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Abstract

Mixed-initiative systems allow users to interactively provide
feedback to potentially improve system performance. Human
feedback can correct model errors and update model param-
eters to dynamically adapt to changing data. Additionally,
many users desire the ability to have a greater level of con-
trol and fix perceived flaws in systems they rely on. However,
how the ability to provide feedback to autonomous systems
influences user trust is a largely unexplored area of research.
Our research investigates how the act of providing feedback
can affect user understanding of an intelligent system and its
accuracy. We present a controlled experiment using a simu-
lated object detection system with image data to study the ef-
fects of interactive feedback collection on user impressions.
The results show that providing human-in-the-loop feedback
lowered both participants’ trust in the system and their per-
ception of system accuracy, regardless of whether the system
accuracy improved in response to their feedback. These re-
sults highlight the importance of considering the effects of
allowing end-user feedback on user trust when designing in-
telligent systems.

Introduction
Bringing human feedback into the development of machine
learning models has many benefits. At its simplest, human
feedback allows a model to incorporate new annotations for
unlabeled data to increase performance by improving the
training set. A common method for introducing human feed-
back is active learning, where the selection of data to obtain
labels for is left to the model (Cohn, Ghahramani, and Jor-
dan 1996). Alternatively, a more human-centered approach
has the labeler choose which instances to be labeled, relying
on human intuition to decide what feedback would be most
relevant to improve the model based on observations of its
performance (Tong and Chang 2001). Developers can also
allow for further involvement by giving the human partic-
ipant feature-level control over model parameters, such as
allowing direct modification of the feature space and its as-
sociated weights (Cho, Lee, and Hwang 2019) or prioritizing
decision rules used by the model (Yang et al. 2019).

Frequently, the human-in-the-loop approaches either in-
volve system developers for development and debug-
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ging (Vathoopan, Brandenbourger, and Zoitl 2016) or in-
dependent workers on crowd-sourcing platforms (Li 2017).
By taking advantage of end-users’ periodical feedback upon
noticing errors, these models can stay updated in the pres-
ence of shifting data or changing goals. (Geng and Smith-
Miles 2009; Yamauchi 2009; Elwell and Polikar 2011).
Systems can also update over time by implicitly captur-
ing user behaviors, which is a technique commonly used
in recommender systems (Shivaswamy and Joachims 2012;
Middleton, Shadbolt, and De Roure 2003). While this feed-
back is not provided explicitly, users can still observe the
system directly reacting in response to their actions, deci-
sions, and feedback. Furthermore, end users of intelligent
systems may want the ability to correct observed model er-
rors. When engaged with the outcomes of a system, many
users desire the ability to influence those outcomes by pro-
viding feedback beyond simple error correction (Stumpf et
al. 2008).

While human-in-the-loop systems can have improved
model accuracy and provide users control over the systems
they rely on, there may also be unexplored consequences to
allowing end users to provide feedback. For instance, Van
den Bos et al. (1996) observed that when interacting with
human teams, the ability to provide feedback has been ob-
served to have a positive effect on the perceived fairness
of team decisions. In their study, users who felt their feed-
back was considered reported higher levels of trust in the
decision-making process and were more committed that the
correct decision was made. They also observed the inverse
effect, with a decrease in trust in the team if feedback was
provided but ignored (Korsgaard, Schweiger, and Sapienza
1995). Since providing feedback to an automated decision-
making system is similar to providing feedback to a human-
based decision making system, it is possible that similar ef-
fects could be observed in human-in-the-loop systems.

If providing feedback does affect user trust, it could lead
to people misusing the systems they provide feedback to.
When experiencing a higher level of trust than is appropriate
based on the system performance, users may over rely on
the system. On the other hand, having a lower level of trust
could result in not using the system at all (Lee and See 2004;
Parasuraman and Riley 1997). Therefore, it is important to
understand how providing feedback to an intelligent system
affects trust so that it can be accounted for when designing



human-in-the-loop systems.
In this paper, we examine how users perceive system ac-

curacy over time and how their trust in the system changes
based on the presence of interactive feedback. We used a
simulated object-detection system that allowed users to pro-
vide interactive feedback to correct system errors by ad-
justing image regions for detected objects. Additionally, to
explore possible implications of how the system responds
to given feedback, our experiment also controlled differ-
ent types of change in system accuracy over time. The
results indicate that by providing human-in-the-loop feed-
back, user trust and perception of accuracy can be negatively
affected—regardless of whether the system improves after
receiving feedback.

Related Work
In this section, we consider prior work from the perspectives
of human-in-the-loop machine learning and trust in artificial
intelligence.

Human-in-the-Loop Machine Learning
While machine learning can be used to train models based
purely on data without direct human guidance, there are
many scenarios where incorporating human feedback is ben-
eficial. In many cases, this feedback is simply having a hu-
man annotate new data to be incorporated into the model.
Relevance feedback is a human-in-the-loop method where
a human reviews the pool of unlabeled data alongside the
current model’s predictions on that data, choosing when to
provide new labels to the system based on their own intu-
ition (Tong and Chang 2001). Another approach that can
be taken in domains where human intuition may not result
in optimal selections of what data to label is to choose in-
stances to add to the training set by objective metrics based
on the model. Active learning selects relevant instances to
show to a human, referred to as an oracle, based on which
unlabeled data are most likely to represent information miss-
ing in the current version of the model (Cohn, Ghahramani,
and Jordan 1996). While theoretical active learning research
treats the oracle as merely being a way to obtain the true
labels for selected data, in practice, active learning models
need to account for the fact that the oracle is a human and
therefore not infallible (Settles 2011).

However, human input is not limited to merely provid-
ing new labels to data. Explanatory interactive learning has
the oracle not only provide the appropriate label for the data
point but also provides an explanation of the current model
prediction and asks the oracle to correct the reasoning in
the explanations (Teso and Kersting 2019). This helps avoid
situations where the model has a flaw that happens to re-
sult in the correct prediction by chance. Another form of
advanced human feedback is to show the oracle model pa-
rameters, such as features and their weights (Cho, Lee, and
Hwang 2019) or rules used to make decisions within the
model (Yang et al. 2019), and allows for direct modification
of those parameters. Being able to control model parame-
ters in this way has been found to be useful for debugging
models (Kulesza et al. 2010). While this higher level of con-
trol over the model may not be desirable in all applications,

Holzinger et al. (2016) showed that human-machine team-
ing can sometimes result in a closer to optimal model than
machine learning alone.

While the person providing feedback is not necessarily
the end user for many human-in-the-loop systems, there are
advantages to bringing end users into the loop. Stumpf et
al. (2008) found that users of intelligent systems largely
want to provide feedback to systems they are using, partic-
ularly when it gives them a feeling of being able to con-
trol some aspect of the model. Similarly, people are more
likely to use an imperfect intelligent system when they have
the ability to correct its errors (Dietvorst, Simmons, and
Massey 2018). Additionally, end users may notice when an
already deployed system begins to falter. Even if a model
was very accurate at the initial time of training, the training
data may become less representative of the actual popula-
tion of data as trends shift over time. This is a phenomenon
known as concept drift (Žliobaitė 2010). A human-in-the-
loop approach to dealing with this problem is known as in-
cremental learning, where the model periodically obtains la-
bels as they become available to update the model while it
is in use (Geng and Smith-Miles 2009). These techniques
have been shown to effectively address the problem of con-
cept drift in machine learning systems (Yamauchi 2009;
Elwell and Polikar 2011).

Providing input has been shown to affect trust and per-
ception of fairness in the field of psychology. In decision-
making teams, people were observed to place more trust in
a team-leader who actively considered their input, and they
were also more confident that the correct decision was made
after the fact (Korsgaard, Schweiger, and Sapienza 1995).
A similar effect was observed in procedural decision mak-
ing systems, with people having a higher level of trust and
perception of fairness in a decision-making system that they
were able to give input to (Van den Bos, Vermunt, and Wilke
1996). An interesting result from both of these studies was
that providing feedback had a negative effect on trust if the
feedback was ignored. Since feedback affects interpersonal
trust by improving trust if feedback is considered and de-
creasing trust if it is ignored, a similar effect may be ob-
served in human-computer interactions.

Trust in Artificial Intelligence
User trust in artificial intelligence systems has been studied
for many years and is of value since it is directly associ-
ated with usage and reliance (Parasuraman and Riley 1997;
Siau and Wang 2018). As a result, users need to place an
appropriate amount of trust in a system based on its perfor-
mance in different contexts. Reliance and trust in automated
systems are not binary (i.e., to trust or not) and are generally
more complex (Lewicki, McAllister, and Bies 1998; Lee and
See 2004). Desired behavior is for a user to examine a sys-
tem’s outputs and decide whether to rely on the system based
on the accuracy of results (Hoffman et al. 2013). This behav-
ior has been observed to be more prevalent among users who
are domain experts than novice users (Nourani, King, and
Ragan 2020). Sometimes, however, users might trust a sys-
tem completely without checking the outcomes, i.e., over-
reliance or automation bias (Goddard, Roudsari, and Wyatt



Figure 1: In the with interaction conditions, participants could delete existing bounding boxes or click-and-drag to create new
ones. In this example, the left image shows a system error, and the right shows a version after interactive correction. 1

2012). This situation can be caused by a user’s lack of con-
fidence or when the system seems more intelligent than they
are based on their initial preconceptions (Lee and See 2004;
Hoffman et al. 2013; Nourani et al. 2020a). In contrasting
scenarios, mistrust (Parasuraman and Riley 1997) and dis-
trust (Lee and See 2004) can cause users to rely more on
themselves or under-rely on the system. Both of these situ-
ations can be dangerous, especially for systems with critical
tasks where decisions can be fatal. For example, wrong de-
cisions in criminal forecast systems can wrongfully convict
an innocent person (Berk and Hyatt 2015).

To raise users’ trust and provide more information to aid
them in their decision-making process, researchers have ex-
plored the use of explainability in artificial intelligence sys-
tems (Ribeiro, Singh, and Guestrin 2016). Studies of human-
in-the-loop paradigms have shown explainability can help
users understand and build trust in the algorithms in order to
provide proper feedback and annotations (Ghai et al. 2020;
Teso and Kersting 2018).

Researchers use different methods to measure trust and
reliability in machine learning and artificial intelligence sys-
tems. For example, some researchers utilize user’s agree-
ment with the system outputs as a measure of reliance and
trust; specifically, identifying when the user agrees with the
system outputs that are not correct (Nourani et al. 2020b).
Yu et al. (2019) propose a reliance rate based on the num-
ber of times the users agreed with the system answers out of
all their decisions. In recent work, Yin et al. (2019) found
that trust is directly affected by user’s estimations of the
system’s accuracy, where underestimation of accuracy can
cause mistrust in the system, and vice versa. As a result, a
user’s estimated or observed accuracy can be used as an in-
direct measurement for user trust, and we use these methods
in the study reported in this paper.

1Image from “Josh McMahon Portraits - 2517” by John Trainor
(used under CC BY 2.0) with annotations added by the authors.
License available at https://creativecommons.org/licenses/by/2.0/

Method
In this section, we discuss our research objectives based
around understanding the differences in user trust among
users of human-in-the-loop systems and non-interactive sys-
tems. We also present details of our experimental design and
study procedure.

Research Objectives
With the goal of understanding the effects of providing
human-in-the-loop feedback on user perception of artifi-
cially intelligent systems, we identified the following re-
search questions:

RQ1: Does user trust in an intelligent system change if the
user provides feedback to the system?

RQ2: Does providing feedback to an intelligent system af-
fect user ability to detect changes in system accuracy over
time?

To address these research questions, we designed a con-
trolled experiment using a simulated image classification
system both with and without feedback. With these dif-
ferent systems, we hypothesized that the effects of partic-
ipant trust due to interaction presence would be based on
system response to their feedback, similar to the effects
observed in human-based decision making systems (Kors-
gaard, Schweiger, and Sapienza 1995; Van den Bos, Ver-
munt, and Wilke 1996). If the system reacted positively, im-
proving as the participant provided feedback, we expected
that participants would feel more invested in the system and
as a result, they would trust the system more. However, if
the system did not honor the user’s feedback and did not
improve after taking participant feedback, we expected that
they would become negatively biased against the system.

Experimental Design
For our study, we provided participants with a series of im-
ages with classifications from a simulated model. To avoid
confusion of whether a system prediction was correct or not,
we chose to focus on a domain which required no prior ex-
perience, which led us to use detection of human faces as



our classification goal. With the goal of increasing partici-
pant engagement in the feedback process, we wanted to use a
system with more intricate outputs than binary classification
alone. Therefore, we decided to simulate a system that de-
tected the location of human faces rather than just their pres-
ence, placing bounding boxes over each face in the image.
Classifications were hand-crafted, not actually from an arti-
ficially intelligent model as participants were told. The task
consisted of reviewing three rounds of images, with 30 im-
ages in each round. The images used in our simulated model
were taken from the Open Images dataset (Kuznetsova et al.
2020; Krasin et al. 2017) with our own manually generated
annotations. Each round of 30 images contained 20 pictures
of people, with the remaining 10 images containing things
such as animals or empty scenery. For images where we
chose to simulate system errors, we used a roughly equiva-
lent mix of false positives (bounding boxes placed on objects
that were not human faces) and false negatives (unidentified
human faces).

Because our main metrics—perception of model accuracy
and user trust—are based on participants’ experiences with
the system, we decided that each participant should only
see one version of the system so as not to be biased by
their experience with the previous system versions. For this
reason, we used a 2x3 between-subjects design for the ex-
periment. The first independent variable in our experiment
was interaction presence with two levels: with interaction
and without interaction. Participants in the with interaction
condition were asked to provide feedback to the model for
each image by correcting any errors, or by verifying that the
system’s classification was correct. To do this, participants
could interact with the system to removing any bounding
boxes from an image that did not contain a human face, and
they could add new bounding boxes over any unidentified
faces in the image. Participants in with interaction condition
were explicitly instructed that their feedback would be used
by the model in-between each round of images to update
the model’s parameters before classifying the next round of
images. To maintain a feeling of realism that the model was
actually updating, we added a 45 second pause between each
round and told participants that they would need to wait for
the model to take their feedback into account and update the
predictions for future classifications.

The without interaction system removed the ability to
interact with the bounding boxes to correct erroneous in-
stances. In both conditions, to ensure participant engage-
ment in this condition, we asked participants to respond
whether the model’s classification was correct or incorrect.
Unlike the participants who saw the interactive system, par-
ticipants in the without interaction condition were told that
their responses would be sent to the researchers after the
completion of the final round of images, with no indication
that their responses would be used by the model in any way.

Our second independent variable was change in accuracy,
which corresponded to the simulated accuracy of the system
in each round of images with levels as shown in Table 1:

While the change in accuracy factor influenced the dis-
tribution of errors over sections of the study, it is impor-
tant to note that the total number of system errors observed

Figure 2: Study procedure overview.

by participants across the entire study was the same in all
conditions—a total of 18 of 90 images were shown as classi-
fied incorrectly regardless of condition. The only difference
among these conditions was when those errors were shown.

Procedure
Participants completed the experiment using an online web
application without intervention or live communication with
the researchers. The study began with a pre-study question-
naire, asking basic demographic information including age,
gender identification, and educational background. Addi-
tionally, we asked participants to self-report their experience
with machine learning and artificially intelligent systems to
ensure there was no significant difference between the ex-
perience of the populations for each condition. Participants
then received instructions on completing the task, including
examples of correct and incorrect classifications of images.

Round 1 Round 2 Round 3
Increasing accuracy 70% 80% 90%
Constant accuracy 80% 80% 80%
Decreasing accuracy 90% 80% 70%

Table 1: System accuracy by round.



Figure 3: Perceived accuracy across rounds (error bars show standard error). Participants with interaction (purple) rated the
system as less accurate than those with no interaction (yellow).

To avoid ambiguity as to what constituted a correct classifi-
cation, we instructed participants to consider any bounding
box that contained a portion of a human face to be correct.
Additionally, when designing the outputs of the simulated
model we avoided placing any bounding boxes that only par-
tially contained a face. Participants in conditions with inter-
action also saw a tutorial on how to edit the bounding boxes
to provide feedback to the model which reminded them that
their feedback would be used to update the model between
rounds.

After finishing the instructions and tutorial, participants
moved on to the main task, which consisted of three rounds
of reviewing 30 images with bounding boxes corresponding
to the system classifications. Between each set of images,
participants were asked to estimate how accurate the sys-
tem was during the previous set of images. Participants in
the with interaction conditions were required to wait for an
added time delay before being able to continue to the next
round (simulating the time required for the system to update
based on participant feedback). A notification about the rea-
son for this delay was also shown to remind participants that
their feedback was being used dynamically (although the ac-
tual system remained static regardless of their feedback). Af-
ter all rounds of images were completed, participants filled
out a post-study questionnaire to evaluate their level of trust
in the system.

Participants
Participants were recruited from Amazon Mechanical Turk
with a requirement for participants to have the Masters qual-
ification, an approval rate of greater than 90%, and 500 or
more prior tasks completed successfully. Participants ranged
from ages 24–68 and lived in the United States at the time
of study completion. To ensure the quality of participant re-
sponses, we measured the percentage of responses for which
participants correctly identified whether an image corre-
sponded to a system error or not. As a quality check, partic-
ipants were not included in the results if they had less than
75% accuracy for either correct instances or system errors.
Our study had a total of 157 participants, and 4 were re-
moved based on the accuracy criteria. The remaining 153

participants consisted of 83 males, 69 females, and one non-
binary response. Participants took approximately 14 minutes
on average to complete the study.

Results
In this section, we present the measures of our study and
empirical results. We report statistical test results along with
generalized eta squared (η2G) for effect sizes of ANOVA tests
and Cohen’s d (ds) for effect sizes of post-hoc tests.

User-Perceived Model Accuracy
To examine the effects of providing interactive feedback
on user-perceived system accuracy, the participants numeri-
cally estimated the system accuracy after each round of im-
age review. To account for differences in observed accuracy
controlled by the change in accuracy factor, we analyzed es-
timated accuracy as the error of participant responses com-
pared to the actual simulated accuracy. Results are shown
in Figure 3. A three-way mixed-design ANOVA was per-
formed on the error of estimated accuracy, with change in
accuracy and interaction presence as between subjects fac-
tors and image set (i.e., first, second, or third round) as a
within subjects factor. The analysis showed a significant ef-
fect of interaction presence on error of estimated accuracy.
Participants who provided system feedback estimated the
system as being less accurate than those who did not provide
feedback to the model, with F (1, 147) = 6.99, p < 0.01,
η2G = 0.035. No significant interaction effects were de-
tected.

Additionally, the ANOVA test found participant error to
be significantly different based on round with F (2, 294) =
10.29, p < 0.001, η2G = 0.016, as well as an interac-
tion effect between change in accuracy and round with
F (4, 294) = 38.19, p < 0.001, η2G = 0.108. As the sim-
ulated accuracy in each round was different based on the
change in accuracy condition, these results are not surpris-
ing.

Perception of Model Change
In addition to the reported accuracy during the task, we
asked participants to rate how much they thought the system
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Figure 4: Perceived change in system accuracy from the first
round to the last. Participants who saw an increase in accu-
racy reported a significantly more positive perceived change
in accuracy than those who observed constant accuracy, and
those who saw constant accuracy reported a significantly
more positive change than those who saw decreasing accu-
racy.

had changed across the different rounds on a five-point Lik-
ert scale. Figure 4 shows the distribution of participant re-
sponses to this measure. We performed an independent two-
way factorial ANOVA on participant responses that showed
no significance based on interaction presence. However, we
did observe that change in accuracy was significant with
F (2, 147), p < 0.001, η2G = 0.405. A Tukey posthoc test
showed that each pair was significantly different. Partici-
pants who saw increasing accuracy rated the system as hav-
ing changed significantly more positively than both constant
accuracy (p < 0.001, ds = 1.366) and decreasing accu-
racy (p < 0.001, ds = 1.946). Those who saw constant
accuracy thought that the system had a more positive rate of
change than participants who observed decreasing accuracy
(p < 0.05, ds = 0.498).

User Trust
To measure participants’ trust, we asked participants to rate
their agreement using a series of scales proposed by Mad-
sen and Gregor that focus on capturing different aspects of
human-computer trust (Madsen and Gregor 2000). Partici-
pants rated each item on a seven-point Likert scale. Because
the scales were developed for intelligent systems that aid in
user decision making, we selected the following subset that
applied most to our system. The following three statements
were shown to all participants, and the aggregate rating was
used as a measure for trust:

• The system performs reliably.
• The outputs the system produces are as good as that which

a highly competent person could produce.
• It is easy to follow what the system does.

Additionally, as a simple measure of participants’
thoughts on the model updating with feedback, the follow-
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No Interaction With Interaction

Change in
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Constant

Decreasing

Average Agreement With Trust Statements

Figure 5: Average agreement with the three trust statements.
Participants with interactions had significantly lower trust,
regardless of their observation of change in accuracy.

ing was only shown to participants in conditions with inter-
action:

• The system correctly uses the information I enter.

Aggregated responses for the first three trust items were
analyzed with a two-way factorial ANOVA testing the ef-
fects of interaction presence and accuracy change. This
test showed that the with interaction condition had signifi-
cantly lower trust than the without interaction condition with
F (1, 147) = 7.61, p < 0.01, and η2G = 0.049. The test did
not detect a significant effect of change in accuracy on par-
ticipant trust. The distribution of average participant agree-
ment with the first three trust statements is shown in Figure
5.

The results from the fourth statement about agreement
that the system correctly used their feedback are shown in
Figure 6. Since this measure was only relevant and collected
for participants in the with interaction conditions, we per-
formed a one-way ANOVA test with change in accuracy as
the only factor. The test revealed a significant effect with
F (2, 75) = 3.263, p < 0.05, η2G = 0.080. From a Tukey
posthoc test, participants who observed an increase in sys-
tem accuracy had a higher level of agreement that the system
was updating correctly than those with constant accuracy,
with p < 0.05, ds = 0.725. Thus, participants believed their
feedback was being used when they corrected the image de-
tection and observed increased accuracy over trial rounds.
We did not observe any significant effect between partici-
pants who saw a decrease in system accuracy and partici-
pants in either of the other conditions.

Discussion
This section discusses the results of the experiment in the
context of our research questions and hypotheses. We also
consider limitations of our experiment and opportunities for
further work on this subject.
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Figure 6: Participant agreement that the system correctly
used their feedback. Participants with increased accuracy
were significantly more confident in correctness of feedback
usage than those with constant accuracy.

Interpretation of Results
Our goal for this study was to explore the effects that pro-
viding feedback to an automated system has on both user
trust and perception of system accuracy. In our experiment,
we controlled for both presence of interaction and change in
system accuracy. We expected that participants who saw a
positive response to their input—an increase in accuracy—
would experience an increase in trust and perceived accu-
racy compared to participants who did not provide feedback.
For participants who did not observe a positive response—
constant accuracy or a decrease in accuracy—we expected
the opposite. However, while our analysis did detect a sig-
nificant effect for presence of interaction on both perceived
accuracy and trust, the effect did not depend on the observed
change in accuracy as expected. Rather, participants who
provided feedback to the system perceived the system as less
accurate and had less trust compared to those who did not
provide feedback, regardless of the observed change in ac-
curacy.

This leads us to believe that the observed decrease in user
trust may be due to an increase in the salience of system er-
rors. By correcting the mistakes made by the system, those
who provided feedback spent more effort on system errors
than those using the non-interactive system. Since disagree-
ment resulted in participants taking action while agreement
did not (and was therefore reviewed faster), memory of dis-
agreements may have been reinforced in the participants’
minds. That is, participants may have remembered the sys-
tem’s mistakes more strongly than the instances where they
agreed. Participants may have also considered the act of
providing feedback as an inconvenience, as correcting the
system required more time and effort than simply observ-
ing whether the system was right or wrong. The increased
memorability of system errors might help explain why par-
ticipants who used the interactive system trusted it less than
those who used the non-interactive version. This interpre-

tation is also supported by the results of the responses to
the trust questionnaire, as trust can be strongly influenced
by observed accuracy (Yin, Wortman Vaughan, and Wallach
2019).

We also expected a positive change in system accuracy
would correspond to higher confidence in feedback usage.
We observed this effect between the increasing and con-
stant conditions, where participants who observed an in-
crease in system accuracy were more confident that their
feedback was used correctly than those who observed a con-
stant level of accuracy. However, no significant difference
was observed when comparing participants from increas-
ing and decreasing conditions. One possible interpretation
of this result is that providing more feedback also increases
perception of feedback usage. Participants in the decreasing
condition provided the most feedback in the last trial of the
task. As a result of the trial being the closest to the final
questionnaire, these participants may have remembered giv-
ing the system more feedback than participants in the other
conditions, negating the effect that seeing a decrease in ac-
curacy could have.

Implication for Human-in-the-Loop Systems
The findings of this study highlight the importance of
thoughtful design of feedback systems. While these systems
can benefit from user feedback to improve model perfor-
mance, they can also negatively affect trust and perception
of accuracy for their users. This distrust of the system can
lead to humans self-relying for critical decisions, which in
many cases will result in a higher rate of human error. For
instance, Parasuraman et al. (1997) report a case where train
operators disabled automated alarms due to distrust, which
resulted in a significant increase in accidents. Therefore, de-
signers of human-in-the-loop systems should consider ways
to avoid biasing the trust of their users who give feedback.

One potential way to reduce bias due to over-emphasizing
attention to errors could be to capture user feedback implic-
itly. This technique is commonly found in recommender sys-
tems, where the system updates its recommendations based
on prior user behavior to improve the relevance of their re-
sults. For example, users perceive search engine results as
more relevant if the search engine prioritizes results that
were clicked on by prior users (Shivaswamy and Joachims
2012). Similarly, Middleton et al. (2003) designed a system
that recommended research papers based on identifying sim-
ilar users and found that it was effective at making relevant
recommendations. However, they also found that their rec-
ommendations were significantly improved when users pro-
vided explicit feedback of the topics they were interested
in, suggesting that implicit feedback may not always be an
adequate replacement for explicit feedback. While implicit
feedback might address the issue of feedback making system
errors more salient, it is important to note that systems which
operate with implicit updates may open new possibilities for
other forms of bias. By focusing on recommendations that
are similar to those which were previously used, the scope of
system recommendations for each user can become increas-
ingly narrow over time (De Gemmis et al. 2015). Further-
more, if the user of such systems is unaware that this is hap-



pening, they can become biased by only being shown con-
tent that matches their current beliefs (Knijnenburg, Sivaku-
mar, and Wilkinson 2016).

Another approach developers have taken to increase user
trust and facilitate an accurate understanding of system
accuracy is to introduce explanations of system behavior.
Adding system explanations to interactive systems results in
a more appropriate level of user trust, increasing trust when
the system is accurate and lowering trust for inaccurate sys-
tems (Teso and Kersting 2018). Ribeiro et al. (2016) also
showed that by explaining the features used by a classifier
in making a prediction, users identified the system accuracy
more precisely. They also found that model accuracy was
improved by having users provide feedback to the explana-
tions by removing features that they deemed unimportant.
This suggests that explanations can not only help offset dis-
trust caused by providing in human-in-the-loop systems, but
that explanations may provide further interaction modes and
improve the quality of feedback given.

Finally, it may be beneficial to directly make users aware
of their potential biases. Wall et al. (2017) proposed a se-
ries of metrics to detect potential biases by focusing on pat-
terns in what data has been observed by the user. This can
be used to help users identify potential biases towards their
trust or understanding of a system based on how much atten-
tion they have given to different types of system outputs. For
example, human-in-the-loop systems could be accompanied
by visual analytics tools that notify users when they spend a
disproportionate amount of time and effort on a certain type
of data (e.g., a system weakness). By making users aware
of the potential mistrust caused by providing feedback, they
may be able to adjust their level of trust accordingly.

Limitations and Future Work
This research contributed empirical evidence that providing
feedback can negatively effect user trust and perception of
accuracy, but our findings also motivate the need to explore
different kinds of feedback systems. While our study fo-
cused on mandatory feedback to ensure that all participants
engaged with the system equally, it is also possible to allow
users to provide feedback optionally—an approach used in
many intelligent systems. In many such systems, users only
provide feedback when they are already inclined to. It is
possible that removing the requirement to provide feedback
could change the effects it has on user trust. Therefore, more
research is needed to fully understand and compare the im-
pacts of mandatory and optional feedback on user trust and
perception of accuracy.

Another potential direction for further research in this
field would be to explore different methods of collecting hu-
man feedback. Implicit feedback systems detect user behav-
ior to update models without directly asking for input (Shiv-
aswamy and Joachims 2012). However, with systems us-
ing this feedback technique, users might be aware that their
behaviors are being recorded. It may be interesting to see
how this knowledge can affect trust and whether it is sim-
ilar to our findings and observations. Furthermore, it might
be worthwhile to study whether this type of feedback can
improve users’ understanding of system accuracy and the

impact of the their feedback usage for the model. Addition-
ally, while participants in our study provided feedback for
individual system outputs, explanatory interactive learning
systems can also allow users to modify model features di-
rectly (Teso and Kersting 2019). The differences in these
systems suggest that further research can study whether our
findings extend to systems that use feature-based feedback.
Along these lines, future research may also consider whether
the role of algorithmic transparency and system explana-
tion might influence the user biases and perception of ac-
curacy. Thus, continued studies may also incorporate evalu-
ation measures for explainable systems and understandabil-
ity (Mohseni, Zarei, and Ragan 2018) as an essential element
of human-in-the-loop experiences.

Conclusion
Human-in-the-loop machine learning has many benefits,
including the potential for increased model performance
and providing users a way to control the outcomes of au-
tonomous systems. We conducted an experiment of the ef-
fects that providing such feedback has on users of intelli-
gent systems in the presence of differing levels of change in
accuracy over time. The results show that regardless of the
actual observed changes in system performance over time,
participants who provided human-in-the-loop feedback be-
lieved the system to be significantly less accurate than par-
ticipants who did not provide feedback. The study also sug-
gests participants who provided feedback trusted the system
less than those who did not. Therefore, developers of au-
tonomous systems may need to consider the effects that al-
lowing end users to provide feedback could have on how
people perceive their models.
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