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Abstract—As FPGA-based accelerators become ubiquitous
and more powerful, the demand for integration with High-
Performance Memory (HPM) grows. Although HPMs offer a
much greater bandwidth than standard DDR4 DRAM, they
introduce new design challenges such as increased latency and
higher bandwidth mismatch between memory and FPGA cores.
This paper presents a scalable architecture for convolutional neu-
ral network accelerators conceived specifically to address these
challenges and make full use of the memory’s high bandwidth.
The accelerator, which was designed using high-level synthesis, is
highly configurable. The intrinsic parallelism of its architecture
allows near-perfect scaling up to saturating the available memory
bandwidth.

I. INTRODUCTION

Using Field Programmable Gate Arrays (FPGAs) to ac-

celerate neural networks has gained both industrial and aca-

demic interest [1]–[4]. As the classes and applications of

neural networks continues to grow both in size and variety,

designers can tailor the FPGA reconfigurable hardware to meet

their high computational demands. In particular, convolutional

neural networks (CNNs) are widely adopted for a variety of

applications, such as image and speech recognition.

Prior works have shown that maximizing the performance

of CNNs on FPGAs requires using all their resources and,

specifically, employ each available DSP to perform a mul-

tiplication almost every cycle [5], [6]. When the number of

available DSPs in a FPGA becomes a performance bottleneck,

one way to further increase the data-processing throughput is

to apply a Winograd Transform [7]. By trading off a reduced

number of multiplications for extra addition operations, the

Winograd Transform delivers higher throughput with fewer

DSPs. This optimization was demonstrated by Huang et al [8],

who observe how the performance becomes limited by the

available memory bandwidth before all DSPs in the FPGA can

be put to use. This observation suggests that there is room for

higher performance, if only more bandwidth was available.

Standard DRAM modules on high-end FPGA devices have

a maximum bandwidth on the order of 20GB/s. For example,

Xilinx’s latest Ultrascale+ architecture delivers 21GB/s when

operated with a 64-bit wide interface at 2666 MT/s [9].

Newer high-performance memory (HPM) technologies, based

on stacked DRAM, allow for much higher bandwidth. A

single Hybrid Memory Cube (HMC) allows up to 160GB/s

to be connected to a FPGA through the FPGA’s high speed

transceivers [10]. High Bandwidth Memory (HBM), a different

HPM technology that has been originally used for GPU-based

systems, is available for FPGA boards as well. For example,

it can achieve 460GB/s on Xilinx FPGAs when connected

through a silicon interposer [11] . The goal of this paper is

to investigate the HPM opportunity to realize more efficient

accelerators for CNNs with FPGAs.

To the best of our knowledge, we present the first scalable

architecture to accelerate CNN computation on FPGA systems

that leverage HPM technology. We used the Winograd Trans-

form [12] to raise the accelerator’s throughput and address the

computational bottleneck in conventional CNN architectures.

We designed and implemented our CNN accelerator using a

system-level design approach [13], i.e. combining a design

specification made in C and using high-level synthesis for

design-space exploration. In particular, high-level synthesis

allowed us to explore the degree of spatial computation that

we can apply by scaling the parallelism of our architec-

ture to achieve high performance by maximizing the use

of the available FPGA resources. Our architecture leverages

the HPM bandwidth to address the increased access latency

and bandwidth mismatch that occur when using this type of

memory. We demonstrated the accelerator on a Micron AC-

510 module [14], which contains a KCU060 FPGA connected

to a 4GB HMC unit. We execute the VGG16 network [15], a

CNN that has been studied extensively and used as an example

to evaluate the performance of many other architectures in the

literature. The experimental results show that the performance

of our architecture scales in a near perfect way while increas-

ing the utilization of FPGA resources up to saturation of the

available HPM bandwidth.

II. BACKGROUND

The VGG16 network is a deep CNN consisting of 13

convolution layers and 3 fully connected layers (FC). The

layers process different numbers of input and output features:

224 (Layers 1-2), 112 (Layers 3-4), 56 (5-7), 28 (8-10), and

14 (11-13). Each input feature to a layer is convolved with a

3×3 filter. Each output feature is the sum of the convolution of

all input features, with unique filters for each combination of

input and output features. Feature size are reduced by applying

a max-pool operation: each feature is divided in 2 × 2 grids,

then from each grid the maximum value is taken and the rest

discarded; the result is a new feature with half the width and

height of the previous one. The FC layers are a matrix-vector
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Fig. 1. Basic implementation of Winograd algorithm. Arrows indicate how
input transforms overlap input data and how results are accumulated in the
output buffer.

multiplication where the output of the previous layer is treated

as a vector, which is multiplied with a matrix of weights; the

result is a new vector which is the output of the layer.

III. ACCELERATOR ARCHITECTURE

A. Winograd Algorithm

The accelerator implements a convolutional neural network

algorithm using the Winograd Transform [12]. This algorithm

reduces the number of multiplications needed to compute a

convolution at the expense of more addition operations. The

accelerator implements a version of the Winograd Transform

that has been explained in detail in [7], where it is denoted as

F (3× 3, 2× 2) and described by the following equation:

Y = AT

[

[GgGT ]⊗ [BT dB]
]

A (1)

The Winograd Transform takes a 4×4 matrix of input samples

d, a 3×3 matrix of filter weights g, and linear transformations

A,B,G, to compute a 2 × 2 matrix of output contributions

Y . The linear transformations consist of additions and scaling

by powers of 2, which are easy to implement with FPGAs.

The transformations GgGT and BT dB result in two 4 × 4
matrices that are multiplied element-wise (denoted with ⊗).

Finally, the linear transformation A is applied to obtain a

2× 2 matrix of output values Y . These output values are the

same values as one would normally compute when doing a

standard convolution, which requires 9 multiplications for each

output value, or 36 multiplications for 4 output values. With

the Winograd Transform, however, only 16 multiplications are

required. The input transform costs an additional 32 additions,

the filter transform 28 operations, and the output transform

24 additions. Because of the computational bottleneck in the

number of available DSPs, this is a worthwhile tradeoff that

allows the FPGA to achieve a higher throughput per DSP.

Furthermore, we precompute the filters and store them in

memory. This results in a higher memory-bandwidth require-

ment, but it reduces the number of operations on the FPGA.

The values stored in memory are 16-bit fixed-point numbers,

but the B transformation increases the size of input samples

to 18 bits, which results (16 × 18)-bit multiplications. Those

multiplications are implemented using a single DSP block.

In order to preserve sufficient accuracy, the output feature
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Fig. 2. Accelerator unrolling with Ui=Uo= 2. FC bypasses are marked in
red, and only used during FC layers.

accumulation uses 32-bit fixed-point numbers. Before writing

the results to memory, however, these are truncated to a 16-bit

fixed-point format.

B. Compute Core Implementation

Fig. 1 shows the implementation of the Winograd algorithm

by the accelerator. To increase reuse of loaded data, we

compute multiple rows of the output features in parallel; the

number of rows computed in parallel is denoted with Nr . Each

iteration of the algorithm requires four input samples per row

buffer to compute two outputs per row. Two input samples are

saved and reused in every cycle, but in different positions in

the input matrix. Consequently, the number of read ports on the

input-buffer memory is reduced. Since the algorithm requires

two extra rows, there are Nr+2 input row buffers needed

to compute Nr output rows, and Nr output row buffers to

store the results. From this 4 × 4 matrix of input data and

the weights, we calculate the output contribution of the input

feature. We load the accumulated value of the output feature

from the output buffers, sum it with the new contribution, and

store it again. Each row buffer can store the same set of rows

for multiple features. First, the accelerator loops over all input

features to calculate a single output feature. Then, it repeats

this loop for the next output feature. To prevent the accelerator

from having to store intermediate values of the output features

to memory, and then loading them again, for a set of rows

all input features are stored on the FPGA. This is done by

instantiating Nbi blocks of input buffers, each consisting of

Nr+2 row buffers, that together can hold a set of rows for

each input feature of the CNN layer currently processed by

the accelerator.

C. Increase of Parallelism

To increase the accelerator’s throughput, the core algorithm

can be unrolled in two directions, as shown in Fig. 2. First,

the converted input samples can be used to calculate the

contribution for multiple output rows in parallel. The amount

of output unrolling, denoted by Uo, increases the number of
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Fig. 4. System block diagram with host computer, FPGA, and data buses.

common in CNNs. This is done by bypassing the transforms

and reusing the DSP blocks, as shown in Fig. 2. This adds

minimal logic. We also designed it to achieve the maximum

read bandwidth available because the FC operation is limited

by the memory read bandwidth. During convolution, one set

of weights is multiplied with many data samples. During a FC

layer, however, the input samples are a vector that is multiplied

with a large matrix of weights. Hence, one input sample is

multiplied with many weights, which is the reverse of the

data flow behavior during convolution. To efficiently execute

the FC operations we reversed the role of weight and input

data buffers. The large row buffers, and the high-bandwidth

data-path to those buffers, are used for the FC weights, while

the input vector is loaded using the convolution weight data-

path. The large weight matrix is split in blocks and loaded

into the row buffers, where each row holds part of a matrix

column. The input and output transforms are bypassed, making

the multiplication and summation steps in Fig. 3 operate

essentially as a small matrix-vector multiplication core. A

single block of output row buffers can store the entire output

vector of all FC layers, so that it is only written to memory

after the FC operation is completed. This allows us to further

reduce the logic by ignoring the output from the multipliers

that are added when Uo is increased. Since the FC operation

is limited by the memory’s read bandwidth, leaving those

additional multipliers unused has no impact on performance.

IV. DEMONSTRATION SYSTEM

A. PicoFramework

We implemented the proposed architecture’s performance

on a AC-510 [14] module from Micron. This module, which

consists of a Xilinx Kintex Ultrascale 060 FPGA and a

HMC unit, is connected to a host computer through a PCIe

link, as shown in Fig. 4. The AC-510 module also includes

Micron’s PicoFramework, which consists of both an API and

driver on the Host PC, as well as, an IP core on the FPGA.

The PicoFramework handles all communications between the

FPGA and host PC, and also between the accelerator and HMC

memory. The HMC is a 4GB module and is connected to the

FPGA by two uni-directional 8-bit serial links, operating at

15Gb/s per link. This provides a raw bandwidth of 15GB/s in

each direction. The PicoFramework hides the HMC protocol

and exposes a standard 512-bit AXI4 interface to the accel-

erator for access to the memory. This AXI port is clocked at

187.5 MHz which, therefore, limits the memory bandwidth in

each direction to 12GB/s. The PicoFramework also exposes a

memory mapped interface, called PicoBus by Micron, which

allows for easy control of the accelerator from the host PC

through a register interface. The PicoBus is clocked at only

4MHz and should not be used for data transfer. To transfer data

between the host PC and FPGA, the PicoFramework provides

a streaming interface which we use only to directly access the

HMC from the host PC.

B. Accelerator Configuration

To maximize performance we configure the accelerator as

follows. Nr is set to 14, as this is the greatest common

denominator of VGG16’s feature sizes and gives the maximum

use of overlapping in the Winograd algorithm, while allowing

each row buffer to be fully utilized in each layer. Both the input

and output row buffers can store up to 1792 samples (equal

to 8 of the largest features, or 128 of the smallest features).

This value allows the accelerator to compute the contributions

of a reasonable number of input features without having to

switch to a different block of input rows. If the buffers are

set to be too big, then after the last block of output data is

computed, there will be a significant latency for that block

to be written to memory. With a buffer capacity of 1792, the

number of input buffer blocks Nbi must be set to 8 to be

able to store a complete set of input features. For example,

the input features to Layer 2 consist of 64 224×224 features,

allowing 1792/224 = 8 sets of rows to be stored per input

buffer block and requiring 64/8 = 8 input buffer blocks to

store a set of rows from each feature.

V. EXPERIMENTAL RESULTS

A. Execution time

To evaluate the performance of the accelerator when exe-

cuting the VGG16 network, we measured the execution time

and bandwidth per layer for various values of Ui and Uoby

counting the number of cycles and bytes transferred on the

FPGA, respectively. The results are shown in Fig. 5(a-b). The

spiking behavior in Layers 2-10 is caused by the fact that

the output results are max-pooled after Layers 2,4,7, and 10.

The max-pooling operation takes the maximum value from

each 2 × 2 grid in the feature set and discards the other

three values, dividing the size of the feature set by 4. The

layers after the max-pool operation then double the number of

features, resulting in half the amount of computation that need

to performed in Layers 3, 5, and 8 compared to the previous

layers. This is also reflected in the execution time, which is

roughly halved in those layers compared to the pooled layers.

Layers 11-13 are an exception because the number of features

is not doubled and the amount of computation is one-fourth

of that in Layer 10.
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Fig. 5. Measured results for various values of Ui and Uo. (a) Average total bandwidth per layer. (b) Execution time per layer. (c) Speedup per layer
referenced to Ui=Uo=1.

B. Near-Perfect Scaling

Fig. 5(a) shows that during the FC operation in Layers

14-16 the output bandwidth saturates at ∼11GB/s for all

configurations with Ui> 1. This shows that the accelerator

can fully saturate the read bandwidth during FC operations.

Hence, higher performance requires more memory bandwidth.

The bandwidth is not fully saturated when Ui= 1 because in

this configuration the compute core processes exactly 512 bits

of FC weights per cycle. Each time a block of FC weights

is processed the input ping-pong buffer is switched. This

requires the compute pipeline to be first emptied and then filled

again, causing a slight performance penalty. Setting Ui to

be greater than 1 increases the compute core’s performance

enough to completely hide this penalty, as the compute core

can processes weights faster than they are loaded. When

Ui=Uo= 4, the write bandwidth also saturates during Layer

1, and the read bandwidth saturates in Layers 11-13. The

write bandwidth saturates because Layer 1 has only 3 input

features, which results in a small amount of computation

being done to obtain 64 output features. In Layers 11-13, the

bandwidth is high due to the large number of weights being

processed rapidly as the features are only 14 × 14 elements.

The accelerator has to load 16 new sets of weights every 7

cycles, causing a peak bandwidth requirement of 13.7 GB/s.

Fig. 5(c) shows the relative speedup for each layer and

configuration, compared to the configuration Ui=Uo= 1.

Ideally the speedup is Ui×Uo during convolution layers. This

is achieved in almost all cases, except for Layer 1 due to the

small amount of computation done in that layer, and Layers

11-13 when Ui=Uo= 4. The latter is caused by the fact that

the amount of data is so small that the compute process can

complete the entire layer in a single iteration, thus preventing

the accelerator from hiding memory latency through use of

concurrent load, compute, and store processes [18]. Increasing

Ui or Uo has virtually no effect because the FC layers are

bandwidth limited, Fig. 6 shows the aggregate speedup of the

convolutional layers against ideal scaling. The figure clearly

shows that the accelerator performance increases almost per-

fectly. The non-ideal scaling in Layers 1 and 11-13 has only

Fig. 6. Aggregate speedup of convolution layers for various unroll config-
urations. Measured by dividing the total execution time of layers 1-13 in
configuration Ui=Uo= 1 by that of the other configurations.

a small effect because most time is spent in Layers 2-10.

Increasing the accelerator’s performance by increasing the

parallelism has diminishing returns. For the Ui=Uo= 4 con-

figuration, the FC layers account for 48% of the total network

execution time. Reducing the FC layer execution time requires

more memory bandwidth. In cases where network layers have

small feature sizes and many features, similar to Layers 11-

13 of the VGG16 network, the required bandwidth to load

the weights can also become a bottleneck. It is important

to consider the memory access bandwidth when designing

a highly parallel CNN accelerator, especially if the memory

needs to be shared with other cores on the FPGA.

C. Hardware Cost

Fig. 7 shows that the hardware utilization does not change

much across different configurations of Ui and Uo, except for

the DSP block utilization. Between the configurations with

Ui=Uo= 1 and Ui=Uo= 4 the LUT and FF utilization

increases with only ∼10% of the available resources. Most

of the BRAM is used for input row buffers and the HLS AXI
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Fig. 7. Hardware utilization for various Accelerator Configurations. The
PicoFramework and HMC controller utilization is the same for all config-
urations, and is included in the figure. Together they consume 17.78% of
LUTs, 10.65% of FFs, and 17.28% of BRAMs.

ports. BRAM utilization increases only when increasing Uo to

store the additional blocks of output features, which consume

4.4%×Uo. Unfortunately, increasing Ui or Uo above 4 was

not feasible because the FPGA routing becomes congested,

mainly due to the process control logic generated by Vivado

HLS. An RTL implementation of this design is expected to

give better results and allow for use of the entire FPGA.

D. Comparison to Prior Works

Table I contrasts our work with prior works. While using all

available DSPs in the FPGA, the accelerator demonstrated by

Ma et al. [6] does not reach the performance of our accelerator

during convolution. Its total latency is a bit lower due to the

higher memory read bandwidth the FPGA can achieve. Our

accelerator, however, needs only 59% of the DSP resources,

thanks to the use of the Winograd Algorithm. Our accelerator

performs similarly to the accelerator demonstrated by Huang

et al. [8]. The throughput per DSP in the VU440 FPGA is

significantly higher than our throughput per DSP, due to the

higher read bandwidth it has available during the FC layers.

VI. CONCLUSIONS

We presented the first scalable architecture for CNN accel-

erators that leverages stacked-DRAM HPM. The accelerator

performance scales near-perfectly with increased use of par-

allelism. The saturation of the memory link shows that the

accelerator makes full use of the HPM’s bandwidth, while

effectively hiding its access latency. Furthermore, we have

shown that increasing the parallelism of CNN accelerators has

diminishing returns, and matrix-vector multipliers has virtually

no returns, if the available memory bandwidth is not increased

significantly with the help of emerging HPM technologies.
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TABLE I
COMPARISON WITH PRIOR WORKS

Reference [6] [8] This work

FPGA Arria 10 Xilinx Xilinx Xilinx
FPGA GX1150 VX690T VU440 KCU060

Network VGG-16

CNN Algorithm Conventional Winograd F(3×3,2×2)

Frequency [MHz] 200 150 200 187.5

Max. Memory 20 12.8 20 12 Read
Bandwidth [GB/s] Read+Write Read+Write Read+Write 12 Write

DSP Utilization 3036(100%) 1402(39%) 1402(49%) 1792(64.9%)

Latency [ms] 42.98 62.65a 40.99a 44.92

CNV Latency [ms] 26b - 23.1

Throughput [GOP/s] 720 494 755 689

Throughput/DSP 720 494 755 689
[GOP/s/DSP] 0.24 0.35 0.53 0.38

a Calculated from reported throughput
b Number read from Fig. 10 in the reference
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