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Abstract—This paper presents the rationale and design of
the trust plane for ImPACT, a federated platform for managed
sharing of restricted data. Key elements of the architecture
include Web-based notaries for credential establishment based
on declarative templates for Data Usage Agreements, a federated
authorization pipeline, integration of popular services for identity
management, and programmable policy based on a logical trust
model with a repository of linked certificates. We show how
these elements of the trust plane work in concert, and set the
ideas in context with principles of federated authorization. A
focus and contribution of the paper is to explore limitations of
the resulting architecture and tensions among competing design
goals. We also point the way toward future extensions, including
policy-checked data access from cloud-hosted data enclaves with
enhanced defenses against data leakage and exfiltration.

Index Terms—Privacy-restricted data, Data Use Agreement,
Authorization Logic

I. INTRODUCTION

ImPACT [1] is a federated platform enabling networked
research collaborations to discover and share restricted datasets
in a controlled way. Its purpose is to facilitate safe sharing of
sensitive data for approved research purposes. Sharing helps
to obtain scientific value from data, but increases the risk of
leaks or exposure of sensitive data to unauthorized parties.

This paper focuses on the problem of managing autho-
rization and trust under multi-institutional sharing scenarios
involving multiple parties operating under various interests and
agreements. Data is produced and consumed by researchers
affiliated with institutions and research projects. Projects may
involve researchers at multiple institutions, governed by col-
laborative or virtual organizations (CO or VO) with their own
authority structure. Data may be subject to usage conditions
and constraints imposed by law or proprietary concerns.

The ImPACT project addresses how to enable sharing where
sufficient trust exists under terms set by the data owners
in their policies for access and usage. ImPACT seeks to
enable data owners to control which parties and facilities are
authorized to participate, and generally to maintain control
over their data and restrict its distribution and use as they
see fit. Our approach is based on strong authorization using
declarative trust metadata describing access policies, approval

This material is based upon work supported by the National Science
Foundation under grants OAC-1659367 and CNS-1330659.

Ilya Baldin
RENCI/UNC Chapel Hill
Chapel Hill, NC, USA
ibaldin@renci.org

workflows, usage conditions, user identities, research project
affiliations, and/or security properties of the infrastructure used
to process the data.

We define a system as federated when multiple services
operated by different principals contribute to an authorization
decision. Data access in ImPACT involves multiple server
instances to discover the data, establish credentials, and re-
trieve the data. We refer to the set of servers involved as
the authorization pipeline for a request. The ImPACT pipeline
introduces Notary Services that interpret conditions for Data
Usage Agreements (DUAS), collect approvals from Web users,
and issue digitally signed attestations to witness those ap-
provals. It also leverages popular services for federated identity
management to make it simpler to deploy, use, and manage.

The idea of a federated authorization pipeline is common to
other complex federated services, including network testbeds
such as NSF GENI [2] and its successors. Our approach to
ImPACT is derived in part from our experience with GENI.
ImPACT addresses representational challenges through the
use of declarative formalisms including logical trust. It
employs a combination of approaches to collect and transport
authorization metadata through the pipeline to the decision
point, involving design choices to support both web-based and
“hands-free” access from hosted software tools.

We also explore three key challenges drawing on experience
and limitations from the ImPACT prototype and pilot:

1) Obtaining authoritative user attributes for rich au-
thorization. ImPACT leverages CILogon [3] as a key
enabler to supply trust metadata. However, the cost is
that it introduces a “trust bottleneck”—a central point of
trust or attack, standing in the path of all access control
and our goal of decentralized end-to-end trust.

2) Balancing modular composition of the authorization
pipeline with ease of use. InPACT’s trust plane is suf-
ficiently powerful to capture policy-based eligibility for
the service instances that establish credentials, enabling
flexible deployments. The prototype allows Web users
to “click through” to gain data access, but that solution
relies on a manual and static pipeline configuration.

3) Supporting data access via trusted computing enclaves.
This support is complicated by reliance on Web stan-
dards: while they simplify the steps to traverse the



pipeline and propagate trust metadata, they presume that
requests originate from a user agent running under the
user’s control and with its identity. In cloud settings,
data access is mediated by servers that access data on
the user’s behalf.

§II gives an overview of authorization and trust management
in ImPACT. §III explores the elements of the architecture
in more detail, relating it to core concepts of federated
authorization. §IV focuses on the role of federated identity and
CILogon. §V outlines limitations of the prototype, challenges
for realizing the platform’s vision in extended scenarios of
future interest, and our approach to address those challenges.
As a motivating example it focuses on data access from cloud-
hosted data enclaves with enhanced defenses against data
leakage and exfiltration. §VI summarizes other related work,
and §VII concludes.

II. IMPACT OVERVIEW

The ImPACT trust architecture is based on the principles
of decentralized identity and attestation, policy autonomy, and
point-of-use enforcement. It separates functions and concerns
into separate component types (software agents), which var-
ious parties may deploy locally and link together by mutual
consent. These principles make it suitable for a wide range of
deployment scenarios.

Figure 1 depicts the core InPACT components relating to
authorization: a catalog for data discovery, notaries to establish
credentials, and guarded storage. There may be many instances
of each service, operated by different principals. Each step to
obtain access may involve interactions with other parties via
those services. A key challenge is to integrate all of the trust
metadata into a policy compliance check (guard) at the point
of access—a storage server at the end of the authorization
pipeline.

Data discovery: Dataverse. To enable data discovery, Im-
PACT integrates with Dataverse [4], a federated data repository
system widely used in social sciences and many other domains.
A key step was to decouple the repository function from the
Dataverse discovery service. We worked with the Dataverse
team to extend Dataverse to interoperate with external data
repositories that control their own data access. The data owner
uses a tool to select a set of meta-data attributes to export to
Dataverse ingest functions. The dataset itself remains in place
and is served from owner-approved storage.

Presidio storage service. Decoupling storage provision
from Dataverse preserves owner autonomy and enables use of
Dataverse with a decentralized, distributed storage plane that
can evolve independently for speed and scale. As a building
block for such services, we developed Presidio, a simple Flask
Web service that exposes an API to list and download datasets.
What distinguishes Presidio from any Web file server is its
integration at the tail of the authorization pipeline. Before
allowing access, it invokes a guard to check for compliance
with an access policy and decide whether or not to permit
the access. The policy is a declarative document specified by

the dataset owner: Presidio’s guard imports and interprets the
policy, assembles relevant trust data, and applies the policy.

Notary service. A primary goal of InPACT is to automate
various elements of policy-based data access including DUAs,
which are often managed manually today. We designed a
graphical workflow model to capture semantic aspects of
real-world DUAs, based in part on studies of written DUA
clauses [5], [6]. A DUA workflow template is a property graph
whose nodes encode the phases and facets of a DUA, including
agreement tasks for users in various roles, and precedence
dependencies among tasks.

A DUA graph is represented declaratively as a GraphML
document produced by an authoring tool. A notary interprets
these documents and instantiates the template as needed to
establish credentials for user access for specific projects.

Users interact with the notary through its Web UI within
authenticated web sessions. The notary presents views of each
DUA instance to associated users, allowing them to accept
and/or certify various conditions required in a DUA. The DUA
tasks may include approvals from other parties, such as project
authorities, institutional governance, or a delegate of the data
owner. To this end, the graph nodes are tagged with attributes
that match against the roles or other identity attributes of
users who must attest or certify each described task. As
eligible users with matching attributes view and interact with
a workflow instance, the notary traverses the workflow to
dispatch tasks to those users, collecting their assertions for
the DUA and updating the workflow instance state. The notary
acts as a digital witness by issuing attestations that the required
approval tasks are complete.

SAFE logical trust. To integrate the elements of the autho-
rization pipeline, ImPACT employs a logical trust fabric based
on SAFE [7]. SAFE defines a simple logic language (trust
Datalog, §VI) to express assertions of fact and policy rules.
Components manage trust by exchanging these statements and
checking for compliance with applicable policy in guards,
like the Presidio guard. SAFE includes an off-the-shelf logic
interpreter; a scripting engine for guards and scripts that issue
logic; and primitives to issue, store, index, retrieve, assemble,
and query logic content. InPACT issuers export trust metadata
as logic certificates and store them in a shared certificate
store (§V-C). ImPACT illustrates various aspects of how to
use SAFE trust logic, as discussed below.

Threat model. The role of ImPACT’s authorization pipeline
and trust plane is to defend against unauthorized data access.
Its purpose is to allow for expressive policy that governs access
and use, and qualifies the component instances eligible for
roles in the pipeline under the policy. The trust plane validates
that each restricted dataset traverses only authorized users and
components, including secure processing infrastructure (e.g.,
data enclaves, §V). If an authorized entity possesses restricted
data, the system offers no defense if that entity violates its
trust and leaks the data. ImPACT certifies all policy decisions
and may provide some accountability for policy violations.
Acccountability for data leakage is out of scope.
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Fig. 1. Overview of the ImnPACT authorization pipeline. A Data Owner exports a dataset together with metadata for a catalog, Data Usage Agreement (DUA)

workflows, and access policies. A User/Researcher selects a dataset of interest

from the catalog, interacts with one or more notaries to establish credentials,

and retrieves the dataset from a guarded storage server, which applies the policy to check compliance.

III. ELEMENTS OF THE IMPACT TRUST PLANE

This section summarizes important concepts in authoriza-
tion, and how they manifest in the design of ImPACT as an
illustrative federated trust plane. We can understand a trust
plane as a set of software processes, each acting on behalf of
some principal, which exchange trust metadata over a network
and make their local trust decisions based on that metadata.

In contrast to cloud authorization services such as Google’s
Zanzibar [8], a federated system has no central provider
that is globally trusted. Instead, trust is decentralized: each
participating process holds a cryptographic keypair to sign its
statements and issue them as certificates to share with other
parties. The recipients determine what trust to place in each
issuer keypair according to local policy, based in part on what
other principals say about it.

For this purpose ImMPACT employs trust logic, a language
to express security metadata and rules to evaluate trust. In the
SAFE logical trust platform all trust metadata comprises sets
of logic statements representing assertions of fact or policy.
Principals may name one another in their statements. If the
name is a public key hash, then a recipient can recognize
any certificate signed under the key as issued by that named
principal. Listings 1 and 2 illustrate with an example below.

In this way, trust logic subsumes the need for an external
PKI: the logic captures and generalizes the relationships that
a PKI might certify. It also encompasses within it all of the
challenges and difficulties faced by any PKI, such as revoking
and rotating keypairs.

ImPACT uses SAFE in concert with common standards and
tools for federated Web identity, which employ other standards
for digitally signed assertions. §1V discusses these systems and
their role in user identity for InPACT, and relates them to the
concepts in this section.

A. Separating policy and mechanism

In policy-based authorization systems it is common to refer
to a separation of Policy Enforcement Point (PEP) from a

Policy Decision Point (PDP). A PEP is a software instance
that accepts a request, initiates an access control decision,
and services or rejects the request based on the result of the
decision. In Figure 1 the PEP is a guarded file server, but it
could be any application service. A PDP is a software instance
that applies a policy to make an access control decision given
parameters for a request, which include a requested action, a
target object, and an identity of a requesting subject.

The separation of PEP from PDP embodies the concept
of a reusable platform for authorization. It suggests that the
PDP software to interpret and apply policies is written once
and is interoperable with various PEP services. A PEP is
a relying party (RP): it delegates or outsources its policy
decisions to a PDP and is freed from the burden of managing
authorization other than to gather relevant metadata and invoke
the PDP. It also suggests that the PDP may interpret and
apply many different policies expressed as documents in a
declarative form. The PDP identifies the policy in force for
a given decision and applies it to the request parameters and
other authorization state, which may include assertions from
other parties, as described below.

For example, XACML is a standard for authorization pol-
icy for a PDP. The PEP/PDP separation is fundamental to
XACML, but it dates from earlier systems that manage policy
for access to resources. It is common terminology for Internet
(IETF) standards for policy-based networked systems [9], e.g.,
the IntServ framework for Internet Quality of Service [10].

We may understand the SAFE trust platform in these terms
as a logical alternative to XACML. An application process (a
PEP or RP) communicates with a trusted SAFE instance (also
a process) to act as its PDP. The instance may run under the
direct control of the RP (the application’s operator), or as a
common authorization service shared by multiple RPs. In the
ImPACT scenario, the PEP/RP is a guarded file server, and
the PDP is a guard script that runs within a SAFE instance.
See Figure 2, discussed below.
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Fig. 2. The storage server applies access policy checks by invoking a guard
script in a trusted SAFE logic engine, passing certain parameters (III-A). The
guard retrieves policy rules, attestations, and other trust metadata as sets of
signed logic statements, validates the signatures, assembles the logic, and runs
programmed guard queries against it (§III-B). It retrieves the logic sets from a
certificate store, indexed by links derived from the request parameters (§V-C).

B. Policy

SAFE is programmable: an instance loads scripts that define
a set of entry points for requests from RPs, with various param-
eters. A guard script defines the PDP function: it assembles
indexed logic statements into a context and queries it to apply
a policy and return a decision. A SAFE instance may also run
issuer scripts to issue templated logic as certificates signed
under the issuer’s keypair.

A key question is how the system represents and applies the
access policies. We can view any policy as a set of rules: each
rule specifies preconditions to match to apply the rule, taking a
step toward a decision, e.g. to grant or deny access [9]. Related
tooling includes software to author policies and to issue and
assemble security assertions.

SAFE policy rules are expressed in logic. A policy may
issue from a single principal, or it may freely compose logic
issued by multiple sources. In ImPACT, this flexibility makes
it possible for a Presidio server to serve files on behalf of a
data owner or multiple owners, who may delegate elements of
their policy to other parties. In essence, policy rules define a
second level of programmability for SAFE: a guard’s decision
is guided by transportable policy rules imported from other
parties, without changing the guard itself.

A logic rule enables an inference of a fact (the head) from a
conjunction of known or inferred facts, which match precon-
ditions to apply the rule (the goals). See Rule A in Listing 1,
which we cite as a running example. An asserted or believed
logical fact is a ground atom: a named predicate (a boolean
function, also called a relation) applied to a list of constant
parameters. For example, given the facts in Listing 2, Rule A
infers approve (alice) meaning “Alice is approved”. The
goals of the rule may have variables, but they must match in
a consistent way against the parameters of the matched facts,
such that all goals are satisfied.

A guard script defines an authorization query that grants
access if and only if one or more parameterized facts are true
under the policy rules and other known facts in the context.
For example, a guard might grant access for Alice if it infers
approve (Alice) is true. SAFE’s logic engine applies the
rules recursively to generate proofs of compliance in a rigorous
and provable way.

Listing 1. Logic rule A. An exemplary trust logic rule stating that a user
principal U 1is “approved” if two preconditions (goals) match as true: a
principal P asserts that U has attribute “qualified”, and a designated Root
principal grants “approval authority” to P. The issuer chooses the attribute
vocabulary. The rule illustrates two ways to represent an attribute: as a special
predicate (approvalAuthority) or as a parameter (qualified) of a
more general predicate (attr). See Listing 2 for corresponding assertions.

Rule A.
approve (?U) :— ?P:attr(?U, qualified),
SRoot :approvalAuthority (?P) .

Listing 2. Logical assertions. Exemplary logic statements S1 and S2 that
assert attributes to delegate trust according to Rule A (Listing 1). Here root,
appService, and alice stand for unique strings representing principals,
e.g., a public key hash. The root says or speaks (issues and signs) S1, and
appService says or speaks S2.

S1.
S2.

root: approvalAuthority (appService) .
appService: attr(alice, qualified).

C. Attributes

Attributes are named properties of principals and objects.
Attributes may have values. An example of an attribute is
a distinguished name, whose value is a string that uniquely
identifies the entity. Attributes may also represent properties
such as roles or relations to other entities. A logic fact may
assert that an entity possesses an attribute; see Listing 2.

Attributes may represent membership in a project or group.
ImPACT makes use of an isMemberOf predicate, whose
value is a group name to which a user belongs. An exter-
nal group service manages cross-institutional groups (§IV).
Groups are an important basis for authorization: for example,
Zanzibar [8] models all access policy in terms of membership
in nested groups.

An access policy often reduces to a boolean function over
attributes of the subject and object of an action. This model
is known as attribute-based access control (ABAC). The US
government (NIST) promotes ABAC to enrich the practice of
access control, as put forward in NIST 800-162 [11]. ABAC
subsumes and extends role-based (RBAC) and identity-based
models.

Trust logic expresses ABAC policies as sets of logical rules
that match against conjunctions of attribute conditions, like
Rule A in Listing 1. The goals of a rule may interrogate
attributes of the subject or object of the access decision, and
also related objects and principals, such as projects, groups,
intermediary servers, and so on.

One practical challenge for ABAC systems is to capture
the information that policies need into attributes, and establish
authoritative sources for those attributes. InPACT obtains all
user identity attributes from standard identity solutions already
in use by research institutions (§IV).

D. Authority

The concept of authority is fundamental to trust platforms.
As a simple example, consider the problem of policy authority.
The owner of a file in INPACT has authority to issue the file’s
access policy. No other principal has this authority unless the
owner delegates it. Before a guard applies a policy, it must



verify the policy’s authority for the request. In one aspect
it is an authentication problem: the issuer digitally signs the
policy to enable a receiver to verify its origin and integrity.
Separately, the guard must verify that this origin is in fact
also the owner of the requested file, or a trusted delegate
of the owner. SAFE incorporates this aspect into the logical
check. That choice allows the owner to delegate the authority
in various ways through its statements, and for the policy to
draw from off-the-shelf rules issued by other sources that the
owner trusts.

To authenticate statements to a file owner, a Presidio file
server is configured with a self-certifying identifier (a scid)
for each stored dataset, a set of one or more files. The scid is
issued by the dataset’s owner. A scid is a string that contains
the issuer’s public key hash as a prefix, and a unique identifier
chosen by the issuer as its suffix. SAFE has a scripting
primitive to generate scids with UUIDs for uniqueness. Given
a dataset scid for the requested file as a parameter, the guard
can verify cryptographically that an imported policy rule or
other statement was spoken by the file’s owner.

Another aspect of authority is attribute authority: who has
the authority to assert attributes as input to the policy decision?
XACML and NIST ABAC leave attribute authority loosely
specified. A typical XACML PDP draws attributes from an
enterprise directory service (e.g., LDAP), or receives them
from the PEP/RP. Thus the XACML PEP or PDP grants
attribute authority to a service that it trusts, independent of
the policy.

SAFE takes the philosophy that a policy should specify
its own trust in authorities. Delegations by a policy can
validate the authority of notaries, workflow producers, or other
intermediaries in our federated authorization pipeline. §III-E
summarizes how trust logic represents delegations, and §III-F
relates this idea to the structure of federations.

E. Delegation

Trust logic is a powerful formalism to specify delegation of
authority [12]. A logical assertion can represent a qualified,
limited delegation of authority to another principal P. For
example, it can simply assert that P has some attribute that
confers the authority, as by statements S1 and S2 in Listing 2.
A delegation is constrained by the choice of predicate to
represent it, and by its parameters.

Policy rules specify formally what authority is granted
by a delegation by matching it as a condition for specific
inferences. For example, under Rule A in Listing 1, the
delegated approvalAuthority empowers P to assert the
attribute qualified on another principal, but confers no
other authority to P.

But how to validate a delegation? In a trust logic, each
asserted or inferred fact is attributed to a speaker, a principal
who either issued the assertion or the rule from which it was
inferred. A SAFE instance validates the speaker against a
signature before importing the logic, and tracks this attribution
across inference. A rule that matches against an attribute as a
condition may also match against the speaker of a fact used to
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Fig. 3. The flow of identity attributes to an InPACT storage guard—the access
policy decision point. ImPACT relies on the CILogon service [3], [13] as an
attribute authority that draws trust metadata from identity providers (IdPs)
and from COmanage, a service to manage federated groups and roles (§IV-A,
§IV-C). A notary obtains these attributes via Web single sign-on (SSO), and
attests them under its keypair for use by the guard.

satisfy the condition. Other conditions of the rule may query
attributes of the speaker, which may derive from other rules
and assertions. Rule A in Listing 1 illustrates this concept.
Logical validation checks are transitive. For example, the
receiver of a delegation may issue a statement to delegate
further to another principal, generating a chain. A guard
validates such chains by applying policy rules recursively: the
logic engine matches and applies rules automatically to search
for a valid chain of inferences yielding a goal. In doing so, it
applies the declarative rules to validate each step in the chain,
possibly querying other attributes of each intermediary.

F. Federation

Delegated trust structures are ubiquitous in large-scale net-
worked systems. In a federation, a common set of one or more
trust anchors (roots) delegate authority to other servers for
specific roles. Members delegate trust to the roots by accepting
their authority, e.g., by issuing a logic fact designating the root
as a trust anchor for the base case in recursive rules to infer
authority of policies and attributes. Listing 1 illustrates how
a policy may empower a designated root to delegate specific
authority to other servers.

In more complex federations, delegates of the root may in
turn delegate to others recursively, forming chains or trees.
One familiar example is a PKI certificate chain, grounded in
a root certifying authority, to validate a common TLS/SSL
certificate. §IV discusses the trust structure of the federated
identity services used in ImPACT, and §VI cites other exam-
ples of trust logic to represent secure Internet governance.

For ImPACT, logical policy enables data owners to sub-
scribe to federations of eligible notaries and sources of au-
thoritative attributes for projects, institutions, infrastructure,
etc. Such structures may evolve and enter into use on a per-
dataset basis over time without changing the software for the
services or guards.

IV. IDENTITY AND ACCESS MANAGEMENT

In addition to logical trust, the ImPACT trust plane in-
corporates other standards known broadly as Identity and
Access Management (IAM). It relies on widely deployed



IAM systems to authenticate users and ingest their subject
attributes. Figure 3 illustrates the flow of user attributes in the
current prototype, which relies on the CILogon service [3],
[13] (§IV-C). This section discusses that choice and the role
of IAM systems in ImPACT.

Despite the value of trust logic to represent multi-domain
trust in ImPACT, our design chooses to hide it from users.
Instances of the core ImPACT services are SAFE principals,
which authenticate their interactions with keypairs. Managing
user identity is a different challenge: there are many more
users, and they prefer to use familiar Web account logins rather
than keypairs. It is costly to administer user accounts and track
changes to their status, roles and affiliations.

Federated identity management systems support Web ac-
counts with single sign-on (SSO). They reduce user password
fatigue and free other services from the need to manage user
accounts. Identity networks include the Shibboleth/Incommon
federation of US research institutions, and OpenID Connect
(OIDC) protocols for identity based on commercial social
media platforms.

These systems also illustrate the idea of federated trust
structures outlined in § III-F. They are based on open standards
for digitally signed assertions: Security Assertion Markup
Language (SAML; see [14]) and OIDC claims (see [15]).
In contrast to trust logic, these standards represent assertions
only, and not declarative policy: the code interprets the asser-
tions according to a trust structure that is “baked in”.

A. Identity and SSO

With single sign-on (SSO), users establish accounts with
an institution or provider based on their affiliation as a
customer, student, or employee. For example, US researchers
are accustomed to using their institutional accounts to sign on
to a range of services within and outside their institutions. The
institution operates a trusted identity provider (IdP) service
that maintains identity attributes for each user account,

When a user navigates to a Web-based application service
(called a service provider or SP) in a secure session, the SP
redirects the browser to the IdP, where the user logs in if
needed. The IdP receives the identity of the referring SP from
the browser, and releases user attributes, signed by the IdP, for
the browser to return to the SP. The IdP determines what to
release according to a privacy/release policy on a per-SP basis.
An SP does not necessarily receive a distinguished name or
other attribute sufficient to identify the user. In many cases, the
affiliation and related attributes (e.g., student) may be sufficient
for the SP’s access control policy.

InCommon is a simple example of a federated trust structure
that enables an SP to serve users from many participating
institutions, using their home user accounts. A root principal
(maintained by Internet2) endorses the public keys of member
IdPs. Each SP knows the public key of the the root, and trusts
the root to qualify and endorse legitimate IdPs. This structure
eliminates the need for an IdP to establish trust with every SP
independently: the federation scales without updating each SP

with a new list of IdPs. Instead, the SP accepts attributes from
any IdP that the root endorses as a member.

B. Service Providers

Trust structures may evolve over time as systems be-
come more interconnected. Consider the approval of Service
Providers (SPs) in the InCommon example. Due to privacy
concerns with attribute release, it was initially necessary to
register each SP with the operator of each IdP. This approach
was workable for early use cases, when the goal was to enable
SSO for SPs and users within an institution or enterprise: the
SPs need register with only one IdP, and it is in the same
administrative domain. As deployment expanded, interest in
SSO for external services grew. That created new challenges
for administrative scaling.

To illustrate, in the early days of the NSF GENI network
testbed project the authors promoted the idea that GENI
should use InCommon identity to free users and services from
managing separate and duplicative accounts and credentials.
That required registering GENI services as SPs with each
participating institution. Other SPs also faced the challenge:
IdP administrators are concerned about privacy leaks, but may
have less incentive to understand the value that a candidate SP
provides or to enable users to access the SP with institutional
credentials. Additionally, this growth raised governance ques-
tions, given the lack of a standard to judge the stewardship and
accountability of an external SP receiving identity information.

Ultimately, the solution was to extend InCommon to qualify
and endorse SPs with value in the “research and scholarship
category”. IdP operators may choose to release attributes to an
SP based on signed proof of endorsement by the InCommon
root, even if the SP was not registered locally. The endorse-
ments are represented in SAML security assertions: the root
signs them and the SP passes them with the redirect through
the browser to the IdP.

Services like INPACT may seek approval in this category
as they mature. However, the approval hurdle motivates a dif-
ferent approach: empowering users to select SPs and approve
release of their own attributes, as described below.

C. CILogon

The ImPACT prototype relies on CILogon [13] as a bridge
to InCommon and other identity networks. CILogon is a
software platform for IAM for Web-based application services
that support research collaborations. CILogon runs a service
instance that is category-approved by InCommon for attribute
release. Users may grant permission to re-release attributes
to other user-approved services, such as an ImPACT notary,
without involving the IdP. CILogon eliminates any need for
ImPACT to maintain user accounts or for institutions to
reconfigure their identity services to enable ImPACT. Users
may authenticate to InPACT Web services from any IdP that
recognizes CILogon as an SP.

To use ClILogon, logical policies in the ImPACT pilot
delegate authority for user attributes to approved notaries. The
implementation of the Notary Service collects user attributes



from CILogon using OIDC (see Figure 3). It issues logic to
attest the attributes of users as they complete workflow tasks,
enabling downstream policy checking. The downside of this
approach is that all user attributes depend on trust in CILogon,
and this trust is not explicit in the policy.

CILogon also provides supplementary user attributes to en-
rich access control, such as cross-institutional project groups.
CILogon integrates with COmanage, a service that allows
authenticated users to create collaborative organizations (COs)
and grant membership to other users and groups with various
roles. In this way, collaborating users can establish additional
identity attributes (e.g., 1sMemberOf) to certify their collab-
orations. We also use COs to supply needed attributes not yet
available from the IdPs. In particular, a notary must match
users to DUA tasks that require approval from institutional
governance, but governance roles are currently lacking from
the standard attribute set for InCommon.

V. EXTENDING AUTHORIZATION

To summarize the architecture described above, ImMPACT
serves restricted datasets, discoverable through the Dataverse
Project and its services to archive, share, and explore research
datasets. Suppose that a researcher Alice establishes a Web
session with Dataverse, queries its metadata catalog, and
receives identifiers for one or more datasets of interest. Alice
interacts with one or more notaries to complete DUA forms
according to the data owner’s policy and awaits any required
approvals, e.g., from project authorities or institutional gover-
nance. Ultimately, software running on her behalf requests a
file from a file server (a Presidio instance). The server’s guard
evaluates the policy against relevant credentials, including
attestations from the notaries, and verifies compliance before
returning the file.

With this background, we now return to the high-level
vision of the ImPACT trust architecture and the role of the
various elements in realizing that vision. A key goal of
ImPACT is to lay the groundwork for rich authorization that is
sufficiently powerful to meet future demands on our roadmap.
The approach outlined above is based on three key elements:
semantically expressive declarative representations, automated
interpretation, and a modular and decentralized deployment.

Declarative representations. Data owners express access
policy for their datasets as logic packages and DUA workflow
graphs. The graphs display Web forms for DUA tasks orga-
nized into a workflow DAG to capture precedence and collect
data populated into downstream forms. The logic language
and policy rules can capture complex assertions extracted from
DUAs as well as simple attributes.

Automated interpretation. These representations are trans-
portable and machine-readable documents that a server inter-
prets to execute the DUA or apply the policy. These properties
make it possible to support a range of policies for different
objects simultaneously, or change a policy without changing
the software on the server. A notary can execute a wide range
of DUAs, traversing the workflow to trigger user task prompts
as dependencies are met. The logic engine combine policy

rules and assertions from multiple parties; their union with
a guard query forms a logic program that resolves using an
off-the-shelf logic prover. Other tools may consume these
representations to check various properties. For example, we
built a tool to check soundness of DUA template graphs.

Modular authorization pipeline. Logical policy enables
flexible deployment choices for the authorization pipeline
because it can tag the intermediaries eligible to execute a
given agreement and certify its completion. In principle, this
property allows us to compose the authorization pipeline in a
flexible way at deployment time or time of use. That goal is
important because we envision many possible deployments of
notaries in a data federation. For example, a notary may oper-
ate on behalf of a data owner, or a consortium of institutions
or owners, or a VO with members in multiple institutions. The
choice may be driven by a notary’s need for specific attribute
information: for example, an institutional notary might access
an internal enterprise directory to extract needed governance
roles (§IV-C). Complex scenarios may require multiple DUA
workflows certified by different notaries.

We intend that these foundations will enable us to extend
the ImMPACT components in new directions to manage sharing
of restricted data. For example, it is easy to express trust
logic policies that consider extended attributes of principals
or objects asserted by other eligible authorities in the trust
structure—for example, attributes of the researcher’s project or
institution. We also consider scenarios that involve negotiated
access via interacting DUA workflows in which, for example,
a researcher proposes terms of use, and a delegate of the data
owner approves or rejects them.

A related goal of ImPACT is to include infrastructure
security under policy control, so that data owners may apply
limits to modes of use. For example, data owners might man-
date cloud-mediated access—processing on cloud providers
with suitable defenses against leakage—and even check the
software configurations used to access the data. We envision
that data owners may associate the data with code modules that
enable certain queries or analyses against the data, packaged
for launch on policy-compliant cloud infrastructure. We now
expand on our goals for the cloud-mediated access model
(depicted in Figure 4), outline how it places new pressure on
authorization beyond the Web-based access model of the initial
prototype, and show how logical trust can support it.

A. Cloud-mediated access: Data enclaves

Once a file server approves a data access request and returns
the data, it relinquishes any control over how the client uses
the data. Security-enhanced cloud services offer potential to
extend policy control end-to-end to assure the owner that the
access complies with its terms. Our approach is to integrate
data access with processing on secure cloud enclaves, and
extend compliance checking to validate their configurations.

We use the term enclave to denote an infrastructure with
storage and processing and a validated software stack with
specific defenses against data leakage and exfiltration. A range
of enclave architectures are possible with various levels of
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Fig. 4. Mediated data access from a secure cloud enclave. Here the policy
may restrict the user to analyze the data from a compliant enclave: an instance
with approved software hosted on trusted infrastructure with specific defenses
against data leaks (§V-A). The user requests a campus cloud service (shaded
regions) to launch an instance and obtain the data. The service is enhanced to
obtain the data on the user’s behalf and apply further policy checks against
the instance before attaching the data (§V-D).

protection. Hardware enclave abstractions continue to mature,
e.g., with Intel Software Guard Extensions (SGX [16], [17]),
and may enable trusted computing on sensitive data even with
untrusted infrastructure providers (e.g., as in Ryoan [18]).

In ImPACT we focus on architectures for cloud enclave
services operated by campuses or other infrastructure providers
trusted by policy. We developed an exemplary data enclave
solution deployed at Duke University, in which researchers
access data only with approved tools through a remote desktop
protocol with an authenticated InCommon identity. Such data
enclaves enable institutions to control restricted data more
closely and limit their exposure from data leaks. To address
the descriptive challenge, INPACT DUAs support attestations
of infrastructure security properties.

However, the enclave model creates new challenges to track
and maintain authorization state through the pipeline. The
current InPACT prototype lacks support for policy checking of
enclaves. In particular, ImPACT is designed to simplify Web-
based access (§V-B), but enclave access may occur “hands
free”—outside of an authenticated Web session—and also
requires validation of the enclave itself. For example, Figure 4
depicts a cloud enclave service with an API to launch an
enclave instance from a configuration template—for example,
a VM, container, or Kubernetes pod [19]. The storage guard
is extended to allow an incoming request originating from an
approved enclave service acting on the researcher’s behalf. The
service retrieves the data and attaches the local copy only if
the template complies with policy (§V-D).

B. Web-based access in the ImPACT prototype

The current InPACT prototype emphasizes simplicity for
Web users, for which the user agent is a browser. It leverages
single sign-on (§IV) to keep identity management familiar and
largely transparent.

Additionally, the prototype preconfigures the authorization
pipeline for Web-based access. When Alice selects a dataset
of interest, Dataverse generates a URL to a notary selected
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Fig. 5. [Issuers of SAFE logic sets link their certificates to others with
supporting evidence or authority. SAFE scripts may derive links from known
templates and parameters. The ImnPACT guard indexes relevant logic certifi-
cates from the request parameters and retrieves them from a store (§V-C).

Link record for (user, project,
DUA) with identity attributes

by the data owner. After Alice completes any required DUA
workflows with the notary—which may require attestations
from other parties such as her institutional governance—the
notary generates a URL to a directory for the dataset on a
storage (Presidio) server preselected by the data owner. The
notary response presents the link to Alice’s user agent, which
sends a well-formed request for the data to Presidio when
Alice clicks on the link.

In this scenario, Alice merely clicks from one site to another
until she can download the file. At each step, her browser
authenticates her session with its common SSO identity. The
notary also constructs a JSON Web Token containing certain
parameters for the request. Importantly, the token is not a
bearer token as defined by OAuth [20]: a bearer token confers
the same privilege to any client who presents it. In this case,
the token merely expedites transfer of parameters through the
browser. These parameters include the user’s distinguished
name, which must match the authenticated client identity and
attestations from the notary for the token to be of use.

While this approach is easy to use and so minimizes barriers
to adoption by users, it raises a number of challenges. First,
it does not adapt easily to scenarios in which a user (Alice)
accesses the data from a hosted tool and/or through an enclave
or other trusted service. In particular, the tool or enclave cannot
authenticate with Alice’s identity as required. It could if Alice
obtains a keypair bound to her identity—CILogon can certify
one—and shares a private key with the cloud instance. While
such key sharing is common in hosting scenarios, it exposes
her to leakage or misuse of the private key. [21]

Second, the current approach constrains each file for service
by a specific notary and file server designated in a pre-
established service chain. It relies on a manual configuration
step for the data owner to designate the servers for each file:
the data owner uses a Web browser to register the file with
the notary, install an approval workflow, and designate the file
server. In practice, it limits the system to a configuration in
which the data owner itself or a known delegate operates the
notary and the file server.



C. Linked logic certificates

SAFE’s general approach to managing trust metadata can
replace the need to rely on state transfer through Web tokens
for ImPACT. SAFE uses certificate linking to track authoriza-
tion state and discover and retrieve logic relevant to a given
trust decision. Issuers export their logic in sets materialized as
certificates. Each set is uniquely identified by an index derived
from a hash of the issuer’s public key and string parameters
that the issuer selects. One set may link to another by including
the target’s index as an embedded link. Given a link, or the
parameters to construct the link, a guard may import and cache
the transitive closure of the indexed logic content.

The trust scripts developed for ImMPACT make extensive
use of certificate linking (Figure 5). Policy packages issued
by the data owner link to compliance checking rules for
each required workflow DUA. A notary issues attestations for
required workflow elements, linked from a root receipt for the
DUA keyed by the the researcher’s distinguished name and
affiliated project. The guard script assembles a query context
by synthesizing links from the request parameters.

Issuers post their certificates to a shared repository based on
a variant of a canonical key-value (put/get) storage abstraction.
The architecture of the store is out of scope: in our pilot we use
an enterprise key-value store (Riak) operated by a trusted party.
If the store fails or is compromised, an attacker can mount a
denial-of-service attack, but it cannot subvert the protection
system because all certificates are signed.

SAFE’s certificate store is suitable for decentralized oper-
ation with the trust and failure properties of a permissioned
blockchain, but with a more scalable implementation. Specif-
ically, it is designed to run with a Byzantine quorum system
(BQS), following Phalanx [22]. BQS replication scales more
easily than blockchains because it allows sharding, in which
each put/get executes on only a subset of replicas. Blockchains
induce consensus on a linear sequence of operations for state-
machine replication, but it is expensive to obtain, and SAFE
does not require it.

D. Authorization pipeline revisited

The handling of trust metadata through SAFE linking gives
us a path to meet our goals for a modular pipeline and policy-
checked access from enclaves. As a prerequisite, we must
address common challenges for distributed systems: select
notaries or other servers based on preferences, and pass needed
string parameters through the APIs, e.g., to invoke the enclave.
One challenge is that the client software must know how
to traverse the pipeline. That requires a selection service to
synthesize a Web page to click through, or a stateful user
agent such as an app rather than a simple Web interface.

Beyond these requirements, it is straightforward to verify
or extend the pipeline. The guard and selection software have
all required parameters to retrieve logic content to validate
candidate service instances against the policy. If the data
request originates from an enclave, then the cloud service can
request the data under its own identity (a keypair) on the user’s
behalf. It is straightforward to extend the guard to validate

that the policy trusts the authenticated requester as an enclave.
Presidio already supports authentication of a client by keypair
using two-way TLS.

We envision access policies that limit processing to enclaves
with specified security properties, or by qualified software
stacks and configurations. To meet this goal, the authorization
system must match logical (semantic) enclave descriptions
against conditions in the policy. We are developing an enclave
approach based on Kubernetes [19] that checks the software
stack and configurations of cloud instances (pods). We use
trust logic to endorse and qualify the pod configurations,
following the model in TapCon [23] and in Nexus [24], which
introduced trust logic for software attestation (see also [25]).
A trusted enclave may apply extended checks against the
data owner’s policy locally to qualify the software stack and
configuration, or it may pass a link to the attestation with the
data access request to allow the Presidio guard to check it.

VI. RELATED WORK

SAFE trust logic enables us to tie together ImPACT’s
elements of programmable authorization. Studies of autho-
rization logic have yielded many approaches too numerous to
detail here, including recent approaches that are expressive
but also complex (e.g., NAL [26]). SAFE embraces direct
use of Datalog [27], a rigorously defined and extensively
studied general-purpose logic language that is a subset of
Prolog, a popular language for logic programming with a
standard syntax. Our approach merely adds a modal operator
says to Datalog to identify or match the speaker of each
statement or predicate, enabling its direct use as a logic
of belief and attribution. This idea previously appears in
Binder [28], SD3 [29], and SENDLOG [30]. Datalog-with-
says is at least as powerful as the XACML web standard,
and it enables reasoning from authenticated policy rules and
assertions gathered from multiple sources, which is crucial in
the federated scenarios characteristic of collaborative science.

Like these earlier systems, SAFE uses signed logic cer-
tificates as a transport for authenticated logic. To all of
these systems, SAFE adds simple programmable indexing and
sharing of logic certificates through a key-value store with
scripted linking of related certificates via interpolated string
templates. This combination facilitates rapid prototyping of
trust applications like ImPACT.

Datalog trust logic is sufficiently powerful to capture trust
structures of large distributed systems, and interpret the logic
directly in an implementation. ImPACT illustrates this point,
and this paper outlines how logic can represent the structure
of IAM networks as well (§IV). We now cite further examples
from network governance to complete the picture. SD3 [29]
shows how to build secure Internet naming (DNSSEC) with
logic. SENDIog [30] captures secure interdomain routing, and
we use SAFE to extend that approach to construct secure
interdomain networks on testbeds, with logical policy controls
and IP prefix authentication [31]. Trust logic also captures the
NSF GENI testbed security architecture [2], [7], [32] and its
allocation of resources to hosted networks.



VII. CONCLUSION

This paper summarizes the design of the trust plane for
ImPACT, a platform for managed sharing of restricted data.
We outline the role and rationale for key elements of the
architecture: notaries for credential establishment based on
declarative templates for Data Usage Agreements, a federated
authorization pipeline, integration of popular services for iden-
tity management, and programmable policy based on a logical
trust model. We show how these elements of the trust plane
work in concert, and set the ideas in context with principles
of federated authorization. A focus and contribution of the
paper is to explore limitations of the resulting architecture
and tensions among competing design goals. We also point
the way toward future extensions, including policy-checked
data access from cloud-hosted data enclaves with enhanced
defenses against data leakage and exfiltration.
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