsA along with the NMF dynamics
for infection probability estimation in its training, whereas NETRATE can only learn the matrixA.

Influence maximization We use NMF as an influence estimation subroutine in a classical greedy
algorithm [38] (NMF+Greedy), and compare with a state-of-the-art method DIFFCELF[42] for
influence maximization (IM). Like NMF+Greedy, DIFFCELF also only requires infection time
features, but not network structures as in most existing methods. We generate 1000 cascades with
unique source (as required by DIFFCELF but not ours) on a hierarchical network of 128 nodes and
512 edges, and use exponential distribution for the transmission function with A generated from
Unif[1,10]. Time window is T = 20. For each source set size n0 = 1, . . . , 10, NMF+Greedy and
DIFFCELF are applied to identify the optimal source sets, whose influence are computed by averaging
10,000 MC simulated cascades. Figure 2d shows that the source sets obtained by NMF+Greedy
generates greater influence than DIFFCELF consistently for every source size n0.

5 Related Work

Sampling-based influence estimation methods have been considered for discrete-time and continuous-
time diffusion models. Discrete-time models assume node infections only occur at discrete time
points. Under this setting, the Independent Cascade (IC) model [24] is considered and a method with
provable performance guarantee is developed for single source which iterates over a sequence of
guesses of the true influence until the verifier accepts in [34]. To resolve the inefficiency of Monte
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Figure 2: (a) MAE of influence estimated by LSTM, InfluLearner on Weibo data; (b)–(c) MAE of
influence and infection probability of NMF for different network densities; (d) Influence of source
sets selected by DIFFUCELF and NMF+Greedy for n0 = 1, . . . , 10.

Carlo simulations, the reverse influence sampling (RIS) sketching method [5] is adopted in [41].
Moreover, instead of using the full network structure, sketch-based approaches only characterize
propagation instances for influence computation, such as the method in [10], which considers per-node
summary structures defined by the bottom-k min-bash [9] sketch of the combined reachability set. In
contrast to discrete-time models, continuous-time diffusion models allow arbitrary event occurrence
times and hence are more accurate in modeling real-world diffusion processes. In Continuous-time
Independent Cascade (CIC) models, influence estimation can be reformulated as the problem of
finding the least label list which contains information about the distance to the smallest reachable
labels from the source [13, 20]. Compared to methods using a fixed number of samples, a more
scalable approximation scheme with a built-in block is developed to minimize the number of samples
needed for the desired accuracy [40].

The aforementioned methods require knowledge of cascade traces [10] or the diffusion networks
(review of related work on network structure inference is provided in Appendix C), such as node
connectivity and node-to-node infection rates, as well as various assumptions on the diffusion of
interests. However, such knowledge about the diffusion networks may not be available in practice,
and the assumptions on the propagation or data formation are often application-specific and do not
hold in most other problems. InfluLearner [12] is a state-of-the-art method that does not require
knowledge of the underlying diffusion network. InfluLearner estimates the influence directly from
cascades data in the CIC models by learning the influence function with a parameterization of the
coverage functions using random basis functions. However, the random basis function suggested by
[12] requires knowledge of the original source node for every infection, which can be difficult or
impossible to be tracked in real-world applications.

In recent years, deep learning techniques have been employed to improve the scalability of influence
estimation on large networks. In particular, convolutional neural networks (CNNs) and attention
mechanism are incorporated with both network structures and user specific features to learn users’
latent feature representation in [44]. By piping represented cascade graphs through a gated recurrent
unit (GRU), the future incremental influence of a cascade can be predicted [31]. RNNs and CNNs
are also applied to capture the temporal relationships on the user-generated contents networks (e.g.,
views, likes, comments, reposts) and extract more powerful features in [55]. In methods based on
graph structures, graph neural networks (GNNs) and graph convolution networks (GCNs) are widely
applied. In particular, two coupled GNNs are used to capture the interplay between node activation
states and the influence spread [6], while GCNs integrated with teleport probability from the domain
of page rank in [30] enhanced the performance of method in [44]. However, these methods depend
critically on the structure or content features of cascades which may not be available in practice.

6 Conclusion

We proposed a novel framework using neural mean-field dynamics for inference and estimation on
diffusion networks. Our new framework is derived from the Mori-Zwanzig formalism to obtain exact
evolution of node infection probabilities. The memory term of the evolution can be approximated by
convolutions, which renders the system as a delay differential equation and its time discretization
reduces to a structured and interpretable RNN. Empirical study shows that our approach is versatile
and robust to different variations of diffusion network models, and significantly outperforms existing
approaches in accuracy and efficiency on both synthetic and real-world data sets.
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Broader Impact

This paper makes a significant contribution to the learning of structure and infection probabilities
for diffusion networks, which is one of the central problems in the study of stochastic information
propagation on large heterogeneous networks. The proposed neural mean-field (NMF) dynamics
provide the first principled approach for inference and estimation problems using cascade data.
NMF is shown to be a delay differential equation with proper approximation of memory integral
using learnable time convolution operators, and the system reduces to a highly structured and
interpretable recurrent neural network after time discretiztion. Potential applications include influence
maximization, outbreak detection, and source identification.
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A An Illustrative Example of Mori-Zwanzig Formalism

The following problem is widely used as an introductory example of the Mori-Zwanzig (MZ)
formalism [21, 51] for model order reduction: let z = [x;y] ∈ RN where x ∈ Rn, y ∈ RN−n, and
n� N . Consider the system of linear differential equations{

x′ = A11x+A12y,
y′ = A21x+A22y,

(22)

with initial values x(0) = x0 and y(0) = y0. Suppose we are interested in the time evolution of
x(t), which depends on the joint effect of x and y. However the computation of the complete system
(22) is expensive and can be prohibitive for large N . The question is whether we can derive a reduced
system only involving x from (22). To this end, we assume x is given, and solve for y from the
y-equation of (22) to obtain

y(t) = eA22ty0 +

∫ t

0

eA22(t−s)A22x(s) ds. (23)

Then we plug this back into the x-equation of (22) and obtain

x′(t) = A11x(t) +A12

∫ t

0

eA22(t−s)A22x(s) ds+A12e
A22ty0, (24)

which neglects the dependence on y(t) except for the initial value y0.

As shown in the example above, MZ formalism aims at reducing a high-dimensional system of z
into a low-dimensional system of x (resolved variable) while maintaining the effect of y (unresolved
variable). This is particularly useful if an exact solution of z is unnecessary to understand the dynamics
of x. Specialized derivations and subsequent approximation techniques can be implemented to obtain
highly efficient numerical solutions for nonlinear systems.

B Proofs

B.1 Proof of Theorem 1

Proof. Let λ∗i (t) be the conditional intensity of node i at time t, i.e., E[dXi(t)|H(t)] = λ∗i (t) dt. In
the standard diffusion model, the conditional intensity λ∗i (t) of a healthy node i (i.e., Xi(t) = 0) is
determined by the total infection rate of its infected neighbors j (i.e., Xj(t) = 1). That is,

λ∗i (t) =
∑
j

αjiXj(t)(1−Xi(t)). (25)

By taking expectation EH(t)[·] on both sides of (25), we obtain

λi(t) :=EH(t)[λ
∗
i (t)] = EH(t)

[
αjiXj(t)(1−Xi(t))

∣∣H(t)
]

=
∑
j

αji(xj − xij) =
∑
j

αji(xj − yij − eij). (26)

On the other hand, there is

λi(t) dt = EH(t)[λ
∗
i (t)] dt = EH(t)[dXi(t)|H(t)] = dEH(t)[Xi(t)|H(t)] = dxi. (27)

Combining (26) and (27) yields

x′i =
dxi(t)

dt
=
∑
j

αji(xj − yij − eij) = (Ax)i − (diag(x)Ax)i −
∑
j

αjieij

for every i ∈ [n], which verifies the x part of (6). Similarly, we can obtain

x′I =
∑
i∈I

∑
j /∈I

αji(xI − xI∪{j}) =
∑
i∈I

∑
j /∈I

αji(yI + eI − yI∪{j} − eI∪{j}). (28)
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Moreover, by taking derivative on both sides of xI(t) = yI(t) + eI(t), we obtain

x′I =
∑
i∈I

yI\{i}x
′
i + e′I =

∑
i∈I

yI\{i}
∑
j 6=i

αji(xj − xixj − eij) + e′I . (29)

Combining (28) and (29) yields the e part of (6).

It is clear that x0 = χS . For every I , at time t = 0, there is xI(0) =
∏
i∈I Xi(0) = 1 if I ⊂ S

and 0 otherwise; and the same for yI(0). Hence eI(0) = xI(0) − yI(0) = 0 for all I . Hence
z0 = [x0; e0] = [χS ;0], which verifies the initial condition of (6).

B.2 Proof of Theorem 2

Proof. Consider the system (6) over a finite time horizon [0, T ], which evolves on a smooth manifold
Γ ⊂ RN . For any real-valued phase (observable) space function g : Γ→ R, the nonlinear system (6)
is equivalent to the linear partial differential equation, known as the Liouville equation:{

∂tu(t, z) = L[u](t, z),

u(0, z) = g(z),
(30)

where the Liouville operator L[u] := f̄(z) · ∇zu. The equivalency is in the sense that the solution of
(30) satisfies u(t, z0) = g(z(t; z0)), where z(t;z0) is the solution to (6) with initial value z0.

Denote etL the Koopman operator associated with L such that etLg(z0) = g(z(t)) where z(t) is the
solution of (6). Then etL satisfies the semi-group property, i.e.,

etLg(z) = g(etLz) (31)

for all g. On the right hand side of (31), z can be interpreted as z = ι(z) = [ι1(z), . . . , ιN (z)]
where ιj(z) = zj for all j.

Now consider the projection operator P as the truncation such that Pg(z) = Pg(x, e) = g(x, 0) for
any z = (x, e), and its orthogonal complement as Q = I − P where I is the identity operator. Note
that z′(t) = dz(t)

dt = ∂
∂te

tLz0, and f̄(z(t)) = etLf(z0) = etLLz0 since Lιj(z) = fj(z) for all z
and j. Therefore (6) implies that

∂

∂t
etLz0 = etLLz0 = etLPLz0 + etLQLz0. (32)

Note that the first term on the right hand side of (32) is

etLPLz0 = PLetLz0 = PLz(t). (33)

For the second term in (32), we recall that the well-known Dyson’s identity for the Koopman operator
L is given by

etL = etQL +

∫ t

0

esLPLe(t−s)QL ds. (34)

Applying (34) to QLz0 yields

etLQLz0 = etQLQLz0 +

∫ t

0

esLPLe(t−s)QLQLz0 ds

= etQLQLz0 +

∫ t

0

PLe(t−s)QLQLesLz0 ds (35)

= etQLQLz0 +

∫ t

0

PLe(t−s)QLQLz(s) ds.

Substituting (33) and (35) into (32), we obtain

∂

∂t
etLz0 = PLz(t) + etQLQLz0 +

∫ t

0

PLe(t−s)QLQLz(s) ds, (36)

where we used the fact that etLPLz0 = PLetLz0 = PLz(t). Denote φ(t, z) := etLQLz, then we
simplify (36) into

∂

∂t
etLz0 = PLz(t) + φ(t, z0) +

∫ t

0

k(t− s, z(s)) ds, (37)
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where k(t, z) := PLφ(t, z) = PLetLQLz.

Now consider the evolution of φ(t, z), which is given by

∂tφ(t, z0) = QLφ(t,z0), (38)

with initial condition φ(0, z0) = QLz0 = Lz0−PLz0 = f̄(x0, e0)− f̄(x0,0) = 0 since e0 = 0.
Applying P on both sides of (38) yields

∂tPφ(t, z0) = PQLφ(t, z0) = 0,

with initial Pφ(0, z0) = 0. This implies that Pφ(t, z0) = 0 for all t. Hence, applying P to both
sides of (36) yields

∂

∂t
Pz(t) =

∂

∂t
PetLz0 = PLz(t) +

∫ t

0

Pk(t− s,z(s)) ds. (39)

Restricting to the first n components, Pz(t) reduces to x(t) and Pk(t− s,z(s)) reduces to k(t−
s,x(s)). Recalling that PLz(t) = Pf̄(z(t)) = f̄(x(t),0) = f(x(t)) completes the proof.

B.3 Proof of Theorem 3

Proof. From the definition of h(t) in (40), we obtain

h =

∫ t

0

K(t− s;w)x(s) ds =

∫ t

−∞
K(t− s;w)x(s) ds =

∫ ∞
0

K(s;w)x(t− s) ds (40)

where we used the fact that x(t) = 0 for t < 0. Taking derivative on both sides of (40) yields

h′ =

∫ ∞
0

K(s;w)x′(t− s) ds =

∫ ∞
0

K(s;w)f̃(x(t− s),h(t− s);A,η) ds

=

∫ t

−∞
K(t− s;w)f̃(x(s),h(s);A,η) ds =

∫ t

0

K(t− s;w)f̃(x(s),h(s);A,η) ds

where we used the fact that x′(t) = f̃(x(t),h(t);A,η) = 0 for t < 0 in the last equality.

IfK(t;w) =
∑
lBle

−Clt, then we can take derivative of (40) and obtain

h′(t) =
L∑
l=1

d

dt

(∫ t

−∞
Ble

−Cltx(s) ds
)

=
L∑
l=1

(
Blx(t)−

∫ t

−∞
BlCle

−Cltx(s) ds
)

=
L∑
l=1

(
Blx(t)−Cl

∫ t

−∞
Ble

−Cltx(s) ds
)

=
L∑
l=1

(Blx(t)−Clh(t)).

Time discretization (14) can then be obtained by finite difference in time with normalized step size 1
and proper scaling of the network parameters θ.

B.4 Proof of Theorem 4

Proof. We consider the augmented state ξ and nonlinear dynamics ḡ(·;θ) associated with m and
g(·;θ), defined as follows:

ξ0 =


m0

0
...
0

 , ξ1 = ḡ(ξ0;θ) :=


g1(m0;θ)
g2(m0;θ)

...
gT (m0;θ)

 =


m1

m2

...
mT

 , (41)

where gt stands for the composition of g(·;θ) for t times.

Without overloading the notations, we reuse J and ` of the objective function (18a) and loss function
(17) of m respectively for the augmented state ξ. In addition, following [32], we further simpify
the notation by combining the K training data into a single variable x̂ := [x̂(1), . . . , x̂(K)]; similar
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for the state variable x. In this case, the dynamics g is applied to each column of x, and the loss
function ` is to be interpreted as the average loss as in (17). Furthermore, we temporarily assume
the regularization r(θ) = 0 as it is simple to append θ to the state ξ and merge r(θ) into the loss
function `(ξ, ξ̂). Then the optimal control problem (18) is rewritten as

min
θ

J (θ) := `(ξ, ξ̂) + r(θ) (42a)

s.t. ξ1 = ḡ(ξ0;θ), ξ0 = [m0;0; . . . ;0]. (42b)

Note that (42) is a one-step optimal control with ḡ(·;θ). Now by the discrete Pontryagin’s Maximum
Principle [2], for the state ξ∗ optimally controlled by θ∗, there exists a co-state ψ∗, such that ξ∗ and
ψ∗ satisfy the following forward and backward equations for θ = θ∗:

ξ∗1 = ḡ(ξ∗0 ;θ∗), ξ∗0 = [m0;0; . . . ;0], (43a)

ψ∗0 = ψ∗1 · ∇ξḡ(ξ∗1 ;θ∗), ψ∗1 = −∇ξ`(ξ∗1 , ξ̂), (43b)

where

ξ∗1 = [m∗1; . . . ;m∗T ] and ψ∗1 = [∂m1
`(ξ∗1 , ξ̂); . . . ; ∂mT

`(ξ∗1 , ξ̂)] = [p∗1; . . . ;p∗T ]. (44)

In addition, θ∗ maximizes the HamiltonianH associated with (43):

H(ξ∗,ψ∗;θ∗) ≥ H(ξ∗,ψ∗;θ), ∀θ, where H(ξ,ψ;θ) := ψ1 · ḡ(ξ0;θ)− r(θ). (45)

Combining (44), (45), and the definition of H in (19) yields the maximization of total Hamiltonian at
the optimal control θ∗:∑T−1

t=0 H(m∗t ,p
∗
t+1;θ∗) ≥

∑T−1
t=0 H(m∗t ,p

∗
t+1;θ), ∀θ.

For any control θ and its state and co-state variables ξθ and ψθ following (43) with θ (also corre-
sponding tomθ

t and pθt for t = 0, . . . , T ), we have

∇θJ (θ) = ∇ξ`(ξθ1 , ξ̂) · ∇θξθ1 +∇θr(θ)

= [∂m1
`(ξθ1 , ξ̂); . . . ; ∂mT

`(ξθ1 , ξ̂)] · [∂θg(mθ
0 ;θ); . . . ; ∂θg(mθ

T−1;θ)] +∇θr(θ)

= −
∑T
t=1

(
pθt · ∂θg(mθ

t ;θ) + 1
T∇θr(θ)

)
= −

∑T
t=1 ∂θH(mθ

t ,p
θ
t+1;θ),

which completes the proof.

C Additional Related Work

Network structure inference Inference of diffusion network structure is an important problem
closely related to influence estimation. In particular, if the network structure and infections rates are
unknown, one often needs to first infer such information from a training dataset of sampled cascades,
each of which tracks a series of infection times and locations on the network. Existing methods have
been proposed to infer network connectivity [18, 45, 33, 14] and also the infection rates between
nodes [37, 17, 19]. Submodular optimization is applied to infer network connectivity [18, 45, 33]
by considering the most probable [18] or all [45, 33] directed trees supported by each cascade. One
of the early works that incorporate spatio-temporal factors into network inference is introduced in
[33]. Utilizing convex optimization, transmission functions [14], the prior probability [37], and the
transmission rate [17] over edges are inferred from cascades. In addition to static networks, the
infection rates are considered but also in the unobserved dynamic network changing over time [19].
Besides cascades, other features of dynamical processes on networks have been used to infer the
diffusion network structures. To avoid using predefined transmission models, the statistical difference
of the infection time intervals between nodes in the same cascade versus those not in any cascade
was considered in [46]. A given time series of the epidemic prevalence, i.e., the average fraction of
infected nodes was applied to discover the underlying network. The recurrent cascading behavior is
also explained by integrating a feature vector describing the additional features [50]. A graph signal
processing (GSP) approach is developed to infer graph structure from dynamics on networks [35, 11].

17



D Experiment Supplements

D.1 Implementation details

In our NMF implementation, we use a standard LSTM architecture and 3 dense layers for the RNN ε
at each time t. Regularization terms using l1-norm of all parameters are added to the loss function
to promote their sparsity and robustness. Specifically, we use 0.001 to weightA and 0.0001 to all
other trainable parameters, respectively. The NMF networks are trained and tested in TensorFlow
[1] using Adam optimizer with default parameters (lr=0.001, β1=0.9, β2=0.999, ε=1e-8) on a Linux
workstation with Intel 8-Core Turbo 5GHz CPU, 64GB of memory, and an Nvidia RTX 2080Ti GPU.
The LSTM model is trained and tested in the same setting as NMF except a fixed regularization
weight 0.001 for all trainable parameters. InfluLearner is trained in Matlab, and the number of
features is set to 128. All experiments are performed on the same machine. Given ground truth node
infection probability x∗, the Mean Absolute Error (MAE) of influence (Inf) and infection probability
(Prob) of estimated x are defined by |1 · (xt − x∗t )| and ‖xt − x∗t ‖1/n for every t, respectively.

D.2 Inference of node interdependencies

Due to its highly interpretable structure, NMF can also learn the node inter-dependencies through
A. In addition to the quantitative evaluations provided in Section 4, we show the visual appearance
of A inferred by NMF in Figure 3. The ground truth A∗ and A inferred by NETRATE are also
provided for comparison. As we can see,A inferred by NMF is much more faithful toA∗ than that
by NETRATE. Note that NETRATE requires knowledge of specific diffusion model type (Rayleigh
in this test) whereas NMF does not. This result shows that NMF is versatile and robust when only
cascade data are available.

(a) True (b) NETRATE (c) NMF

Figure 3: Ground truthA∗ (left) andA inferred NETRATE (middle) and NMF (right) under the same
color scale using cascaded data from a Hierarchical network with Rayleigh diffusion model.

D.3 Accuracy and Scalability

Accuracy for networks of increasing sizes We test NMF on networks of increasing sizes up to
n=2,048 with |E| = 2n for each n using Hierarchical network and exponential diffusion model on
cascade data containing 10,000 cascades. We also generate 100 extra cascades with 20%-validation
and 80%-test. Figure 4 (a)–(b) shows the MAE of influence (Inf) and infection probability (Prob)
estimated by NMF versus time for varying n, which indicate that the error remains low for large
networks.

Scalability We compare NMF to InfluLearner in terms of runtime for the influence estimation. For
InfluLearner, we draw 200 features. For NMF, the batch size of training cascade data is set to 50 for
the network with more than 2,048 nodes, and is 100 for smaller networks. The training is terminated
when the average MAE of infection probability on validation data does not decrease for 20 epochs.
Figure 4 (c) shows the comparison on runtime (in seconds) of training as we increase the network
size n in InfluLearner and NMF. Note that the original implementation of InfluLearner [12] is in
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Matlab and the computational time increases drastically in network density, whereas our method
retains similar runtime regardless of network density.

0 1 2 3 4 5 6 7 8 9 10
t

0.0

2.5

5.0

7.5

In
flu

en
ce

 M
AE 256

512
1024
2048

(a) Inf MAE vs t

0 1 2 3 4 5 6 7 8 9 10
t

0.000

0.005

0.010

0.015

pr
ob

ab
ilit

y 
M

AE 256
512
1024
2048

(b) Prob MAE vs t

102 103

n

102

103

104

105

t

InfluLearner
NMF

(c) Runtime vs # nodes

Figure 4: (a)–(b) MAE of influence (Inf) and infection probability (Prob) estimated by NMF for
Hierarchical networks with increasing network sizes from 256 to 2048. (c) runtime (in seconds) for
training versus network sizes in log-log scale.

D.4 Additional results of infection probability estimation

We test a total of 9 combinations of network structures and diffusion models. Specifically, we generate
Hierarchical (Hier), Core-periphery (Core), and Random (Rand) networks, and use Exponential
(Exp), Rayleigh (Ray) and Weibull (Wbl) diffusion models on each of these networks. All scale and
shape parameters are drawn from Unif[0.1, 1] and Unif[1, 10], respectively. Here we stretch NMF
and apply to Weibull diffusion model even it has two parameters for each edge. The experiment
setting and evaluation metrics are the same as in Section 4. The MAE of influence and node infection
probabilities are shown in Figure 5, which shows that NMF consistently performs well with low
estimation error after trained by cascade data. Again, it is worth noting that InfluLearner requires the
identity of source node for every infection in the entire cascade during training, which is generally
not available in practice nor needed in NMF.
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(a) Hier + Exp
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(b) Hier + Ray
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(c) Hier + Wbl

2 4 6 8 101214161820
t

0

10

20

in
flu

en
ce

 M
AE LSTM

InfluLearner
NMF

2 4 6 8 101214161820
t

0

10

20

in
flu
en
ce
…
M
A
E LSTM

InfluLearner
NMF

2 4 6 8 101214161820
t

0

10

20

in
flu
en
ce
…
M
A
E LSTM

InfluLearner
NMF

2 4 6 8 101214161820
t

0.0

0.1

0.2

pr
ob

ab
ilit

y 
M

AE

LSTM
InfluLearner
NMF

(d) Core + Exp
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(e) Core + Ray
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(f) Core + Wbl
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(g) Rand + Exp
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Figure 5: MAE of influence (top) and node infection probability (bottom) by LSTM, InfluLearner,
and NMF on each of the 9 different combinations of Hierarchical (Hier), Core-periphery (Core)
and Random (Rand) networks, and exponential (Exp), Rayleigh (Ray) and Weibull (Wbl) diffusion
models. Mean (centerline) and standard deviation (shade) over 100 tests are shown.
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